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Abstract

A 3D strength criterion for masonry is constructed based on yield design

theory. Yield design homogenisation provides a rigorous theoretical frame-

work to determine the yield strength properties of a periodic medium, based

on the properties of its constituent materials. First, theoretical basis of 2D

homogenisation of periodic media, and more particularly its application in

the framework of yield design, will be retrieved. Then, 2D principles are

extended to exhibit a 3D domain of running-bond masonry. This criterion is

finally used to assess the stability of a drystone retaining wall loaded by an

axle load, and theoretical results are compared to experimental data. Per-

spectives on this work are given as a conclusion.
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1. Introduction1

Structural analysis of historical constructions has received a growing at-2

tention over the past decades, due to the necessary preservation of its her-3

itage. Actually, the development of modelling proves challenging, considering4

the strong heterogeneity of the masonry and the diversity of its constitutive5

materials and patterns.6

Considering the relative periodicity of their pattern, masonry can be7

treated as periodic composite media, and homogenisation techniques can be8

applied in order to derive its mechanical characteristics at macro-scale from9

the properties of its constituent materials. Pande et al. (1989) pioneered10

this technique on masonry, in order to evaluate its equivalent modulus of11

elasticity. This work has been extended later on by Anthoine (1995), on a12

3D finite thickness pattern. Homogenisation techniques have then been ex-13

tensively used to assess elastic properties (Cecchi and K., 2002; Cecchi and14

Sab, 2002; Mistler et al., 2007), or in the framework of limit analysis (Milani15

et al., 2006a,b; Milani, 2008; Milani and Lourenço, 2010) and finite element16

analysis (Zucchini and Lourenço, 2002, 2004, 2009).17

In 1997, de Buhan and de Felice propose an homogenisation approach18

for masonry developed in the framework of yield design theory. Yield design19

homogenisation is a rigorous theoretical approach to determine the yield20

strength properties of a periodic medium, based on the properties of its21

constituent materials. Extending on this work, the present article introduces22

a 3D macroscopic strength criterion for running-bond masonry, derived from23

the strength characteristics of blocks and joints.24
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First, theoretical basis of 2D homogenisation of periodic media, and more25

particularly its application in the framework of yield design, will be retrieved.26

This theory is then extended to the three-dimensional case, in order to exhibit27

a 3D macroscopic strength domain of running-bond masonry. An application28

of this work is finally given: the 3D strength criterion is used to assess the29

stability of drystone retaining wall loaded by an axle load in the framework30

of yield design, and theoretical results given by the model are compared to31

experimental data. Perspectives on this work are given as a conclusion.32

2. Presentation of 2D homogenisation of periodic media principles33

Homogenisation of period media consists in replacing the heterogeneous34

periodic medium by an equivalent homogeneous medium, which macroscopic35

mechanical properties are derived from the microscopic properties of the orig-36

inal heterogeneous medium. Introduced by Suquet (1983) in the framework37

of limit analysis, homogenisation technique has been extended on for yield38

design analysis of reinforced soils (de Buhan and Salençon, 1990), fibre com-39

posite materials (de Buhan and Taliercio, 1991), jointed rock mass (Bekaert40

and Maghous, 1996), and also masonry (de Buhan and de Felice, 1997).41

Considering a heterogeneous periodic medium, a basic cell V can be iden-42

tified as the smallest representative volume of material. For every point x43

of V , a microscopic strength domain G(x) can be defined as the set of ad-44

missible stress fields σ(x). Yield design homogenisation aims at defining the45

macroscopic strength domain Ghom of an equivalent homogeneous medium.46
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2.1. Static definition of Ghom
47

A static definition of the macroscopic strength domain Ghom can be given

as the set of admissible macroscopic stress fields Σ:

Ghom =
{

Σ =
〈

σ(x)
〉

=
1

V

∫

V

σ(x) dV (1a)

div σ(x) = 0 (1b)

σ(x).n(x) antiperiodic (n unit normal oriented outward)(1c)

σ(x) ∈ G(x) ∀ x ∈ V
}

(1d)

2.2. Kinematic definition of Ghom
48

A kinematic definition of the macroscopic strength domain Ghom can be49

given as the set of admissible macroscopic stress fields Σ:50

Ghom =
{

Σ /Σ : D ≤ πhom(D)
}

(2)

where:51

• Σ is defined in equation (1a);52

• D is the macroscopic strain rate field given by :53

D = 〈d(x)〉 =
1

2V

∫

V

(

grad v(x) +t grad v(x)
)

dV (3)

• πhom(D) is the support function of Ghom defined as:54

πhom(D) = sup
Σ

{

Σ : D/Σ ∈ Ghom
}

(4)

Considering the periodicity of the medium, the virtual velocity field v(x)55

is given by:56

v(x) = F . x+ u(x) (5)
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where F is a second order tensor and u(x) a periodic velocity field. The57

associated strain rate field d can thus be written :58

d = D + δ (6)

where D is the symmetric part of F and δ the strain rate field associated59

with u.60

De Buhan and de Felice (1997) assumed that the support function πhom(D)61

of the macroscopic strength domain Ghom can be written depending on the62

support function π(d) of the microscopic strength domain G(x) :63

πhom(D) = min
v
〈π(d)〉 (7)

2.3. 2D homogenised strength criterion for masonry64

The kinematic approach has been used by de Buhan and de Felice (1997)65

to determine a strength criterion Ghom for running-bond masonry. Masonry66

is made of blocks of height a and thickness b, linked by a joint considered67

infinitely thin. The basic cell chosen here has a diamond shape (Fig. 1),68

made of four pieces of blocks linked by three sections of joint.69

Block strength properties are considered to be infinite, compared to the70

shear strength of the joints. The joints comply with a Mohr-Coulomb strength71

criterion:72

g(σ, τ) = |τ |+ σ tanϕ− c ≤ 0 (8)

where σ, τ are the normal and shear stress in the joints, ϕ the friction angle,73

and c the cohesion of the joints.74

This criterion can also be expressed as a support function of the strength75
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Figure 1: Periodic masonry in 2D, basic cell and rigid block velocity field by de Buhan

and de Felice (1997).

domain (Salençon, 2013):76

π(n, J v K) =







c

tanϕ
J v K.n if J v K.n ≥ |J v K| sinϕ

∞ otherwise
(9)

The hypothesis of an infinite compressive strength implies that the sup-77

port function π(d) takes infinite values for d 6= 0, implying:78

d = 0 (10)

Thus, the only relevant velocity fields are rigid body fields, which can be79

written as:80

v(x) = vi + ωie3 ∧ (x− xi) (11)

where vi is the translation velocity, ωi the angular velocity, and xi the position81

of a point in the block i (i = 1 . . . 4).82
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Indeed, Bekaert and Maghous (1996) showed that periodicity conditions

imposes ωi = 0. The velocity fields thus reduce to translations, that can be

written as:

v1 = −v3 = α (12a)

v2 = −v4 = β (12b)

With these velocity fields (12), equation (5) enables the calculation of F :83

F =
2

b
α⊗ e1 +

1

a
β ⊗ e2 (13)

and equation (6) the calculation of D:84

D =
1

b
α⊗s e1 +

1

2a
β ⊗s e2 (14)

where u⊗s v = 1
2
(u⊗ v + v ⊗ u)85

Yet, the maximum resisting work 〈π(d)〉 in the basic cell is given by:86

〈

π(d)
〉

=
1

V

(
∫

V

π(d) dV +

∫

S

π(n, J v K ) dS

)

(15)

Considering (10) and (9), this expression can be simplified to:87

〈

π(d)
〉

=
c

tanϕ

(

2

b
α1 +

1

a
β2

)

(16)

De Buhan and de Felice (1997) prove that, combining (7), (14) and (16),88

the expression of the support function πhom(D) is finally given by:89

πhom(D) = 〈π(d)〉 =
c

tanϕ
tr
(

D
)

(17)

provided the relevancy conditions:

−D11 ≤ 0 (18a)

f D11 ≤ 2mD22 (18b)

2 |D12| ≤ f D11 +
1

f
D22 if 2m <

1

f
(18c)
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where f = tanϕ, and m = a/b is the aspect ratio of the blocks.90

The macroscopic strength domain Ghom is thus given by:91

Ghom =

{

Σ /Σ : D ≤ πhom(D) =
c

tanϕ
tr
(

D
)

}

(19)

Fig. 2 shows the representation of Ghom in the space of stresses. This92

representation exhibits the anisotropic character of the masonry.

Figure 2: Macroscopic strength domain Ghom for running-bond masonry.

93

3. Generalisation to 3D homogenised strength criterion for ma-94

sonry95

The 2D plane strain approach is here extended on to 3D modelisation.96

The wall is now considered to be made of blocks of width a, thickness b, and97

height c, arranged with running bond in the plane of the wall and stack bond98
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out-of-plane (Fig. 3). This pattern has been chosen because it enables an99

analytical resolution of the problem.

Figure 3: Periodic masonry in 3D.

100

The basic cell is a vertical prism (Fig. 4), made of 13 pieces of blocks. It101

consists in 3 beds of masonry, and presents a diamond-shape cross-section102

in the plane (e1, e2) along beds direction. Indeed, the basic cell is perfectly103

symmetric around its centre.104

Block compressive strength is still considered to be infinite, with zero-105

thickness joints complying with a Mohr-Coulomb strength criterion. The106

hypothesis of an infinite compressive strength still implies equation (10).107

Thus, the only relevant velocity fields are still rigid body fields.108

Complying with equation (5) and periodicity conditions, the following

expressions can be written:

v1 − v2 = F . (2a e1) (20a)

9



Figure 4: 3D basic cell of masonry.

v3 − v4 = F . (2b e2) (20b)

v5 − v5′ = v6 − v6′ = v7 − v7′ = v8 − v8′ = F . (2c e3) (20c)

v1 − v4 = v3 − v2 = v5 − v6 = v5′ + v6′ = F . (a e1 + b e2) (20d)

v7 − v8 = v7′ + v8′ = v1 − v3 = v4 − v2 = F . (a e1 + b e2) (20e)

Assuming the velocity of block 0 is null, the following notations can thus
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be introduced:

v0 = 0 (21a)

v2 = −v1 = −α (21b)

v4 = v3 = −β (21c)

v5′ = −v6 = −ε+
1

2
(α + β) (21d)

v6′ = −v5 = −ε−
1

2
(α + β) (21e)

v7′ = −v8 = −ε+
1

2
(α− β) (21f)

v8′ = −v7 = −ε−
1

2
(α− β) (21g)

With these velocity fields (21), equation (5) enables the calculation of F :109

F =
1

a
α⊗ e1 +

1

b
β ⊗ e2 +

1

c
ε⊗ e3 (22)

and the symmetric part of F , represented by the matrix D̃ in the base110

(e1, e2, e3):111

D̃ =





























α1

a

1

2

(

α2

a
+
β1
b

)

1

2

(α3

a
+
ε1
c

)

1

2

(

α2

a
+
β1
b

)

β2
b

1

2

(

β3
b

+
ε2
c

)

1

2

(α3

a
+
ε1
c

) 1

2

(

β3
b

+
ε2
c

)

ε3
c





























(e
1
,e

2
,e

3
)

(23)

Yet, the maximum resisting work 〈π(d)〉 in the basic cell is given by:112

〈

π(d)
〉

=
1

V

(
∫

V

π(d) dV +

∫

J

π(n, J v K) dJ

)

=
c

tanφ

(

α1

a
+
β2
b

+
ε3
c

)

(24)
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The support function πhom(D) is finally given by (17):

πhom(D) =
c

tanϕ
tr(D)

provided the relevancy conditions:

α . e1 ≥ |α| sinϕ (25a)

β . e2 ≥ |β| sinϕ (25b)

(ε+
1

2
(α + β)) . e3 ≥ |ε+

1

2
(α + β)| sinϕ (25c)

(ε−
1

2
(α + β)) . e3 ≥ |ε−

1

2
(α + β)| sinϕ (25d)

(ε+
1

2
(α− β)) . e3 ≥ |ε+

1

2
(α− β)| sinϕ (25e)

(ε−
1

2
(α− β)) . e3 ≥ |ε−

1

2
(α− β)| sinϕ (25f)

The macroscopic strength domain Ghom is still given by equation (2).113

It is interesting to note that, considering plane strain conditions, the114

same results as those given by de Buhan and de Felice (1997) are achieved.115

In particular, the macroscopic deformation rate (23) becomes:116

D̃ =

























α1

a
0

1

2

(α3

a
+
ε1
c

)

0 0 0

1

2

(α3

a
+
ε1
c

)

0
ε3
c

























(e
1
,e

2
,e

3
)

(26)

that is plane strain expression recorded in (14). Indeed, Ghom is represented117

by Fig. 2 for plane strain conditions in (e1, e3).118
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4. Application to the stability assessment of drystone retaining119

walls120

The three-dimensional strength criterion identified in section 3 is now121

used to assess the stability of a drystone retaining wall.122

Drystone walling is an ancient, vernacular form of construction that can123

be found in many areas around the world. In western Europe, drystone ac-124

counts for a large part of the retaining walls along road networks. Despite125

the robustness of these structures, drystone walls are subjected to deterio-126

ration due to ageing, excessive loading for which they were not designed, or127

even inappropriate repairs, and there is a growing need for structural anal-128

ysis methods in order to evaluate their residual bearing capacity. Over the129

past two decades, advances have been made in France and in the UK for130

modelling the plane strain behaviour of drystone earth retaining walls. The131

distinct element method has been extensively used for modelling drystone132

retaining wall behaviour, more precisely for a better understanding of their133

pathologies due to ageing (Harkness et al., 2000; Powrie et al., 2002; Clax-134

ton et al., 2005; Walker et al., 2007). On the other hand, limit equilibrium135

analyses have been applied to assess the ultimate bearing capacities of these136

structures (Villemus et al., 2007; Mundell et al., 2009). More recently, this137

approach has been extended on, using the rigorous framework of yield design138

(Colas et al., 2010a, 2013). Along with these simulation developments, full-139

scale experimental campaigns have been undertaken in plane strain (Villemus140

et al., 2007; Colas et al., 2010b), and 3D (Mundell et al., 2010; McCombie141

et al., 2012), in order to calibrate and validate the models.142

Relying on this work, the present paper proposes an innovative 3D mod-143
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elling of these structures. Actually, retaining walls comply with a plane144

strain behaviour when they only support their backfill soil but when consid-145

ering a traffic loading upon the backfill, a three-dimensional approach should146

be adopted. The effects of traffic loadings can be represented by a point load147

F applied on a rigid plate situated upon the backfill, at a distance d of the148

head of the wall, to figure the action of an axle. This study aims to assess149

the ultimate load F+ the wall can bear, solely knowing the geometry of the150

structure, the loading mode and the strength criterion of the constituent151

materials.152

4.1. Statement of the hypotheses153

The stability assessment is undertaken in the framework of yield design154

theory: the first step consists in identifying the inputs of the model, being155

the geometry, loading mode and material strength criterion of the structure.156

The geometry and the loading mode are easily described by Fig. 5 and 6.157

The strength criteria are detailed below.158

Strength criterion of the wall. The macroscopic strength criterion constructed159

in section 3 can be used to characterise drystone, provided the cohesion of160

the joints is set to 0. The friction angle ϕ now represents the friction angle161

between the blocks. Expression (2) thus becomes:162

Ghom =
{

Σ /Σ : D ≤ πhom(D) = 0
}

(27)

and the homogenised support function πhom(D):163

πhom(D) = 0 (28)

with respect to the relevancy conditions given by (25).164
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Strength criterion of the soil. The backfill soil has been considered as a purely165

frictional Mohr-Coulomb soil, where ϕs is the friction angle of the soil. Co-166

hesion of the soil has been considered as null to simplify calculations and for167

safety reasons.168

The support function and the relevancy conditions of the soil can be found169

in Salençon (2013):170

π
(

d
s

)

= 0 provided tr d
s
≥ (|ds1|+ |ds2|+ |ds3|) sinϕs (29)

π (ns, J vs K) = 0 provided J vs K . ns ≥ |J vs K| sinϕs (30)

where dsi are the eigenvalues of the strain rate d
s
, and J vs K the velocity171

discontinuity across a discontinuity surface of normal ns.172

Strength criterion at the soil/structure interaction. The interface has been173

considered as a purely frictional Mohr-Coulomb interface, where δ the fric-174

tion of the interface equals ϕs the friction angle of the soil. This choice is175

motivated by the rough nature of the drystone upstream face, which can176

force the failure to occur into the backfill.177

The support function and the relevancy conditions of the interface can178

be found in Salençon (2013):179

π (nδ,∆v) = 0 provided ∆v . nδ ≥ |∆v . tδ| tan δ (31)

where ∆v is the velocity discontinuity at the interface, nδ the normal and tδ180

the tangent of the discontinuity surface.181

Tab. 1 gathers the input parameters of the yield design model.182
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Table 1: Input parameters of the 3D drystone retaining wall models.

Symbol Unit Definition
G

eo
m

et
ry

H m Wall height

l m Wall thickess at the top

f1 % Wall batter

d m Distance axle load/top of the wall

B m Half width of the plate

L
oa

d
in

g γ kN/m3 Wall unit weight

γs kN/m3 Backfill unit weight

F kN Axle load

S
tr

en
gt

h

ϕ ° Block friction angle

ϕs ° Soil internal friction angle

4.2. Construction of the virtual velocity fields183

Fig. 5 and 6 show the velocity field family chosen for this study: it consists184

in a translation of a part of the backfill and a translation of part of the wall.185

It presents a plane of symmetry (O, e1, e3). Considering the complexity of186

the calculations, it has been decided to restrain to plane failure surfaces.187

4.2.1. Velocity field within the wall.188

The wall is supposed to fail into 2 parts: a failure zone (JRSTJ’R’S’T’),189

which is given a translation velocity v, whereas the rest of the wall remains190

motionless. The failure zone is delimited by a horizontal surface (JJ’T’T)191

at the bottom and two quadrilateral shapes (JRST) and (J’R’S’T’) on the192

16



Figure 5: Yield design analysis of a drystone retaining wall subjected to a single axle load:

geometry, loading, and velocity fields on a half-system cross-section.

edges. The failure zone is bounded by its height ηH, with η ∈ [0, 1], and193

the angles ξ and χ respectively between (JRST) or (J’R’S’T’) and the axis194

e1 and e3. The surface (JJ’T’T) is taken horizontal because it is the optimal195

solution available with analytical calculations.196

The virtual translation velocity v of part (JRSTJ’R’S’T’) is written:197

v = V cos θ e1 + V sin θ e3 (32)

where θ is the angle between v and e1.198

This velocity fields has to comply with the relevancy conditions (25) im-199

posed by the masonry strength criterion.200
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Failure surface (JTT’J’). Considering the macroscopic parameters, the strain201

rate D is given by:202

D = n⊗s J v K (33)

where v is given by (32) and n = e3.203

Thus:204

D̃ =

























0 0
V

2
cos θ

0 0 0

V

2
cos θ 0 V sin θ

























(e
1
,e

2
,e

3
)

(34)

Figure 6: Yield design analysis of a drystone retaining wall subjected to a single axle load:

geometry, loading, and velocity fields on a front view.
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Yet, D is also given by (23), using microscopic parameters. Based on (34)

and (23), microscopic and macroscopic parameters are thus easily identified:

α = β = 0 (35a)

ε1 = cV cos θ (35b)

ε2 = 0 (35c)

ε3 = cV sin θ (35d)

Relevancy conditions are finally given by substituting expression given by205

(35) in (25):206

θ ≥ ϕ (36)

Failure surfaces (JRST) and (J’R’S’T’). Considering the symmetry of the207

structure, the calculations will be developed on surface (JRST) only, the208

expressions for (J’R’S’T’) being easily derived.209

The strain rate D is still given by (33), with v given by (32) and n by:210

n =
tan ξ e1 − e2 + tanχ e3
√

tan2 ξ + 1 + tan2 χ
(37)

Thus:211

D̃ =































V tan ξ cos θ
√

tan2 ξ + 1 + tan2 χ
−

V cos θ

2
√

tan2 ξ + 1 + tan2 χ

V (tanχ cos θ + tan ξ sin θ)

2
√

tan2 ξ + 1 + tan2 χ

−
V cos θ

2
√

tan2 ξ + 1 + tan2 χ
0 −

V sin θ

2
√

tan2 ξ + 1 + tan2 χ

V (tanχ cos θ + tan ξ sin θ)

2
√

tan2 ξ + 1 + tan2 χ
−

V sin θ

2
√

tan2 ξ + 1 + tan2 χ

V tanχ sin θ
√

tan2 ξ + 1 + tan2 χ































(e

(38)
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Based on the macroscopic (38) and the microscopic (23) definitions of D̃,

microscopic and macroscopic parameters are thus easily identified:

β1 = β2 = β3 = 0 (39a)

α1 =
aV tan ξ cos θ

√

tan2 ξ + 1 + tan2 χ
(39b)

α2 = −
aV cos θ

√

tan2 ξ + 1 + tan2 χ
(39c)

ε2 = −
cV sin θ

√

tan2 ξ + 1 + tan2 χ
(39d)

ε3 =
cV tanχ sin θ

√

tan2 ξ + 1 + tan2 χ
(39e)

α3

a
+
ε1
c

=
V (tanχ cos θ + tan ξ sin θ)

√

tan2 ξ + 1 + tan2 χ
(39f)

In order to get analytical solutions, the following choices have been made:

α3 = aV
tanχ cos θ

√

tan2 ξ + 1 + tan2 χ
(40a)

ε1 = cV
tan ξ sin θ

√

tan2 ξ + 1 + tan2 χ
(40b)

Relevancy conditions are finally given by substituting expression given by212

(39) and (40) in (25):213































ϕ ≤ π/4

tan θ ≥ a/(2 c)

χ = ξ

tan ξ ≥ tanϕ/
√

1− tan2 ϕ

(41)

Calculations are detailed in Appendix A.214

4.2.2. Velocity field within the soil215

The backfill soil is supposed to fail into two parts: a failure zone (KRJJ’R’K’),216

which is given a translation velocity vs, whereas the rest of the backfill re-217
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mains motionless. The failure zones of the wall and the backfill intersect in218

the vertical plane formed by the upper face of the wall, quoted (JRR’J’). The219

plane (KJJ’K’) forms an angle Ψs with e1, defined by:220

tanΨs =
η H

d∗
tanΨs =

η H

d∗
(42)

where d∗ is the distance between (KK’) and (RR’).221

The virtual translation velocity vs of part (KRJJ’R’K’) is written:222

vs = Vs cos(ψs − ϕs) e1 − Vs sin(ψs − ϕs) e3 (43)

Considering the velocity field chosen in (43), there is no deformation in223

the backfill, thus d
s
= 0 and π(d

s
) = 0. The maximum resisting work of224

the backfill is solely governed by the support function (30), provided the225

relevancy condition is satisfied. On (KJJ’K’), the condition is fulfilled as the226

angle with vs is equal to ϕs. On surface (KRJ), the normal ns is given by:227

ns =
tan ξs e1 − e2 + tanχ e3
√

tan2 ξs + 1 + tan2 χ
(44)

with tan ξs = (λ+ η H tanχ−B)/d∗.228

The relevancy condition becomes:229

cos(ψs − ϕs) tan ξs − sin(ψs − ϕs) tanχ
√

tan2 ξs + 1 + tan2 χ
≥ sinϕs (45)

4.2.3. Velocity jump at the soil/structure interface230

At the soil/structure interface, the support function is given by (31) and231

the relevancy condition becomes:232

V ≥ Vs
cos(ψs − 2ϕs)

cos(θ + ϕs)
(46)
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4.3. Upper bound axle load233

The kinematic approach of yield design is based on the application of the234

principle of virtual works:235

∀ v kinematically admissible, W e ≤ Wmr (47)

which provides an upper bound of the ultimate load F+.236

Considering the support function of the wall (28), the soil (30), and the237

interface (31), the maximum resisting work Wmr is given by:238

Wmr = Wmr
wall +Wmr

soil +Wmr
interface = 0 (48)

The work of the external forces W e is given by the sum of the work of239

the forces in the wall, the soil and due to the axle load F :240

W e = W e
wall +W e

soil +W e
F (49)

The work of the external forces in the wall W e
wall is written:241

W e
wall =

∫

V

γ . v dV

W e
wall = −γ V sin θ

[

ηH

2
(l +

ηH

2
f1)(2λ+ 2ηH tanχ+ 2l tan ξ + ηHf1 tan ξ)

]

(50)

The work of the external forces in the soil W e
soil is written:242

W e
soil =

∫

V

γ
s
. vs dV

W e
soil = γs Vs sin(ψs − ϕs)

[

B d∗ η H +
1

3
d∗ η H (λ−B + η H tanχ)

]

(51)

The work of the external forces due to the axle load W e
F is written:243

W e
F = F . vF = F Vs sin(ψs − ϕs) (52)
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The upper bound inequality (47) leads to:244

F ≤ −
W e

wall +W e
soil

Vs sin(ψs − ϕs)
= f (η, d∗, χ, ξ, λ, θ) ∀ η, d∗, χ, ξ, λ, θ (53)

The analytical solution of the upper-bound load F+ is written depending245

on input parameters of the problem (H, l, f1, d, B, γ, ϕ, γs, ϕs) and kinematic246

parameters (η, d∗, χ, ξ, λ, θ). The upper bound load F+ is finally given by247

minimizing function f :248

F+ = min
η,d∗,χ,ξ,λ,θ

f (η, d∗, χ, ξ, λ, θ) (54)

with respect to the relevancy conditions (41), (45), and (46)249

5. Comparison with full-scale experiments250

The analytical approach performed in section 4 is tested by comparison251

with experimental results by Mundell et al. (2010) and McCombie et al.252

(2012). Actually, between 2004 and 2009, the University of Bath has un-253

dertaken full-scale experiments on drystone retaining walls, aiming at bet-254

ter understanding the three-dimensional behaviour of these structures, and255

more particularly the bulge deformation of existing drystone walls. Five ex-256

perimental drystone walls were built on a moving platform, backfilled by257

crushed gravel, raised to ensure full frictional interface between the wall and258

the backfill, and finally loaded by a localised surcharge upon the backfill sur-259

face, except for wall 1 which was also submitted to tilting of the platform.260

Wall 1 was built according to standards of drystone construction, whereas261

walls 2 to 5 were intentionally of poorer construction quality to ensure bulge262

deformations and failures. Considering the difference of construction and263
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testing protocol of the first test, it has been decided to focus on walls 2 to 5264

in this study. Geometrical and physical characteristics of the walls, as well265

as experimental results are given in Tab. 2.

(a) (b)

Figure 7: Experimental tests at the University of Bath (Mundell et al., 2010; McCombie

et al., 2012): experimental wall (a) and axle load over the backfill (b).

266

Considering the specific experimental protocol, with the moving platform,267

and the poor quality of construction of the walls, the experimental campaign268

cannot be used directly to validate the model. Yet, it provides a practical269

framework for a parametric analysis. Thus, the yield design approach previ-270

ously developed is used to estimate an upper-bound of the ultimate axle load271

the experimental walls can bear, then compared to the experimental value.272

The preliminary question which has to be faced with is the choice of the273

input parameters of the model, and more particularly the aspect ratio of the274

blocks. Actually, as drystone masonry is made of uncut blocks of different275
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Table 2: Experimental tests at the University of Bath (Mundell et al., 2010; McCombie

et al., 2012): geometrical and physical characteristics, and experimental results.

Wall 2 Wall 3 Wall 4 Wall 5

Type of stone limestone limestone limestone slate

Wall height (m) 2.5 2.5 2.5 2.5

Backfill height(m) 2.2 2.2 2.2 2.2

Wall top thickness (m) 0.3 0.4 0.4 0.4

Wall base thickness (m) 0.5 0.6 0.7 0.67

Wall batter (%) 0.08 0.08 0.12 0.11

Wall unit weight (kN/m3) 19.9 16.8 17 19.7

Backfill unit weight (kN/m3) 13.7 13.7 13.7 13.7

Block friction angle (°) 37.4 37.4 37.4 17.5

Backfill friction angle (°) 39 39 39 39

Distance load/wall (m) 1 1 1 1

Experimental load (kN) 75 80 85 60

size, it proves quite difficult to evaluate this parameter. Yet, aspect ratio is276

only involved in the calculation of θ, the angle of the translation velocity of277

the wall v with the horizontal e1, so that:278

θ = max {arctan(a/2c), ϕ} (55)

The influence of this parameter is assessed on wall 5, as slate friction angle279

is quite low, compared to limestone friction angle. Fig. 8 shows the evolution280

of the analytical upper-bound load F+ depending on the aspect ratio a/c. It281

can be seen that the analytical solution tends to the experimental value as282

a/c decreases, and even reaches it for a/c ≈ 0.6. This value seems very low283
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as the average aspect ratio of slate blocks seems greater than 2.
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Figure 8: Comparison between theoretical and experimental ultimate load on experiments

from the University of Bath, depending on the block aspect ratio a/c.

284

Comparing theoretical and experimental upper bound values for F (Fig. 9),285

it is worth noting that yield design kinematic approach overestimates the286

bearing capacities of drystone experimental walls, which is consistent with287

the poor quality of construction of the walls and the upper-bound approach288

of the model. With a aspect ratio a/c = 1, theoretical values are 6.5 times289

greater than experimental results for limestone walls. This can be accounted290

for by the relevancy conditions on the macroscopic strength criterion of ma-291

sonry, which force the velocity field to form an angle θ ≥ ϕ. An additional292

possible explanation is the value of the friction angle considered in this study.293

Actually, the experimental campaign by Colas et al. (2010a) has showed that294
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the bed joint friction angle in a drystone wall proves about 10° lower than295

the block friction angle measured in laboratory. This can be explained by296

the internal rotation of the blocks located at the basis of the wall, and by297

the difference of contact between wall bed joints and smooth block joints.298

Considering a lower friction angle between limestone blocks (27.4° instead of299

37.4°), the difference between analytical and experimental solutions vanishes300

to 3, showing the great influence of block friction angle in the model.
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Figure 9: Comparison between theoretical and experimental ultimate load on experiments

from the University of Bath (a/c=1)

301

The application of the model on an experimental campaign has high-302

lighted the importance the block aspect ratio and the block friction angle303

on the results, thus enabling a qualitative evaluation of the model. Yet, the304

discrepancies between theoretical and experimental values prevent from a305
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quantitative validation. A forthcoming experimental campaign is planned,306

with experimental walls according to standards of construction and a unique307

loading mode by a single axle load. This campaign aims to assess the model,308

and provides additional information on drystone wall 3D behaviour.309

6. Conclusion310

This paper presents a homogenised 3D strength criterion for masonry.311

The development of this criterion enables the design and the stability assess-312

ment of masonry structures in the framework of yield design. An applica-313

tion is here presented through the stability assessment of drystone retaining314

walls loaded by a single axle load. Yield design offers a simple but rigorous315

framework to perform a structural evaluation. Theoretical results are finally316

compared with experimental results found in the literature: this comparison317

proves the importance of the input parameters in the model, and more espe-318

cially the block aspect ratio and the block friction angle. It also highlights the319

importance of complying experiments with modelling. Perspectives on this320

work includes greater account taken of the joint friction angle, by distinguish-321

ing horizontal and vertical joints. Scale down and full-scale experiments will322

also be planed in order to get experimental results dedicated to the model,323

thus enabling a better validation of theoretical results.324
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AppendixA. Determination of the relevancy conditions for the ve-395

locity field within the wall396

The appendix aims at detailing the calculation of relevancy conditions397

(41) of the velocity jump on surface (JRST) of the wall.398

Based on the macroscopic (38) and the microscopic (23) definitions of D̃,

microscopic and macroscopic parameters are thus easily identified:

V tan ξ cos θ
√

tan2 ξ + 1 + tan2 χ
=

α1

a
(A.1a)

−
V cos θ

√

tan2 ξ + 1 + tan2 χ
=

α2

a
+
β1
b

(A.1b)

V (tanχ cos θ + tan ξ sin θ)
√

tan2 ξ + 1 + tan2 χ
=

α3

a
+
ε1
c

(A.1c)

0 =
β2
b

(A.1d)

−
V sin θ

√

tan2 ξ + 1 + tan2 χ
=

β3
b

+
ε2
c

(A.1e)

V tanχ sin θ
√

tan2 ξ + 1 + tan2 χ
=

ε3
c

(A.1f)

(A.1g)

β1 and β3 can be deduced from the introduction of condition (A.1d) in399

the microscopic relevancy condition (25b) :400

β . e2 = 0 ≥ |β| sinϕ ⇒ β1 = β2 = β3 = 0 (A.2)
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The components of the velocity parameters can thus be identified (39):

β1 = β2 = β3 = 0

α1 =
aV tan ξ cos θ

√

tan2 ξ + 1 + tan2 χ

α2 = −
aV cos θ

√

tan2 ξ + 1 + tan2 χ

ε2 = −
cV sin θ

√

tan2 ξ + 1 + tan2 χ

ε3 =
cV tanχ sin θ

√

tan2 ξ + 1 + tan2 χ
α3

a
+
ε1
c

=
V (tanχ cos θ + tan ξ sin θ)

√

tan2 ξ + 1 + tan2 χ

In order to get analytical solutions, simplifying choices (40) have been

made:

α3 = aV
tanχ cos θ

√

tan2 ξ + 1 + tan2 χ

ε1 = cV
tan ξ sin θ

√

tan2 ξ + 1 + tan2 χ

Considering β = 0 (A.2), the microscopic relevancy conditions vanish to:

α . e1 ≥ |α| sinϕ (A.3a)

(ε+
1

2
α) . e3 ≥ |ε+

1

2
α| sinϕ (A.3b)

(ε−
1

2
α) . e3 ≥ |ε−

1

2
α| sinϕ (A.3c)

Introducing components αi and εi given by (39) and (40) in (A.3a) boils401

down to:402

α2
1 cos2 ϕ ≥ (α2

2 + α2
3) sin

2 ϕ (provided cos θ > 0)

tan2 ξ cos2 ϕ ≥ (1 + tan2 χ) sin2 ϕ

tan2 ξ ≥ (1 + tan2 χ) tan2 ϕ

(A.4)
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Introducing components αi and εi given by (39) and (40) in (A.3b) and403

(A.3c) boils down to:404

(

ε3 ±
α3

2

)2

cos2 ϕ ≥

[

(

ε1 ±
α1

2

)2

+
(

ε2 ±
α2

2

)2
]

sin2 ϕ

tan2 χ
(

c sin θ ±
a

2
cos θ

)2

cos2 ϕ ≥

[

(1 + tan2 ξ)
(

c sin θ ±
a

2
cos θ

)2
]

sin2 ϕ

tan2 χ cos2 ϕ ≥ (1 + tan2 ξ) sin2 ϕ (provided c sin θ >
a

2
cos θ)

tan2 χ ≥ (1 + tan2 ξ) tan2 ϕ

(A.5)

Combining expressions (A.4) and (A.5), the following conditions can be405

written:406






















tan θ ≥
a

2c

tanχ = tan ξ ≥
tanϕ

√

1− tan2 ϕ

ϕ ≤
π

4

(A.6)

corresponding to the relevancy conditions given in (41).407
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