

Optimal design of a quadratic parameter
varying vehicle suspension system using
contrast-based Fruit Fly Optimisation

Stratis Kanarachos, Arash Moradinegade Dizqah, Georgios
Chrysakis, Michael E. Fitzpatrick

Accepted peer reviewed version deposited in Coventry University Repository

Original citation:
Kanarachos, S; Moradinegade Dizqah, A; Chrysakis, G. and Fitzpatrick, M.E. (2017) Optimal
design of a quadratic parameter varying vehicle suspension system using contrast-based
Fruit Fly Optimisation Applied Soft Computing (in press). DOI: 10.1016/j.asoc.2017.11.005

http://dx.doi.org/10.1016/j.asoc.2017.11.005

Elsevier

CC BY-NC-ND

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

http://dx.doi.org/10.1016/j.asoc.2017.11.005

1

Title:

Optimal design of a quadratic parameter varying vehicle suspension

system using contrast-based Fruit Fly Optimisation

Abstract:

In the UK, in 2014 almost fifty thousand motorists made claims about vehicle

damages caused by potholes. Pothole damage mitigation has become so important that

a number of car manufacturers have officially designated it as one of their priorities.

The objective is to improve suspension shock performance without degrading road

holding and ride comfort. In this study, it is shown that significant improvement in

performance is achieved if a clipped quadratic parameter varying suspension is

employed. Optimal design of the proposed system is challenging because of the

multiple local minima causing global optimisation algorithms to get trapped at local

minima, located far from the optimum solution. To this end an enhanced Fruit Fly

Optimisation Algorithm – based on a recent study on how well a fruit fly’s tiny brain

finds food – was developed. The new algorithm is first evaluated using standard and

nonstandard benchmark tests and then applied to the computationally expensive

suspension design problem. The proposed algorithm is simple to use, robust and well

suited for the solution of highly nonlinear problems. For the suspension design

problem new insight is gained, leading to optimum damping profiles as a function of

excitation level and rattle space velocity.

Authors: Stratis Kanarachos, Arash Moradinegade Dizqah, Georgios Chrysakis,

Michael E. Fitzpatrick

Affiliation: Faculty of Engineering, Environment & Computing, Coventry University,
Coventry, CV12JH, UK, stratis.kanarachos@coventry.ac.uk

Corresponding author. Stratis Kanarachos, Faculty of Engineering, Environment &

Computing, Coventry University, Coventry, CV1 2JH, UK, Tel.: +44(0)2477657720;

fax: +44(0)2477657720

E-mail address: stratis.kanarachos@coventry.ac.uk.

Keywords: Swarm intelligence, Fruit Fly Optimisation, suspension design, potholes

1. Introduction

According to statistics, in the UK a car sustains pothole damage every 11 minutes

resulting in 50,000 motorists making claims about vehicle damage in 2014 [1]. The

poor weather conditions during recent winters have left many European roads covered

with potholes at a time when money for repairs is limited [2]. The scale of pothole

vehicle damage problem has been intensified due to the low-profile tyre usage trend.

The problem has become so important that a number of car manufacturers designated

it as one of their priorities [3]. In this context, suspension design needs further

improvement to meet today’s challenges.

Recent suspension design studies focus on comfort, handling and stability,

however they do not consider how to mitigate pothole damages [4]. In principle,

passive or active linear suspension systems can reduce shock loads and chassis

2

accelerations by using ‘softer’ springs, thus allowing more suspension travel. This

comes at the expense of deteriorated road-holding properties, due to the increased tyre

load oscillations, and increased probability of hitting the suspension limits. The

conflicting performance objectives when linear control is applied, necessitate the

investigation of nonlinear controllers. In [5] a fuzzy-PID controller was implemented

and compared to a fixed gain PID controller. The results were promising and further

improved when the fuzzy-PID controller design problem was formulated as an

optimization problem, where each point represented a rule set, membership function,

and corresponding system behaviour [6]. The optimized set of values was computed

by combining Particle Swarm Optimisation (PSO) and Q-learning. In [7] the fuzzy-

PID controller was fine-tuned by combining Cultural and Niche optimisation

algorithms. In studies where the classical Ziegler-Nichols gain tuning method was

applied moderate results were reported [8]. Furthermore, the robustness of standard

PID suspension control was examined and found to be under performing in [9].

Optimal Control extends standard PID control design by considering systems with

multiple outputs [10]. An adaptive suspension controller that dynamically interpolates

a set of Linear Quadratic Regulators (LQG) was proposed in [11]. In [12] the State

Dependent Riccati Equation (SDRE) controller design technique was assessed. In [13]

a LQG suspension controller was first designed. Subsequently, the commanded force

was clipped to match the damper’s controllability range (dampers can only generate

negative forces). The controller parameters were determined using the genetic

algorithm NSGA II. In [14]-[15], Brezas et al., applied Optimal Control Theory to

simultaneously optimise the ride and handling vehicle behaviour. Clipped Optimal

Control was compared to standard LQG and found to be performing better. This was a

very interesting result because LQG, as an active suspension control concept, requires

a more complex and energy consuming system compared to semi-active suspension.

Different Skyhook control concepts were studied in [16], including Skyhook two-

state damper control, Skyhook linear approximation damper control, and mixed

Skyhook-acceleration-driven damper. There is a trade-off between road holding and

comfort when fixed gain Skyhook control is applied [17]. Adaptive Skyhook, with the

gains being a function of the road condition, was investigated in [18]. In [19] Skyhook

controller gains were tuned by matching the damper force to the output of a Linear

Quadratic Regulator. The combination of Skyhook control with a neural network-

based feedforward term was evaluated in [20]. In conclusion, Skyhook control cannot

reduce simultaneously the resonance peak of the sprung and un-sprung masses

[21]-[22]. Skyhook damping also inherits other problems, notably water hammer

and/or chucking [23]-[24].

In [25] Linear Parameter Varying (LPV) control was implemented and the

controller gains were obtained solving a Linear Matrix Inequalities (LMI) problem. In

[26] the concept was further refined by including a scheduling parameter as a function

of the difference between commanded and attainable forces. A velocity dependent

LPV controller was proposed in [27]. A method for the automated generation of LPV

systems was presented in [28], while in [29] the concept was extended to uncertain

LPV systems. Hybrid or data based controllers have also been proposed. Examples

include [30] where a PID controller and a three-layered feedforward neural network

were combined. The Levenberg–Marquardt (LM) algorithm was employed to train the

neural network. In [31] a recurrent neural network (RNN) was investigated. In [32] a

Magneto-Rheological (MR) damper based on a feedforward neural network was

proposed. In [33] two fuzzy logic controllers were combined and tuned using the

derivation of a Pareto front. A rule-based nonlinear suspension system was designed

3

and fine-tuned using GA in [34]. Particle Swarm Optimisation (PSO) was employed

to tune a feedback linearization scheme in [35]. Finally, a real-time grey-prediction

algorithm was employed in [36] while Particle Swarm Optimisation and Genetic

Algorithms were combined to derive the Pareto optimal design of a five-degree-of-

freedom vehicle vibration model [37].

In conclusion, most approaches cannot overcome the problem of simultaneously

optimizing the sprung and un-sprung mass responses, especially when a broad range

of external loads including singular disturbances is considered. In this study, it is

shown that it is possible to overcome this limitation with a clipped quadratic

parameter varying suspension system. Tuning of the nonlinear suspension system was

achieved by applying an enhanced Fruit Fly Optimisation Algorithm (FOA), a new

population-based heuristic algorithm discovered through simulation of the intelligent

foraging behaviour of fruit flies [38]-[42]. The proposed contrast-based Fruit Fly

Optimisation Algorithm (c-FOA) is first studied and evaluated using standard and

nonstandard benchmark tests and then applied to the suspension design problem. It is

shown that c-FOA is simple to use, robust and well suited for the solution of

computationally expensive optimisation problems. To our knowledge this is the first

time where FOA is applied to the optimal design of a suspension system.

The paper is structured as follows. In Section 2 the contrast-based Fruit Fly

Optimisation Algorithm is presented in detail and discussed in relation to other

Swarm Intelligence algorithms. In Section 3, 14 benchmark tests are used to study the

new algorithm and compare its performance to standard optimisation algorithms

including the Genetic Algorithm, Simulated Annealing, Particle Swarm Optimisation,

Differential Evolution, Artificial Bee Colony and the original Fruit Fly Optimisation

Algorithm. The quadratic parameter varying suspension system problem, a

computationally intensive problem, is formulated in Section 4. In Section 5 the

numerical results using c-FOA, Genetic Algorithm and Particle Swarm Optimisation

are analysed and discussed. In the last section conclusions and future research

directions are presented.

2. The contrast-based Fruit Fly Optimisation Algorithm (c-FOA)

2.1 A short introduction to Fruit Fly Optimisation

Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose

members are often called “fruit flies” or (less frequently) pomace flies, vinegar flies,

or wine flies, a reference to the characteristic of many species to linger around

overripe or rotting fruit [43]. Fruit flies can smell and locate a food source even if this

is 40 km away. This performance is remarkable as their brain has only 100,000

neurons, compared to house fly brains which have 300,000 neurons and human brains

with 100 billion [44]. The combination of food search efficiency and reduced

complexity makes it very interesting from a biological and optimisation point of view.

Pan was the first drive the Fruit Fly Optimisation Algorithm (FOA) based on the

food finding characteristics of a fruit fly swarm [45]. A schematic of the food

searching process is shown in Figure 1. The main steps involved in standard FOA are:

4

Figure 1. Fruit fly swarm in search for food

 Step 1: Initialization. The average swarm location [𝑋0, 𝑌0] the maximum

number of iterations 𝐾 and the size of the swarm 𝑁 are defined.

 Step 2: Swarm generation. For 𝑖 = 1, . . , 𝑁 a new population of fruit flies is

generated according to:

𝑋𝑖 = 𝑋0 + rand
(1)

𝑌𝑖 = 𝑌0+rand

 Step 3: Localisation. Each fruit fly is assigned a value 𝑆𝑖 based on how close

the fruit fly [𝑋𝑖, 𝑌𝑖] is to the origin:

𝐷𝑖 = √𝑋𝑖
2 + 𝑌𝑖

2 (2)

𝑆𝑖 =
1

𝐷𝑖

(3)

𝑆𝑖 is a reciprocal function and therefore sensitive when 𝐷𝑖~0. Even a slight

change ∆𝐷𝑖 can result in a large difference ∆𝑆𝑖. This attribute resembles the

fruit fly’s ability to search food at large distances.

 Step 4: Objective function calculation. For each fruit fly the corresponding

smell concentration 𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) is calculated, where 𝑓 is the objective

function.

 Step 5: Best member identification. The fruit fly with the highest smell

concentration in the swarm is identified:

Y

(0, 0)

(𝑿𝟎, 𝒀𝟎) (𝑿𝟏, 𝒀𝟏)

(𝑿𝟑, 𝒀𝟑)

𝐷1

𝐷3

X

𝐷2

(𝑿𝟐, 𝒀𝟐)

Odour plume

Swarm’s average location

propagation --

5

[𝑋𝑏 𝑌𝑏] → 𝑆𝑚𝑒𝑙𝑙𝑏 = max(𝑆𝑚𝑒𝑙𝑙𝑖) (4)

 Step 6: Average location selection. The ‘best’ fruit fly is compared to the

existing average location:

𝑖𝑓 𝑆𝑚𝑒𝑙𝑙𝑏 > 𝑆𝑚𝑒𝑙𝑙0

then 𝑋0 = 𝑋𝑏 and 𝑌0 = 𝑌𝑏
(5)

 Step 7: Termination phase. Is the maximum number 𝐾 iterations reached? If

yes stop, otherwise return to Step 2.

The original FOA has several drawbacks. For example, fruit flies are only attracted

in the vicinity of the current best location [𝑋0, 𝑌0]. This may well be a local extreme.

Therefore, it is very probable for a fruit fly swarm to get trapped around a local

minimum.

2.2 The proposed contrast-based Fruit Fly Optimisation Algorithm: c-FOA

A recent study of more than 70 hours of fruit flies’ motion showed that fruit flies

primarily detect food by tracking odour plumes [46]. A plume’s motion can be chaotic

in the presence of external disturbances, for example an airstream, and may prohibit a

fruit fly from detecting the food source [47]. When this occurs fruit flies start to

search for visually attractive features and in particular they explore objects with visual

contrast. They land, and if where they land is not something to eat, they continue the

search. A glass of wine is a contrasting shape, like fruit, that would merit their

attention.

The study concluded that in order to localize an odour source, flies exhibit three

iterative, independent and reflex-driven behaviours, which remain constant through

repeated encounters of the same stimulus:

(a) 190 ± 75 ms after encountering a plume, flies increase their flight speed and

turn upwind, using visual cues such as stripes to help them determine wind direction.

Owing to this substantial response delay, flies may pass beyond the plume shortly

after entering it.

 (b) 450 ± 165 ms after losing the plume, flies initiate a series of vertical and

horizontal casts, using visual cues to maintain a crosswind heading.

(c) After sensing an attractive odour, flies exhibit an enhanced attraction to visual

features such as roundish objects, which increases their probability of finding the

plume’s source.

The previously described motion pattern is idealised and modelled, for the first

time in this paper, using the proposed contrast-based Fruit Fly Optimisation

Algorithm (c-FOA). c-FOA amends the original FOA by adding two new search

phases: i) the delay detection and ii) visual feature detection. Figure 2 illustrates the

proposed algorithm.

The main steps of the algorithm are as follows:

 Step I: Initialization. The average swarm location [𝑋0, 𝑌0], the maximum

number of iterations K, the size of the swarm N, the delay κ, the scaling factor

M, and contraction parameter c are defined.

6

Figure 2. Proposed c-FOA algorithm

Parameter selection

phase

Swarm generation

phase

Localisation phase

Smell concentration

calculation

Best member

identification

Current average

location selection

Terminate →

Sopt, Smellopt

Decision delay

phase

Visual feature

detection phase
Reset phase Casting phase

Condition 2

Condition 1

7

 Step II: Swarm generation. For 𝑖 = 1, . . , 𝑁 a new population of fruit flies is

created through the following randomised process:

𝑋𝑖 = 𝑋0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1)
(6)

𝑌𝑖 = 𝑌0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1)

 Step III: Localisation. Each fruit fly is assigned a value 𝑆𝑖 based on how close

the fruit fly [𝑋𝑖, 𝑌𝑖] is to the origin:

𝐷𝑖 = √𝑋𝑖
2 + 𝑌𝑖

2 (7)

𝑆𝑖 =
1

𝐷𝑖

(8)

 Step IV: Objective function calculation. The corresponding smell concentration

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) is for each fruit fly i, where f is the objective function.

 Step V: Best member identification. The fruit fly with the highest smell

concentration in the swarm is identified:

 𝑆𝑚𝑒𝑙𝑙𝑏 = max(𝑆𝑚𝑒𝑙𝑙𝑖) → 𝑏𝑒𝑠𝑡 𝑓𝑟𝑢𝑖𝑡 𝑓𝑙𝑦 𝑆𝑏
→ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 [𝑋𝑏 𝑌𝑏]

(9)

 Step VI: Average location selection. The best fruit fly is compared to the

existing average location:

𝑖𝑓 𝑆𝑚𝑒𝑙𝑙𝑏 > 𝑆𝑚𝑒𝑙𝑙0 𝑡ℎ𝑒𝑛 𝑋0 = 𝑋𝑏 𝑎𝑛𝑑 𝑌0 = 𝑌𝑏 (10)

 Condition 1:

 If the maximum number of iterations 𝐾 has been reached then terminate

the optimisation process, retrieve the optimal fruit fly Sopt as well as the

corresponding objective function value Smellopt.

 Else, continue to Step VII.

 Step VII: Decision delay. In this phase the fruit fly swarm does not change its

food search strategy for κ iterations. This resembles the delay in decision-

making that fruit flies exhibit.

 Condition 2:

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0 improves over the last κ iterations,

then go to Step VIIIa.

 Else if the smell concentration 𝑆𝑚𝑒𝑙𝑙0 does not change over the last κ

iterations, then go to Step VIIIb.

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0 worsens over the last 2∙κ iterations,

then go to Step VIIIc.

8

 Step VIIIa: Casting: Go to Step II without any change.

 Step VIIIb: Visual feature detection: The fruit fly with the worst smell

concentration 𝑆𝑚𝑒𝑙𝑙𝑤 is identified and the fruit fly swarm becomes attracted to

it. Reduce the scale factor 𝑀 and go to Step II.

[𝑋𝑤 𝑌𝑤] → 𝑆𝑚𝑒𝑙𝑙𝑤 = min(𝑆𝑚𝑒𝑙𝑙𝑖) (11)

𝑋0 = 𝑋𝑤 𝑎𝑛𝑑 𝑌0 = 𝑌𝑤 (12)

𝑀𝑖+1 = 𝑐 ∙ 𝑀𝑖 (13)

where 𝑖 is the current iteration.

Eventually the flies will explore the area around the fruit fly with 𝑆𝑚𝑒𝑙𝑙𝑤. This

resembles the visual cue fruit fly search behaviour.

 Step VIIIc: Reset: Return to the location that encountered the best smell

concentration 𝑆𝑚𝑒𝑙𝑙0 up to that point. Then go to Step II.

𝑋0 = 𝑋𝑏 𝑎𝑛𝑑 𝑌0 = 𝑌𝑏 (14)

This resembles the memory function that fruit flies present.

2.3 Population-based optimisation techniques and c-FOA

c-FOA is a population-based optimisation technique classified under Swarm

Intelligence, such as Particle Swarm Optimisation (PSO) [48] and Artificial Bee

Colony (ABC) [49]. The main difference between Swarm Intelligence techniques and

Evolutionary Algorithms is the strategy behind the creation of new individuals. In

Evolutionary Algorithms, like the Genetic Algorithm (GA) and Differential Evolution

(DE), operators like “mutation”, “recombination” and “survival of the fittest” are

employed, while in Swarm Intelligence the new individuals are created through

interaction and information sharing between a member and the remaining population

[50].

Particle Swarm Optimisation is inspired by flocks of birds swarming [51]. In

greater detail, in Particle Swarm Optimisation the position of the individual members

is randomly initialised [52]. Subsequently, the members 𝑥𝑖 incrementally update their

position 𝑥𝑖+1 based on a weighted average that considers the member’s previous

speed 𝑣𝑖, the member’s current position 𝑥𝑖, the member’s previous best position 𝑝𝑖
and the neighbouring group’s best position 𝑝𝑔:

𝑣𝑖+1 = 𝑣𝑖 +𝜑1 ∙ 𝛽1 ∙ (𝑝𝑖 − 𝑥𝑖) + 𝜑2 ∙ 𝛽2 ∙ (𝑝𝑔 − 𝑥𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1

(15)

where constants 𝜑1 and 𝜑2 determine the balance between the influence of the

individual’s knowledge and that of the group, while 𝛽1 and 𝛽2 are uniformly

9

distributed random numbers. The sign in the brackets results in an acceleration of the

particles’ motion towards the previously-known best points in the space. Different

strategies for defining the neighbouring group exist and various modifications of the

original Particle Swarm Optimisation have been proposed to make its performance

more robust or more efficient in specific problems. Critical, for achieving a good

trade-off between exploration and exploitation, is the memory velocity 𝑣𝑖. In some

PSO versions it has been proposed to determine the new position 𝑥𝑖+1 using:

𝑣𝑖+1 = 𝜔 ∙ 𝑣𝑖 + 𝜑1 ∙ 𝛽1 ∙ (𝑝𝑖 − 𝑥𝑖) + 𝜑2 ∙ 𝛽2 ∙ (𝑝𝑔 − 𝑥𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1

(16)

where constant 𝜔 is a user-defined parameter.

c-FOA and Particle Swarm Optimisation share common characteristics. For

example both algorithms initialise the swarm randomly and share the groups’ best

position to move a member towards a new position. Furthermore, the incremental

displacement − difference between a member’s old and new position − is restricted

and depends on a term, which in the case of Particle Swarm Optimisation is the

parameter 𝜔 ∙ 𝑣𝑖 and in c-FOA the parameter 𝑀𝑖.

However, the two algorithms present fundamental differences as well. For

example, in Particle Swarm Optimisation the movement of the individuals depends on

a linear function, while in c-FOA on a reciprocal function. This causes significantly

different swarm behaviour during the exploration phase. Another example is that in

Particle Swarm Optimisation the new position depends randomly on a weighted

average of the individual’s and group’s best position, while in c-FOA this depends

only on the latter. The mechanism for handling noise is also different. In c-FOA the

search strategy remains unchanged for a predetermined number of iterations, exactly

like fruit flies, while in PSO the search direction is changed continuously. It is

believed that fruit flies developed this decision delay mechanism to compensate for

the chaotic movement of smells outdoors. Last but not least, in c-FOA, for the first

time, a food search strategy that does not depend on the food source is presented. All

Swarm Intelligence algorithms search for food on the basis of where the current food

source lies (current lowest objective function value). However, the recent study on

fruit fly behaviour revealed that fruit flies are attracted not only by smell (location of

the food) but also by visually contrasting objects, which eventually may have nothing

to do with a food source. Thus, the food search strategy is multi-stimuli. It is believed

that fruit flies developed this behaviour through evolution and that this relies on fruit

fly’s knowledge that a food source has also visually contrasting traits.

3. Benchmark testing

Two studies are employed for demonstrating and analysing the performance of c-

FOA, as well as comparing it to other standard optimisation algorithms. The purpose

is to assess the algorithm performance for a fixed parameter set and compare it to

standard state-of-the-art optimisation tools, commonly used by researchers and

engineers.

The first study is a low-dimensional one with the main purpose to understand how

c-FOA performs in the presence of noise and barrier functions. This is of great

importance because in many engineering problems the optimal solution is dictated by

10

constraints. The second one concerns a high dimensional optimisation study, where

the benchmark tests consist of multi-parameter functions, where the number of

parameters is 20.

3.1 Low-dimensional study

Two sets of benchmark tests are employed in the low dimensional study. The first

set concerns a group of noisy mathematical functions and evaluates the ability of the

algorithm to avoid local minima. The second set amends the first one by introducing

additional barrier functions. The low dimensional study is focused on the accuracy of

c-FOA, therefore a large number of function evaluations is allowed [53].

c-FOA is evaluated and compared to two standard stochastic optimisation

algorithms, the Genetic Algorithm (GA) and Simulated Annealing (SA). Both GA and

SA depend on a number of parameters that may influence their performance in

different types of problems. A sensitivity analysis was conducted and the best sets of

parameters were applied to c-FOA, Genetic Algorithm and Simulated Annealing.

Finally, the influence of population size on the optimisation accuracy was examined.

In Genetic Algorithm (GA) the members were randomly selected from a uniform

distribution restricted in the problem-dependent design space. A floating-point

representation was used. For each member the objective function value was

calculated. The GA members were sorted according to their rank. 80% of the new

generation was created by crossover and 5% progressed from the old generation. A

stochastic uniform algorithm was used for the parent selection. The crossover operator

used a weighted average of the parents to create children. The rest of the members

were created by mutation. In mutation, new directions were randomly generated and

were adaptive so that the design space was satisfied. The genetic algorithm terminated

when the maximum number of function evaluations generations was reached, unless it

stalled. This happened when for over 200 generations the objective function did not

change significantly.

Simulated Annealing (SA) started with a random vector belonging to the problem-

dependent design space. Two parameters – the temperature and re-annealing –

determined the behaviour. Temperature controlled the extent of search. In this study

the initial temperature was 𝑇 = 100. The second one emulated the annealing process;

following the generation of a number of new points, the temperature was raised to a

higher value to restart the search and move out from local minima. If re-annealing is

performed too fast this may not help the solver identify the global minimum. Here, the

interval of 𝑎𝑛𝑛𝑒𝑎𝑙 = 50 is chosen. An exponential cooling schedule was selected.

The procedure terminated when the total number of function evaluations reached the

maximum value.

3.1.1 Benchmark-1

A “noisy” one-dimensional mathematical function, described in Equation (17) is

the first benchmark test.

𝑓(𝑥) = 𝑥2 − 10 ∙ cos(2 ∙ 𝜋 ∙ 𝑥) + 10
(17)

A plot of Equation (17) for 𝑥 𝜖 [−10,10] is shown in Figure 3. Although numerous

local minima exist there is a clear trend towards the minimum 𝑓(0) = 0.

11

Figure 3. Function plot of benchmark-1: Noisy 1D function

The optimisation problem was solved for 30 repetitions. The parameters used were

the following:

In c-FOA the initial value S0 was randomly selected from 𝜖 [−10,10], 𝐾 =
1000, 𝑁 = 50, 𝜅 = 5,𝑀 = 1 and 𝑐 = 0.9. In GA the population comprised 50

members. It was created randomly using a uniform distribution restricted in the design

space [– 10, 10]. The genetic algorithm terminated after 1000 generations unless it

stalled. Simulated Annealing started with a random number 𝜖 [−10,10] and

terminated after 𝑁𝑓𝑢𝑛 = 50000 function evaluations.

The mean value and standard deviation of the optimal values are listed in Table 1.

As observed, all algorithms succeed in finding the optimal value. A typical

convergence path for Sb using c-FOA is shown in Figure 4.

Table 1. Statistical evaluation of optimisation results for benchmark-1

Benchmark 1 Sopt

c-FOA GA SA

Mean value –3.5 10–10 –6.7 10–7 1.2 10–3

Standard deviation 9.4 10–10 2.6 10–1 6.6 10–3

12

Figure 4. Benchmark-1: Example of convergence path for Sb using c-FOA

3.1.2 Benchmark-2

The second benchmark function, benchmark-2, amends the first one by introducing

two barrier functions:

𝑓(𝑥) = 𝑥2 − 10 ∙ cos(2 ∙ 𝜋 ∙ 𝑥) + 10 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1

 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 =

{

0, 𝑖𝑓 𝑥 < −6

100 ∙ 𝑚𝑖𝑛(|𝑥 + 3|, |𝑥 + 6|), 𝑖𝑓 − 6 < 𝑥 < −3
0, 𝑖𝑓 − 3 < 𝑥 < 2

100 ∙ 𝑚𝑖𝑛(|𝑥 − 2|, |𝑥 − 4|), 𝑖𝑓 2 < 𝑥 < 4
0, 𝑖𝑓 𝑥 > 4

(18)

A plot of Equation (18) for 𝑥 𝜖 [−10,10] is shown in Figure 5. The minimum is

located at f(0)=0.

The problem is solved for 30 repetitions. We keep the same optimisation settings

as in Benchmark-1 except for the maximum number of function evaluations. In

particular in c-FOA and GA the population size is 𝑁 = 20, while in SA the maximum

number of function evaluations is 𝑁𝑓𝑢𝑛 = 20000.

The results are listed in Table 2. A comparison to Table 1 reveals that although all

optimisation algorithms succeed in finding the optimum value, the standard deviation

values are increased. This is most probably due to the introduction of the barrier

functions.

13

Figure 5. Function plot of benchmark 2: Noisy 1D function with barriers

Table 2. Statistical evaluation of optimisation results for benchmark-2

Benchmark 2 Sopt

c-FOA GA SA

Mean value 7.210–11 –6.610–2 1.110–4

Standard deviation 1.310–9 7.810–1 1.9 10–2

3.1.3 Benchmark-3

The third benchmark test is the well-known Rastrigin function:

𝑓(𝑥1, 𝑥2) = 20 + 𝑥1
2 + 𝑥2

2 − 10
∙ (cos(2 ∙ 𝜋 ∙ 𝑥1) + cos(2 ∙ 𝜋 ∙ 𝑥2))

(19)

Equation (19) is plotted in Figure 6, for 𝑥1 𝜖 [−5.12,5.12] and 𝑥2 𝜖 [−5.12,5.12] .
The global minimum is located at 𝑓(0,0) = 0.

14

Figure 6. Function plot of benchmark-3: Rastrigin function

The optimisation problem is again solved for 30 repetitions. The design space was

x1 ∈ [– 5.12, 5.12] and x2 ∈ [– 5.12, 5.12]. The same optimisation parameters as in

benchmark-2 were used. In SA the starting point was [–rand, rand]. The results are

listed in Table 3 indicating that c-FOA almost always succeeded finding the optimal

result. Additionally, the average results clearly indicate that in most cases GA and SS

found the global minimum. The standard deviation is larger compared to the one

achieved using c-FOA.

Table 3. Statistical evaluation of optimal results for benchmark-3

Benchmark 3 Sopt

c-FOA GA SA

Mean value [–2.6 10–11,

9.1 10–11]

[–1.9 10–1,

9.9 10–2]

[–1.0 10–3,

–2.0 10–3]

Standard

deviation

[1.6 10–9,

1.6 10–9]

[4.8 10–1,

7.9 10–1]

[3.6 10–1,

6.9 10–1]

3.1.4 Benchmark-4:

The fourth benchmark test is the Rastrigin function augmented with barrier

functions. Figure 7 illustrates the function, for 𝑥1 𝜖 [−5.12, 5.12] and

𝑥2 𝜖 [−5.12, 5.12]. The global minimum is located at 𝑓(0,0) = 0. The optimisation

problem is again solved for 30 repetitions with the same parameters as in Benchmark-

3. The results are listed in Table 4.

A comparison to Table 3 shows that the presence of barrier functions degraded the

performance of GA and SA, while c-FOA performed similarly to Benchmark-3. An

example of how c-FOA converges is illustrated in Figure 8.

𝑓(𝑥1, 𝑥2) = 20 + 𝑥1
2 + 𝑥2

2 − 10 ∙ (cos(2 ∙ 𝜋 ∙ 𝑥1) + cos(2 ∙

𝜋 𝑥2)) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2

(20)

15

𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 =

{

0, 𝑖𝑓 𝑥1 < −2

100 ∙ 𝑚𝑖𝑛(|𝑥1 + 2|, |𝑥1 + 1|), 𝑖𝑓 − 2 < 𝑥1 < −1
0, 𝑖𝑓 − 1 < 𝑥1 < 2

100 ∙ 𝑚𝑖𝑛(|𝑥1 − 2|, |𝑥1 − 3|), 𝑖𝑓 2 < 𝑥1 < 3
0, 𝑖𝑓 𝑥1 > 3

𝑝𝑒𝑛𝑎𝑙𝑡𝑦2 =

{

0, 𝑖𝑓 𝑥2 < −2

100 ∙ 𝑚𝑖𝑛(|𝑥2 + 2|, |𝑥2 + 1|), 𝑖𝑓 − 2 < 𝑥2 < −1
0, 𝑖𝑓 − 1 < 𝑥2 < 2

100 ∙ 𝑚𝑖𝑛(|𝑥2 − 2|, |𝑥2 − 3|), 𝑖𝑓 2 < 𝑥2 < 3
0, 𝑖𝑓 𝑥2 > 3

Figure 7. Function plot of benchmark-4: Rastrigin function with barriers

Table 4. Statistical evaluation of optimal results for benchmark-4

Benchmark 4 Sopt

c-FOA GA SA

Mean value [3.39 10–10,

7.46 10–11]

[1.3 10–1,

– 1.0 10–3]

[–1.6 10–1,

2 10–3]

Standard

deviation

[1.24 10–9,

1.65 10–9]

[6.2 10–1,

 9 10–1]

[7.4 10–1,

7.7 10–1]

16

Figure 8. Benchmark 4: Example of convergence path for Sb using c-FOA

3.2 High dimensional study

In the high-dimensional study, c-FOA is evaluated and compared to the original

Fruit Fly Optimisation Algorithm (FOA), Differential Evolution (DE), Particle Swarm

Optimisation (PSO) and Artificial Bee Colony (ABC). All previously mentioned

algorithms depend on a number of parameters that may influence their performance in

different types of problems. A sensitivity analysis was conducted and the best sets of

parameters were applied. It is highlighted that different versions of the above

algorithms exist, however the purpose of this study is not to perform an exhaustive

comparison between c-FOA and all different versions of Differential Evolution,

Particle Swarm Optimisation and Artificial Bee Colony. The focus of this study is to

compare the performance of the algorithms for a specified number of function

evaluations, equal to 𝑁𝑓𝑢𝑛 = 16000.

The original FOA employed in this study is detailed in [54]. The population size

was 𝑁 = 50 members and the maximum number of iterations 𝐾 = 320. For c-FOA

the following parameters are selected: 𝐾 = 320,𝑁 = 50, 𝜅 = 5,𝑀 = 1 and 𝑐 = 0.9.

The DE version utilised is available from [55]. It is the standard DE algorithm

augmented with dither to become more robust. The population was 𝑁 = 100

members and a maximum number of 𝑁𝑖𝑡𝑒𝑟 = 160 iterations were allowed. The scale

factor in the mutation operator was 𝐹 = 0.85. The crossover probability in the

crossover operator was 𝐶𝑟 = 1. A uniform distribution was utilised to create the

individuals within the bounds defined by the design space. DE internally treats all

variables as floating-point values regardless of their type.

The PSO version employed is the one available in MATLAB15a. The initial

swarm was randomly generated, however within the specified – problem-dependent −

bounds. The algorithm chose the new member positions based on Equation (17). The

inertia term 𝜔𝜖[0.1,1.1] was calculated in relation to the number of stalls 𝑐:

𝑖𝑓 𝑐 < 2, 𝜔𝑖+1 = 2 ∙ 𝜔𝑖

𝑒𝑙𝑠𝑒𝑖𝑓 𝑐 > 5, 𝜔𝑖+1 =
𝜔𝑖
2

(21)

17

In case the objective function does not improve between two consecutive iterations

the neighbourhood size 𝑁ℎ was changed according to:

𝑁ℎ𝑖+1 = min (𝑁ℎ𝑖 +𝑁ℎ𝑚𝑖𝑛 , 𝑁)
(22)

where 𝑁ℎ𝑚𝑖𝑛 = 0.25 is the minimum number of particles; and 𝑁 = 100, the total

number of particles. The maximum number of iterations was 𝑁𝑖𝑡𝑒𝑟 = 160. The

parameters 𝜑1 and 𝜑2 were equal, 𝜑1 = 𝜑2 = 1.49.

The Artificial Bee Colony algorithm version (I-ABC) used is described in [56].

The total number of employed bees was 𝑁 = 100 and the maximum number of

iterations 𝑁𝑖𝑡𝑒𝑟 = 160. The greedy selection mechanism was employed as the

selection operator. The upper bound of the acceleration coefficient was Φ2 = 1.

The list of benchmark functions employed to compare FOA, c-FOA, DE, PSO and

ABC is found in Table 5. In all cases, the number of parameters is 𝑚 = 20. Each

optimisation problem was solved for 30 repetitions for each optimisation algorithm.

The mean values and standard deviation are summarised in Table 6. In all cases c-

FOA and PSO achieved the best performance. As observed from the results, there are

cases – F9 and F10 – in which c-FOA performs better than the rest and cases in which

PSO – F5 and F7 – does. The output of Kruskal-Wallis test – probability 𝑃 – and the

corresponding box plots for PSO and c-FOA optimisation results for functions F5, F7,

F9 and F10 are illustrated in Figure 9.

Table 5. Mathematical benchmark functions employed for the comparison

No Description m [𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥] f(x*)

F1
𝑓(𝑥) = −0.1 ∙∑𝑐𝑜𝑠(5 ∙ 𝜋 ∙ 𝑥𝑖) +∑𝑥𝑖

2

𝑚

𝑖=1

𝑚

𝑖=1

20 [−1, 1] –2

F2
𝑓(𝑥) =∑𝑥𝑖

6 ∙ (sin (
1

𝑥𝑖
) + 2)

𝑚

𝑖=1

20 [−10, 10] 0

F3
𝑓(𝑥) =∑

𝑥𝑖
2

40000
−∏(

𝑥𝑖

√𝑖
) + 1

𝑚

𝑖=1

𝑚

𝑖=1

20 [−100, 100] 0

F4
𝑓(𝑥) =∑|𝑥𝑖|

𝑖+1

𝑚

𝑖=1

20 [−1, 1] 0

F5
𝑓(𝑥) =∑(𝑥𝑖

2 − 𝑖)2
𝑚

𝑖=1

20 [−500, 500] 0

F6
𝑓(𝑥) =∑𝑖

𝑚

𝑖=1

∙ 𝑥𝑖
4 + 𝜂, 𝜂 ∈ [0,1]

 𝜂 random number from uniform distribution

20 [−1.28, 1.28] 0

18

F7
∑|𝑥𝑖

5 − 3 ∙ 𝑥𝑖
4 + 4 ∙ 𝑥𝑖

3 + 2 ∙ 𝑥𝑖
2 − 10 ∙ 𝑥𝑖 − 4|

𝑚

𝑖=1

20 [−10, 10] 0

F8
𝑓(𝑥) =∑|𝑥𝑖|

𝑚

𝑖=1

20 [−100, 100] 0

F9

𝑓(𝑥) = 1 + √10000 ∙∑|𝑥𝑖|

𝑚

𝑖=1

20 [−10,10] 0

F10
𝑓(𝑥) = 0.5 +∑(𝑥𝑖

4 − 16 ∙ 𝑥𝑖
2 + 5 ∙ 𝑥𝑖)

𝑚

𝑖=1

20 [−5,5] ≈–783

Table 6. Optimisation benchmark results: Mean best value (Mean) and standard

deviation (Std) obtained using Differential Evolution (DE), Artificial Bee Colony

(ABC), Particle Swarm Optimisation (PSO), Fruit Fly Optimisation Algorithm (FOA)

and contrast-based Fruit Fly Optimisation Algorithm (c-FOA). The comparison is

made on the basis of a maximum number of function evaluations 𝑁𝑓𝑢𝑛 = 16000

Fun DE ABC PSO FOA c-FOA

Mean Std Mean Std Mean Std Mean Std Mean Std

F1
1.36 0.30 –1.19 0.16 –1.89 0.11 1.36 0.08 –1.89 0.11

F2

0.15 0.06

1.60∙

10–3

1.20∙

10–3

1.42∙

10–8

2.15∙

10–8

7.76∙

10–7

4.28∙

10–7

4.06∙

10–23

3.45∙

10–24

F3
4.93 0.53 1.10 0.02

1.45∙

10–2

1.7∙

10–2

4.83∙

10–2

3.71∙

10–2

2.21∙

10–2

3.20∙

10–2

F4
0.03 0.01

4.33∙

10–4

2.96∙

10–4

5.42∙

10–9

6.81∙

10–9

9.38∙

10–6

2.28∙

10–7

5.00∙

10–9

1.17∙

10–13

F5 1.94∙

1010

6.16∙

109

3.49∙

108

1.58∙

108
0.57 1.84

1.45∙

103

1.24∙

102
4.78 2.17

F6

15.94 1.64 7.74 0.46 6.40 0.53 6.21 0.55 6.21 0.70

F7

1.69∙

104

6.33∙

103
223.01

106.8

4
0.02 0.03 115.40 11.84 21.30 4.90

F8

443.72 31.40 32.00 3.93

6.50∙

10–3

4.10∙

10–3
0.21

2.00∙

10–3

2.00∙

10–3

2.01∙

10–3

F9
3.57 1.18 4.77 2.30 3.23 2.91 47.04 0.20 1.23 0.13

F10 –3.79∙

102

4.39∙

101

–5.51∙

102

1.79∙

102

–5.35∙

102

2.20∙

102

–238.33 14.77 –

718.17

22.45

a b

19

𝑃 = 4.8 ∙ 10−10

𝑃 = 2.8 ∙ 10−11

c

𝑃 = 7.8 ∙ 10−3

d

𝑃 = 6 ∙ 10−4

Figure 9. Kruskal-Wallis test output and box plots for the optimisation results

obtained using PSO (“1”) and c-FOA (“2”) for functions a) F5, b) F7, c) F9 and d)

F10.

4. Optimised quadratic parameter varying suspension structure

In this section the suspension design problem is described and formulated. As it will

be shown the problem involves the iterative solution of a set of nonlinear and coupled

differential equations. From an optimisation point of view this problem is classified as

highly nonlinear, multi-objective with conflicting requirements and moderately

computationally expensive to solve.

4.1 The quarter-car model

This study considers only the vertical vehicle oscillations. Although it is possible to

use full-car or half-car models that can also describe the roll and pitch motions, the

quarter-car-model is used chiefly because it is simple. Furthermore, the international

standard ISO 2631 which is used for objectively evaluating ride quality does not take

into account the impact of roll and pitch motions. In Figure 10 the quarter car model

with semi-active suspension is shown. Wheel and axle (un-sprung mass m2) are

connected to the car body (sprung mass m1) through a passive spring k1 and a

nonlinear adaptive damper cs+cadapt. The tyre is modelled as spring k2. The road

20

disturbance is represented by 𝑧0. The equations of motion of the vehicle are the

following:

Figure 10. Quarter car model with semi-active suspension

𝑚1 ∙ �̈�1 + 𝑓𝑎𝑐𝑡 + 𝑘1 ∙ (𝑧1 − 𝑧2) = 0

𝑚2 ∙ �̈�2 − 𝑓𝑎𝑐𝑡 − 𝑘1 ∙ (𝑧1 − 𝑧2) + 𝑘2 ∙ (𝑧2 − 𝑧0) = 0
(23)

where 𝑧1, �̈�1 are the displacement and acceleration of the sprung mass respectively.

𝑧2 and �̈�2 are the displacement and acceleration of the un-sprung mass.

In this study, two typical road disturbances are considered and described in

Equation (24).

𝑧0𝑑(𝑡) = {= 𝐴𝑏 ∙
(1 − cos(8 ∙ 𝜋 ∙ 𝑡))

2
, 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 0. 25𝑠

0, 𝑓𝑜𝑟 𝑡 > 0.25𝑠

𝑧0𝑟(𝑡) = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑜𝑎𝑑 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

(24)

where 𝐴𝑏 is the bump’s maximum road height value and 𝑧0𝑟 a filtered white noise

signal [32]. 𝑧0𝑑 and 𝑧0𝑟 represent discrete (e.g. bump, pothole) and stochastic (e.g.

off-road driving) disturbances respectively.

In many design studies the performance limits of the actuator are neglected,

although this can have a significant influence to the solution [57]. In this study we

include the dynamic performance of the actuator, describing it with a first-order

transfer function [58]:

𝑓�̇�𝑐𝑡 ∙ 𝑇𝑎𝑐𝑡 + 𝑓𝑎𝑐𝑡 = 𝑓𝑐
(25)

𝑓𝑎𝑐𝑡, 𝑓�̇�𝑐𝑡 are the actuator force and its rate respectively, 𝑓𝑐 is the commanded signal

and 𝑇𝑎𝑐𝑡 describes the so-called control input rate limit of the actuator. Like any

mechanical device, the force generated by the actuator is limited. The maximum

actuator force, denoted as 𝑓𝑎𝑐𝑡,lim, is included in the actuator model:

cs+cadapt

z2(t)

k2

k1

m1

m2

z0(t)

z1(t)

Road profile

21

|𝑓𝑎𝑐𝑡| ≤ 𝑓𝑎𝑐𝑡,lim
(26)

The damper force element 𝑓𝑐 is described by the nonlinear quadratic parameter

varying equation:

𝑓𝑐 = {
𝑐𝑠 ∙ (𝑧1 − 𝑧2), 𝑖𝑓 �̃�𝑅 < 𝑧𝑠𝑤𝑖𝑡𝑐ℎ

(𝑐𝑠 + 𝑐𝑎𝑑𝑎𝑝𝑡) ∙ (𝑧1 − 𝑧2), 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ

(27)

where the adaptive damping coefficient 𝑐𝑎𝑑𝑎𝑝𝑡 follows a second-order equation:

𝑐𝑎𝑑𝑎𝑝𝑡 = 𝑐1 + 𝑐2 ∙ |𝑧1 − 𝑧2| + 𝑐3 ∙ (𝑧1 − 𝑧2)
2

(28)

and �̃�𝑅 is the predicted rattle space distance

�̃�𝑅 = (𝑧1 − 𝑧2) + 𝑇𝑝𝑟𝑒𝑑 ∙ (�̇�1 − �̇�2)
(29)

The main concept behind the proposed structure, described by Equations (23)-(27),

is that the passive system is optimal for normal driving conditions, when �̃�𝑅 <
𝑧𝑠𝑤𝑖𝑡𝑐ℎ. However, in case a road disturbance significantly disturbs the system, such

that �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ, the damping coefficient is adjusted to dissipate the disturbance as

quickly as possible but without damaging the vehicle.

4.1.1 System constraints

The system is constrained by the available rattle space and road holding
requirements. The rattle space constraint zR is described by:

|𝑧1 − 𝑧2| ≤ 𝑧𝑅,lim
(30)

with 𝑧𝑅,lim denoting the maximum allowed rattle space distance. The absolute value

denotes that this is independent of the direction of the road disturbance (bump or pot

hole). The road holding requirement is described by the tyre deflection constraint:

|𝑧2 − 𝑧𝑟| ≤ 𝑧𝑡𝑙𝑖𝑚
(31)

where 𝑧𝑡𝑙𝑖𝑚 is the prescribed tyre deflection limit.

4.2 Optimal robust suspension design problem

Robust optimal suspension design seeks to optimise system performance by taking

into account expected variations in vehicle parameters. In real life the vehicle’s

sprung mass 𝑚1 can change quite frequently because it is dependent on the number of

passengers. As it is not always possible to estimate the sprung mass, the system is

designed to be robust with respect to mass variations 𝛥𝑚1.

For the optimal robust suspension design problem we consider the following

parameters:

22

𝑚1 = 289 kg

𝛥𝑚1 = ±30 kg

𝑚2 = 59 kg

𝑐𝑠 = 1000 N ∙ s/m

𝑘1 = 190000
N

m

𝑘2 = 16912
N

m

(32)

system constraints:

𝑧𝑅𝑙𝑖𝑚 = 0.08 m

𝑧𝑡𝑙𝑖𝑚 = 0.04 m

(33)

and actuator performance characteristics:

𝑇𝑎𝑐𝑡 = 0.04 s
𝑓𝑎𝑐𝑡𝑙𝑖𝑚 = 1250 N

(34)

The switching parameters were chosen based on [34]:

𝑇𝑝𝑟𝑒𝑑 = 0

𝑧𝑠𝑤𝑖𝑡𝑐ℎ = 0.04 m

(35)

The objective function is expressed as the minimization of the car body

acceleration:

|�̈�1| = 𝑚𝑖𝑛

(36)

while fulfilling the system constraints described in Equations (26)-(27). The main

design parameters are the coefficients c1, c2 and c3.

Obviously, there is no analytical solution for the above described problem. One

way to find the optimal solution is by trialling out all possible parameter combinations

[c1, c2, c3]. However, the simulation time for solving the set of equations (23)-(35) is

approximately 8 s, using a laptop equipped with an Intel i5-6200 processor and 8 GB

RAM. The computational cost, if all combinations would be trialled out, would be

prohibitive therefore efficient search strategies based on optimisation algorithms are

required. Based on the results of Section 3, GA, PSO and c-FOA were selected for the

solution of the optimisation problem. The numerical results are discussed in the

following section.

5. Numerical results and discussion

23

5.1 Optimised suspension using Genetic Algorithm

The suspension design optimisation problem was solved using GA for thirty

independent repetitions. The design space was c1 𝜖 [−50,50], c2 𝜖 [−50,50] and

c3 𝜖 [−50,50]. The same set of GA parameters as in Section 3.1 were used. A

statistical evaluation of the optimal set of coefficients is presented in Table 7. The

standard deviation is relatively high with respect to the mean values, indicating that

the algorithm gets trapped at different local minima. The best result was for c1=
39.40, c2= −22.04 and c3= 0.97. A characteristic plot of the road disturbance and

the resulting sprung mass acceleration �̈�1 and rattle space distance 𝑧𝑅 is given in

Figure 11. The maximum sprung mass acceleration is max(�̈�1)=15m/s2 while the

maximum rattle space distance max(𝑧𝑅)=0.08m.

Table 7. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using

Genetic Algorithm

Optimised damper

values using GA

c1 c2 c3

Mean value 5.1 2.4 15.5

Standard deviation 7.5 11.8 31.1

Figure 11. Results: Optimised semi-active suspension using GA

5.2 Optimised suspension using Particle Swarm Optimisation

PSO was also employed repetitively for the solution of the suspension design

problem. The same parameters as in Section 3.2 were used. The design space – for

GA – was defined as: c1 𝜖 [−50,50], c2 𝜖 [−50,50] and c3 𝜖 [−50,50]. A statistical

24

evaluation of the obtained optimised coefficients is presented in Table 8. As observed

the standard deviation is quite high with respect to the mean values, indicating that the

algorithm gets trapped in different local minima. The best result is obtained for c1=
31.37, c2= −10.86 and c3= −2.32. A characteristic plot of the road disturbance and

the resulting sprung mass acceleration �̈�1 and rattle space distance 𝑧𝑅 is given in

Figure 12. The maximum sprung mass acceleration is max(�̈�1)=15m/s2 while the

maximum rattle space distance max(𝑧𝑅)=0.08m. GA and PSO perform similar.

Table 8. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using

Particle Swarm Optimisation

Optimised damper

values using PSO

c1 c2 c3

Mean value 26.00 –19.16 6.95

Standard deviation 26.29 22.24 8.08

Figure 13. Results: Peak accelerations comparison between GA and PSO

5.3 Optimised suspension using c-FOA

c-FOA was also employed thirty times with c1𝜖 [−50,50], c2 𝜖 [−50,50] and

c3 𝜖 [−50,50]. The average values and standard deviation of the design parameters

are shown in Table 9. The standard deviation is smaller compared to those achieved

using GA and PSO. The best result was for c1= 23.50, c2= 3.51 and c3= −7.78. In

Figure 14 the resulting accelerations for the GA and c-FOA suspension designs are

25

illustrated. The results are shown for the time interval where the vehicle encounters

the discrete disturbances. As observed the peak accelerations are significantly reduced

with c-FOA. The maximum sprung mass acceleration is max(�̈�1)=13.4m/s2 while the

maximum rattle space distance max(𝑧𝑅)=0.08m.

Table 9. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using c-

FOA

Optimised damper

values using c-

FOA

c1 c2 c3

Mean value 27.50 –4.42 –4.62

Standard deviation 3.42 8.01 3.40

Figure 14. Results: Peak accelerations comparison between Genetic Algorithm and c-

FOA

5.4 Discussion

The average convergence histories for the three algorithms are presented in Figure

15. The peaks in the convergence history of Figure 15c are because c-FOA searches

also the vicinity of design solutions that have very high objective function values (for

example at the boundary of the barrier functions). In Figure 15d the lower envelope of

c-FOA’s average convergence history is plotted.

26

a

b

c

d

Figure 15. Average convergence history for a) Genetic Algorithm, b) Particle Swarm

Optimisation, c) c-FOA and d) lower envelope for c-FOA

The numerical results obtained using the passive suspension, and those optimized

with GA, PSO and c-FOA, are summarised in Table 10. It is clear that the passive

suspension system does not meet the rattle space requirement |𝑧𝑅| ≤ 0.08. All

optimised suspension designs are meeting the rattle space requirement without

degrading the road holding performance expressed by zt. On the other hand it is

observed that the sprung mass acceleration max(�̈�1) increases by 25% (from 12 to 15

m/s2) and 11.3% (from 12 to 13.4 m/s2) with GA/PSO and c-FOA algorithms,

respectively. The increased acceleration values are due to the increased damping

required to prevent overcoming the suspension limits.

Table 10. Comparison of results for three different suspension systems – Passive and

optimised using Genetic Algorithm, Particle Swarm Optimisation and c-FOA

 �̈�1 / m/s2 𝑧𝑅 / m 𝑧𝑡 / m

Passive suspension 12 1.14 10–1 2.8 10–2

Optimised

suspension using

GA

15 8 10–2 2.8 10–2

27

Optimised

suspension using

PSO

15 8 10–2 2.8 10–2

Optimised

suspension using

c-FOA

13.4 8 10–2 2.8 10–2

In order to obtain better insight of the optimised result, we plot the effective

damping coefficient versus rattle space velocity �̇�𝑅 , see Figure 16. The effective

damping coefficient ceff is defined as:

𝑐𝑒𝑓𝑓 =

{

𝑐𝑎𝑑𝑎𝑝𝑡

𝑐𝑠
, 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑓𝑐 ≤ 𝑓𝑎𝑐𝑡𝑙𝑖𝑚

𝑓𝑎𝑐𝑡,𝑙𝑖𝑚/�̇�𝑅
𝑐𝑠

, 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑓𝑐 > 𝑓𝑎𝑐𝑡𝑙𝑖𝑚

(37)

and is a metric that shows how much the passive damping coefficient needs to

increase.

The graph indicates that damping should reach its peak for low rattle space

velocities, −0.05 ≤ �̇�𝑅 ≤ 0.05 m/s. For intermediate velocities 0.05 ≤ |�̇�𝑅| ≤
0.3 m/s damping should decrease exponentially, while for |�̇�𝑅| > 0.3 m/s it should

approach its steady value. It is highlighted that these results hold only when �̃�𝑅 >
𝑧𝑠𝑤𝑖𝑡𝑐ℎ, otherwise the system retains its passive behaviour.

An intuitive explanation of the result is that the optimiser suggests scaling up

considerably the damping coefficient in the range where very low damping forces are

usually exerted and then decrease it as the relative velocity increases. Of course, this

should only happen when the road disturbance excites the system significantly, �̃�𝑅 >
𝑧𝑠𝑤𝑖𝑡𝑐ℎ. An experimental investigation using a prototype magnetorheological damper

showed that it is possible to achieve the desired scaling in damping. The results are

presented in Figure 17.

Figure 16. Scaling damping coefficient ceff versus rattle space velocity
𝒅𝒛𝑹

𝒅𝒕

28

Figure 17. Experimental results obtained from magnetorheological damper excited by

a toothsaw input signal for different current values 0-2 A

6. Summary and conclusions

Every year thousands of motorists damage their vehicles by hitting severe road

anomalies such as large potholes. Poor road conditions in combination with the use of

low-profile tyres have increased the scale of the problem and made pothole damage

mitigation a priority for a number of car manufacturers. Passive suspension systems

cannot meet the competing objectives of comfort, road holding and pothole damage

mitigation. In this paper, a clipped quadratic parameter varying suspension system is

proposed for this purpose. The following conclusions are drawn:

1. There are no design rules that can help an engineer to design a nonlinear suspension

system based on a quadratic parameter varying damper. Standard global optimisation

algorithms like Genetic Algorithm and Particle Swarm Optimisation could not find

the optimised solution. Both Genetic Algorithm and Particle Swarm Optimisation

gave solutions located far from the optimum design values.

2. A new Fruit Fly Optimisation Algorithm – based on a recent study on how well

fruit fly’s tiny brain finds food – was developed. The standard Fruit Fly Optimisation

Algorithm was enhanced by introducing the delay and visual feature detection phases

that characterise a fruit fly’s food search strategy. The proposed c-FOA is a Swarm

Intelligence heuristic, with unique − compared to other heuristics − food search

strategies that have been developed through evolution.

3. The new optimisation algorithm, named c-FOA, was compared to the Genetic

Algorithm, Simulated Annealing, Particle Swarm Optimisation, Differential

Evolution, Artificial Bee Colony and the original Fruit Fly Optimisation Algorithm.

In total 14 benchmark functions were employed, commonly used for this purpose in

the literature. Both low and high dimensional studies were conducted.

4. The comparison between the optimisation algorithms in the low dimensional

benchmark tests revealed that the Genetic Algorithm and Simulated Annealing

performed similarly well and c-FOA slightly more robustly. Particle Swarm

Optimisation and c-FOA performed better than Differential Evolution, Artificial Bee

Colony and the original Fruit Fly Optimisation Algorithm in the high dimensional

29

benchmark tests. In a limited number of benchmark tests Particle Swarm Optimisation

performed better while in another limited number of benchmark tests c-FOA did. In

particular it seems that Particle Swarm Optimisation performs better when the

objective function value landscape is flat, while c-FOA performs better when it is

steep. The performance was evaluated using simple statistical means and using non-

parametric tests like the Kruskal-Wallis test.

5. In the suspension design problem c-FOA performed better than Genetic Algorithm

and Particle Swarm Optimisation. Both the best result achieved as well as the average

optimised results were better. A comparison between the convergence histories

reveals that the Genetic Algorithm and Particle Swarm Optimisation become stuck in

local minima.

6. The resulting optimal design suggests that advanced suspension systems need to

increase damping at low rattle space velocities, when the road disturbance excitation

is significant. At higher velocities damping should decrease. Preliminary tests using a

prototype magnetorheological damper showed that both design recommendations are

possible to achieve.

Future research plans include the design investigation of a direct current controller

that will optimize the transient performance of the magnetorheological damper and

applying c-FOA to other types of optimisation problems.

Acknowledgements
MEF is grateful for funding from the Lloyd’s Register Foundation, a charitable foundation helping to

protect life and property by supporting engineering-related education, public engagement and the

application of research.

References

1. http://www.telegraph.co.uk/news/uknews/road-and-rail-

transport/11368326/Potholes-cause-damage-to-cars-every-11-mins-figures-

show.html

2. http://news.bbc.co.uk/1/hi/world/europe/8556915.stm

3. http://www.at.ford.com/news/cn/Pages/Mitigating%20Pothole%20Damage%20is

%20Priority%20for%20Ford.aspx

4. Tseng, H. and Hrovat, D. (2015). State of the art survey: active and semi-active

suspension control. Vehicle System Dynamics, 53(7), pp.1034-1062.

5. Kasemi, B., Muthalif, A., Rashid, M. and Fathima, S. (2012). Fuzzy-PID

Controller for Semi-Active Vibration Control Using Magnetorheological Fluid

Damper. Procedia Engineering, 41, pp.1221-1227.

6. Chiou, J., Tsai, S. and Liu, M. (2012). A PSO-based adaptive fuzzy PID-

controllers. Simulation Modelling Practice and Theory, 26, pp.49-59.

7. Wang, W., Song, Y., Xue, Y., Jin, H., Hou, J. and Zhao, M. (2015). An optimal

vibration control strategy for a vehicle's active suspension based on improved

cultural algorithm. Applied Soft Computing, 28, pp.167-174.

8. Tandel, A., Deshpande, A., Deshmukh, S. and Jagtap, K. (2014). Modeling,

Analysis and PID Controller Implementation on Double Wishbone Suspension

Using SimMechanics and Simulink. Procedia Engineering, 97, pp.1274-1281.

http://www.telegraph.co.uk/news/uknews/road-and-rail-transport/11368326/Potholes-cause-damage-to-cars-every-11-mins-figures-show.html
http://www.telegraph.co.uk/news/uknews/road-and-rail-transport/11368326/Potholes-cause-damage-to-cars-every-11-mins-figures-show.html
http://www.telegraph.co.uk/news/uknews/road-and-rail-transport/11368326/Potholes-cause-damage-to-cars-every-11-mins-figures-show.html
http://news.bbc.co.uk/1/hi/world/europe/8556915.stm
http://www.at.ford.com/news/cn/Pages/Mitigating%20Pothole%20Damage%20is%20Priority%20for%20Ford.aspx
http://www.at.ford.com/news/cn/Pages/Mitigating%20Pothole%20Damage%20is%20Priority%20for%20Ford.aspx

30

9. Gosiewski, Z. and Mystkowski, A. (2008). Robust control of active magnetic

suspension: Analytical and experimental results. Mechanical Systems and Signal

Processing, 22(6), pp.1297-1303.

10. Savaresi, S., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard, L. (2010).

Semiactive suspension control design for vehicles. Elsevier.

11. Koch, G. (2011). Adaptive control of mechatronic vehicle suspension systems.

Ph.D. Thesis, Technische Universität München

12. Sharp, R. S., & Peng, H. (2011). Vehicle dynamics applications of optimal control

theory. Vehicle System Dynamics, 49, 1073–1111.

13. Unger, A., Schimmack, F., Lohmann, B. and Schwarz, R. (2013). Application of

LQ-based semi-active suspension control in a vehicle. Control Engineering

Practice, 21(12), pp.1841-1850.

14. Brezas, P., Smith, M. and Hoult, W. (2015). A clipped-optimal control algorithm

for semi-active vehicle suspensions: Theory and experimental evaluation.

Automatica, 53, pp.188-194.

15. Brezas, P. and Smith, M. (2014). Linear Quadratic Optimal and Risk-Sensitive

Control for Vehicle Active Suspensions. IEEE Transactions on Control Systems

Technology, 22(2), pp.543-556.

16. Poussot-Vassal, C., Spelta, C., Sename, O., Savaresi, S. and Dugard, L. (2012).

Survey and performance evaluation on some automotive semi-active suspension

control methods: A comparative study on a single-corner model. Annual Reviews

in Control, 36(1), pp.148-160.

17. Crews, J., Mattson, M. and Buckner, G. (2011). Multi-objective control

optimization for semi-active vehicle suspensions. Journal of Sound and Vibration,

330(23), pp.5502-5516.

18. Hong, K., Sohn, H. and Hedrick, J. (2002). Modified Skyhook Control of Semi-

Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop

Tuning. Journal of Dynamic Systems, Measurement, and Control, 124(1), p.158.

19. Gopala Rao, L. and Narayanan, S. (2009). Sky-hook control of nonlinear quarter

car model traversing rough road matching performance of LQR control. Journal of

Sound and Vibration, 323(3-5), pp.515-529.

20. Priyandoko, G., Mailah, M. and Jamaluddin, H. (2009). Vehicle active suspension

system using skyhook adaptive neuro active force control. Mechanical Systems

and Signal Processing, 23(3), pp.855-868.

21. Karnopp, D., Crosby, M. and Harwood, R. (1974). Vibration Control Using Semi-

Active Force Generators. Journal of Engineering for Industry, 96(2), p.619.

22. Hong, K., Sohn, H. and Hedrick, J. (2002). Modified Skyhook Control of Semi-

Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop

Tuning. Journal of Dynamic Systems, Measurement, and Control, 124(1), p.158.

23. Miller, L.R. and Nobles, C.M. (1990). Methods for eliminating jerk and noise in

semi active suspensions, SAE 1990 Transactions, Sec. 2, pp.943-951, Paper No.

902284

24. Tong, R.T. (2001). Ride control: a two states design for heavy vehicle suspension,

PhD Dissertation, University of Illinois at Chicago.

25. Nguyen, M., da Silva, J., Sename, O. and Dugard, L. (2015). A state feedback

input constrained control design for a 4-semi-active damper suspension system: a

quasi-LPV approach. IFAC-PapersOnLine, 48(14), pp.259-264.

26. Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z. and Bokor, J.

(2008). A new semi-active suspension control strategy through LPV technique.

Control Engineering Practice, 16(12), pp.1519-1534.

31

27. Li, P., Lam, J. and Cheung, K. (2014). Velocity-dependent multi-objective control

of vehicle suspension with preview measurements. Mechatronics, 24(5), pp.464-

475.

28. Rotondo, D., Puig, V., Nejjari, F. and Witczak, M. (2015). Automated generation

and comparison of Takagi–Sugeno and polytopic quasi-LPV models. Fuzzy Sets

and Systems, 277, pp.44-64.

29. Rotondo, D., Nejjari, F. and Puig, V. (2014). Robust state-feedback control of

uncertain LPV systems: An LMI-based approach. Journal of the Franklin Institute,

351(5), pp.2781-2803.

30. Eski, İ. and Yıldırım, Ş. (2009). Vibration control of vehicle active suspension

system using a new robust neural network control system. Simulation Modelling

Practice and Theory, 17(5), pp.778-793.

31. Yildirim, Ş. (2004). Vibration control of suspension systems using a proposed

neural network. Journal of Sound and Vibration, 277(4-5), pp.1059-1069.

32. Kanarachos, S. (2012). Intelligent semi-active vehicle suspension systems using

neural networks. International Journal of Vehicle Systems Modelling and Testing,

7(2), p.135.

33. Qin, Y., Dong, M., Langari, R., Gu, L. and Guan, J. (2015). Adaptive Hybrid

Control of Vehicle Semiactive Suspension Based on Road Profile Estimation.

Shock and Vibration, 2015, pp.1-13.

34. Kanarachos, S. and Kanarachos, A. (2015). Intelligent road adaptive suspension

system design using an experts’ based hybrid genetic algorithm. Expert Systems

with Applications, 42(21), pp.8232-8242.

35. Pedro, J., Dangor, M., Dahunsi, O. and Ali, M. (2014). Intelligent feedback

linearization control of nonlinear electrohydraulic suspension systems using

particle swarm optimization. Applied Soft Computing, 24, pp.50-62.

36. Lin, J. and Lian, R. (2013). Design of a grey-prediction self-organizing fuzzy

controller for active suspension systems. Applied Soft Computing, 13(10),

pp.4162-4173.

37. Mahmoodabadi, M., Safaie, A., Bagheri, A. and Nariman-zadeh, N. (2013). A

novel combination of Particle Swarm Optimization and Genetic Algorithm for

Pareto optimal design of a five-degree of freedom vehicle vibration model.

Applied Soft Computing, 13(5), pp.2577-2591.

38. Pan, W. (2013). Using modified fruit fly optimisation algorithm to perform the

function test and case studies. Connection Science, 25(2-3), pp.151-160.

39. Yuan, X., Liu, Y., Xiang, Y. and Yan, X. (2015). Parameter identification of BIPT

system using chaotic-enhanced fruit fly optimization algorithm. Applied

Mathematics and Computation, 268, pp.1267-1281.

40. Mousavi, S., Alikar, N., Niaki, S. and Bahreininejad, A. (2015). Optimizing a

location allocation-inventory problem in a two-echelon supply chain network: A

modified fruit fly optimization algorithm. Computers & Industrial Engineering,

87, pp.543-560.

41. Wang, L., Shi, Y. and Liu, S. (2015). An improved fruit fly optimization

algorithm and its application to joint replenishment problems. Expert Systems

with Applications, 42(9), pp.4310-4323.

42. Kumar, M. and Rawat, T. (2015). Optimal design of FIR fractional order

differentiator using cuckoo search algorithm. Expert Systems with Applications,

42(7), pp.3433-3449.

43. https://en.wikipedia.org/wiki/Drosophila, accessed on 16.01.2017

https://en.wikipedia.org/wiki/Drosophila

32

44. http://www.flyfoa.com/2014/08/introduction-to-fruit-fly-optimization.html,

accessed on 16.01.2017

45. Pan, W. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial

distress model as an example. Knowledge-Based Systems, 26, pp.69-74.

46. van Breugel, F. and Dickinson, M. (2014). Plume-Tracking Behavior of Flying

Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes. Current

Biology, 24(3), pp.274-286

47. http://www.futurity.org/fruit-flys-tiny-brain-finds-food-well/, accessed on

16.01.2017

48. Banks, Alec, Jonathan Vincent, and Chukwudi Anyakoha. "A Review Of Particle

Swarm Optimization. Part I: Background And Development". Natural Computing

6.4 (2007): 467-484

49. http://mf.erciyes.edu.tr/abc/publ.htm, accessed on 16.01.2017

50. Price, Kenneth V, Rainer M Storn, and Jouni A Lampinen. Differential Evolution.

1st ed. Berlin: Springer, 2005.

51. Silveira, C. L., Mazutti, M. A., Salau, N. P. G. Solid-state fermentation process

model reparametrization procedure for parameters estimation using particle swarm

optimization. Journal of Chemical Technology and Biotechnology, v. 91, n. 3, p.

762-768, 2016.

52. He, Q., Wang, L., Liu, B. Parameter estimation for chaotic systems by particle

swarm optimization. Chaos, Solitons & Fractals, v. 34, n. 2, p. 654-661, 2007.

53. Kanarachos, A., Koulocheris, D. and Vrazopoulos, H. (2003). Evolutionary

algorithms with deterministic mutation operators used for the optimization of the

trajectory of a four-bar mechanism. Mathematics and Computers in Simulation,

63(6), pp.483-492.

54. https://www.mathworks.com/matlabcentral/answers/uploaded_files/20100/Fruit%

20Fly%20Optimization%20Algorithm_Second%20Edition.pdf, accessed on

16.01.2017

55. http://www1.icsi.berkeley.edu/~storn/code.html#matl, accessed on 16.01.2017

56. L. Guoqiang, P. Niu, and X. Xiao. Development and Investigation of Efficient

Artificial Bee Colony Algorithm for Numerical Function Optimization, Applied

Soft Computing, vol. 12, no. 1, pp. 320-332, 2012.

57. Isermann R. (2003). Mechatronic systems: fundamentals, New York: Springer,

(Chapter 12)

58. Nguyen, Q. and Choi, S. (2008). Optimal design of a vehicle magnetorheological

damper considering the damping force and dynamic range. Smart Materials and

Structures, 18(1), p.015013.

http://www.flyfoa.com/2014/08/introduction-to-fruit-fly-optimization.html
http://www.futurity.org/fruit-flys-tiny-brain-finds-food-well/
https://www.mathworks.com/matlabcentral/answers/uploaded_files/20100/Fruit%20Fly%20Optimization%20Algorithm_Second%20Edition.pdf
https://www.mathworks.com/matlabcentral/answers/uploaded_files/20100/Fruit%20Fly%20Optimization%20Algorithm_Second%20Edition.pdf
http://www1.icsi.berkeley.edu/~storn/code.html#matl

	optimalcover
	optimal

