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Abstract:  

In the UK, in 2014 almost fifty thousand motorists made claims about vehicle 

damages caused by potholes. Pothole damage mitigation has become so important that 

a number of car manufacturers have officially designated it as one of their priorities. 

The objective is to improve suspension shock performance without degrading road 

holding and ride comfort. In this study, it is shown that significant improvement in 

performance is achieved if a clipped quadratic parameter varying suspension is 

employed. Optimal design of the proposed system is challenging because of the 

multiple local minima causing global optimisation algorithms to get trapped at local 

minima, located far from the optimum solution. To this end an enhanced Fruit Fly 

Optimisation Algorithm – based on a recent study on how well a fruit fly’s tiny brain 

finds food – was developed. The new algorithm is first evaluated using standard and 

nonstandard benchmark tests and then applied to the computationally expensive 

suspension design problem. The proposed algorithm is simple to use, robust and well 

suited for the solution of highly nonlinear problems. For the suspension design 

problem new insight is gained, leading to optimum damping profiles as a function of 

excitation level and rattle space velocity. 
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1. Introduction  
 

According to statistics, in the UK a car sustains pothole damage every 11 minutes 

resulting in 50,000 motorists making claims about vehicle damage in 2014 [1]. The 

poor weather conditions during recent winters have left many European roads covered 

with potholes at a time when money for repairs is limited [2]. The scale of pothole 

vehicle damage problem has been intensified due to the low-profile tyre usage trend. 

The problem has become so important that a number of car manufacturers designated 

it as one of their priorities [3]. In this context, suspension design needs further 

improvement to meet today’s challenges.  

Recent suspension design studies focus on comfort, handling and stability, 

however they do not consider how to mitigate pothole damages [4]. In principle, 

passive or active linear suspension systems can reduce shock loads and chassis 



2 

 

accelerations by using ‘softer’ springs, thus allowing more suspension travel. This 

comes at the expense of deteriorated road-holding properties, due to the increased tyre 

load oscillations, and increased probability of hitting the suspension limits. The 

conflicting performance objectives when linear control is applied, necessitate the 

investigation of nonlinear controllers. In [5] a fuzzy-PID controller was implemented 

and compared to a fixed gain PID controller. The results were promising and further 

improved when the fuzzy-PID controller design problem was formulated as an 

optimization problem, where each point represented a rule set, membership function, 

and corresponding system behaviour [6]. The optimized set of values was computed 

by combining Particle Swarm Optimisation (PSO) and Q-learning. In [7] the fuzzy-

PID controller was fine-tuned by combining Cultural and Niche optimisation 

algorithms. In studies where the classical Ziegler-Nichols gain tuning method was 

applied moderate results were reported [8]. Furthermore, the robustness of standard 

PID suspension control was examined and found to be under performing in [9].  

Optimal Control extends standard PID control design by considering systems with 

multiple outputs [10]. An adaptive suspension controller that dynamically interpolates 

a set of Linear Quadratic Regulators (LQG) was proposed in [11]. In [12] the State 

Dependent Riccati Equation (SDRE) controller design technique was assessed. In [13] 

a LQG suspension controller was first designed. Subsequently, the commanded force 

was clipped to match the damper’s controllability range (dampers can only generate 

negative forces). The controller parameters were determined using the genetic 

algorithm NSGA II. In [14]-[15], Brezas et al., applied Optimal Control Theory to 

simultaneously optimise the ride and handling vehicle behaviour. Clipped Optimal 

Control was compared to standard LQG and found to be performing better. This was a 

very interesting result because LQG, as an active suspension control concept, requires 

a more complex and energy consuming system compared to semi-active suspension.  

Different Skyhook control concepts were studied in [16], including Skyhook two-

state damper control, Skyhook linear approximation damper control, and mixed 

Skyhook-acceleration-driven damper. There is a trade-off between road holding and 

comfort when fixed gain Skyhook control is applied [17]. Adaptive Skyhook, with the 

gains being a function of the road condition, was investigated in [18]. In [19] Skyhook 

controller gains were tuned by matching the damper force to the output of a Linear 

Quadratic Regulator. The combination of Skyhook control with a neural network-

based feedforward term was evaluated in [20]. In conclusion, Skyhook control cannot 

reduce simultaneously the resonance peak of the sprung and un-sprung masses 

[21]-[22]. Skyhook damping also inherits other problems, notably water hammer 

and/or chucking [23]-[24].  

In [25] Linear Parameter Varying (LPV) control was implemented and the 

controller gains were obtained solving a Linear Matrix Inequalities (LMI) problem. In 

[26] the concept was further refined by including a scheduling parameter as a function 

of the difference between commanded and attainable forces. A velocity dependent 

LPV controller was proposed in [27]. A method for the automated generation of LPV 

systems was presented in [28], while in [29] the concept was extended to uncertain 

LPV systems. Hybrid or data based controllers have also been proposed. Examples 

include [30] where a PID controller and a three-layered feedforward neural network 

were combined. The Levenberg–Marquardt (LM) algorithm was employed to train the 

neural network. In [31] a recurrent neural network (RNN) was investigated. In [32] a 

Magneto-Rheological (MR) damper based on a feedforward neural network was 

proposed. In [33] two fuzzy logic controllers were combined and tuned using the 

derivation of a Pareto front. A rule-based nonlinear suspension system was designed 
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and fine-tuned using GA in [34]. Particle Swarm Optimisation (PSO) was employed 

to tune a feedback linearization scheme in [35]. Finally, a real-time grey-prediction 

algorithm was employed in [36] while Particle Swarm Optimisation and Genetic 

Algorithms were combined to derive the Pareto optimal design of a five-degree-of-

freedom vehicle vibration model [37].  

In conclusion, most approaches cannot overcome the problem of simultaneously 

optimizing the sprung and un-sprung mass responses, especially when a broad range 

of external loads including singular disturbances is considered. In this study, it is 

shown that it is possible to overcome this limitation with a clipped quadratic 

parameter varying suspension system. Tuning of the nonlinear suspension system was 

achieved by applying an enhanced Fruit Fly Optimisation Algorithm (FOA), a new 

population-based heuristic algorithm discovered through simulation of the intelligent 

foraging behaviour of fruit flies [38]-[42]. The proposed contrast-based Fruit Fly 

Optimisation Algorithm (c-FOA) is first studied and evaluated using standard and 

nonstandard benchmark tests and then applied to the suspension design problem. It is 

shown that c-FOA is simple to use, robust and well suited for the solution of 

computationally expensive optimisation problems. To our knowledge this is the first 

time where FOA is applied to the optimal design of a suspension system. 

The paper is structured as follows. In Section 2 the contrast-based Fruit Fly 

Optimisation Algorithm is presented in detail and discussed in relation to other 

Swarm Intelligence algorithms. In Section 3, 14 benchmark tests are used to study the 

new algorithm and compare its performance to standard optimisation algorithms 

including the Genetic Algorithm, Simulated Annealing, Particle Swarm Optimisation, 

Differential Evolution, Artificial Bee Colony and the original Fruit Fly Optimisation 

Algorithm. The quadratic parameter varying suspension system problem, a 

computationally intensive problem, is formulated in Section 4. In Section 5 the 

numerical results using c-FOA, Genetic Algorithm and Particle Swarm Optimisation 

are analysed and discussed. In the last section conclusions and future research 

directions are presented. 

 

 

2. The contrast-based Fruit Fly Optimisation Algorithm (c-FOA)  
 

2.1 A short introduction to Fruit Fly Optimisation 

 

Drosophila is a genus of small flies, belonging to the family Drosophilidae, whose 

members are often called “fruit flies” or (less frequently) pomace flies, vinegar flies, 

or wine flies, a reference to the characteristic of many species to linger around 

overripe or rotting fruit [43]. Fruit flies can smell and locate a food source even if this 

is 40 km away. This performance is remarkable as their brain has only 100,000 

neurons, compared to house fly brains which have 300,000 neurons and human brains 

with 100 billion [44]. The combination of food search efficiency and reduced 

complexity makes it very interesting from a biological and optimisation point of view. 

Pan was the first drive the Fruit Fly Optimisation Algorithm (FOA) based on the 

food finding characteristics of a fruit fly swarm [45]. A schematic of the food 

searching process is shown in Figure 1. The main steps involved in standard FOA are: 
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Figure 1. Fruit fly swarm in search for food 

 

 Step 1: Initialization. The average swarm location [𝑋0,  𝑌0] the maximum 

number of iterations 𝐾 and the size of the swarm 𝑁 are defined.  

 

 Step 2: Swarm generation. For 𝑖 = 1, . . , 𝑁 a new population of fruit flies is 

generated according to: 

 

𝑋𝑖 = 𝑋0 + rand 
(1) 

𝑌𝑖 = 𝑌0+rand 

 

 Step 3:  Localisation. Each fruit fly is assigned a value 𝑆𝑖 based on how close 

the fruit fly [𝑋𝑖, 𝑌𝑖] is to the origin: 

 

𝐷𝑖 = √𝑋𝑖
2 + 𝑌𝑖

2 (2) 

𝑆𝑖 =
1

𝐷𝑖
 

(3) 

 

𝑆𝑖 is a reciprocal function and therefore sensitive when 𝐷𝑖~0. Even a slight 

change ∆𝐷𝑖 can result in a large difference ∆𝑆𝑖. This attribute resembles the 

fruit fly’s ability to search food at large distances. 

 

 Step 4: Objective function calculation. For each fruit fly the corresponding 

smell concentration 𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) is calculated, where 𝑓 is the objective 

function.  

 

 Step 5: Best member identification. The fruit fly with the highest smell 

concentration in the swarm is identified: 

Y 

(0, 0) 

(𝑿𝟎, 𝒀𝟎) (𝑿𝟏, 𝒀𝟏) 

(𝑿𝟑, 𝒀𝟑) 

𝐷1 

𝐷3 

X 

𝐷2 

(𝑿𝟐, 𝒀𝟐) 

Odour plume  

Swarm’s average location  

propagation  -- 
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[ 𝑋𝑏  𝑌𝑏 ]  →  𝑆𝑚𝑒𝑙𝑙𝑏 = max(𝑆𝑚𝑒𝑙𝑙𝑖) (4) 

 

 Step 6: Average location selection. The ‘best’ fruit fly is compared to the 

existing average location: 

 

𝑖𝑓 𝑆𝑚𝑒𝑙𝑙𝑏 > 𝑆𝑚𝑒𝑙𝑙0 

then 𝑋0 = 𝑋𝑏 and 𝑌0 = 𝑌𝑏 
(5) 

 

 Step 7: Termination phase. Is the maximum number 𝐾 iterations reached? If 

yes stop, otherwise return to Step 2. 

 

The original FOA has several drawbacks. For example, fruit flies are only attracted 

in the vicinity of the current best location [𝑋0, 𝑌0]. This may well be a local extreme. 

Therefore, it is very probable for a fruit fly swarm to get trapped around a local 

minimum. 

 

2.2 The proposed contrast-based Fruit Fly Optimisation Algorithm: c-FOA 

 

A recent study of more than 70 hours of fruit flies’ motion showed that fruit flies 

primarily detect food by tracking odour plumes [46]. A plume’s motion can be chaotic 

in the presence of external disturbances, for example an airstream, and may prohibit a 

fruit fly from detecting the food source [47]. When this occurs fruit flies start to 

search for visually attractive features and in particular they explore objects with visual 

contrast. They land, and if where they land is not something to eat, they continue the 

search. A glass of wine is a contrasting shape, like fruit, that would merit their 

attention.  

The study concluded that in order to localize an odour source, flies exhibit three 

iterative, independent and reflex-driven behaviours, which remain constant through 

repeated encounters of the same stimulus:  

(a) 190 ±  75 ms after encountering a plume, flies increase their flight speed and 

turn upwind, using visual cues such as stripes to help them determine wind direction. 

Owing to this substantial response delay, flies may pass beyond the plume shortly 

after entering it.  

 (b) 450 ±  165 ms after losing the plume, flies initiate a series of vertical and 

horizontal casts, using visual cues to maintain a crosswind heading.  

(c) After sensing an attractive odour, flies exhibit an enhanced attraction to visual 

features such as roundish objects, which increases their probability of finding the 

plume’s source.  

The previously described motion pattern is idealised and modelled, for the first 

time in this paper, using the proposed contrast-based Fruit Fly Optimisation 

Algorithm (c-FOA). c-FOA amends the original FOA by adding two new search 

phases: i) the delay detection and ii) visual feature detection. Figure 2 illustrates the 

proposed algorithm.  

The main steps of the algorithm are as follows: 

 Step I: Initialization. The average swarm location [𝑋0,  𝑌0], the maximum 

number of iterations K, the size of the swarm N, the delay κ, the scaling factor 

M, and contraction parameter c are defined.  
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Figure 2. Proposed c-FOA algorithm 
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 Step II: Swarm generation. For 𝑖 = 1, . . , 𝑁 a new population of fruit flies is 

created through the following randomised process: 

 

𝑋𝑖 = 𝑋0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) 
(6) 

𝑌𝑖 = 𝑌0 ∙ (1 + 𝑀𝑖 ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) 

 

 Step III: Localisation. Each fruit fly is assigned a value 𝑆𝑖 based on how close 

the fruit fly [𝑋𝑖, 𝑌𝑖] is to the origin: 

 

𝐷𝑖 = √𝑋𝑖
2 + 𝑌𝑖

2 (7) 

𝑆𝑖 =
1

𝐷𝑖
 

(8) 

 

 Step IV: Objective function calculation. The corresponding smell concentration 

𝑆𝑚𝑒𝑙𝑙𝑖 = 𝑓(𝑆𝑖) is for each fruit fly i, where f is the objective function.  

 

 Step V: Best member identification. The fruit fly with the highest smell 

concentration in the swarm is identified: 

 

 𝑆𝑚𝑒𝑙𝑙𝑏 = max(𝑆𝑚𝑒𝑙𝑙𝑖) →  𝑏𝑒𝑠𝑡 𝑓𝑟𝑢𝑖𝑡 𝑓𝑙𝑦 𝑆𝑏  
→  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 [𝑋𝑏 𝑌𝑏] 

(9) 

 

 Step VI: Average location selection. The best fruit fly is compared to the 

existing average location: 

 

𝑖𝑓 𝑆𝑚𝑒𝑙𝑙𝑏 > 𝑆𝑚𝑒𝑙𝑙0 𝑡ℎ𝑒𝑛 𝑋0 = 𝑋𝑏 𝑎𝑛𝑑 𝑌0 = 𝑌𝑏  (10) 

 

 Condition 1:  

 If the maximum number of iterations 𝐾 has been reached then terminate 

the optimisation process, retrieve the optimal fruit fly Sopt as well as the 

corresponding objective function value Smellopt. 

 Else, continue to Step VII. 

 

 Step VII: Decision delay. In this phase the fruit fly swarm does not change its 

food search strategy for κ iterations. This resembles the delay in decision-

making that fruit flies exhibit. 

 

 Condition 2: 

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0 improves over the last κ iterations, 

then go to Step VIIIa.  

 Else if the smell concentration 𝑆𝑚𝑒𝑙𝑙0 does not change over the last κ 

iterations, then go to Step VIIIb.  

 If the smell concentration 𝑆𝑚𝑒𝑙𝑙0  worsens over the last 2∙κ iterations, 

then go to Step VIIIc. 
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 Step VIIIa: Casting: Go to Step II without any change. 

 

 Step VIIIb: Visual feature detection: The fruit fly with the worst smell 

concentration 𝑆𝑚𝑒𝑙𝑙𝑤 is identified and the fruit fly swarm becomes attracted to 

it. Reduce the scale factor 𝑀 and go to Step II. 

 

[ 𝑋𝑤  𝑌𝑤 ]  →  𝑆𝑚𝑒𝑙𝑙𝑤 = min(𝑆𝑚𝑒𝑙𝑙𝑖) (11) 

 

𝑋0 = 𝑋𝑤 𝑎𝑛𝑑 𝑌0 = 𝑌𝑤  (12) 

 

𝑀𝑖+1 = 𝑐 ∙ 𝑀𝑖 (13) 

 

where 𝑖 is the current iteration.  

Eventually the flies will explore the area around the fruit fly with 𝑆𝑚𝑒𝑙𝑙𝑤. This 

resembles the visual cue fruit fly search behaviour.  

 

 Step VIIIc: Reset: Return to the location that encountered the best smell 

concentration 𝑆𝑚𝑒𝑙𝑙0 up to that point. Then go to Step II. 

 

𝑋0 = 𝑋𝑏 𝑎𝑛𝑑 𝑌0 = 𝑌𝑏  (14) 

This resembles the memory function that fruit flies present. 

 

 

2.3 Population-based optimisation techniques and c-FOA 

 

c-FOA is a population-based optimisation technique classified under Swarm 

Intelligence, such as Particle Swarm Optimisation (PSO) [48] and Artificial Bee 

Colony (ABC) [49]. The main difference between Swarm Intelligence techniques and 

Evolutionary Algorithms is the strategy behind the creation of new individuals. In 

Evolutionary Algorithms, like the Genetic Algorithm (GA) and Differential Evolution 

(DE), operators like “mutation”, “recombination” and “survival of the fittest” are 

employed, while in Swarm Intelligence the new individuals are created through 

interaction and information sharing between a member and the remaining population 

[50].  

Particle Swarm Optimisation is inspired by flocks of birds swarming [51]. In 

greater detail, in Particle Swarm Optimisation the position of the individual members 

is randomly initialised [52]. Subsequently, the members 𝑥𝑖 incrementally update their 

position 𝑥𝑖+1 based on a weighted average that considers the member’s previous 

speed 𝑣𝑖, the member’s current position 𝑥𝑖, the member’s previous best position 𝑝𝑖 
and the neighbouring group’s best position 𝑝𝑔: 

 

𝑣𝑖+1 = 𝑣𝑖 +𝜑1  ∙ 𝛽1 ∙ (𝑝𝑖 − 𝑥𝑖) + 𝜑2  ∙ 𝛽2 ∙ (𝑝𝑔 − 𝑥𝑖) 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 

(15) 

 

where constants 𝜑1 and 𝜑2 determine the balance between the influence of the 

individual’s knowledge and that of the group, while 𝛽1 and 𝛽2 are uniformly 
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distributed random numbers. The sign in the brackets results in an acceleration of the 

particles’ motion towards the previously-known best points in the space. Different 

strategies for defining the neighbouring group exist and various modifications of the 

original Particle Swarm Optimisation have been proposed to make its performance 

more robust or more efficient in specific problems. Critical, for achieving a good 

trade-off between exploration and exploitation, is the memory velocity 𝑣𝑖. In some 

PSO versions it has been proposed to determine the new position 𝑥𝑖+1 using: 

 

𝑣𝑖+1 = 𝜔 ∙ 𝑣𝑖 + 𝜑1  ∙ 𝛽1 ∙ (𝑝𝑖 − 𝑥𝑖) + 𝜑2  ∙ 𝛽2 ∙ (𝑝𝑔 − 𝑥𝑖) 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 

(16) 

 

where constant 𝜔 is a user-defined parameter. 

c-FOA and Particle Swarm Optimisation share common characteristics. For 

example both algorithms initialise the swarm randomly and share the groups’ best 

position to move a member towards a new position. Furthermore, the incremental 

displacement − difference between a member’s old and new position − is restricted 

and depends on a term, which in the case of Particle Swarm Optimisation is the 

parameter 𝜔 ∙ 𝑣𝑖 and in c-FOA the parameter 𝑀𝑖.  

However, the two algorithms present fundamental differences as well. For 

example, in Particle Swarm Optimisation the movement of the individuals depends on 

a linear function, while in c-FOA on a reciprocal function. This causes significantly 

different swarm behaviour during the exploration phase. Another example is that in 

Particle Swarm Optimisation the new position depends randomly on a weighted 

average of the individual’s and group’s best position, while in c-FOA this depends 

only on the latter. The mechanism for handling noise is also different. In c-FOA the 

search strategy remains unchanged for a predetermined number of iterations, exactly 

like fruit flies, while in PSO the search direction is changed continuously.  It is 

believed that fruit flies developed this decision delay mechanism to compensate for 

the chaotic movement of smells outdoors. Last but not least, in c-FOA, for the first 

time, a food search strategy that does not depend on the food source is presented. All 

Swarm Intelligence algorithms search for food on the basis of where the current food 

source lies (current lowest objective function value). However, the recent study on 

fruit fly behaviour revealed that fruit flies are attracted not only by smell (location of 

the food) but also by visually contrasting objects, which eventually may have nothing 

to do with a food source. Thus, the food search strategy is multi-stimuli. It is believed 

that fruit flies developed this behaviour through evolution and that this relies on fruit 

fly’s knowledge that a food source has also visually contrasting traits.  

 

 

3. Benchmark testing  
 

Two studies are employed for demonstrating and analysing the performance of c-

FOA, as well as comparing it to other standard optimisation algorithms. The purpose 

is to assess the algorithm performance for a fixed parameter set and compare it to 

standard state-of-the-art optimisation tools, commonly used by researchers and 

engineers.  

The first study is a low-dimensional one with the main purpose to understand how 

c-FOA performs in the presence of noise and barrier functions. This is of great 

importance because in many engineering problems the optimal solution is dictated by 
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constraints. The second one concerns a high dimensional optimisation study, where 

the benchmark tests consist of multi-parameter functions, where the number of 

parameters is 20.  

 

3.1 Low-dimensional study 

 

Two sets of benchmark tests are employed in the low dimensional study. The first 

set concerns a group of noisy mathematical functions and evaluates the ability of the 

algorithm to avoid local minima. The second set amends the first one by introducing 

additional barrier functions. The low dimensional study is focused on the accuracy of 

c-FOA, therefore a large number of function evaluations is allowed [53]. 

c-FOA is evaluated and compared to two standard stochastic optimisation 

algorithms, the Genetic Algorithm (GA) and Simulated Annealing (SA). Both GA and 

SA depend on a number of parameters that may influence their performance in 

different types of problems. A sensitivity analysis was conducted and the best sets of 

parameters were applied to c-FOA, Genetic Algorithm and Simulated Annealing. 

Finally, the influence of population size on the optimisation accuracy was examined. 

In Genetic Algorithm (GA) the members were randomly selected from a uniform 

distribution restricted in the problem-dependent design space. A floating-point 

representation was used. For each member the objective function value was 

calculated. The GA members were sorted according to their rank. 80% of the new 

generation was created by crossover and 5% progressed from the old generation. A 

stochastic uniform algorithm was used for the parent selection. The crossover operator 

used a weighted average of the parents to create children. The rest of the members 

were created by mutation. In mutation, new directions were randomly generated and 

were adaptive so that the design space was satisfied. The genetic algorithm terminated 

when the maximum number of function evaluations generations was reached, unless it 

stalled. This happened when for over 200 generations the objective function did not 

change significantly.  

Simulated Annealing (SA) started with a random vector belonging to the problem-

dependent design space. Two parameters – the temperature and re-annealing – 

determined the behaviour. Temperature controlled the extent of search. In this study 

the initial temperature was 𝑇 = 100. The second one emulated the annealing process; 

following the generation of a number of new points, the temperature was raised to a 

higher value to restart the search and move out from local minima. If re-annealing is 

performed too fast this may not help the solver identify the global minimum. Here, the 

interval of 𝑎𝑛𝑛𝑒𝑎𝑙 = 50 is chosen. An exponential cooling schedule was selected. 

The procedure terminated when the total number of function evaluations reached the 

maximum value. 

 

3.1.1  Benchmark-1 

 

A “noisy” one-dimensional mathematical function, described in Equation (17) is 

the first benchmark test. 

 

𝑓(𝑥) = 𝑥2 − 10 ∙ cos(2 ∙ 𝜋 ∙ 𝑥) + 10 
(17) 

 

A plot of Equation (17) for 𝑥 𝜖 [−10,10] is shown in Figure 3. Although numerous 

local minima exist there is a clear trend towards the minimum 𝑓(0) = 0.  
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Figure 3. Function plot of benchmark-1: Noisy 1D function 

 

The optimisation problem was solved for 30 repetitions. The parameters used were  

the following: 

In c-FOA the initial value S0 was randomly selected from 𝜖 [−10,10], 𝐾 =
1000, 𝑁 = 50, 𝜅 = 5,𝑀 = 1 and 𝑐 = 0.9. In GA the population comprised 50 

members. It was created randomly using a uniform distribution restricted in the design 

space [– 10, 10]. The genetic algorithm terminated after 1000 generations unless it 

stalled. Simulated Annealing started with a random number 𝜖 [−10,10] and 

terminated after 𝑁𝑓𝑢𝑛 = 50000 function evaluations.  

The mean value and standard deviation of the optimal values are listed in Table 1. 

As observed, all algorithms succeed in finding the optimal value. A typical 

convergence path for Sb using c-FOA is shown in Figure 4.   

 

Table 1. Statistical evaluation of optimisation results for benchmark-1 

 

Benchmark 1 Sopt 

 

c-FOA GA SA 

Mean value  –3.5  10–10 –6.7  10–7 1.2  10–3 

Standard deviation 9.4  10–10 2.6  10–1 6.6  10–3 
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Figure 4. Benchmark-1: Example of convergence path for Sb using c-FOA 

 

 

3.1.2  Benchmark-2 

 

The second benchmark function, benchmark-2, amends the first one by introducing 

two barrier functions: 

 

𝑓(𝑥) = 𝑥2 − 10 ∙ cos(2 ∙ 𝜋 ∙ 𝑥) + 10 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 

     𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 =

{
 
 

 
 

0,   𝑖𝑓 𝑥 < −6

100 ∙ 𝑚𝑖𝑛(|𝑥 + 3|, |𝑥 + 6|),   𝑖𝑓 − 6 < 𝑥 < −3 
0,   𝑖𝑓 − 3 < 𝑥 < 2 

100 ∙ 𝑚𝑖𝑛(|𝑥 − 2|, |𝑥 − 4|), 𝑖𝑓 2 < 𝑥 < 4
0, 𝑖𝑓 𝑥 > 4 

 
(18) 

 

A plot of Equation (18) for 𝑥 𝜖 [−10,10] is shown in Figure 5. The minimum is 

located at f(0)=0.  

The problem is solved for 30 repetitions. We keep the same optimisation settings 

as in Benchmark-1 except for the maximum number of function evaluations. In 

particular in c-FOA and GA the population size is 𝑁 = 20, while in SA the maximum 

number of function evaluations is 𝑁𝑓𝑢𝑛 = 20000.  

The results are listed in Table 2. A comparison to Table 1 reveals that although all 

optimisation algorithms succeed in finding the optimum value, the standard deviation 

values are increased. This is most probably due to the introduction of the barrier 

functions.  
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Figure 5. Function plot of benchmark 2: Noisy 1D function with barriers 

 

Table 2. Statistical evaluation of optimisation results for benchmark-2 

 

Benchmark 2 Sopt 

 

c-FOA GA SA 

Mean value  7.210–11 –6.610–2 1.110–4 

Standard deviation 1.310–9 7.810–1 1.9 10–2  

 

 

3.1.3  Benchmark-3  

 

The third benchmark test is the well-known Rastrigin function:  

 

𝑓(𝑥1, 𝑥2) = 20 + 𝑥1
2 + 𝑥2

2 − 10
∙ (cos(2 ∙ 𝜋 ∙ 𝑥1) + cos(2 ∙ 𝜋 ∙ 𝑥2)) 

(19) 

 

Equation (19) is plotted in Figure 6, for 𝑥1 𝜖 [−5.12,5.12] and 𝑥2 𝜖 [−5.12,5.12] . 
The global minimum is located at 𝑓(0,0) = 0.  
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Figure 6. Function plot of benchmark-3: Rastrigin function  

 

The optimisation problem is again solved for 30 repetitions. The design space was 

x1 ∈  [– 5.12, 5.12] and x2 ∈  [– 5.12, 5.12]. The same optimisation parameters as in 

benchmark-2 were used. In SA the starting point was [–rand, rand]. The results are 

listed in Table 3 indicating that c-FOA almost always succeeded finding the optimal 

result. Additionally, the average results clearly indicate that in most cases GA and SS 

found the global minimum. The standard deviation is larger compared to the one 

achieved using c-FOA. 

 

Table 3. Statistical evaluation of optimal results for benchmark-3 

 

Benchmark 3 Sopt 

 

c-FOA GA SA 

Mean value  [–2.6  10–11,  

9.1  10–11] 

[–1.9  10–1,  

9.9   10–2] 

[–1.0  10–3,  

–2.0  10–3] 

Standard 

deviation 

[1.6  10–9,  

1.6  10–9] 

[4.8  10–1,  

7.9  10–1] 

[3.6  10–1,  

6.9  10–1] 

 

3.1.4  Benchmark-4:  

 

The fourth benchmark test is the Rastrigin function augmented with barrier 

functions. Figure 7 illustrates the function, for 𝑥1 𝜖 [−5.12, 5.12] and 

𝑥2 𝜖 [−5.12, 5.12]. The global minimum is located at 𝑓(0,0) = 0. The optimisation 

problem is again solved for 30 repetitions with the same parameters as in Benchmark-

3. The results are listed in Table 4. 

A comparison to Table 3 shows that the presence of barrier functions degraded the 

performance of GA and SA, while c-FOA performed similarly to Benchmark-3. An 

example of how c-FOA converges is illustrated in Figure 8. 

 

𝑓(𝑥1, 𝑥2) = 20 + 𝑥1
2 + 𝑥2

2 − 10 ∙ (cos(2 ∙ 𝜋 ∙ 𝑥1) +   cos(2 ∙

𝜋 𝑥2)) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2      

(20) 
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𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 =

{
 
 

 
 

0,   𝑖𝑓 𝑥1 < −2

100 ∙ 𝑚𝑖𝑛(|𝑥1 + 2|, |𝑥1 + 1|),   𝑖𝑓 − 2 < 𝑥1 < −1 
0,   𝑖𝑓 − 1 < 𝑥1 < 2 

100 ∙ 𝑚𝑖𝑛(|𝑥1 − 2|, |𝑥1 − 3|), 𝑖𝑓 2 < 𝑥1 < 3
0, 𝑖𝑓 𝑥1 > 3 

 

 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦2 =

{
 
 

 
 

0,   𝑖𝑓 𝑥2 < −2

100 ∙ 𝑚𝑖𝑛(|𝑥2 + 2|, |𝑥2 + 1|),   𝑖𝑓 − 2 < 𝑥2 < −1 
0,   𝑖𝑓 − 1 < 𝑥2 < 2 

100 ∙ 𝑚𝑖𝑛(|𝑥2 − 2|, |𝑥2 − 3|), 𝑖𝑓 2 < 𝑥2 < 3
0, 𝑖𝑓 𝑥2 > 3 

 

 

 

 

Figure 7. Function plot of benchmark-4: Rastrigin function with barriers 

 

Table 4. Statistical evaluation of optimal results for benchmark-4 

 

Benchmark 4 Sopt 

 

c-FOA GA SA 

Mean value  [3.39  10–10,  

7.46  10–11] 

[1.3  10–1, 

– 1.0  10–3] 

[–1.6  10–1,  

2  10–3] 

Standard 

deviation 

[1.24  10–9,  

1.65  10–9] 

[6.2  10–1, 

 9  10–1] 

[7.4  10–1,  

7.7  10–1] 
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Figure 8. Benchmark 4: Example of convergence path for Sb using c-FOA 

 

 

 

 

3.2 High dimensional study 

 

In the high-dimensional study, c-FOA is evaluated and compared to the original 

Fruit Fly Optimisation Algorithm (FOA), Differential Evolution (DE), Particle Swarm 

Optimisation (PSO) and Artificial Bee Colony (ABC). All previously mentioned 

algorithms depend on a number of parameters that may influence their performance in 

different types of problems. A sensitivity analysis was conducted and the best sets of 

parameters were applied. It is highlighted that different versions of the above 

algorithms exist, however the purpose of this study is not to perform an exhaustive 

comparison between c-FOA and all different versions of Differential Evolution, 

Particle Swarm Optimisation and Artificial Bee Colony. The focus of this study is to 

compare the performance of the algorithms for a specified number of function 

evaluations, equal to 𝑁𝑓𝑢𝑛 = 16000.  

The original FOA employed in this study is detailed in [54]. The population size 

was 𝑁 = 50 members and the maximum number of iterations 𝐾 = 320. For c-FOA 

the following parameters are selected: 𝐾 = 320,𝑁 = 50, 𝜅 = 5,𝑀 = 1 and 𝑐 = 0.9.  

The DE version utilised is available from [55]. It is the standard DE algorithm 

augmented with dither to become more robust. The population was 𝑁 = 100 

members and a maximum number of 𝑁𝑖𝑡𝑒𝑟 = 160 iterations were allowed. The scale 

factor in the mutation operator was 𝐹 = 0.85. The crossover probability in the 

crossover operator was 𝐶𝑟 = 1. A uniform distribution was utilised to create the 

individuals within the bounds defined by the design space. DE internally treats all 

variables as floating-point values regardless of their type. 

The PSO version employed is the one available in MATLAB15a.  The initial 

swarm was randomly generated, however within the specified – problem-dependent − 

bounds. The algorithm chose the new member positions based on Equation (17). The 

inertia term 𝜔𝜖[0.1,1.1] was calculated in relation to the number of stalls 𝑐: 

 

𝑖𝑓 𝑐 < 2,   𝜔𝑖+1 = 2 ∙ 𝜔𝑖

𝑒𝑙𝑠𝑒𝑖𝑓  𝑐 > 5,    𝜔𝑖+1 =
𝜔𝑖
2

 
(21) 
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In case the objective function does not improve between two consecutive iterations 

the neighbourhood size 𝑁ℎ was changed according to: 

 

𝑁ℎ𝑖+1 = min (𝑁ℎ𝑖 +𝑁ℎ𝑚𝑖𝑛 , 𝑁) 
(22) 

 

where 𝑁ℎ𝑚𝑖𝑛 = 0.25 is the minimum number of particles; and 𝑁 = 100, the total 

number of particles. The maximum number of iterations was 𝑁𝑖𝑡𝑒𝑟 = 160. The 

parameters 𝜑1 and 𝜑2 were equal, 𝜑1 = 𝜑2 = 1.49. 

The Artificial Bee Colony algorithm version (I-ABC) used is described in [56]. 

The total number of employed bees was 𝑁 = 100 and the maximum number of 

iterations 𝑁𝑖𝑡𝑒𝑟 = 160. The greedy selection mechanism was employed as the 

selection operator. The upper bound of the acceleration coefficient was Φ2 = 1. 

The list of benchmark functions employed to compare FOA, c-FOA, DE, PSO and 

ABC is found in Table 5. In all cases, the number of parameters is 𝑚 = 20. Each 

optimisation problem was solved for 30 repetitions for each optimisation algorithm. 

The mean values and standard deviation are summarised in Table 6. In all cases c-

FOA and PSO achieved the best performance. As observed from the results, there are 

cases – F9 and F10 – in which c-FOA performs better than the rest and cases in which 

PSO – F5 and F7 – does. The output of Kruskal-Wallis test – probability 𝑃 – and the 

corresponding box plots for PSO and c-FOA optimisation results for functions F5, F7, 

F9 and F10 are illustrated in Figure 9.  

 

Table 5. Mathematical benchmark functions employed for the comparison 

 

No Description m [𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥] f(x*) 

F1 
𝑓(𝑥) = −0.1 ∙∑𝑐𝑜𝑠(5 ∙ 𝜋 ∙ 𝑥𝑖) +∑𝑥𝑖

2

𝑚

𝑖=1

𝑚

𝑖=1

 
20 [−1, 1] –2 

F2 
𝑓(𝑥) =∑𝑥𝑖

6 ∙ (sin (
1

𝑥𝑖
) + 2)

𝑚

𝑖=1

 
20 [−10, 10] 0 

F3 
𝑓(𝑥) =∑

𝑥𝑖
2

40000
−∏(

𝑥𝑖

√𝑖
) + 1

𝑚

𝑖=1

𝑚

𝑖=1

 
20 [−100, 100] 0 

F4 
𝑓(𝑥) =∑|𝑥𝑖|

𝑖+1

𝑚

𝑖=1

 
20 [−1, 1] 0 

F5 
𝑓(𝑥) =∑(𝑥𝑖

2 − 𝑖)2
𝑚

𝑖=1

 
20 [−500, 500] 0 

F6 
𝑓(𝑥) =∑𝑖

𝑚

𝑖=1

∙ 𝑥𝑖
4 + 𝜂, 𝜂 ∈ [0,1] 

 𝜂 random number from uniform distribution 

20 [−1.28, 1.28] 0 
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F7 
∑|𝑥𝑖

5 − 3 ∙ 𝑥𝑖
4 + 4 ∙ 𝑥𝑖

3 + 2 ∙ 𝑥𝑖
2 − 10 ∙ 𝑥𝑖 − 4|

𝑚

𝑖=1

 
20 [−10, 10] 0 

F8 
𝑓(𝑥) =∑|𝑥𝑖|

𝑚

𝑖=1

 
20 [−100, 100] 0 

F9 

𝑓(𝑥) = 1 + √10000 ∙∑|𝑥𝑖|

𝑚

𝑖=1

 

20 [−10,10] 0 

F10 
𝑓(𝑥) = 0.5 +∑(𝑥𝑖

4 − 16 ∙ 𝑥𝑖
2 + 5 ∙ 𝑥𝑖)

𝑚

𝑖=1

 
20 [−5,5] ≈–783 

 

 

Table 6. Optimisation benchmark results: Mean best value (Mean) and standard 

deviation (Std) obtained using Differential Evolution (DE), Artificial Bee Colony 

(ABC), Particle Swarm Optimisation (PSO), Fruit Fly Optimisation Algorithm (FOA) 

and contrast-based Fruit Fly Optimisation Algorithm (c-FOA). The comparison is 

made on the basis of a maximum number of function evaluations 𝑁𝑓𝑢𝑛 = 16000  

 

Fun DE ABC PSO FOA c-FOA 

Mean Std Mean Std Mean Std Mean Std Mean Std 

F1 
1.36 0.30 –1.19 0.16 –1.89 0.11 1.36 0.08 –1.89 0.11 

F2 

 
0.15 0.06 

1.60∙ 

10–3 

1.20∙ 

10–3 

1.42∙ 

10–8 

2.15∙ 

10–8 

7.76∙ 

10–7 

4.28∙ 

10–7 

4.06∙ 

10–23 

3.45∙ 

10–24 

F3 
4.93 0.53 1.10 0.02 

1.45∙ 

10–2 

1.7∙ 

10–2 

4.83∙ 

10–2 

3.71∙ 

10–2 

2.21∙ 

10–2 

3.20∙ 

10–2 

F4 
0.03 0.01 

4.33∙ 

10–4 

2.96∙ 

10–4 

5.42∙ 

10–9 

6.81∙ 

10–9 

9.38∙ 

10–6 

2.28∙ 

10–7 

5.00∙ 

10–9 

1.17∙ 

10–13 

F5 1.94∙ 

1010 

6.16∙ 

109 

3.49∙ 

108 

1.58∙ 

108 
0.57 1.84 

1.45∙ 

103 

1.24∙

102 
4.78 2.17 

F6 

 
15.94 1.64 7.74 0.46 6.40 0.53 6.21 0.55 6.21 0.70 

F7 

 
1.69∙ 

104 

6.33∙ 

103 
223.01 

106.8

4 
0.02 0.03 115.40 11.84 21.30 4.90 

F8 

 
443.72 31.40 32.00 3.93 

6.50∙ 

10–3 

4.10∙ 

10–3 
0.21 

2.00∙

10–3 

2.00∙ 

10–3 

2.01∙ 

10–3 

F9 
3.57 1.18 4.77 2.30 3.23 2.91 47.04 0.20 1.23 0.13 

F10 –3.79∙ 

102 

4.39∙ 

101 

–5.51∙ 

102 

1.79∙ 

102 

–5.35∙ 

102 

2.20∙ 

102 

–238.33 14.77 –

718.17 

22.45 

 

 

a b 
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𝑃 = 4.8 ∙ 10−10 

 
𝑃 = 2.8 ∙ 10−11 

c 

 
𝑃 = 7.8 ∙ 10−3 

d 

 
𝑃 = 6 ∙ 10−4 

Figure 9. Kruskal-Wallis test output and box plots for the optimisation results 

obtained using PSO (“1”) and c-FOA (“2”) for functions a) F5, b) F7, c) F9 and d) 

F10. 

 

 

4. Optimised quadratic parameter varying suspension structure 
 

In this section the suspension design problem is described and formulated. As it will 

be shown the problem involves the iterative solution of a set of nonlinear and coupled 

differential equations. From an optimisation point of view this problem is classified as 

highly nonlinear, multi-objective with conflicting requirements and moderately 

computationally expensive to solve. 

 

4.1 The quarter-car model 

 

This study considers only the vertical vehicle oscillations. Although it is possible to 

use full-car or half-car models that can also describe the roll and pitch motions, the 

quarter-car-model is used chiefly because it is simple. Furthermore, the international 

standard ISO 2631 which is used for objectively evaluating ride quality does not take 

into account the impact of roll and pitch motions. In Figure 10 the quarter car model 

with semi-active suspension is shown. Wheel and axle (un-sprung mass m2) are 

connected to the car body (sprung mass m1) through a passive spring k1 and a 

nonlinear adaptive damper cs+cadapt. The tyre is modelled as spring k2. The road 
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disturbance is represented by 𝑧0. The equations of motion of the vehicle are the 

following: 

 

 

Figure 10.  Quarter car model with semi-active suspension 

𝑚1 ∙ �̈�1 + 𝑓𝑎𝑐𝑡 + 𝑘1 ∙ (𝑧1 − 𝑧2) = 0 

𝑚2 ∙ �̈�2 − 𝑓𝑎𝑐𝑡 − 𝑘1 ∙ (𝑧1 − 𝑧2) + 𝑘2 ∙ (𝑧2 − 𝑧0) = 0 
(23) 

 

where 𝑧1, �̈�1 are the displacement and acceleration of the sprung mass respectively. 

𝑧2 and �̈�2 are the displacement and acceleration of the un-sprung mass.  

In this study, two typical road disturbances are considered and described in 

Equation (24).  

 

𝑧0𝑑(𝑡) = {= 𝐴𝑏 ∙
(1 − cos(8 ∙ 𝜋 ∙ 𝑡))

2
, 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 0. 25𝑠

0, 𝑓𝑜𝑟 𝑡 > 0.25𝑠

 

 

𝑧0𝑟(𝑡) = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑜𝑎𝑑 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 

(24) 

 

where 𝐴𝑏 is the bump’s maximum road height value and 𝑧0𝑟 a filtered white noise 

signal [32]. 𝑧0𝑑  and 𝑧0𝑟 represent discrete (e.g. bump, pothole) and stochastic (e.g. 

off-road driving) disturbances respectively. 

In many design studies the performance limits of the actuator are neglected, 

although this can have a significant influence to the solution [57]. In this study we 

include the dynamic performance of the actuator, describing it with a first-order 

transfer function [58]: 

 

𝑓�̇�𝑐𝑡 ∙ 𝑇𝑎𝑐𝑡 + 𝑓𝑎𝑐𝑡 = 𝑓𝑐 
(25) 

 

𝑓𝑎𝑐𝑡, 𝑓�̇�𝑐𝑡 are the actuator force and its rate respectively, 𝑓𝑐 is the commanded signal 

and 𝑇𝑎𝑐𝑡 describes the so-called control input rate limit of the actuator. Like any 

mechanical device, the force generated by the actuator is limited. The maximum 

actuator force, denoted as 𝑓𝑎𝑐𝑡,lim, is included in the actuator model: 

 

cs+cadapt 

z2(t) 

k2 

k1 

m1 

m2 

z0(t) 

z1(t) 

Road profile 
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|𝑓𝑎𝑐𝑡| ≤ 𝑓𝑎𝑐𝑡,lim 
(26) 

 

The damper force element 𝑓𝑐 is described by the nonlinear quadratic parameter 

varying equation: 

 

𝑓𝑐 = {
𝑐𝑠 ∙ (𝑧1 − 𝑧2), 𝑖𝑓 �̃�𝑅 < 𝑧𝑠𝑤𝑖𝑡𝑐ℎ

(𝑐𝑠 + 𝑐𝑎𝑑𝑎𝑝𝑡) ∙ (𝑧1 − 𝑧2), 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ
 

(27) 

 

where the adaptive damping coefficient 𝑐𝑎𝑑𝑎𝑝𝑡 follows a second-order equation: 

 

𝑐𝑎𝑑𝑎𝑝𝑡 = 𝑐1 + 𝑐2 ∙ |𝑧1 − 𝑧2| + 𝑐3 ∙ (𝑧1 − 𝑧2)
2 

(28) 

 

and �̃�𝑅 is the predicted rattle space distance 

 

�̃�𝑅 = (𝑧1 − 𝑧2) + 𝑇𝑝𝑟𝑒𝑑 ∙ (�̇�1 − �̇�2) 
(29) 

 

The main concept behind the proposed structure, described by Equations (23)-(27), 

is that the passive system is optimal for normal driving conditions, when �̃�𝑅 <
𝑧𝑠𝑤𝑖𝑡𝑐ℎ. However, in case a road disturbance significantly disturbs the system, such 

that �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ, the damping coefficient is adjusted to dissipate the disturbance as 

quickly as possible but without damaging the vehicle. 

4.1.1 System constraints 

The system is constrained by the available rattle space and road holding 
requirements. The rattle space constraint zR is described by: 

|𝑧1 − 𝑧2| ≤ 𝑧𝑅,lim 
(30) 

 

with 𝑧𝑅,lim denoting the maximum allowed rattle space distance. The absolute value 

denotes that this is independent of the direction of the road disturbance (bump or pot 

hole). The road holding requirement is described by the tyre deflection constraint: 

 

|𝑧2 − 𝑧𝑟| ≤ 𝑧𝑡𝑙𝑖𝑚 
(31) 

 

where 𝑧𝑡𝑙𝑖𝑚 is the prescribed tyre deflection limit. 
 

 

4.2 Optimal robust suspension design problem 

 

Robust optimal suspension design seeks to optimise system performance by taking 

into account expected variations in vehicle parameters. In real life the vehicle’s 

sprung mass 𝑚1 can change quite frequently because it is dependent on the number of 

passengers. As it is not always possible to estimate the sprung mass, the system is 

designed to be robust with respect to mass variations 𝛥𝑚1. 

For the optimal robust suspension design problem we consider the following 

parameters: 
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𝑚1 = 289 kg 

𝛥𝑚1 = ±30 kg 

𝑚2 = 59 kg 

𝑐𝑠 = 1000 N ∙ s/m 

𝑘1 = 190000
N

m
 

𝑘2 = 16912
N

m
 

(32) 

 

system constraints: 
 

𝑧𝑅𝑙𝑖𝑚 = 0.08 m 

𝑧𝑡𝑙𝑖𝑚 = 0.04 m 
 

(33) 

 
and actuator performance characteristics: 

 

𝑇𝑎𝑐𝑡 = 0.04 s 
𝑓𝑎𝑐𝑡𝑙𝑖𝑚 = 1250 N 

 

(34) 

 

The switching parameters were chosen based on [34]: 

 

𝑇𝑝𝑟𝑒𝑑 = 0 

𝑧𝑠𝑤𝑖𝑡𝑐ℎ = 0.04 m 
 

(35) 

  

The objective function is expressed as the minimization of the car body 

acceleration: 

 

|�̈�1| = 𝑚𝑖𝑛 
 

(36) 

 

while fulfilling the system constraints described in Equations (26)-(27). The main 

design parameters are the coefficients c1, c2 and c3. 

Obviously, there is no analytical solution for the above described problem. One 

way to find the optimal solution is by trialling out all possible parameter combinations 

[c1, c2, c3]. However, the simulation time for solving the set of equations (23)-(35) is 

approximately 8 s, using a laptop equipped with an Intel i5-6200 processor and 8 GB 

RAM. The computational cost, if all combinations would be trialled out, would be 

prohibitive therefore efficient search strategies based on optimisation algorithms are 

required. Based on the results of Section 3, GA, PSO and c-FOA were selected for the 

solution of the optimisation problem. The numerical results are discussed in the 

following section. 

 

 

5. Numerical results and discussion 
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5.1 Optimised suspension using Genetic Algorithm 

 

The suspension design optimisation problem was solved using GA for thirty 

independent repetitions. The design space was c1 𝜖 [−50,50], c2 𝜖 [−50,50] and 

c3 𝜖 [−50,50]. The same set of GA parameters as in Section 3.1 were used. A 

statistical evaluation of the optimal set of coefficients is presented in Table 7. The 

standard deviation is relatively high with respect to the mean values, indicating that 

the algorithm gets trapped at different local minima. The best result was for c1=
39.40, c2= −22.04 and c3= 0.97. A characteristic plot of the road disturbance and 

the resulting sprung mass acceleration �̈�1 and rattle space distance 𝑧𝑅 is given in 

Figure 11. The maximum sprung mass acceleration is max(�̈�1)=15m/s2 while the 

maximum rattle space distance max(𝑧𝑅)=0.08m. 

 

Table 7. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using 

Genetic Algorithm 

 

Optimised damper 

values using GA 

 

c1 c2 c3 

Mean value  5.1 2.4 15.5 

Standard deviation 7.5 11.8 31.1 

 

Figure 11. Results: Optimised semi-active suspension using GA 

 

5.2 Optimised suspension using Particle Swarm Optimisation 

 

PSO was also employed repetitively for the solution of the suspension design 

problem. The same parameters as in Section 3.2 were used. The design space – for 

GA – was defined as: c1 𝜖 [−50,50], c2 𝜖 [−50,50] and c3 𝜖 [−50,50]. A statistical 
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evaluation of the obtained optimised coefficients is presented in Table 8. As observed 

the standard deviation is quite high with respect to the mean values, indicating that the 

algorithm gets trapped in different local minima. The best result is obtained for c1=
31.37, c2= −10.86 and c3= −2.32. A characteristic plot of the road disturbance and 

the resulting sprung mass acceleration �̈�1 and rattle space distance 𝑧𝑅 is given in 

Figure 12. The maximum sprung mass acceleration is max(�̈�1)=15m/s2 while the 

maximum rattle space distance max(𝑧𝑅)=0.08m. GA and PSO perform similar. 

 

Table 8. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using 

Particle Swarm Optimisation 

 

Optimised damper 

values using PSO 
 

c1 c2 c3 

Mean value  26.00 –19.16 6.95 

Standard deviation 26.29 22.24 8.08 

 

   

 

 

Figure 13. Results: Peak accelerations comparison between GA and PSO 

 

5.3 Optimised suspension using c-FOA 

 

c-FOA was also employed thirty times with c1𝜖 [−50,50], c2 𝜖 [−50,50] and 

c3 𝜖 [−50,50]. The average values and standard deviation of the design parameters 

are shown in Table 9. The standard deviation is smaller compared to those achieved 

using GA and PSO. The best result was for c1= 23.50, c2= 3.51 and c3= −7.78. In 

Figure 14 the resulting accelerations for the GA and c-FOA suspension designs are 



25 

 

illustrated. The results are shown for the time interval where the vehicle encounters 

the discrete disturbances. As observed the peak accelerations are significantly reduced 

with c-FOA. The maximum sprung mass acceleration is max(�̈�1)=13.4m/s2 while the 

maximum rattle space distance max(𝑧𝑅)=0.08m. 

 

Table 9. Statistical evaluation of optimal coefficients c1, c2 and c3 obtained using c-

FOA 

 

Optimised damper 

values using c-

FOA 

 

c1 c2 c3 

Mean value  27.50 –4.42 –4.62 

Standard deviation 3.42 8.01 3.40 

 

 

Figure 14. Results: Peak accelerations comparison between Genetic Algorithm and c-

FOA 

 

5.4 Discussion 

 

The average convergence histories for the three algorithms are presented in Figure 

15. The peaks in the convergence history of Figure 15c are because c-FOA searches 

also the vicinity of design solutions that have very high objective function values (for 

example at the boundary of the barrier functions). In Figure 15d the lower envelope of 

c-FOA’s average convergence history is plotted. 
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a 

 
b 

 
c 

 
d 

Figure 15. Average convergence history for a) Genetic Algorithm, b) Particle Swarm 

Optimisation, c) c-FOA and d) lower envelope for c-FOA 

The numerical results obtained using the passive suspension, and those optimized 

with GA, PSO and c-FOA, are summarised in Table 10. It is clear that the passive 

suspension system does not meet the rattle space requirement |𝑧𝑅| ≤ 0.08. All 

optimised suspension designs are meeting the rattle space requirement without 

degrading the road holding performance expressed by zt. On the other hand it is 

observed that the sprung mass acceleration max(�̈�1) increases by 25% (from 12 to 15 

m/s2) and 11.3% (from 12 to 13.4 m/s2) with GA/PSO and c-FOA algorithms, 

respectively. The increased acceleration values are due to the increased damping 

required to prevent overcoming the suspension limits.   

 

Table 10. Comparison of results for three different suspension systems – Passive and 

optimised using Genetic Algorithm, Particle Swarm Optimisation and c-FOA  

 

 �̈�1 / m/s2 𝑧𝑅 / m 𝑧𝑡 / m 

Passive suspension 12 1.14  10–1 2.8  10–2 

Optimised 

suspension using 

GA  

15 8  10–2 2.8  10–2 
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Optimised 

suspension using 

PSO 

15 8  10–2 2.8  10–2 

Optimised 

suspension using 

c-FOA 

13.4 8  10–2 2.8  10–2 

 

In order to obtain better insight of the optimised result, we plot the effective 

damping coefficient versus rattle space velocity �̇�𝑅 , see Figure 16. The effective 

damping coefficient ceff is defined as: 

 

𝑐𝑒𝑓𝑓 =

{
 

 
𝑐𝑎𝑑𝑎𝑝𝑡

𝑐𝑠
, 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑓𝑐 ≤ 𝑓𝑎𝑐𝑡𝑙𝑖𝑚 

𝑓𝑎𝑐𝑡,𝑙𝑖𝑚/�̇�𝑅
𝑐𝑠

, 𝑖𝑓 �̃�𝑅 > 𝑧𝑠𝑤𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑓𝑐 > 𝑓𝑎𝑐𝑡𝑙𝑖𝑚

 
(37) 

 

and is a metric that shows how much the passive damping coefficient needs to 

increase. 

The graph indicates that damping should reach its peak for low rattle space 

velocities, −0.05 ≤ �̇�𝑅 ≤ 0.05 m/s. For intermediate velocities 0.05 ≤ |�̇�𝑅| ≤
0.3 m/s damping should decrease exponentially, while for |�̇�𝑅| > 0.3 m/s it should 

approach its steady value. It is highlighted that these results hold only when �̃�𝑅 >
𝑧𝑠𝑤𝑖𝑡𝑐ℎ, otherwise the system retains its passive behaviour.  

An intuitive explanation of the result is that the optimiser suggests scaling up 

considerably the damping coefficient in the range where very low damping forces are 

usually exerted and then decrease it as the relative velocity increases. Of course, this 

should only happen when the road disturbance excites the system significantly, �̃�𝑅 >
𝑧𝑠𝑤𝑖𝑡𝑐ℎ. An experimental investigation using a prototype magnetorheological damper 

showed that it is possible to achieve the desired scaling in damping. The results are 

presented in Figure 17.   

 

 

Figure 16. Scaling damping coefficient ceff  versus rattle space velocity 
𝒅𝒛𝑹

𝒅𝒕
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Figure 17. Experimental results obtained from magnetorheological damper excited by 

a toothsaw input signal for different current values 0-2 A 

 

6. Summary and conclusions 
 

Every year thousands of motorists damage their vehicles by hitting severe road 

anomalies such as large potholes. Poor road conditions in combination with the use of 

low-profile tyres have increased the scale of the problem and made pothole damage 

mitigation a priority for a number of car manufacturers. Passive suspension systems 

cannot meet the competing objectives of comfort, road holding and pothole damage 

mitigation. In this paper, a clipped quadratic parameter varying suspension system is 

proposed for this purpose. The following conclusions are drawn: 

 

1. There are no design rules that can help an engineer to design a nonlinear suspension 

system based on a quadratic parameter varying damper. Standard global optimisation 

algorithms like Genetic Algorithm and Particle Swarm Optimisation could not find 

the optimised solution. Both Genetic Algorithm and Particle Swarm Optimisation 

gave solutions located far from the optimum design values. 

 

2. A new Fruit Fly Optimisation Algorithm – based on a recent study on how well 

fruit fly’s tiny brain finds food – was developed. The standard Fruit Fly Optimisation 

Algorithm was enhanced by introducing the delay and visual feature detection phases 

that characterise a fruit fly’s food search strategy. The proposed c-FOA is a Swarm 

Intelligence heuristic, with unique − compared to other heuristics − food search 

strategies that have been developed through evolution. 

 

3. The new optimisation algorithm, named c-FOA, was compared to the Genetic 

Algorithm, Simulated Annealing, Particle Swarm Optimisation, Differential 

Evolution, Artificial Bee Colony and the original Fruit Fly Optimisation Algorithm. 

In total 14 benchmark functions were employed, commonly used for this purpose in 

the literature. Both low and high dimensional studies were conducted. 

 

4. The comparison between the optimisation algorithms in the low dimensional 

benchmark tests revealed that the Genetic Algorithm and Simulated Annealing 

performed similarly well and c-FOA slightly more robustly. Particle Swarm 

Optimisation and c-FOA performed better than Differential Evolution, Artificial Bee 

Colony and the original Fruit Fly Optimisation Algorithm in the high dimensional 
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benchmark tests. In a limited number of benchmark tests Particle Swarm Optimisation 

performed better while in another limited number of benchmark tests c-FOA did. In 

particular it seems that Particle Swarm Optimisation performs better when the 

objective function value landscape is flat, while c-FOA performs better when it is 

steep. The performance was evaluated using simple statistical means and using non-

parametric tests like the Kruskal-Wallis test.  

 

5. In the suspension design problem c-FOA performed better than Genetic Algorithm 

and Particle Swarm Optimisation. Both the best result achieved as well as the average 

optimised results were better. A comparison between the convergence histories 

reveals that the Genetic Algorithm and Particle Swarm Optimisation become stuck in 

local minima. 

 

6. The resulting optimal design suggests that advanced suspension systems need to 

increase damping at low rattle space velocities, when the road disturbance excitation 

is significant. At higher velocities damping should decrease. Preliminary tests using a 

prototype magnetorheological damper showed that both design recommendations are 

possible to achieve. 

 

Future research plans include the design investigation of a direct current controller 

that will optimize the transient performance of the magnetorheological damper and 

applying c-FOA to other types of optimisation problems. 
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