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Abstract

Due to the drastic growth and an upsurge in the wireless communication

devices in the world in recent years, there is a high demand of uninterrupted

and intelligent connectivity in a self-organising manner amongst the users. It

becomes more challenging for the emerging users because of scarcity of band-

width. To overcome the unforbidden challenges in the advanced technologies

like smart cities, 5G and Internet of Things (IoT), Cognitive Radio provides

the solution to achieve high throughput and continuous connectivity for reliable

communication. A primary challenge in the Cognitive Radio (CR) technology

is the identification of dependable Data Channels (DCHs) for Secondary Users

(SUs) communication amongst the available channels, and the continuation of

communication when the Primary Users (PUs) return. The objective of every

SU is to intelligently choose reliable DCHs, thereby ensuring reliable connectiv-

ity and successful transfer of data frames across the cognitive networks. The

proposed Reliable, Intelligent and Smart Cognitive Radio protocol consumes

less computational time and transmits energy with high throughput, as com-

pared to the benchmark Cognitive Radio MAC (CR-MAC) protocols. This

paper provides new applications of CR technology for IoT and proposes new

and effective solutions to the real challenges in CR technology that will make
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IoT more affordable and applicable.

Keywords: MAC protocol, SU, PU, CR, CRN, IOT, Smart technology

1. Introduction

Cognitive Radio (CR) technology exploits the opportunistic access of the

frequency bands to the Secondary Users (SUs) or Cognitive Users (CUs) called

the unlicensed users. It increases the spectrum efficiency. When Primary Users

(PUs) called the Licensed Users are not transmitting, white spaces or spectrum

holes are created in the spectrum. Without interfering with PUs, SUs oppor-

tunistically access these spectrum holes by using white spaces owned by PUs

[1] [2]. It has also been asserted that CR technology has opened new hori-

zons in emerging areas such as smart technology, Internet of Things, satellite

communications, defense, public safety, health monitoring and next generation

technologies [3] [4].

By implementing a Cognitive Radio Network (CRN) at small-cell technol-

ogy, interference can be avoided effectively since cognitive small cells will not

select the same channels identical to the neighbouring small-cells [5]. The net-

work capacity can be increased by exploiting the spectrum holes to enhance

bandwidth utilisation and higher data transfer rate [6].

1.1. Cognitive Radio Internet of Things

The Internet of Things (IoT) is an emerging and novel paradigm that in-

corporates various technologies such as wireless and wired sensor networks and

actuators, mobile phones, distributed intelligence of smart devices and enhanced

communication protocols through the Internet. The main idea behind IoT is

to connect numerous heterogeneous devices through internet to operate intelli-

gently and efficiently. It enhances the behaviour of potential users and several

aspects of everyday life [7] [8]. The Cognitive Radio Internet of Things (CRIoT)

can be used in communication, e-health, logistics and security [9], smart tech-

nology, social media, wireless sensor networks, etc. [10]. The integration of the
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IoT with CR technology develops the effective communication system among

the SUs [11]. Security is one of the challenging concerns in Cognitive Radio

technology because hackers can alter channel information and can either get

access, or get energy, or any other resources to control the SUs. In order to

prevent hacking and reduce damages, multi-layered security, provides the se-

cure communications among the users [12]. Moreover, the management of data

technology manages the exchanging of channel information among the SUs dur-

ing the disaster situation in the CRIoT networks and establish the successful

communication without experiencing a downtime [13]. The security and data

management will be addressed in the communication of SUs in the CRIoT to

enhance the performance of the technology [14].

The most extricated physiognomies of CRIoT is to increase inter-connectivity

amongst a number of emerging applications and services. Though, large number

of IoT applications are stagnant reliant vastly on human beings for cognition

processing[15]. One of the incentives of this paper is to introduce the integra-

tion of Cognitive Radio networks with IoT, where SUs interact with the physical

environment with less human intervention. The benefit of this technique is to

select Reliable Data Channel(s), reduce collision among the SUs, save commu-

nication time and enhance throughput of the SUs in the CRN.

1.2. Cognitive Radio for Internet of Things Paradigm

Figure 1 discusses the integration of CR, IoT and other related technologies,

where many issues need to be addressed. Primary issues such as providing a

higher level of effectiveness, enhancing the adaptability based on the existing

environment, standardisation and industrialisation, interoperability of intercon-

nected devices and most importantly guaranteeing trust and security in the

pervasive environment need to be addressed in the long run growth of both

technologies [16].

Existing wireless sensor networks use Industrial, Scientific and Medical (ISM)
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bands for communication [17]. These bands are utilised by many other technolo-

gies, which can cause a long waiting time, especially for delay sensitive traffic

such as Voice over Internet Protocol. Research has proved that this co-existence

in the ISM band could decrease the performance of the wireless sensor networks

and increase the wait time. Therefore, wireless sensor networks require to in-

terconnect with the physical world and to make the intelligent decision based

on the surrounding environment using cognitive technology [18].

Wireless Sensors 

Smart City 

CR Users 

5G / LTE 

Unoccupied 

Channels 

Internet 

Radio Frequency 

Internet 

of 

Things 

Figure 1: Cognitive Radio for Internet of Things Paradigm

1.3. Data channel selection criteria of Cognitive Radio Internet of Things

The selection criteria of the DCHs are centred on numerous factors, such as

an initial selection based on the determined free time logged by the SUs over

the DCH channel ranking. The channel ranking is proportional to the num-

ber of positive or negative acknowledgements, and the recent history of DCHs
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obtained during the previous handshaking among the SUs. If more than two

DCHs have an identical value during the second, third and following iterations,

then the DCHs are selected based on the total free time. The main primaries of

the DCHs are then assigned based on Reliable Data Channels (RDCH), which

are: RDCH 1, RDCH 2, RDCH 3, and RDCH 4 respectively (where RDCH 1

and RDCH 2 have the uppermost priority, DRCH 3 and RDCH 4 have the next

priority, and so on). This is based on communication time, energy transmitted,

throughput, and delay for the saturation network, where the SUs always have

data to exchange over the DCH with multiple sizes of payload. A new data

frame is available to each SU once the last data frame has been transmitted

successfully [19] [20]. Therefore, the SUs are continuously seeking unused spec-

trum bands for communication. In contrast, the SU may have an empty queue

in a non-saturation network [21]. In order to make the model realistic, the CRN

co-exists with PUs by utilising the same spectrum bands, and the number of

PU pairs are equal to the number of licensed channels, as shown in Fig.1. The

number of SUs, and the data to be transmitted, may vary. Without a loss of

generality, the frames related to the SU arrive according to the Poisson pro-

cess. The PUs can use their licensed channels and follow the independent and

identical ON/OFF renewal process. The ON state indicates the presence of the

PUs and the OFF state indicates the absence of the PUs. In contrast, when it

comes to the SUs, the ON state indicates that there is no opportunity for the

SUs to utilise the licensed channel, and the OFF state indicates that there is an

opportunity for the SUs to utilise and exchange their data information. Each

SU has a sensor [22] to record the activity of the PUs while its transceivers are

busy exchanging the information over the DCHs. The function of the sensor is

to sense when the PU returns and updates the SU to switch to another channel,

called a BDC. Moreover, the RECR-MAC protocol assumes that the CCH is al-

ways available and dedicated for the SUs to exchange their control information.

As shown in Figure 4, each SU has two transceivers (TX1/RX1 and TX2/RX2)

and a sensor which records both the free time and the PU returns. A1 and

B1 represent the transmitters of SU1, and A2 and B2 are the receivers of SU2
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and Channel 1, Channel 2, etc. represent the DCHs. The data frames split

into two parts and are transmitted over two DCHs simultaneously. The ACK

is generated by the receiver of SU2, once complete data is received from SU1.

The SUs are unable to transmit data until a minimum of two DCHs become

available for communication to enhance the chance of continuous data transmis-

sion for the RECR-MAC protocol. Moreover, the SUs consume energy at each

layer when exchanges control and data frames, as shown in Figure 2. Based on

Open Systems Inter-connection layered model for wireless networks, SUs devour

maximum energy for communication (idle, transmitting and receiving). The re-

quirement of energy consumption among the SUs can be increased from the

application layer to link layer to establish the seamless communication. There-

fore, the paper proposed channel selection criteria in the CRIoT network, where

SUs select the most Reliable Data Channels for the communication and saves en-

ergy. However, if the number of re-transmissions could be reduced, and Backup

Data Channel (BDC) is introduced to continue the communication when the

PU returns, this would save a significant amount of transmitted energy over the

MAC layer as compared to any other layers.

1.4. Contributions

In this paper, numerous contributions have been incorporated among the CR

and IoT to enhance the existing infrastructure such as optimisation of the con-

trol frames and reducing the number of handshakes over the control and data

channels. In addition, channel selection criteria and avoiding re-transmission

are proposed for reliable data communication in CRAHNs for SUs to utilise

IoT based devices. Moreover, the impact of PU activities on different channel

selection strategies have been extensively studied and analysed. A BDC is intro-

duced to continue the communication if a PU returns. It is also noted that the

reliable channel selection strategy and BDC plays a vital role in reducing the

communication time between SUs for task completion. The reduction in commu-

nication time between SUs over the control and data channels directly impacts

the performance of CRAHNs in terms of energy consumption and throughput.
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Figure 2: Energy consumption at each layer

1.5. Organisation of the paper

This paper discusses the performance of the Reliable and Energy Efficient

Cognitive Radio Multi-Channel Medium Access Control Protocol for Ad-hoc

Networks (RECR-MAC). Furthermore, we discuss the characteristics of the

RECR-MAC protocol and its comparison with other selected benchmark proto-

cols, such as the CREAM-MAC, DSA-MAC, SWITCH-MAC and RMC-MAC

protocols [23] [24]. The remainder of the paper is organized as follows: Section 2

is about the importance of energy saving for RECR-MAC. Section 3 explains the

proposed network model. Section 4 describes the impact of contributing factors

of the energy consumption for RECR-MAC. Section 5 analyses the energy saving

between RECR-MAC and benchmark CR-MAC. Section 6 discusses the impact

of contributing factors over the performance of throughput for RECR-MAC.

Section 7 provides a throughput analysis of the RECR-MAC with benchmark

CR-MAC Protocols without and with PU interference. Finally the conclusion
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is drawn in Section 8.

2. Importance of energy saving for RECR-MAC

Information technology utilises 2% of all energy consumed globally, and 0.5%

is consumed by wireless technology [25]. Between 2006 and 2014, there has been

a growth of 92% in wireless technology [26]. The Wireless World Research Forum

has forecasted that 7 trillion wireless devices will serve the 7 billion people by

2017 [27]. Lucent technology, and other energy efficient CR-MAC protocols [28]

[25] [29] [30], indicates that the utilisation of the transmitting energy is higher

(or sometimes double) than that of the receiving energy for any data size of

the wireless network. The authors in [31] [32] [33] also believe that a large

amount of energy is consumed during the processing and transmitting activity

of the SUs. The processing energy is consumed by the detection of the free time

over the CCH, and other signal processing activities, before the communication

begins. There are multiple techniques used to minimise energy consumption

at the MAC layer, which have been discussed in [34] [35] [32] [36] [37] [33]

[38] [39] [40]. It is to be noted that the unnecessary control frames handshake

over the CCH, and a large number of re-transmissions over the DCHs, utilise

large amounts of transmitted energy in the CRAHNs. The consumption of

unnecessary transmitted energy decreases the efficiency of the network.

3. Proposed model of CRIoT-MAC protocol

CR-MAC protocols exchange their control frames, such as Availability of

Control Channel (ACL), Acknowledgement (ACK), Ready to Sent (RTS) and

Clear to Sent (CTS) over the DCCH and non-DCCH. As discussed above in

this paper, it is assumed that SUs exchange control information over the DCCH

which is always reliable and available and may be owned by the service provider.

The control information is a pre-requisite for all CR nodes before switching

DCHs. The properties of selected CR-MAC protocols have been presented and

their features and parameters are shown in Table 2.3. These can help develop
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and design new CRIoT-MAC protocol to overcome the existing shortcomings in

the CRAHNs as shown in Figure 3. The next subsection presents the proposed

network model of the RECR-MAC protocol.

CRIoT MAC

Protocol

DCCH

Multiple 

Transceivers Based 

Protocols

Access Mechanism

Time SlotHybrid

Overlay  / Underlay

CRIoT-MAC based

on Channel 

Selection Techniques

CRIoT-MAC based

on Spectrum 

Access

CRIoT-MAC based

on Backup Data 

Channel

CRIoT-MAC based

on Time, Energy 

Consumption and 

Throughput

Non-DCCH

Infrastructure-less 

CR Protocols

Infrastructure-

based CR Protocols

Control Channel 

Classification Based on 

Single and Multiple 

Transceivers 

Single 

Transceiver Based 

Protocols

Random Access

Figure 3: Flow of CRIoT-MAC protocols
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3.1. RECR-MAC protocol - network model

CR technology is anticipated to offer solutions to the problems experienced

on wireless networks that result from limited available spectrum bands and in-

efficient, by opportunistically exploiting the existing wireless spectrum bands

[41]. In this section, a network model is presented based on how SUs use the

CRIoT network. The proposed CR multi-channel network scenario, presented

in Figure 4, is without a centralised entity, and network operations such as spec-

trum sensing, channel selection strategy and switching to BDC are performed

by the SUs. The proposed network model is composed of two sets of users: the

PUs can access their respective licensed spectrum bands without permission and

their activities have a direct impact on the performance of the SUs and play a

vital role in the channel selection decision. It is assumed in this study that the

PUs activity can be modelled as a continuous process, known as alternating ON

(i.e. the PU is in transmitting state or the ON state) and OFF (i.e. PU is not

in transmitting state/the OFF state) Markov renewal process. The SUs record

the ON/OFF activity of the PUs for the period of time in which the channel

can be utilised effectively by the SUs without generating harmful interference

to the PUs. It is further assumed that the SUs use the DCCH, which is always

dedicated and may be owned by the service providers to exchange their control

frames.

3.2. RECR-MAC protocol - operational framework

In this subsection, the operability of the RECR-MAC protocol for CRIoT is

discussed with the assistance of the flowchart depicted in Figure 5, where it is

classified into four phases:

PHASE I: In the startup stage, a SU adopts the IEEE 802.11 DCF, which is

the fundamental MAC technique for accessing the channel in the Wireless Local

Area Networks (WLAN). The DCF mechanism employs a CSMA/CA with a

binary exponential Back Off (BO) algorithm to sense the wireless channel and

gain access to the CCH. The Beacon Time (BT) includes the control and data

communication time for the SUs. Figure 5 shows that the SU must wait a short
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Figure 4: Network model consists of PUs, SUs, data channels, sensors, TXs and RXs

while before transmission to avoid collision, even though the channel is idle; this

is known as Inter Frame Spacing (IFS). In wireless adhoc networks, IFS has two

intervals with different priorities, namely the Distribution Inter-Frame Space

(DIFS) and Short Inter-Frame Space (SIFS). The value of SIFS is smaller than

DIFS, demonstrating its priority over other transmitting nodes. If the medium

is observed as being idle for longer than the DIFS, then the cognitive nodes can

transmit the frames. Alternatively, if the medium is observed as busy, the SU

performs random BO by selecting a BO counter, which is not greater than the

interval called the Contention Window (CW). The value of CW size has to be

reset before and after every successful communication between the nodes. The

BO counter decreases its value after the channel is found idle, and when the BO

counter reaches zero the SUs can access the channel to exchange information.

PHASE II: In this phase, the flow of the protocol splits into two sub-phases:

1) the available SU can transmit/receive the Available Channel List (ACL)

frame, which is a modified version of Ready to Send (RTS) frame, to/from the

other SU within the range; or 2) if the SU receives the ACL, then the SU replies

with Acknowledgement of the ACL (AACL) frame, a modified version of the
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Clear to Send (CTS), to the sender SU. Then a pair of SUs must exchange the

control frames such as ACL and AACL in order to meet the following constraint:

µ ≥ 2 (1)

Where µ is the number of available white spaces for simultaneous communi-

cation among the SUs. The SUs must reserve two free spaces for the data com-

munication known as Primary Data Channel (PDC) and Backup Data Channel

(BDC).

PHASE III: In this phase, if no ACL frame is found, then it is assumed

that the SU will launch the ACL itself. After the SIFS time, if the SU success-

fully receives the AACL frame, then it must satisfy the criteria established in

Equation 1. If the SU is unable to receive the AACL then it must wait until

the expiration of the BT. Moreover, when neighbouring SUs pick up the com-

munication between the active SUs, they then suspend their transmission for

a period of time called the Network Allocation Vector (NAV). In other words,

neighbouring SUs are forbidden from accessing the DCCH, until the active SUs

complete their transmission and switch to the DCHs. The complete process is

called Virtual Carrier Sensing (VCS), and provides updated information to the

sender and receiver which is to be reserved for the next communication.

PHASE IV: It is important to note that although the reservation of the

two white spaces for the SUs gives the appearance of a loss of white space, in

reality it simply reduces the network convergence time by switching to the BDC

if the PU returns during the communication. It also reduces the RECR-MAC

protocol rescanning time, which in turn may help the SUs conserve energy,

thereby reducing the computational cost. Therefore, on the basis of PHASE II

and PHASE III, when the SU has satisfied Equation 1, it switches to a DCH

for data communication.

The novel contributions in this subsection are: when the CRAHNs are ini-

tialised, both selected DCHs are considered PDCs. If one of the DCHs become
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unavailable due to the PUs return, the traffic on the affected channel switches

to the other DCH, which behaves as a BDC in regard to the affected traffic and

continues the communication without restarting the entire process. If no PU

returns during the data communication over the PDCs, then the SUs’ receiver

must send an ACK message to conclude communications between the SUs.
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4. Impact of contributing factors over the energy consumption for

RECR-MAC

As discussed above, it is imperative to design the proposed RECR-MAC

protocol to use less transmitted energy with high throughput. The RECR-MAC

protocol utilises the contributing factors which helps to propose the effectiveness

of CRIoT network:

4.1. Reducing number of handshaking over control and data channels

The successful exchange of the control information permits the SUs to start

the communication over the DCHs. However, the situation gets critical if the

SUs are unable to exchange their control information, which requires restarting

the control process. As previously discussed, some protocols utilise additional

handshaking over the control and data channels to avoid the restarting process.

For example, some CR-MAC protocols (such as CREAM-MAC, DSA-MAC,

SWITCH-MAC and RMC-MAC) require 4 or 6 or more numbers of control and

data frames in order to exchange their information. The additional number

of control and data frames requires a greater number of handshakes over the

control and data channels, which requires extra transmitting time to process

these frames. This consumes additional transmitted energy. Furthermore, the

SWITCH-MAC and RMC-MAC protocols require additional handshaking if the

PU returns over the DCH during the data communication. Therefore, the frame-

work of the RECR-MAC protocol has been designed to overcome the existing

shortcomings, without degrading the reliability and effectiveness of the proposed

protocol. The RECR-MAC protocol has introduced two-way handshaking over

CCH, and two-way handshaking over DCH, irrespective of whether the PU re-

turns or not during the communication. Figs.3 and 4 demonstrates the benefits

of reducing the number of handshakes over the control and data channels [42]

[43].
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4.2. Minimising the size of control frames

Based on the above discussion, it is important to optimise the control frames

by avoiding and reducing unnecessary fields. The optimisation of the con-

trol frames in an intelligent manner requires reducing the communication time

among the SUs. This has a direct influence on the energy consumption in the

CRAHNs, as shown in Fig. 5. Moreover, the following section of the numerical

example of the performance evaluation reveals the benefits of saving transmit-

ted energy based on reducing the size of the control frames. The operation of

benchmark CR-MAC protocols provides more or less similar functions, includ-

ing avoiding collisions and the hidden terminal problem, high throughput, and

re-establishing the connection if PU returns, etc. The RECR-MAC protocol

efficiently designs the control frames to handle collisions and hidden terminal

problems, and to reduce re-transmission based on channel selection criteria. It

also consumes the least communication time between the SUs over the control

and data channels, thus saving transmitted energy. To conclude, by reducing

the size of the control frames, less communication time is required among the

SUs in order to exchange the control information over the CCH, eventually sav-

ing greater amounts of energy in the CRAHNs [44]. Figure 6 shows the trade-off

between communication time and energy utilised. In this paper, sections 6 and

7 discuss in-depth process of reducing the communicating time among the SUs

which helps to save the energy in the entire network.

4.3. Reducing re-transmission among SUs

The aim of CR technology is to enable the SUs to select and utilise the spec-

trum bands not in use by the PUs. If the PU returns to its licensed channel,

then the SU switches to unavailable alternative channel without any interfer-

ence to the PU. The majority of the CR-MAC protocols discussed in the liter-

ature review are unable to address the re-claiming of the PU, along with the

restarting, searching and scanning of the other available spectrum bands and

re-transmission over the control and data channels. This significant feature of

the CR-MAC protocol has not been intensively researched. It is a procedure
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Figure 6: Relation of communication time vs. energy saving

that consumes not only additional time, but also utilises additional energy due

to the re-transmission of the control and data frames. As discussed earlier,

the selected characteristics of the RECR-MAC protocol provides an advantage

lacked by other CR-MAC protocols. The RECR-MAC protocol introduces the

channel selection criteria, which selects reliable channels with the least PU ac-

tivity in order to minimise the probability of interference between the SUs and

PUs. Also, the RECR-MAC protocol is able to deal effectively with the return

of the PU over the licensed spectrum band and re-establish the SUs commu-

nication without re-starting the entire process. Selecting the reliable channels,

and switching to the BDC if PU returns, saves additional energy and reduces

the wait time of the SUs to exchange their information. Thus, the effective

framework and design of the RECR-MAC protocol provide an opportunity for

the SUs to initiate their communication in the CRAHNs, and if any PU re-

turns over the DCH, the BDC is available to avoid re-transmission. Therefore,

CR technology requires the RECR-MAC protocol features in order to avoid the

search for the free channel and additional re-negotiations over the control and

data channels [45].
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5. Analysis of energy saving between RECR-MAC and benchmark

CR-MAC

As discussed in the sections above, the CR network consumes high transmit-

ted energy as compared to the energy consumed during processing and receiving.

The focus of this paper is therefore to reduce the transmitted energy (E) con-

sumption of the RECR-MAC protocol, then compare this with other benchmark

CR-MAC protocols (such as CREAM-MAC, DSA-MAC, SWITCH-MAC, and

RMC-MAC) over the control and data channels. The transmitting energy is

calculated by using Equations (1) and (2) for the RECR-MAC and benchmark

protocols without, and with, BDC.

Ewithout PU Return =

∫ T1

0

P1(t) dt (2)

Ewith PU Return =

∫ T2

0

P2(t) dt (3)

Where T1 and T2 are the total communication times of RECR-MAC and

other benchmark CR-MAC protocols over control and data channels without

and, with a BDC, respectively. The values of P1 and P2 represent the power

consumed during the transmission of control and data channels without, and

with, a BDC. The total communication time of each protocol is calculated based

on the physical layer parameters, as discussed in the previous section. The

transmitted power of each SU is set to 100 mW [11]. The average transmitted

energy is calculated for each protocol without, and with, BDC based on the

values as summarized in Tables 1 and 2. The analytical results obtained by

using Equations (1) and (2) and the values of Tables 1 and 2 are portrayed in

Figures 7 and 8 with, and without, BDCs. The average energy consumed by

RECR-MAC protocol is less when compared with other benchmark CR-MAC

protocols with a payload of 1000 bytes, 500 bytes and 50 bytes respectively.
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Table 1: Communication time (in bytes) of CR-MAC protocols without BDC

1000 B 500 B 50 B

TRECR−MAC 800 618 455

TCREAM−MAC 1216 853 526

TDSA−MAC 1210 847 520

TSWITCH−MAC 1186 821 496

TRMC−MAC 1163 803 477

Table 2: Communication time (in bytes) of CR-MAC protocols with BDC

1000 B 500 B 50 B

TRECR−MAC 1169 805 478

TCREAM−MAC 1689 1325 999

TDSA−MAC 1655 1291 965

TSWITCH−MAC 1190 826 500

TRMC−MAC 1221 857 531

In Figure 8, the clear reason for this difference in energy utilisation is based

on the optimisation of the number of control frames and the selection of reliable

DCHs.

Moreover, by the introduction of the BDC, the RECR-MAC protocol does

not need to re-establish the entire process and saves increased transmitted en-

ergy when compared to other benchmark CR-MAC protocols with a payload of

1000 bytes, 500 bytes and 50 bytes as shown in Figure 8. Multiple experiments

have been conducted with different sizes of data in order to validate the per-

formance of the RECR-MAC protocol and its comparison with other selected

benchmark CR-MAC protocols.

The results in Figures 7 and 8 validate the proposition that the proposed

framework of the RECR-MAC protocol is applicable for multiple sizes of pay-

loads. By considering 1000 bytes for communication, the RECR-MAC protocol

saves approximately 35%, 33%, 32% and 31% energy without PU returns over
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Figure 7: Energy consumed among SUs (µs) for data = 1000, 500, 50 Bytes (No PU returns)

the data channels during the communication as compared to CREAM-MAC,

DSA-MAC, SWITCH-MAC and RMC-MAC protocols respectively. RECR-

MAC protocol also saves approximately 30%, 29%, 2.5% and 6% energy, even

though PU returns their respective data channels during the communication, as

compared to CREAM-MAC, DSA-MAC, SWITCH-MAC and RMC-MAC pro-

tocols respectively. The energy consumption during the transmission of control

and data information proves that the RECR-MAC protocol is an energy effi-

cient protocol and a useful contribution in the area of CR technology. Moreover,

the framework of the RECR-MAC protocol is suitable for developed countries,

where energy saving is a major challenge, and performs in an effective and effi-

cient way, as compared to the other benchmark CR-MAC protocols adopted for

the purposes of comparison. Thus, it concludes that the introduction of the op-

timization of the control information, and BDC techniques, helps to utilise less

energy during the transmission of the data over the control and data channels,

as compared to other CR-MAC protocols.
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6. Impact of contributing factors over the performance of throughput

for RECR-MAC

Throughput is another contributing factor in the analysis of the performance

of the RECR-MAC protocol in the CRAHNs. In related studies, the majority

of researchers has discussed and computed throughput: it is described as the

average amount of successful data delivery over a wireless channel, i.e. ”data

transmitted per unit time”. However, the throughput can be affected by multi-

ple factors during the exchange of control and data information. These include

the availability of the CCH, the probability of access to the CCH, the number

of handshakes over the control and data channels, the size of the control frames,

the selection criteria of the DCHs, the available number of DCHs with respect

to the number of SUs, the number of successes and failed acknowledgements,

and the ON/OFF time of the PU returns. In this paper, the communication

time among the SUs plays a vital role and directly impacts the performance on

the CRAHNs in terms of energy consumption and throughput. If SUs take more

than the expected communication time, then this decreases the efficiency of the

CRAHNs in terms of energy consumption and throughput of the network. The

throughput of the proposed RECR-MAC protocol can be affected by multiple

parameters, as shown in Table 3. These parameters are directly related to each
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other, and may increase and decrease the throughput of the RECR-MAC proto-

col. For example, the number of re-transmissions increases the communication

time, which eventually contributes to the delay. The probability that the SUs

are unable to continue the communication if PU returns also increases delay

and decreases overall throughput of the CRNs.

6.1. Minimisation of channel switching among SUs

The process of channel switching among SUs plays a vital role in the per-

formance of the CRN. Frequent returns of PUs and the selection of bad quality

channels require a high number of re-connections among the SUs in order to

accomplish the task. High numbers of re-connections maximises the rate of the

channel switching and consume significant time for the successful exchanging of

control and data frames. The high communication time consumes large amounts

of transmitting power among the SUs, which reduces network throughput [46].

However, RECR-MAC channel selection criteria overcome this issue by selecting

reliable primary and backup data channels, which may require less (or even no)

channel switching activity.

6.2. Secondary Users transmission probability

CR technology is an opportunistic technology. The probability that the SUs

can transmit over the control and data channels therefore heavily contributes

to the performance of the CR-MAC protocols, including communicating time,

energy consumption, delay and throughput. In a contention based CR envi-

ronment, all SUs share the same medium to be transmitted. Therefore, there

is competition among all participant SUs to win the medium. A large num-

ber of SUs may increase the probability of collision amongst each other in the

CRAHNs. In the RECR-MAC protocol, the channel access scheme by SUs is

based on the IEEE 802.11 MAC protocol. The SUs only begins transmitting

after an idle period equal to the Distributed Inter Frame Space (DIFS). If a

channel is occupied by another SU, the participating SU randomly selects a

back off interval from 0, W-1, where W represents the size of the Contention
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Window (CW). The value of the CW is taken from the set: 16, 32, 64, —-, 512.

For simplicity, the value 32 is used for the numerical and simulation purposes.

There is a probability that SUs may collide during the contention process. It is

important to consider that the PU always has a higher priority than the SUs,

based on their right to use the licensed channel any time, even though commu-

nication is continuing among the SUs. It is also considered that each SU always

has the information to transmit at any time. The probability of collision during

the contention process for accessing the CCH among SUs has been derived from

[47] as follows:

Pc =

(
1− 1

CW

)NSUS−1

(4)

Where Pc is the probability of collision and N SUs represents the number of SUs

attempting to access the CCH, it is the standard process in IEEE 802.11b that a

large number of SUs increases the probability of a collision. The size of the CW

increases to the maximum value denoted as CWmax. Based on Equation (3),

the probability that the SUs may not collide with each other and successfully

access the DCCH can be represented as:

Ps = 1−
(

1− 1

CW

)NSUS−1

(5)

where Ps is the probability of successful access to the CCH by the SUs.

6.3. Additional contributing factors

Multiple additional factors influence the performance of RECR-MAC pro-

tocol. There is always a trade among the multiple factors while designing the

framework of a CR-MAC protocol. This leads to the researcher having com-

promise between factors, according to the design and requirements, including:

channel quality, primary and backup data channels selection criteria commu-

nication time energy saving delay, the number of transceivers, the number of

control and data channels hardware costs and throughput, etc. The following

are the contributing factors in the RECR-MAC protocol and its relationship

with throughput [48] [49] [50].
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a) Number of Transceivers: The number of transceivers can be represented as

TxRx. Additional transceivers transmit additional data, which eventually

increases network throughput.

b) Number of Data Channel(s): The Number of Data Channels can be rep-

resented as DCH(s). Transmitting over multiple DCHs simultaneously de-

creases transmission time and signal power and increases the transmission

rate of data, also increasing network throughput.

c) Payload: Payload can be represented as PL. A larger amount of data to be

transferred across the multiple DCHs increases the network throughput as

compared to other CR-MAC protocols. If the PU returns during the commu-

nication, the PDC’s data switches to BDC and continue the communication

instead of re-start the entire process.

d) Data Rate: Data rate can be represented by DRate. The DRate for the

control and data channels is set to 11 Mbps as constant.

e) Probability of Successful Access of Dedicated Control Channel: The proba-

bility of successful access of DCCH can be represented as Ps. Higher prob-

ability of successful completion of the frames over the DCCH will result

in faster initialisation of data communication. Faster network initialisation

reduces communication time and increases network throughput.

f) Number of Secondary Users: The Number of SUs can be represented as

NSUs, where n represents the number of SUs. Additional SUs contending

for the CCHs may reduce the chances in order to seize the opportunity for

accessing these channels.

g) Communication Time: Communication time during the control and data

channels can be represented for each protocol such as T(RECR−MAC) for

RECR-MAC protocol, T(CREAM−MAC) for CREAM-MAC, respectively. Higher

communication time decreases network throughput, and vice versa.

h) Probability of False Alarm: Probability of false alarm can be represented as

PFA. Minimising the value of PFA provides the maximum opportunity for

the SUs to access the spectrum and improves network reliability by selecting

unoccupied and reliable channel(s). The value of the probability of false
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alarm is set to 0.1 as a constant. The detail of the PFA will be discussed in

Section 6.2.

The above factors from a) to e) are directly proportional to the network

throughput. The above factors from f) to h) are inversely proportional to the

network throughput.

7. Evaluation and results

Internet of Things (IoT) is based on heterogeneous networks, which is being

extensively deployed for advanced and emerging services. However, the existing

infrastructure requires a reliable connectivity and uninterrupted communication

among the devices. In this evaluation, we address this problem through reliable

selection of the channels among the SUs which enhances the communication

and increases network throughput.

In this section, an analytical model is developed, based on the contribut-

ing factors above to analyse the throughput of the RECR-MAC protocol with

benchmark CR-MAC protocols under the saturation condition.

7.1. Parameters for the throughput analysis of RECR-MAC protocol

For the convenience of presentation, Table 3 lists the contributing parameters

for the throughput analysis of the RECR-MAC protocol, and its comparison

with other benchmark CR-MAC protocols. The contributing factors impact

the performance of the throughput for the CRAHNs which utilise the design of

analytical models for RECR-MAC protocol. Due to the cognitive behaviour of

RECR-MAC protocol, it could be utilized to improve the performance of the

relevant technologies such as Smart City, IoT and Mobile technologies such as

LTE and 5G.

7.2. Throughput analysis of the RECR-MAC with benchmark CR-MAC proto-

cols

It is noted that the concept of CR was introduced to manage communication

among the SUs without licensing, due to the unavailability and the shortage of
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Table 3: Parameters for the throughput analysis of RECR-MAC protocol

Parameter Proportionality

and notations

Relations with Throughput

Number of Transceivers αTXRX Additional transceivers transmit large

amount of data, so increasing network

throughput

Number of Data Channels ∝ DCHs Transmitting over multiple data chan-

nels simultaneously increases the

throughput

Payload ∝ PL Larger amount of data across multiple

data channels increases throughput

Data Rate ∝ DRATE Higher data rates allow large amount

of data be transmitted, increasing net-

work throughput

Probability of successful

access of control channel

∝ PS Higher probability of successful comple-

tion increases network throughput

Number of Secondary

Users

∝ 1
NSUs

Increased number of SUs contending for

the control channels

may reduce the chance to size an op-

portunity to access the control channel,

so reducing network throughput

Communication Time ∝ 1
T Higher communication time decreases

the network throughput and vice versa.

Probability of False Alarm ∝ 1
PFA

High probability of a false alarm pro-

vides the minimum opportunity to the

SUs to access the spectrum,which de-

creases the network throughput.
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the licensed spectrum. Therefore, consideration of the saturation condition is a

valid assumption in this paper for the CRAHNs. If each SU is equipped with

a sensor and two transceivers, the RECR-MAC protocol is capable of reserving

a number of free channels and utilizing these channels effectively based on the

number of SUs participating in the network. The throughput for the SUs is

denoted by η. The following equations help to measure the performance of the

throughput for the proposed protocol and its comparison with benchmark CR

protocols.

In Equation 6, impact of throughput is directly proportional to number of

transceivers, DCHs involved in the communication among the SUs, payload,

data rate of the channel, and the probability of no collision among the SUs for

accessing the CCH:

η ∝ TxRx ∗DCHs ∗ PL ∗DRate ∗ Ps (6)

In Equation 7, throughput is inversely proportional to the number of con-

tributing SUs, total communication time of each protocol and probability of a

false alarm:

η ∝ 1

NSUS ∗ TCR−MAC ∗ PFA
(7)

Equation 8 calculates the throughput for different numbers of SUs without

and with PU returns for the RECR-MAC and benchmark CR-MAC protocols,

where payload set as 1000B, 500B and 50B as shown in following figures:

η ∝ TxRx ∗DCHs ∗ PL ∗DRate ∗ Ps
NSUS ∗ TCR−MAC ∗ PFA

(8)

The next subsections analyse and measure the performance of the through-

put for the CRAHNs: i) throughput analysis without PU interference and ii)

throughput analysis with PU interference.

7.3. Throughput analysis without PU interference

The interference generated by the return of the PUs heavily contributes to

the performance of the CRAHNs. The SUs observe the activity of the PUs,
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then select the most reliable DCHs based on the channel selection criteria, then

effectively utilise the free time for their communication. As discussed above,

the value of PFA is never equalled to zero. Figures 9 to 11 demonstrate that

the throughput value changes with different numbers of SUs. When there are

only two SUs participating in the CRAHNs for their communication, then a

high throughput is achieved, due to less competition among the SUs to access

the CCH.

The RECR-MAC protocol reduces less communication time and energy with

higher throughput as compared to benchmark CR protocols. Few samples have

been discussed in percentages to show the validity of the proposed protocol when

there is no PU returns during the communication. For example, in Figure 9,

when considering 2 SUs for 1000 bytes, the throughput of RECR-MAC proto-

col is 64% higher than SWITCH-MAC protocol. In Figure 10, the throughput

of RECR-MAC protocol is 61% higher than DSA-MAC protocol for 500 bytes.

Similarly, the throughput of RECR-MAC is 54% higher than RMC-MAC proto-

col for 50 bytes as shown in Figure 11. The high throughput of the RECR-MAC

protocol is expected higher than benchmark CR-MAC protocols due to the fact

that when there are high numbers of SUs contending for CCH there are fewer

chances to seize the opportunity.
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Figure 9: Throughput vs. pairs of SUs for data = 1000 bytes (No PU returns)
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7.4. Throughput analysis with PU interference

As discussed above, the frequent PU returns during the communication,

massively reduces the performance of the CRAHNs. To overcome PU inter-

ference, the BDC is introduced for the proposed RECR-MAC protocol, which

re-establishes the connection among the SUs if the PU returns to its licensed

DCHs during the communication. Table 2 is also utilised for the analysis of the

RECR-MAC protocol and its comparison with other CR-MAC protocols, based

on Equation (7) with different payloads. Figures 12 to 14 show the analysis for

the RECR-MAC protocol, and its other benchmark CR-MAC protocols.
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Figures 12 to 14 demonstrate that the proposed RECR-MAC protocol has

a high throughput for the different numbers of SUs. These results are expected

based on the BDC technique adopted by the RECR-MAC protocol. Moreover,

CREAM-MAC and DSA-MAC do not use BDCs; hence if PU returns during

the data communication, both protocols re-start the entire process. SWITCH-

MAC and RMC-MAC have adopted BDCs without considering the situations;

if PU returns over the PDCs, both protocols switch to BDCs. If the BDCs

are already occupied, then both CR-MAC protocols are obliged to re-start the

entire process, similar to CREAM-MAC and DSA-MAC. However, the RECR-

MAC protocol utilises two DCHs simultaneously, instead of a single DCH for

communication and, if PU returns on either of the DCHs, both DCHs act as a

backup to each other and avoid the re-starting process.

This introduction of the BDC pattern saves communication time, transmit-

ting energy and increases throughput as depicted in Figures 12 to 14. Few

samples have been discussed in percentages to show the validity of the pro-
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posed protocol when there PU returns during the communication of 10 SUs.

For example, in Figure 12, when considering 1000 bytes, the throughput of

RECR-MAC protocol is 71% higher than DSA-MAC protocol. In Figure 13,

the throughput of RECR-MAC protocol is 50% higher than SWITCH-MAC

protocol for 500 bytes. Similarly, the throughput of RECR-MAC is 76% higher

than CREAM-MAC protocol for 50 bytes as shown in Figure 14. It is noted that

the RECR-MAC protocol has ability to achieve higher throughput as compared

to the benchmark protocols due to the integration of proposed channel selection

criteria and BDC.

8. Conclusion

In this paper, we have introduced the energy efficient Cognitive Radio com-

munication for Internet of Things. The introduction of the selection of reliable

DCHs for the IoTs devices, and its integration with BDC, has reduced commu-

nication time among the SUs, which plays a vital role, directly impacting the

performance of the CRAHNs in terms of energy consumption and throughput.

The importance of the energy consumption for the RECR-MAC and benchmark

CR-MAC protocols have been analysed through the consideration of multiple

factors. The analytical analysis demonstrates that the average energy con-

sumed by the RECR-MAC protocol is lower in comparison to other benchmark

CR-MAC protocols, with payloads of 1000 bytes, 500 bytes, and 50 bytes re-

spectively without and with PU interference. Furthermore, an analytical model

has been developed, based on multiple factors to analyse the throughput of the

RECR-MAC protocol with benchmark CR-MAC protocols without, and with,

PU returns. Thus, the above results demonstrate that the RECR-MAC proto-

col has a high throughput in comparison to the benchmark CR-MAC protocols.

In this paper, therefore, we also examine the other contributing features of the

RECR-MAC protocol, such as transmitted energy and throughput.
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9. Future work

In this paper, research has been carried out to investigate the shortcomings

of the existing energy for CRIoT networks. The RECR-MAC protocol has been

proposed to address such gaps discussed in above sections. The integration

of the Cognitive Radio and IoT technology could provide direct benefits to a

large number of wireless users. For example, social media applications such as

Facebook and Twitter; chess and playing card gaming applications are not delay

sensitive and their users could derive benefits from the proposed protocol. Big

data management could be solved by using CRIoT application where cognitive

users can transfer the information as a rely on large networks. Security aspects

are crucial in order to protect the network communication amongst authorised

SUs within the network. In order to prevent hacking and reduce damages to the

users, security will be addressed using cross layer techniques. Moreover, mobile

and Voice over Internet Protocol (VoIP) users could be able to make free calls

by using the proposed CRIoT protocol. If cognitive features are enabled in any

wireless device, this device is capable of detecting free space and utilising these

applications and free calls.
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