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Abstract—Recursive least square (RLS) with a single 

forgetting factor has been commonly used for parameter and 

state estimation of dynamical systems. In many applications such 

as robotics, electric vehicles, renewable energy systems, and 

smart-grid, accurate battery state of charge (SOC) and state of 

health (SOH) estimation is essential for the safe and efficient 

operation. To this end, the challenge lies in identifying and 

parameterizing the temporal behavior of Lithium-Ion batteries, 

because their response is nonlinear and time-varying. This paper 

proposes a new RLS algorithm with optimum multiple adaptive 

forgetting factors (MAFFs) for SOC and SOH estimation of Li-

ion batteries. Particle swarm intelligence is employed for 

identifying the system parameters. The performance of the 

optimum MAFF-RLS algorithm is compared to RLS with 

multiple fixed forgetting factors (MFFFs). Performance 

evaluation is carried out using the Urban Dynamometer Driving 

Schedule (UDDS). The simulation results indicate the better 

performance of MAFF-RLS algorithm compared to MFFF-RLS 

algorithm in terms of mean square error of SOC and internal 

resistance. 
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I.  INTRODUCTION 

In many applications such as robotics, electric vehicles, 
renewable energy systems, and smart-grid, battery state of 
charge (SOC) and state of health (SOH) have to be estimated 
accurately to ensure optimum and safe operation. The internal 
resistance and/or capacity values of the battery can be used as 
indicators of battery SOH. The challenge lies in the online 
parameter identification because Lithium batteries have time 
varying nonlinear dynamics. 

Many battery SOC and SOH estimation methods have been 
proposed previously. In [1] a comprehensive review is 
provided of Lithium battery SOC and SOH estimation methods 
based on the adaptive systems formulation [1]. For SOC 
estimation, the Adaptive Unscented Kalman Filter (AUKF) 
achieved the best performance. AUKF was compared to the 
Extended Kalman Filter (EKF), Adaptive EKF, and Unscented 
Kalman filter (UKF), Artificial Neural Networks (ANN) and 
fuzzy logic. Although fuzzy logic performed well the memory 
requirements for describing the set of fuzzy rules were 
significantly larger compared to the rest methods.  

Other concepts for battery SOC and SOH estimation based 
on Kalman filters have also been proposed [2] [3] [4]. An 
interesting one is the dual extended Kalman filters (Dual EKF) 
method. In dual-EKF, one EKF is performing the SOC 
estimation and the other the SOH estimation. The first EKF 
uses a model comprising the SOC, a hysteresis element and the 
parameters of the filter. The second EKF is based on a simple 
model where the internal resistance is modelled as a constant 
value [2]. In [3] a dual Kalman filter was combined with 
Support Vector Regression (SVR). A standard Kalman filter 
was employed for estimating the RC voltages and internal 
resistance, while an EKF was used for estimating SOC and the 
resistances of the RC circuits. The SVR was utilized to 
calculate the capacity of the battery. In [4] two EKFs were 
employed for SOC and SOH estimation [4]. The first EKF 
estimated in real-time the SOC, while the second EKF updated 
the internal resistance and capacity in an "off-line" manner. 

Also, combinations of the least square (LS) algorithm with 
EKF were tested for battery SOC and SOH estimation [5] [6]. 
In [5] the EKF estimated the SOC and battery capacity. The 
RLS identified the parameters of the model employed by the 
EKF. A hybrid RLS-EKF method was proposed in [6]. A 
regression vector comprising previous terminal voltage 
differential, current and previous current differential values 
were used. The RLS identified the battery parameters values. 
An open circuit voltage (OCV) estimator provided estimates of 
the Voltage and current signals. For this purpose, a second 
order state equation, whose state variables were SOC and the 
inverse of battery capacity, was employed. The EKF estimated 
the SOC and battery capacity 

Battery SOC and SOH estimation using the sliding mode 
observer technique is described in [7] [8]. In [7] a novel 
method combining LS, the adaptive discrete-time sliding mode 
observer (ADSMO) and a battery model comprising an 
enhanced Coulomb counting algorithm and an RC circuit was 
discussed. The LS algorithm identified the RC circuit model 
parameters. The sliding mode observer estimated the SOC. 
Subsequently, SOH was calculated using the SOC and the 
battery capacity. In [8] the dual adaptive sliding mode observer 
technique was proposed (Dual  ASMO). The first SMO was 
designed based on 4 state equations in that described the 
terminal voltage, SOC, and 2 internal voltages of the RC circuit 



model. The second SMO was designed based on 2 state 
equations that described the terminal voltage and internal 
resistance [8]. 

The dual recursive least square (Dual RLS) algorithm was 
applied to the SOC and internal resistance estimation in [9]. 
Two different output voltage equations were used. The 
identification problem comprised seven parameters that were a 
function of voltage and current. 

The previously mentioned methods are to a certain extent 
complex as they require the combination of two or more 
algorithms, i.e. Kalman filter, EKF, off-line LS, RLS with a 
single forgetting factor, SVR, and SMO. Moreover, some of 
them require off-line calibration which results in energy loss. 

This paper proposes a new method of Li-ion battery SOC 
and SOH estimation using only one algorithm. The algorithm 
operates online and does not require off-line calibration. The 
proposed algorithm is based on the results of [10] [11] [12] and 
further developed. Battery SOC was estimated using RLS with 
multiple fixed forgetting factors (MFFF-RLS) and the Genetic 
Algorithm [10]. The Particle Swarm Optimization (PSO) was 
employed in [11] instead of the Genetic Algorithm. Estimation 
using RLS with multiple adaptive forgetting factors (MAFF-
RLS) but with a constant internal resistance assumption was 
reported in [12].  The main contribution of this paper is the 
optimization of the coefficients that control the values of the 
multiple forgetting factors. Moreover, instead of making a 
constant internal resistance assumption, it is assumed to vary 
with SOC. The internal resistance value is used as a SOH 
indicator [13].  

In section II, the battery model is described. RLS algorithm 
with multiple forgetting factors is revisited, and problem 
formulation is proposed. Section III presents a method for 
calculating the coefficients of forgetting factors based on 
Particle Swarm Optimization (PSO). Simulation results and 
discussion are reported in section IV. And lastly in section V 
the conclusion is drawn. 

II. MODELING AND PROBLEM FORMULATION 

A. Battery Equivalent Circuit Model 

In this paper the equivalent circuit model using a single RC 
circuit is used, see Fig. 1 [10] [11]. Vt and I represent the 
battery terminal voltage and current, respectively. R0 is the 
battery internal resistance, Rp is diffusion resistance, and Cp is 
diffusion capacitance. Ud denotes the voltage drop accross the 
diffusion resistance. 

 

Fig. 1. Single RC equivalent circuit model. 

The current is positive when it flows into the battery. The 
battery dynamics is expressed as follows: 

𝑈𝑑(𝑘) = −𝑎1𝑈𝑑(𝑘 − 1) + 𝑏0𝐼(𝑘) + 𝑏1𝐼(𝑘 − 1) (1) 

𝑉𝑡(𝑘) = 𝑈𝑑(𝑘) + 𝑂𝐶𝑉(𝑘)   (2) 

Where: 

𝑅0 = 𝑏0;  𝑅𝑝 = (
𝑏1−𝑎1𝑏0

1+𝑎1
) ; 𝐶𝑝 = (

𝑇

𝑏1−𝑎1𝑏0
)  

OCV is a non linear function of SOC [14]. Therefore, SOC 
can be derived from OCV. The battery internal parameters are 
dependent on SOC and they are time varying in nature. 

Terminal voltage estimate  𝑉̂𝑡(𝑘) is expressed in the 
following linear equation. 

𝑦̂𝑘 = 𝑉̂𝑡(𝑘) = 𝜃̂𝑘
𝑇𝑥𝑘    (3) 

Where regressor 𝑥𝑘 and parameter estimates 𝜃̂𝑘 are given 
below. 

𝑥𝑘 = [𝑈𝑑(𝑘 − 1); 𝐼(𝑘);  𝐼(𝑘 − 1);  1]    

𝜃̂𝑘 = [−𝑎1(𝑘); 𝑏0(𝑘);  𝑏1(𝑘);  𝑂𝐶𝑉(𝑘)]    

The measured terminal voltage is given as follows. 

𝑦𝑘 = 𝑉𝑡(𝑘) = 𝑉̂𝑡(𝑘) + 𝑒𝑘   (4) 

B. Recursive Least Square with Multiple Forgetting Factors 

It is stressed out that battery parameters change at different 
rates. To cope with this issue, it is proposed to employ RLS 
with multiple forgetting factors. A method of battery SOC and 
SOH estimation using optimum RLS with multiple fixed 
forgetting factors has already been published [11]. 

Fixed forgetting factor implies that the system dynamics is 
invariable, not depending on time. A smaller forgetting factor 
yields faster tracking of parameter changes. On the other hand, 
faster tracking may lead to instability. In order to cope with this 
trade-off issue, variable forgetting factor is needed. In this 
paper, the RLS with multiple adaptive forgetting factors 
(MAFF-RLS) is adopted [12]. However, in this study a 
different hypothesis is made. Instead of assuming the internal 
resistance is constant, it is set as a function of SOC. SOH 
estimation performance can be evaluated base on the internal 
resistance change tracking capability.  

Refer to Fortescue’s modified equation [15], the following 
variable forgetting factor is used. 

𝜆𝑖,𝑘 = 1 −
1

1+
𝜇𝑖

𝑥𝑖𝑘
2 𝑃𝑖𝑘−1

    (5) 

Where subscript 𝑖 indicates scalar components 𝑖 = 1, 2 . . . 𝑛.  

In this paper 𝑛 = 4. 𝜆𝑖,𝑘 and 𝑃𝑖𝑘−1 denote forgetting factor of 

the i-th parameter at time k, and the i-th parameter covariance 
at the previous time step, respectively. 𝜇𝑖 is a constant. 
Procedure of the MAFF-RLS is described as follows [12]. 

𝑒𝑘 = 𝑦𝑘 − 𝑥𝑘 
𝑇 𝜃̂𝑘−1    (6) 

 𝐾𝑖𝑘 =
𝑃𝑖𝑘−1

𝑥𝑖𝑘

𝜆𝑖,𝑘+𝑥𝑖𝑘
𝑇 𝑃𝑖𝑘−1

𝑥𝑖𝑘
    (7) 



𝑃𝑖𝑘 =
1

𝜆𝑖,𝑘
(1 − 𝐾𝑖𝑘𝑥𝑖𝑘

𝑇 )𝑃𝑖𝑘−1    (8) 

𝜃̂𝑘 = 𝜃̂𝑘−1 + 𝐿𝑘𝑒𝑘    (9) 

where 𝐿𝑘 is the updated gain of the whole parameters vector 𝜃̂𝑘 
which is given below. 

𝐿𝑘 =
1

1+
𝑃1𝑘−1

𝑥1𝑘
2

𝜆1,𝑘
+
𝑃2𝑘−1

𝑥2𝑘
2

𝜆2,𝑘
+⋯+

𝑃𝑖𝑘−1
𝑥𝑖𝑘
2

𝜆𝑖,𝑘

[
 
 
 
 
 
 
𝑃1𝑘−1𝑥1𝑘

𝜆1,𝑘
𝑃2𝑘−1𝑥2𝑘

𝜆2,𝑘

⋮
𝑃𝑖𝑘−1

𝑥𝑖𝑘

𝜆𝑖,𝑘 ]
 
 
 
 
 
 

  (10) 

 

C. Problem Formulation 

The following performance index is applied to assess the 
MAFF-RLS algorithm. 

𝐽0 =
1

𝑁𝑠
∑ {𝑉𝑡(𝑘) − 𝑉̂𝑡(𝑘)}

2𝑁𝑠
𝑘=1   (11) 

In order to minimizes mean square error values of both OCV 
and internal resistance, the following objective function is 
proposed. 

𝐹𝑡 = 𝛼𝐹1 + (1 − 𝛼)𝐹2   (12) 

𝐹1 =
1

𝑁𝑠
∑ (1 −

𝑂𝐶𝑉(𝑘)

𝑂𝐶𝑉∗(𝑘)
)
2

𝑁𝑠
𝑘=1   (13) 

𝐹2 =
1

𝑁𝑠
∑ (1 −

𝑅0(𝑘)

𝑅0
∗(𝑘)

)
2

𝑁𝑠
𝑘=1   (14) 

0 < 𝛼 < 1    (15) 

𝑂𝐶𝑉∗ and 𝑅0
∗ represent true values of OCV and internal 

resistance, respectively. The objective function in equation (14) 
is a sum of the weighted normalized fitness functions 𝐹1 and 
𝐹2. Input to the sysem is current load with urban dynamometer 
driving schedule (UDDS) profile. 

Problem of determining optimum MAFF-RLS is 
formulized in equation (16). 

𝐹𝑖𝑛𝑑  {𝛼, 𝜇𝑖  } 𝑤ℎ𝑖𝑐ℎ:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹𝑡(𝛼, 𝜇𝑖)

𝑊ℎ𝑒𝑟𝑒:
{0 < 𝛼 < 1} 𝑎𝑛𝑑 {0 < 𝜇𝑖 < 1}

𝐼(𝑘) 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑈𝐷𝐷𝑆

      

}
 
 

 
 

 (16) 

III. OPTIMIZATION METHOD USING PSO 

The optimization problem is solved using Particle Swarm 
Optimization (PSO), a powerful population-based optimization 
technique. Fig. 2 shows block diagram of the proposed method. 

 

Fig. 2. Optimization method of MAFF-RLS. 

PSO is a kind of evolutionary computation techniques 
which resembles social behaviour of fish schooling or bird 
flocking. Its basic conceptual framework was originally 
proposed in 1995 [16]. In PSO, a particle represents a solution, 
and a swarm of particles is refered to as population of 
solutions. Each particle is characterized by its velocity and 
position. Every time a new position is achieved the best 
positions and velocities are updated. Each particle adjusts its 
velocity based on its experiences. 

The following equations are used in  PSO to find optimum 
values of weight and coefficient of forgetting factors. 

𝜆0
𝑖 = 𝜆𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)    (17) 

𝑣0
𝑖 =

𝜆0
𝑖

𝑡𝑠
      (18) 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑅𝑎𝑛𝑑 (
𝑝𝑖−𝜆𝑘

𝑖

𝑡𝑠
) + 𝑐2𝑅𝑎𝑛𝑑 (

𝑝𝑘
𝑔
−𝜆𝑘

𝑖

𝑡𝑠
) (19) 

𝜆𝑘+1
𝑖 = 𝜆𝑘

𝑖 + 𝑣𝑘+1
𝑖 𝑡𝑠    (20) 

𝜆𝑘
𝑖  and 𝑣𝑘

𝑖  represent the ith particle at time k of the positions 
and velocities, repectively. The upper and lower bounds on the 
positions are denoted by 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛. Rand is a uniformly 
distributed random variable.  𝑡𝑠 denotes a positive scalar. The 

initial positions 𝜆0
𝑖  and initial velocities 𝑣0

𝑖  are randomly 

generated. 𝑝𝑖 is the best positions of each paticle over time in 

curent and all previous moves.  𝑝𝑘
𝑔

 is the best global positions 

of a certian particle in the current swarm in respect to the 
fitness function. The new search direction encorporates three 
pieces of information which has each own weight factor. The 
first part is current motion which is multipied by its inertia 
factor 𝑤. The second part is particle memory influence which 
is multiplied by its cognitive factor 𝑐1, and the third part is 
swarm influence which is multiplied by its social factor 𝑐2.  

In order to thoroughly explore the best solution, 27 sets of 
PSO factors (𝑤, 𝑐1, 𝑐2) were randomly generated according to 
three range categories i.e. low (L), medium (M), and high (H) 
as listed in Table 1. The values for which the objective function 
achieves the minimum value is the solution. 

TABLE I.  CATEGORY OF PSO FACTORS 

  Factor 

C
a
te

g
o
ry

  𝑤 𝑐1 𝑐2 

L 0.1 ≤ 𝑤 < 0.4 0.1 ≤ 𝑤 < 0.7 0.1 ≤ 𝑤 < 0.7 

M 0.4 ≤ 𝑤 < 0.7 0.7 ≤ 𝑤 < 1.4 0.7 ≤ 𝑤 < 1.4 

H 0.7 ≤ 𝑤 ≤1 1.4 ≤ 𝑤 ≤ 2 1.4 ≤ 𝑤 ≤ 2 



 

IV. RESULTS AND DISCUSSION 

Computer simulation were conducted. The swarm size was 
64. Fitness function tolerance was 10−6. The stall iteration limit 
was 50. Fig. 3 shows the convergence of objective function 𝐹𝑡 
as a function of  27 different factors values.  

 

Fig. 3. Convegrnece history of objective function 𝐹𝑡 

 

Fig. 4. Plot of fitness functions 𝐹1 and 𝐹2 

The minimum fitness function 𝐹𝑡 is selected, and the 
corresponding fitness function weight as well as forgetting 
factor constants are identified. Fig. 4 plots the distribution of  
fitness function values 𝐹1 and 𝐹2.  Table 2 lists up the 
coefficient of forgetting factor 𝜇𝑖 , which was obtained by the 
proposed method. For comparison study, MFFF-RLS algorithm 
has also been optimized under the same condition. The optimal 
forgetting factor value 𝜆𝑖 is also listed up in Table II.  

TABLE II.  PARAMETERS VALUES OBTAINED THROUGH 

OPTIMIZATION 

MAFF 
𝜇1 𝜇2 𝜇3 𝜇4 𝛼 

0.01 0.1791 0.025 0.0316 0.1111 

MFFF 
𝜆1 𝜆2 𝜆3 𝜆4 𝛼 

0.9476 0.9882 0.9249 0.8523 0.1 

 

The obtained parameters values in Table II were 
implemented into MAFF-RLS and MFFF-RLS for state and 
parameter estimation under UDDS testing for a period 6.5 
hours. The initial value of estimated SOC value was 
intentionaly set to 100% to provide 5% offset (estimation 
error). Fig. 5 shows time history of battery terminal voltage 
(upper figure) and its estimation error (lower figure) during the 

UDDS testing using the coefficients and forgetting factors 
listed in table 2. Red broken line is the results of MAFF-RLS, 
and the blue broken line is the results of MFFF-RLS. Fig. 6 
shows the corresponding SOC (upper figure) and its estimation 
error (lower figure). From these figures, it is observed that 
MAFF-RLS achieves better performance than MFFF-RLS, 
considering the battery terminal voltage and SOC estimation.  

 

Fig. 5. Terminal voltage and its estimation. 

 

 

 

Fig. 6. Time history of state of charge and its error. 



Fig.7 illustrates the time history of internal resistance 

estimate 𝑅̂0(𝑘) (upper figure) and its estimation error (lower 
figure). The initial internal resistance is 19.13 (mΩ). It is 
obvious that the designed MAFF-RLS can estimate internal 
resistance value better than the MFFF-RLS.  

 

 

 

Fig. 7. Estimated internal resistance. 

Table 3 lists the estimation error as performance index 
obtained from these results. 𝐽1 and 𝐽2 represent the mean square 
error (MSE) of SOC and internal resistance, respectively. It is 
obvious that MAFF-RLS gives better estimation performance 
than MFFF-RLS in terms of SOC and internal resistance 
estimation. The internal resistance estimation is used as the 
SOH indicator.  

TABLE III.  PERFORMANCE INDEX VALUE 

No 
Performance 
Index 

Values 

MAFF-RLS MFFF-RLS 

1 𝐽0 6.8003e-08 2.7888e-05 

2 𝐽1 3.9769e-05 2.5560e-04 

3 𝐽2 6.1415e-09 2.2572e-08 

 

V. CONCLUSION 

Based on the results the following conclusion can be drawn. 
The proposed designed method, called optimum MAFF-RLS, 
can real-time estimate both SOC and SOH of Li-ion battery. 
Under UDDS testing for a period 6.5 hours with an initial 5% 
offset in the SOC value, the proposed algorithm tracked both 
SOC and internal resistance variations with a very good 
accuracy. The MSE was 3.98x10-5 for SOC, and 6.14x10-6 mΩ 

for the internal resistance, respectively. The proposed MAFF-
RLS achieves better estimation performance of battery SOC 
and SOH than the MFF-RLS.  
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