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Abstract 

Intergranular strain has been associated with high-temperature cracking of welded 

pipework in 316H austenitic stainless steel material used in nuclear power plant heat 

exchangers. In this study, neutron diffraction has been used to study the 

development of intergranular strains in plastically-deformed and welded 316H 

stainless steel. Measurements have been made of the intergranular strain evolution 

with increasing plastic strain in base material, and correlated with further 

measurements made in samples extracted from welded pipes, where the pipes were 

welded following plastic deformation to different levels of plastic strain. Strong 

tensile strain evolution was seen on the compliant 200 grain family. The results were 
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correlated with various proxy measures of plastic strain, including hardness and 

diffraction peak width, and excellent agreement was obtained. 

1. Introduction 

In power generation plants, energy is transferred to the power generator turbines via 

heat exchanger units which are exposed to high temperatures and pressures. Many 

metres of austenitic stainless steel tubes are bent, swaged and welded to produce 

these heat exchanger units. During tube-shaping and welding operations, plastic 

deformation takes place. This influences in-service performance of the material unless 

the effect of plastic deformation is fully annealed out. The ASME Boiler and Pressure 

Vessel Design code [1] specifies that the limit of forming strain for 316H stainless steel 

material which is going to operate between 580°C and 675°C is 20%, and if it exceeds 

that threshold the material should be annealed at a minimum of 1040°C to restore its 

mechanical properties, tensile strength, creep strength and creep ductility to the start-

of-life values. Current construction practices in the UK for 316H tubes forbid welding 

onto material that has experienced more than 15% plastic strain, without first 

resolution heat treating the material. 

Although the standard codes and construction practices provide some 

guidance, it is sometimes not possible to follow these rules strictly, especially when 

the whole boiler is constructed as a large and complex single unit containing different 

tubing materials. Therefore, tubing material in-service is likely to retain some degree 

of prior plastic deformation arising from tube-shaping and welding operations. 
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Plastic deformation is considered as one of the major factors in initiating stress 

corrosion cracking [2]–[6] and creep failure [7]–[11] of austenitic stainless steels.  

Creep resistance increases with plastic strain, whereas creep ductility drastically 

decreases [10].  

There is no direct method to accurately determine the degree of plastic 

deformation to which a material was previously subjected. Hardness measurement 

and X-ray diffraction peak broadening are used for the qualitative determination of 

the plastic strain. However, there have been recent promising attempts at the 

development of experimental methods to measure plastic deformation, based on the 

observation of crystallographic changes in materials after plastic deformation using 

neutron diffraction [12], [13] and electron back-scattered diffraction (EBSD) [14].  

Elastic anisotropy means that the elastic stiffness of a crystal is dependent on 

its orientation relative to the applied load. The yield stress may also depend on the 

orientation of the crystal, which makes the material plastically anisotropic. Because of 

elastic and plastic anisotropy, austenitic stainless steel has a highly complex stress-

strain response [15].  

When a material elongates under uniaxial load, the slip direction will tend to 

rotate towards the loading direction, which means that the grains reorient with 

increasing plastic deformation. When the load is released, residual strains develop: a 

combination of residual intergranular strains (Type II) and residual intragranular 

strains (Type III) [16]. Intergranular strains self-equilibrate over a length scale of the 

order of the grain size. They develop owing to elastic anisotropy of the grain and the 
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constraint of neighbouring grains. Intragranular strains are generated over a length 

scale smaller than the grain size. Their origin is generally crystal defects such as 

dislocations, solute atoms and vacancies. Hereafter, we focus on the type II 

intergranular strains and will use the term “residual intergranular strains” as 

previously used in the literature [17], [18].  

Another effect of plastic deformation is the increase in dislocation density and 

the formation of dislocation bands and arrays. Severe cold working of an annealed 

metal will increase the dislocation density from around 107 to 1011 dislocations/cm2 

[19]. In a grain, as the deformation proceeds, dislocations intersect each other and 

start to lose their mobility, which explains the strain hardening process. With further 

plastic deformation they begin to condense into bands and arrays. These structures 

can be considered as low-angle boundaries (LAB) within the grains, where the 

separation between two crystallographic orientations is only a few degrees, less than 

in a high-angle grain boundary (>15°) [19].  

Diffraction techniques enable tracking of the changes in residual intergranular 

strains and the dislocation density with increasing plastic deformation. Neutron 

diffraction is particularly attractive as it has good penetration into metallic alloys (e.g. 

>50 mm in steel) and is able to measure a defined volume inside a bulk component 

[20].  The diffraction peak position obtained for an hkl plane is shifted depending on 

the accumulated strain on this plane. The accumulated strain on each plane is 

different owing to the differences in elastic and plastic anisotropy, and therefore, the 

peak shift changes for individual planes. By using the peak shifts in a diffractogram, 

Pang et al. measured the residual intergranular strains developed after unloading 
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from 8% uniaxial straining of a rolled 309H stainless steel in the rolling direction [21].  

They constructed residual strain pole figures for the 111, 200, 331 and 224 planes and 

found that high tensile residual strains develop on the 200 planes in the direction of 

straining parallel to the rolling direction. Peng et al. also measured residual 

intergranular strains at different specimen orientations in AISI 304 stainless steel with 

3 µm grain size after unloading from 7.5, 29.8 and 44.7% uniaxial straining [18]. They 

observed an almost linear relationship between residual intergranular strains on 

individual planes in the loading direction and the macroscopic plastic deformation. 

Intergranular strains measured in samples following plasticity [18], [21], [22] and 

during in-situ tensile testing [23], [24] have shown that intergranular strains which 

exist following plasticity can be used to provide a semi-quantitative trace of the level 

of macroscopic plastic deformation that was experienced. Daymond et al. [12] 

proposed an approach to fit the differences in strains observed between the various 

diffraction peaks to a single parameter called “anisotropy strain”. By comparing with 

calibration data, obtained for example from a uniaxial loading test, a correlation can 

be drawn between the “anisotropy strain” and the macroscopic plastic strain. This 

approach has been used for fcc [12], [25] and bcc [26] materials with some success.  

Peak widths of individual diffraction peaks are affected by the plastic 

deformation history of the material, as the strain fields associated with dislocations 

and vacancies lead to peak broadening [23], [27]: a greater degree of plastic 

deformation leads to a broader peak. 
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Electron back scattered diffraction (EBSD) enables the measurement of crystal 

orientation on a specimen surface. Several researchers have used EBSD 

measurements, particularly the misorientation angle (the orientation change between 

adjacent measurement points) distribution in the sampling area to determine the 

degree of deformation [24], [37]. Das et al. combined EBSD with digital image 

correlation to monitor strain development on slip bands within TRIP steels [38]. 

In this study, the plastic strain in prestrained and welded tubes was studied 

using several techniques: neutron diffraction, EBSD, and hardness testing. The 

measurements provide information on the plastic deformation history in the material 

after pre-straining and welding. Moreover, the anisotropy strain has been used to 

quantify the plastic deformation in pre-strained and welded AISI 316H austenitic 

stainless steel tubes.   

 

2. Experimental Procedure 

2.1. Test specimens 

A set of five plastically pre-strained and welded tubes were supplied by British 

Energy (now EDF Energy), UK. The base metal was AISI Type 316H austenitic 

stainless steel with composition 16.89 wt% Cr, 11.25 wt% Ni, 2.04 wt% Mo, 1.55 wt% 

Mn, 0.53 wt% Si, 0.089 wt% Co, 0.05 wt% C, less than 0.05% of other elements and the 

balance being Fe. The grain size of the base material was about 30 µm. The 1% proof 

strength of the non-strained material was 367 MPa and the Young’s modulus for this 
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material is 195 GPa. The tubing (prior to plastic straining) was approximately 38 mm 

in (outer) diameter and 4 mm in thickness.  

The test specimens were fabricated as follows: (1) four tubes were strained 

uniaxially in tension up to 10, 15, 20 and 25% total strain in order to simulate plastic 

deformation associated with fabrication processes in a controlled way. (2) These four 

strained tubes plus an unstrained tube were cut into two halves. (3) Matching half-

tubes were then welded together using a tungsten inert gas (TIG) welding process 

with Type 316L filler metal. 

Samples were extracted from the cross-weld regions and from the ends of the 

pipes remote from the weld, to study the strained and welded materials separately. 

Figure 1 shows the locations of samples extracted from the welded tubes. 

 

2.2. Neutron diffraction experiments 

2.2.1. Residual intergranular strain and peak width measurements 

The ENGIN-X instrument at the UK’s ISIS neutron source was used to measure 

the intergranular strains and peak widths [28]. ENGIN-X has two collimator banks 

180˚ apart allowing measurement from two orthogonal scattering vectors at the same 

time. Lattice strain was measured parallel and perpendicular to the pre-straining 

direction and at various angles between those directions. ISIS provides a white beam 

of neutrons to create time-of-flight diffraction patterns. At ENGIN-X the range of the 

wavelengths available is 0.5-6Å, which means that data are available from a range of 
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d-spacings. The first four peaks in the diffraction pattern were selected for analysis, 

namely 111, 200, 220 and 311. To obtain the d-spacing and the peak widths of 

individual peaks a single peak fitting routine implemented in OpenGenie [29] was 

used. This routine uses a pseudo-Voigt function which fits very well the observed 

peak profiles in neutron diffraction. 

Measurements were performed in the mid-length of the strained specimens to 

determine intergranular strains and peak width for the various as-strained conditions 

before welding. Cross-weld specimens with 0 and 20% pre-strain were used to 

determine the change in intergranular strains and peak width owing to welding by 

measuring at the weld centre, and at points 7, 9, 12, 16 and 29 mm away from the 

weld centre line. Since the thickness of the individual strips is small, two nominally-

identical strips were glued together in order to improve the counting statistics by 

using a 3 u 3 u 5 mm3 gauge volume. Measurements of d-spacing at the mid-length of 

a specimen with no plastic strain were averaged and used as a strain-free reference 

for each specific hkl plane to calculate the residual intergranular strains in the cross-

weld and strained specimens. 

The peak widths were obtained as full-width at half maximum for each 

individual diffraction peak. In this paper we present results from the (111) reflection 

only for conciseness.  

2.2.2. Crystallographic texture measurement 

Crystallographic textures were determined using the Stress-Spec 

diffractometer at the FRM-II reactor facility, Germany, using a neutron wavelength of 
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1.5480 Å. Pole figures for 111 and 200 grain families were obtained by measuring the 

Bragg peak intensity on a 5°�u�5° grid. MTEX software was used for the recalculation 

of 111, 100, 110 and 311 pole figures from the experimental 111 and 200 pole figures.   

 

2.3. Electron back-scattered diffraction (EBSD)  

EBSD measurements were performed using a field-emission scanning electron 

microscope (Zeiss Supra 55VP FEGSEM) fitted with a Nordlys EBSD detector. EBSD 

data were obtained by automatically scanning the electron beam with 20 kV 

accelerating voltage over the polished surface of the specimen which was tilted at 70° 

from the horizontal. The working distance between the sample and phosphorus 

screen in front of the EBSD detector was set to 15±0.1mm.  The acquisition and post-

processing of EBSD data was performed with HKL Channel 5 software. For EBSD 

analysis the austenite (fcc) phase was selected from the HKL database for all samples 

because no ferrite (bcc) phase was expected to exist in the base 316H material. 

3. Results 

3.1. Residual intergranular strains 

3.1.1 Parent material specimens 

For conciseness we will report only the longitudinal strains in this paper: the 

full data are presented elsewhere [30]. Figure 2 shows the development of the 

intergranular strains between the different grain families as a function of the level of 

pre-strain, and the associated change in diffraction peak width. The peak width in 
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diffraction patterns can provide a qualitative comparison of the dislocation densities, 

and provide a proxy measurement of the degree of plastic deformation [24]. The peak 

width is a convolution of the instrumental and inherent material peak widths with 

changes in width caused by microstructural effects that are introduced by plastic 

deformation. The trend linking plastic deformation and residual intergranular strains 

as seen in figure 2a was previously observed by Peng et al. [18].  

The anisotropy strain    was calculated from the residual strains on 200 and 

111 planes at 45q(LD) according to: 

                       Eq. (1) 

where      is the intergranular strain on hkl plane and      is the anisotropy factor 

describing the degree of variation of the crystal stiffness with orientation.  

The 111 and 200 planes were selected because these planes represent the 

extremes of elastic stiffness in stainless steel. The variation of anisotropy strain with 

plastic deformation is given in Figure 3. A linear fit was made for use in predicting 

the plastic deformation in the cross-weld specimens.  

3.1.2 Cross-weld specimens 

The variation of residual strains as a function of angular direction from the 

pipe longitudinal direction (LD, at 45˚ to the incident beam) to the hoop direction 

(HD, at 135˚ to the incident beam) is plotted for the cross-weld specimen with zero 

pre-strain at 7 and 29 mm away from the weld centre in Figure 4. The effect of 

welding on the residual strains on the different hkl planes appears to be low and no 

systematic trends could be discerned. The peak widths at 7 mm distance are shown in 
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figure 5 to allow comparison with the data from the pre-strained tubes. The peak 

widths did not vary with direction, which is predictable as the effects of plastic strain 

on the microstructure are not direction-dependent. 

The variation of residual strains as a function of sample direction from LD 

(45°) to HD (135°) is plotted in Figure 6 for the specimen welded after 20% pre-strain 

at 7, 12, and 29 mm away from the weld centre. The effect of the pre-straining is most 

evident in figure 6c, at 29 mm from the weld. At 7 mm, close to the weld, the effect of 

the pre-straining has effectively been annealed by the heat input from the welding 

(figure 6a). Tensile strains accumulate on the 200 plane in the longitudinal direction, 

becoming compressive as the orientation progresses to the hoop direction. The 

corresponding peak widths are shown in figure 7 at 7 and 29 mm, showing that the 

plastic deformation has increased the diffraction peak width far from the weld. 

The variation of anisotropy strain along the length of the welded specimens 

with 0 and 20% prior deformation is given in Figure 8a. This shows again the effective 

annealing of the intergranular strains, generated by the prior plastic deformation, 

from the heat from the welding operation. 

3.3. Crystallographic texture 

Parent specimen 

The 111, 100, 110 and 311 pole figures obtained by neutron diffraction are 

given in Figure 9. There is some 111 texture in the LD and 110 texture in the radial 

direction (RD) before the deformation, as a consequence of the tube drawing process. 

The 111 texture in the LD increases with increasing deformation and reaches 8u 
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random after 25% deformation but there is no change in either the HD or RD (Figure 

9a). There is also texture development for the 100 plane in the LD direction with 

increasing plastic deformation although it is small (2u random, Figure 9b). This type 

of texture is a duplex <111> and <100> fibre texture.  

For the 110 plane a small texture develops in the RD and HD, but it is not 

affected in the LD although the reflection for this plane is weak compared to HD and 

RD (Figure 9c). There is no significant texture evolution for the 311 plane with 

increasing deformation apart from a small change in LD after 10% deformation 

(Figure 9d).  

Cross-weld specimen 

Figure 10 shows the texture after welding onto 20% plastically strained 

material: the figure shows the pole figures for the four selected grain families at a 

distance of 4.6 mm from the weld centre-line. Data obtained from 7 mm onwards 

from the weld centre-line were essentially unchanged from the as-strained material. 

Since the temperature of the molten weld metal is very high (�1400°C) the grains near 

the fusion boundary are likely to be subjected to recovery and/or recrystallization 

and hence have a random orientation.  

3.4. Low angle boundaries  

Parent specimen 

The distribution of low-angle boundaries (LABs) for the specimens deformed 

up to 25% plastic deformation is given in Figure 11. Boundaries are defined according 

to the misorientation angle between two adjacent points. For fcc metallic alloys, any 
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misorientation angle greater than 15° is considered as a high-angle grain boundary  

and a misorientation angle between 3°-15° is taken as a low-angle boundary (LAB) 

[31], [32]. In Figure 11, it is clearly seen that the distribution of LABs increases as the 

plastic deformation increases. The LABs are mostly concentrated near grain 

boundaries at small deformation (Figure 11(a-d)); however, it is observed that at 

higher deformation LABs also appear inside the grains owing to the dislocation 

bands and arrays (Figure 11(e)). In a grain, as the deformation proceeds, dislocations 

intersect each other and start to lose their mobility, i.e. strain hardening begins. With 

further plastic deformation they begin to pile-up near grain boundaries and form 

bands and arrays inside the grains [33]. The fractions of the frequency of LABs (3-15°) 

to the total of all misorientation angles in the sampling areas were calculated and are 

presented in Figure 12. It is seen that the fraction of LABs increases almost linearly 

with increasing plastic deformation.  

Cross-weld specimen 

The variation of LAB fraction as a function of distance away from the weld 

centre-line on the LD-RD surface of the specimen welded after 20% deformation is 

given in Figure 13 (note that no direction-dependence in LAB population was 

observed). It is seen that the LAB fraction decreases approaching the weld fusion 

boundary. Each point represents LAB fraction which was determined in an area of 

300�u�900 Pm2 (height u width) in the mid-height of the surface. 

4. Discussion 

4.1 Development of residual strains with plastic deformation 
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In this study, the measurements of intergranular residual strains have shown 

that tensile strains were accumulated on the 200 and 311 planes, and compressive 

strains exist on the 111 and 220 planes. Similar results were reported in [18] for AISI 

304 austenitic stainless steel subjected to intermediate levels of plastic deformation up 

to 44.7%, and in [17] for AISI 316H austenitic stainless steel subjected to 3% plastic 

deformation. Larsson et al. [22] claimed that there are two origins of the residual 

intergranular strains, which are elastic anisotropy and strain redistribution due to slip 

along preferred systems: they also stated that it is difficult to distinguish their relative 

contributions. The sign of the intergranular strains can be explained with different 

elastic stiffness of the planes, i.e. elastic anisotropy. Daymond and Bouchard [17] 

reported the elastic stiffness of 111, 220, 311 and 200 planes in the loading direction as 

245, 210, 180 and 150 GPa, respectively. The 111 plane is the stiffest whereas the 200 

plane is the least stiff. This indicates that when the specimen is unloaded, owing to 

the elastic equilibrium between the grains, the less stiff planes, i.e. 200 and 311, retain 

tensile strain whereas the stiffer planes, i.e. 111 and 220, sustain compressive strains.  

Deformation mechanisms also have an influence on the residual strains. Slip 

along preferred crystallographic directions and planes may cause strain 

redistribution among the grains. Feaugas et al. [34] explain how the stress/strain is 

redistributed between the grains and inside the grains during the deformation of 

316L stainless steel. For austenitic stainless steel, owing to its low stacking fault 

energy, planar slip is observed and cross-slip is prevented. The grain boundaries act 

as strong barriers to slip. At the beginning of plastic deformation (<1.5%) dislocations 

pile up near grain boundaries and that imposes a stress concentration near the 
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boundary, i.e. intergranular stresses. Therefore, increasing plastic strain during the 

early stages of deformation results in a higher stress concentration near the grain 

boundaries because the number of dislocations in the pile-up increases. Intergranular 

stresses start to decrease with the activation of multiple slip and cross-slip: the 

intergranular stresses are relaxed and the plastic strain compatibility is maintained 

between the grains. Slip transmission across grain boundaries and activation of 

dislocation sources in neighbouring grains also reduce the intergranular stresses. 

Further deformation after the activation of cross-slip and multiple slip produces 

heterogeneous dislocation structures like dislocation bands and arrays of dislocations 

inside the grains: therefore, intragranular stresses increase. It was reported that the 

difference between inter- and intra-granular stresses becomes zero at about 6% plastic 

deformation [34]. Note that, as discussed in the literature [15], [17], [18], [21], [22], 

[35], the term “residual intergranular strains” was preferred to be used to define the 

residual strains measured with neutron diffraction because the intragranular strains 

were thought to be negligible. However, Feaugas’s explanation suggests that the 

intragranular strains cannot be neglected because they are as significant as the 

intergranular strains after 6% deformation. It can be concluded that the residual 

strain measured with neutron diffraction after plastic deformation beyond 6% 

deformation is composed of: (1) intergranular strains which arise owing to the elastic 

anisotropy of the different hkl planes; and (2) intragranular strains which arise owing 

to the heterogeneous dislocation structures inside the grains.  

Larsson et al. [22] found that the initial texture has an influence on the residual 

strain distribution. He observed that the strain distribution becomes more complex 
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after the deformation of an austenitic stainless steel with an initial texture of 1.6�u 

random. In the present study, a 3urandom texture was found before deformation for 

the 111 plane family in the loading direction (Figure 9). Therefore, this might have 

influenced the residual strain distribution. The texture in specimens deformed up to 

25% plasticity (Figure 9) suggests that a duplex <111> and <100> fibre texture forms 

before 10% deformation and becomes stronger as the deformation proceeds. The 

intensity ratio of <111> to <100> is about 3.5 after 25% plastic deformation. Such a 

duplex texture is often observed in fcc materials subjected to axisymmetric flow and 

the ratio of the polar intensity varies with the stacking fault energy of the material 

[27]. A high volume fraction of grains oriented in <111> and <100> directions parallel 

to the loading direction would influence the generation of residual strains. The low 

strain level on the 111 plane can be explained by the fact that a high number of grains 

are oriented in the <111> direction parallel to the pre-straining direction as well as the 

high stiffness of the 111 direction. Similarly, high strains on the 200 plane can be 

attributed to the increasing number of grains oriented with the <100> direction 

parallel to the pre-straining direction and the low stiffness of the 200 plane.  

4.2 Evaluation of plastic deformation using anisotropy strain 

Daymond et al. [12] used residual strains to predict the plastic deformation via 

anisotropy strain. Their technique requires a calibration curve similar to Figure 3. The 

data in figure 3 were used as a calibration to predict the plastic deformation in the 

welded specimens with 0% and 20% prior deformation from the distribution of 

anisotropy strains presented in Figure 8a. The prediction of plastic strain is given in 

Figure 8b. The slight increase of plastic deformation in the base metal of the un-
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deformed specimen can be attributed to the cyclic hardening due to the double-pass 

welding. In the 20% pre-strained sample it is seen that plastic deformation in this 

specimen is decreasing closer to the weld. This can be explained by partial recovery 

as a consequence of the heat input during welding.  

4.3 Evaluation of plastic deformation using diffraction peak widths 

According to Feaugas’s explanation of inter- and intra-granular strains, it can 

be concluded that the plastic deformation can be tracked with the dislocation density 

and structures such as pile-ups near grain boundaries and heterogeneous dislocation 

structures inside the grains [34]. Diffraction peak width measurements (Figure 2b) by 

neutron diffraction suggest that dislocation density increases with increasing 

deformation for any hkl plane in any specimen direction: furthermore Lewis and 

Truman [26] indicated that the peak broadening is insensitive to the diffraction vector 

direction. Therefore, it is a measure of equivalent plastic strain. The peak widths as a 

function of plastic strain are given in figure 2b. 

The peak widths for the welded specimens with 0% and 20% prestrain are 

shown in Figure 14 (a) and (b) respectively. The corresponding predicted plastic 

deformation at different positions from the weld centre-line for specimens welded 

after 0% and 20% prior deformation, using the averaged peak widths, is given in 

Figure 15. The plastic deformation in the underformed specimen is almost zero when 

data from the 200 and 311 planes are used. However, the 111 plane gives ~1% 

deformation at 12 mm. Cyclic hardening owing to the double-pass welding might 

have increased the dislocation density in that region. 

4.4 Prediction of plastic deformation using EBSD 
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Dislocation structures such as pile-ups near grain boundaries and 

heterogeneous dislocation structures inside grains can be detected by EBSD as the 

presence of these structures results in small misorientations: i.e., low-angle 

boundaries (LABs) [36]. LAB fraction is useful to quantify the changes in 

misorientations with increasing plastic deformation. Figure 12 shows that the LAB 

fraction varies almost linearly with increasing plastic deformation. This linearity was 

used as a calibration to determine the variation of plastic deformation in the specimen 

which was 20% prestrained before welding. The prediction of plastic deformation by 

using LAB fraction is given in Figure 16. Rearrangement of dislocations and partial 

annihilation occur as a result of heat dissipated during welding; therefore, the 

misorientations produced by the pile-ups near grain boundaries and heterogeneous 

dislocation structures inside grains are affected. The trend in Figure 16 is similar to 

the prediction obtained using the anisotropy strains in Figure 8b and using the peak 

widths in Figure 15.  

4.5 Prediction of plastic deformation using hardness 

For hardness measurements, the surface of the sample was ground and 

polished. The hardnesses of the base material with 0%, 10% and 20% pre-strain are 

154, 218 and 251 HV, respectively. In these measurements 5kgf was used. 

Assuming a linear increase in hardness with plastic deformation, hardness 

measurements on the cross-weld samples can be used to predict the plastic 

deformations as shown in Figure 17.  

4.6 Comparison of the plastic deformation predictions 
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A comparison of plastic deformation predictions using the various techniques 

is given in Figure 18. It is seen that there is a good agreement in the trends of the 

different prediction methods. EBSD and hardness predict almost the same value at 

~5mm from WCL. Similarly, the predictions of neutron diffraction (ND) peak width 

and hardness at ~9mm from WCL are comparable. There is more deviation for the 

neutron diffraction and EBSD predictions: but note that EBSD and hardness are 

surface measurements and neutron diffraction is a bulk measurement. The 

dislocation density may vary in the neutron gauge volume because of the double pass 

welding process. It is also difficult to differentiate the broadening effects of plastic 

deformation from those due to local material variations during welding process. 

Predicted values of plastic strain using the anisotropy strain derived from the neutron 

diffraction data are generally lower than that of the other methods. 

It is seen that EBSD predicts about 1-4% more plastic strain relative to the 

prediction based on hardness measurements. For EBSD measurements a conventional 

surface preparation technique, which included grinding and polishing, was used. It is 

possible that the surface grinding might have altered the dislocation structure on the 

sample surface, which resulted in a higher plastic deformation prediction.  

 

Conclusions 

Neutron diffraction has been used to measure the intergranular strain developed in 

316H austenitic stainless steel as a consequence of plastic deformation and 

subsequent welding operations. 
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1. As the material is deformed plastically, significant intergranular residual strains 

develop in the loading direction owing to the elastic anisotropy and strain 

redistribution due to slip along preferred systems. 

2. The proportion of low-angle grain boundaries was seen to increase as the degree of 

plastic deformation was increased. 

3. Texture results showed that the 111 and 200 planes are re-oriented perpendicular to 

the pre-straining direction with increasing plastic deformation. The strongest tensile 

strains develop on the 200 plane since it is more compliant compared to the 111 plane.  

4. Anisotropy strain was calculated using the residual strains from the different 

diffracting grains as a function of increasing plastic deformation. Similarly the 

increase in diffraction peak width with plastic deformation was measured. These 

measures, along with the low-angle grain boundary fraction and the material 

hardness, were used to provide predictions of the prior plastic strain in a sample 

welded after deformation. Good agreement was seen between the various measures. 

5. The welding process reduced the apparent plasticity owing to the thermal cycle 

and consequent annealing effect. The effect was seen to be consistent across all the 

proxy measures of plastic strain that were studied here. 
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Figure 1 Position of the cross-weld and remote-end strips extracted from the welded tubes. (LD is the 
longitudinal direction of the tube, parallel to the pre-straining direction; HD is the hoop direction of the tube 
perpendicular to the pre-straining direction; RD (into the page) is the radial direction of the tube 
perpendicular to the pre-straining direction) 

  

Figure(s)



(a) 

(b) 

Figure 2 (a) The development of residual intergranular strains on hkl planes at LD (longitudinal direction of 
the tube) with increasing plastic deformation; and (b) corresponding peak widths as an average of the 
measurements at different sample directions. 

 



 

Figure 3 The variation of anisotropy strain ( A111111200 εAε-ε  ) with plastic deformation. Note that 

200ε  and 111ε  are the residual strains at 45q(LD). 

  



(a) 

(b) 

Figure 4 Residual intergranular strains, as a function of direction (expressed as angle relative to the incident 
neutron beam, 45° to 135° equivalent to strains LD to HD) for the cross-weld sample with zero pre-strain at 
(a) 7 and (b) 29mm away from the weld centre line. 

  



 
 

Figure 5 Diffraction peak width, expressed as effective microstrain, for the zero pre-strain sample at 7 mm 
from the weld centre line 
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Figure 6 Residual intergranular strains for the cross-weld sample with 20% pre-strain at (a) 7, (b) 12 and (c) 
29mm away from the weld centre line. 
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Figure 7  Diffraction peak width, expressed as effective microstrain, for the 20% pre-strain sample at (a) 7 
and (b) 29 mm from the weld centre line 

 



(a) 

(b) 

Figure 8 (a) The variation of anisotropy strain ( A111111200 εAε-ε  ) along the cross-weld specimens 

with zero and 20% pre-strain. Note that 200ε  and 111ε  are the residual strains at 45q(LD). (b) 
Corresponding plastic strain predicted by using Figure 3.  
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(d) 
 

Figure 9: Pole figures of 111 (a), 100 (b), 110 (c) and 311 (d) planes showing the development of 
crystallographic texture in the parent material after 0, 10, 20 and 25% plastic deformation. (LD: longitudinal 
direction of the tube, HD: hoop direction, RD: radial direction) 

  



 

 

Figure 10: 111, 220, 200 and 311 pole figures for 20% pre-strain cross-weld sample obtained by EBSD from 7 
mm away from WCL. (LD: longitudinal direction of the tube, HD: hoop direction, RD: radial direction) 
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(11d) 

(11e) 

Figure 11: Grain boundary mapping and misorientation distribution graph with increasing plastic 
deformation. High angle grain boundaries (HAGB) (>15°) are coloured in black and low angle grain 
boundaries (LAGB) (3-15°) are coloured in yellow. (LD: longitudinal direction of the tube, RD: radial 
direction) 

 



 
Figure 12 The fraction of LAB with increasing plastic deformation  

  



 

 
 

Figure 13 The variation of LAB fraction as a function of distance away from the WCL on LD-RD surface of 20% 
pre-strain sample. Each point represents an area of 300x900 Pm2. 

 

 



(a) 

(b) 

Figure 14 Variation of averaged peak width for hkl planes along the cross-weld specimens with (a) zero and 
(b) 20% pre-strain 

 



 
Figure 15 Prediction of plastic deformation on cross-weld specimens with zero and 20% pre-strain by 

calibrating the averaged peak widths obtained at different positions on these samples with averaged peak 
widths presented in Figure 2b 

 



 
Figure 16 Prediction of plastic deformation on cross-weld specimen with 20% pre-strain by calibrating the 

LAB fraction at different positions on the same sample with LAB fraction presented in Figure 12. 

 



 
Figure 17 Prediction of plastic deformation on cross-weld specimen with zero, 10% and 20% pre-strain by 

calibrating the hardness measurements on these samples with the hardness variation with increasing plastic 
strain obtained from the parent samples.  

 

 



 
Figure 18 The comparison of plastic deformation predictions in the cross-weld sample with 20% pre-strain 

using EBSD, hardness, 111 peak width measurements  and anisotropy strain (ND-anisotropy strain). 
Horizontal bars show the measurement volume for each data point. 

 

 

 

 

 

 

 

 

 

 

 


