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Abstract 

 

Predictive monitoring supports the a priori scheduling of critical component maintenance and 

contributes significantly in attaining a safe yet economic operation and management of complex 

energy systems by mitigating the risk of accidents and minimizing the number of operational 

pauses. The current work studies the learning ability of probabilistic kernel machines, and more 

particularly of Gaussian Processes (GP) equipped with various kernels for the estimation of weld 

residual stress profiles of stainless steel pipe welds. The GP models are tested on experimentally-

obtained data of axial and hoop residual stresses in two different stainless-steel pipes. The results 

exhibit the ability of GP to accurately predict the weld residual stress profile in the axial and hoop 

direction by providing a predictive distribution, i.e., mean and variance values. Furthermore, 

performance of GP is compared to a non-probabilistic kernel machine, such as support vector 

regression (SVR) equipped with the same kernels, and to multivariate linear regression (MLR). 

Comparison results exhibit the robustness of GP over SVR and MLR with respect to prediction 
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accuracy of weld residual stress in terms of root mean square error. With respect to a second metric, 

namely, correlation coefficient between measured and predicted values, GP is superior to SVR and 

MLR in the majority of the cases.  

 

Keywords: Probabilistic Kernel Machines, Gaussian Process Regression, Machine learning, 

Welding, Residual stresses, Support Vector Regression. 

 

 

 

 

Highlights:  

 

• Application of probabilistic kernel learning machines for weld stress prediction 

• Adoption of sixteen different kernel functions for prediction 

• Performance is assessed by RMSE and correlation coefficient 

• GP is shown to be robust and advantageous compared to SVR and MLR 

• Practical implementation of predictive monitoring of energy systems  

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Satisfaction of the growing demand for electrical energy necessitates the continuous operation 

of power generation plants that provide “base-load” electricity generation (McKoy et al., 2013). 

Part of the overall power plant operational management is the predictive maintenance that 

encompasses the a priori scheduling of maintenance and replacement of close-to-failure 

mechanical components (Atoui et al., 2015), aiming to minimize the number of operational pauses 

and enhance the overall system safety (Lei et al., 2009; Ebersbach & Peng, 2008). To that end, 

estimation – within narrow uncertainty bounds – of the remaining life of vital components in 

energy systems (Liu et al., 2008) will contribute to the adoption of predictive monitoring 

techniques (Wootton et al, 2017). Such techniques may realize cost effective maintenance 

strategies that lead to enhanced system safety and performance (Hashemian & Bean, 2011; 

Alamaniotis et al., 2014; Mathias et al., 2014).  

Essential part in the overall operation of every energy installation are pipes: in thermal power 

plants, these pipes carry steam at high temperatures and pressures. It has been identified that 

residual stresses introduced as a consequence of welding processes is a fundamental factor that 

can lead to the initiation of cracks whose growth may lead to component failure (Castellanos et 

al., 2011; Withers, 2007; Babu et al., 2009). The thermomechanical effects of the welding process 

result in plastic misfits that lead to the generation of elastic residual stresses (Bouchard, 2007; 

Withers & Bhadeshia, 2001; Francis et al., 2007). However, this can be further exacerbated by 

repair processes (Edwards et al., 2004). 

Accurate prediction of residual stresses requires the development of analytical models 

encompassing a high number of interacting factors, detailed knowledge of the welding parameters 

and materials properties, such as cyclic hardening behavior and the thermal-dependence. It is the 



inherent complexity and, often, lack of necessary information in sufficient detail that makes 

quantification of the residual stress distribution a challenging problem (Stone et al., 2008). 

Experimental techniques such as neutron diffraction (Hutchings et al., 2005), deep hole drilling 

(George et al., 2002), and the contour method (Kartal et al., 2013) have been developed to measure 

residual stress distribution, but come at a high financial cost, cannot be deployed in situ, and are 

at least semi-destructive of the component (Mahmoudi et al., 2009; Prime, 2001). In addition, 

computational and data-driven methods have been applied in predicting residual stress in energy 

systems. For example, finite element models (Schwane et al., 2014; Xie et al., 2017) and artificial 

neural networks (Mathew et al., 2014) are used despite their limitations in modeling of highly 

complex non-linear and interacting processes that introduce a high degree of uncertainty 

(Tsoukalas & Uhrig, 1997). 

Machine learning (Liu et al., 2015) has been recently identified as a domain that potentially 

offers solutions to a large range of predictive problems in materials (Yildiz, 2013; Balachandran 

et al., 2015). Machine learning tools are exposed to a set of known datasets, which consist of 

experimental or simulated data, in order to evaluate their parameters: a process known as learning 

or training (Alamaniotis et al., 2012). The trained models are able to provide predictions for 

components that are exposed to similar conditions (Bishop, 2006). Predictions may be performed 

either in the form of interpolation or extrapolation depending on the specifics of the application 

under study (Alamaniotis et al., 2010; Babu et al., 2010). To that end, machine learning tools such 

as artificial neural networks have been applied to predict weld residual stress profiles where the 

predictions from ensemble networks were used to develop a prediction interval (Mathew et al., 

2013; Mathew et al., 2017a). Further, Dhas & Kumanan (2016) proposed an evolutionary fuzzy 

support vector regression method that predicts weld residual stresses, while a non-dominated moth 



flame optimization technique is proposed by (Savsadi & Tawhid, 2017). In addition, a method that 

integrates neural networks and evolutionary computing in weld stress prediction is introduced by 

Dhas & Kumanan (2014), and a hybrid method that utilizes experimental data and neural networks 

by Mathew et al. (2017b). The adoption of advanced statistical learning methods for weld 

prediction was presented in (Lewis et al., 2017 July), and the use of an iterative substructure 

method (ISM) for weld stress prediction in pressurized water reactor (PWR) in (Maekawa et al., 

2016). Several weld residual stress prediction techniques are based on the finite elements method 

in conjunction with various simulated or experimental conditions as introduced in (Wang et al., 

2015), (Mondal et al., 2017), (Jiang et al., 2015) and (Afsari et al., 2016). 

In this paper, probabilistic kernel machines (Fricke, 2001) are utilized for predicting weld 

stress profiles of power plant components (Pilania et al., 2013). In particular, the machine learning 

aspect of Gaussian Processes (GP) (Rasmussen, 2006; Quiñonero-Candela & Rasmussen 2005) 

modeled with a variety of kernel functions is studied for predicting residual stress, and its 

performance is compared to non-probabilistic kernel machines. Overall, the set of research 

objectives contains: 

i) Study of the learning ability of various forms of GP to predict the weld stress profiles, 

ii) Comparison of GP prediction performance to non-probabilistic driven tools, 

iii) Application of GP on recent experimentally obtained datasets of stainless steel pipe welds. 

In addition, the practical implications of the current study involve the implementation of predictive 

monitoring of weld stress in energy systems, and the development of automated maintenance 

techniques. Additionally, GP predictions of weld stress allow a timely yet low cost replacement of 

critical system components. 



In the next section, Gaussian processes are presented in the context of probabilistic kernel 

machines, while section 3 proposes the application of Gaussian process for weld residual stress 

prediction and lastly, section 4 concludes the paper and summarizes its findings. 

  

2. Probabilistic Kernel Machines 

2.1. Kernel-based Gaussian Process Regression 

With the exception of linear regression methods where the output is a single value that is 

computed by a set of weighted inputs, there exists a class of methods that make predictions in the 

function space (Gregorčič & Lightbody, 2009); such methods are the probabilistic kernel 

machines. In the realm of machine learning, probabilistic kernel machines are recognized as the 

Bayesian extension of simple kernel machines (Bishop, 2006; Rasmussen, 2006). Here, we 

implement the notion of a kernel-based Gaussian process with a joint distribution that is modeled 

as a function of a kernel. 

A kernel, which is denoted as 𝑘(𝑥1, 𝑥2), is a valid mathematical function that can be written as 

(Bishop, 2006): 

𝑘(𝑥1, 𝑥2) = 𝑓(𝑥1)𝑇𝑓(𝑥2)                                                       (1) 

where f(x) is any valid analytical function. Expressing an analytical model as a function of a kernel 

is called the “kernel trick” (Bishop, 2006). A Gaussian process expressed as a function of Eq. (1) 

and utilized for prediction making in regression problems is simply called Gaussian process 

regression (GPR). 

Derivation of GPR has an initial point analogous to the simple linear regression, whose vector 

form is given below: 

              
 𝑦(𝑥) = 𝒘𝑇𝜑(𝑥)                 (2) 



where w is the regression coefficient vector and φ(x) the vector containing the basis functions. The 

basis function may be nonlinear in relation to x, but still y remains a linear combination of basis 

functions. Next, a prior distribution over regression coefficients w is set, as shown in Eq. (3): 

                                           
𝑝(𝒘) = 𝑁(𝒘|0, 𝜎2𝐼)                                  (3) 

where the mean value is zero (a convenient choice since we have little or no prior information on 

weights), I is the identity matrix, and σ2 denotes the variance associated with the regression 

coefficients. 

A Gaussian process is defined by two parameters, namely, its mean m(x) and covariance 

𝐶(𝑥′, 𝑥) function. Therefore, a Gaussian process is given by: 

𝐺𝑃~𝑁(𝑚(𝑥), 𝐶(𝑥′, 𝑥))                                                     (4) 

where m(x) is taken as equal to zero and 𝐶(𝑥′, 𝑥) is replaced by a kernel function, i.e., kernels are 

inserted into the GP as covariance functions. As a result, the prior distribution over the output y is: 

𝑃(𝑦) = 𝑁(0, 𝑲)                                                              (5) 

with K being the so-called Gram matrix, whose elements are taken as: 

𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎𝑖𝑗
2 ∑ ∑ 𝜑𝑝(𝑥𝑖)𝜑𝑛(𝑥𝑗)𝑛  𝑝 .                                  (6) 

In general, a measured value contains the real value y added by noise: 

                                                         𝑡𝑛 = 𝑦(𝒙) + 𝜀𝑛,     (7) 

where tn is the nth datapoint of y and εn is uncorrelated Gaussian noise of zero mean and variance 

𝜎𝑛
2. Hence, we obtain a Gaussian distribution over the observed targets: 

𝑃(𝒕) = 𝑁(0, 𝐂) = 𝑁(0, 𝐊 + 𝜎𝑛
2𝐼),                                                (8) 

where the elements of the covariance matrix are: 

𝐶𝑘𝑚 = 𝑘(𝐱𝑘, 𝐱𝑚) + 𝜎𝑛
2𝛿𝑘𝑚                                                      (9) 

with δkm representing the Dirac delta function. Considering the population of available datapoints 



being equal to N, then Eq. (8) can be used to predict the target value tN+1 by utilizing the previously 

observed vector tN because the joint probability density 𝑃(𝑡𝑁+1, 𝐭𝑁) is Gaussian as well. Utilizing 

the property that the posterior distribution of tN+1 at xN+1 is also Gaussian, we obtain: 

        𝑃(𝑡𝑁+1|𝐭𝑁) ∝ 𝑒𝑥𝑝 [−
1

2
[𝐭𝑁𝑡𝑁+1]𝐂𝑁+1

−1 [
𝐭𝑁

𝑇

𝑡𝑁+1
]].                                   (10) 

Next, we perform the trick of splitting the covariance matrix CN+1 
into four submatrices: 

𝐂𝑁+1 = [
[𝐂𝑁] [𝐤]

[𝐤𝑇] [𝑘]
],                                                        (11) 

where: i) matrix CN is a square matrix of dimension NxN; ii) k is a vector of length N with elements 

evaluated by the kernel k(xm,xN+1) with m=1,…,N; iii) kT is the transposed vector of k; and iv) k is 

a scalar equal to output of the kernel k(xN+1,xN+1). 

Using the above splitting trick, it can be shown (Gibbs, 1997; Mackay, 1998) that the GPR 

provides a predictive distribution at xN+1 that follows a Gaussian with mean and variance taken as: 

𝑚(𝐱𝑁+1) = 𝐤𝑇𝐂𝑁
−1𝐭𝑁 ,                                                              (12) 

𝜎2(𝐱𝑁+1) = 𝑘 − 𝐤𝑇𝐂𝑁
−1𝐤 .                                                         (13) 

with 𝜎 = √𝜎2 being the standard deviation. Overall, we observe from the above equations that 

predictions made by GPR depend upon the form of the selected kernel function. 

 

2.2. Parameter Evaluation 

As mentioned before, a valid kernel function, which is evaluated as a covariance function in 

the GPR framework, can significantly affect the prediction process (Wang et al., 2013). 

Importantly, each kernel function may be expressed as a function of one or more parameters. The 

kernel parameters are evaluated using the maximum likelihood method on the available datasets. 

In particular, the log-likelihood form of the GPR predictive distribution (Bishop, 2006), i.e., 



  ln 𝑝(𝑡|𝜃) = − (
1

2
) ln(|𝐊𝑁|) − (

1

2
) 𝐭𝑇𝐊𝑁

−1t − (
𝑁

2
) ln(2𝜋)                           (14) 

is maximized with respect to a set of parameters that is denoted with the Greek letter θ. In case a 

kernel does not contain any explicit parameters, then utilization of the maximum likelihood 

expression in Eq. (14) does not occur. Needless to say, parameter evaluation occurs prior to using 

GPR for prediction making, otherwise the model is not complete, and no prediction can be made. 

 

3. Weld Residual Stress Profile Prediction 

3.1. Kernel models 

Gaussian process regression is utilized here for prediction of weld residual stress profiles by 

employing historical experimental residual stress data. In the present study, the following set of 

kernels has been applied to the available datasets (Bishop, 2006; Rasmussen, 2006):  

i) Constant Kernel:  

𝑘(𝑥1, 𝑥2) = 1 𝜃⁄             (15) 

This kernel is a constant value obtained as the ratio of the unit over a parameter θ equal to the 

variance of the training data. 

ii) Linear Kernel:  

𝑘(𝑥1, 𝑥2) = 𝜃𝑥1
𝑇𝑥2                        (16) 

This kernel simply implements the inner product of the datapoints x1 and x2, multiplied by a scale 

parameter θ. 

iii) Matérn Kernel   

𝑘(𝑥1, 𝑥2) = (21−𝜃1/𝛤(𝜃1))[√2𝜃1|𝑥1 − 𝑥2|/𝜃2]
𝜃1

𝛫𝜃1
(√2𝜃1|𝑥1 − 𝑥2|/𝜃2)           (17) 



The Matérn kernel is comprised of two parameters θ1, θ2. Here, θ1 = 3/2 (see Rasmussen (2008) 

for more details), Γ ( ) is the gamma distribution, while 𝐾𝜃1
( ) is a modified Bessel function. 

iv) Neural-Network-based kernel:

 

 

               
                   

 𝑘(𝑥1, 𝑥2) = 𝜃0𝑠𝑖𝑛−1 (
2𝑥̃1

𝑇 ∑ 𝑥̃2

√(1+𝑥̃1
𝑇 ∑ 𝑥̃1)(1+𝑥̃1

𝑇 ∑ 𝑥̃2)

)                             (18) 

where 𝑥 =̃ (1, 𝑥1, … , 𝑥𝐷)𝑇, Σ is the covariance matrix and θ0 is a scale parameter. 

v) Sum of linear and neural network kernels: This kernel is the sum of kernels 

(ii) and (iv). 

vi) Sum of linear and Matérn kernels: This kernel is the sum of kernels (ii) and 

(iii). 

vii) Sum of Matérn and neural network kernels. This kernel is the sum of kernels 

(iii) and (iv). 

viii) Sum of constant and linear kernels. This kernel is the sum of kernels (i) and 

(ii). 

ix) Sum of constant and Matérn kernels. This kernel is the sum of kernels (i) 

and (iii). 

x) Sum of constant and neural network kernels. This kernel is the sum of 

kernels (i) and (iv). 

xi) Sum of constant, linear and Matérn kernels. This kernel is the sum of 

kernels (i), (ii), and (iii). 

xii) Sum of constant, Matérn and neural network kernels: This kernel is the sum 

of kernels (i), (iii), and (iv). 



xiii) Sum of linear, Matérn and neural network kernels: This kernel is the sum 

of kernels (ii), (ii), and (iii). 

xiv) Sum of constant, linear and neural network kernels: This kernel is the sum 

of kernels (i), (ii), and (iiv). 

xv) Sum of constant, linear and Matérn kernels: This kernel is the sum of 

kernels (i), (ii), and (iiv). 

xvi) Sum of constant, linear, Matérn and neural network kernels: This kernel is 

the sum of kernels (i), (ii), (iii) and (iiv). 

Notably, the kernel models expressed in (i)-(xvi) are valid kernels that are used within the GPR 

framework to make predictions of the weld stress profile. The Gaussian process models are trained 

(for evaluation of the process parameters) by optimizing the log-likelihood (refer to Eq. (14)) using 

the Polak-Ribiere line search method (Luenberger, 1984). 

The sixteen probabilistic kernel models (i)-(xvi) are trained and validated on experimentally-

obtained residual stress data. The data were divided into two groups: 1) the training data which are 

used for training the models prior to any prediction; and 2) validation data which are used to assess 

the performance of the models against datasets not previously seen. The overall process of 

predicting the weld stress profiles is depicted in Fig. 1. 

 

3.2. Benchmark Methods  

3.2.1. Support Vector Machines 

The support vector machine (SVM) emerged from the Vapnik-Chervonenkis theory and 

consists of a generalization of the Portrait Algorithm (Cristianini & Shawe-Taylor, 2000; Bishop, 



2006). It has gained significant popularity in the last decaddes and has been widely applied to 

several problems.  

Support vector machines (SVM) is also a class of kernel machines that are commonly used for 

classification and regression problems (Cristianini & Shawe-Taylor, 2000). In the latter case, it is 

called support vector regression (SVR) and provides a set of sparse solutions. In contrast to 

Gaussian processes, SVM does not provide posterior probabilities and therefore is a non-

probabilistic kernel machine, while its model parameters are determined via a convex optimization 

problem (Vapnik, 2013). Furthermore, SVM does not adopt prior probabilities in its formulation 

as opposed to GPR. 

SVR is used to make predictions by minimizing a regularized error function: 

                                          
 

2

1

( ) (1/ 2)
N

i i

i

C E y x t w



       (19) 

where Eε( ) is an ε-insensitive error function, C is a regularization parameter adopted to control the 

predicted values, and w is a penalty term.  The error function in (19) takes the form that is given 

in Eq. (20): 

                             

0, | ( ) |
( ( ) )

| ( ) | ,

if y x t
E y x t

y x t otherwise






  
   

  
     (20) 

where ε is a positive constant, y(x) is the predicted and t the target value. Equation (20) is known 

as the ε-insensitive error function, with those data-points that lie on the boundary or outside of the 

ε-insensitive region to be called support vectors. Therefore, the formulation of SVR allows only a 

subset of the available data to be considered for prediction making; to make it clear, only those 

datapoints identified as suppor vectors contribute to the final prediction. 

Assuming a set of N available datapoints, SVR takes the form of the vSVR, where a portion of 

datapoints equal to v lies outside the ε-insensitive region. In particular, at most ν*N points lie 



outside the ε-insensitive region, and at least ν*Ν datapoints are identified as support vectors. In 

this formulation, a solution is determined using the Lagrange multipliers a and b: 

           
1 1 1

, 1/ 2 ,
N N N

i i j j i j i i i

i j i

L a b a b a b k x x t a b
  

                                (21) 

 0 /ia C N 
     

 (22) 

 0 /jb C N        (23) 

 
1

0
N

i i

i

a b


        (24) 

 
1

N

i i

i

a b vC


        (25) 

where t is the target value, and k( ) is a kernel function. Furthermore, we observe that the Lagrange 

coefficients are imposed to a set of box and linear contraints, thus defining a single objective 

constrained optimization problem. Once a solution is found, then prediction may be obtained by 

using the following expressions: 

1

( ) ( , )
N

i l l i l

l

t a b k x x 


   
    

 (26)  

1

( ) ( ) ( , )
N

j j j

j

y x a b k x x 


    .    (27) 

From Eq. (27), we observe that SVR (and generally the SVM) does provide a single output value 

for a specific input; in other words, it gives a point estimate, i.e., a single value, as opposed to a 

Gaussian process, which provides a predictive distribution, i.e., mean and variance values. 

Notably, the output of the SVR model depends on the form of the selected kernel, that should be 

carefully done by the modeler taking into consideration the problem at hand. Therefore, the 

advantage of the SVR is that it consolidates the problem of regression down to constraint 



optimization problem (Eq. 21-25). The interested reader is referred to Bishop (2006) for a concise 

and comprehensive introduction to SVR. 

In this manuscript, SVR is also applied for prediction-making using the kernels (i)-(viii) 

presented in the previous subsection. Furthermore, we adopt the νSVR models with ν=0.2, and 

regularization parameter C=10. The SVR parameters are evaluated after performing a cross 

validation approach of the SVR models on the available training data. The dual of the 

aforementioned values was found to be give the best prediction performance pertained to the cross-

validation of the training data (cross-validation by leaving out 20% of the available data at each 

iteration). Given that there is no widely accepted method for choosing the above SVR values for 

unknown datasets, then cross-validation, yet time consuming, accommodates selection of 

parameter values (Bishop, 2006). 

 

3.2.2. Multivariate Linear Regression 

Statistical tools have been widely used for data analysis, estimation and prediction. The most 

common tool in statistics in the simple linear regression (SLR). The SLR formula is given by: 

1 0y b x b                                                                      (28) 

Where y is the predicted value, b1 is the slope, and b0 is the intercept. The independent value x is 

also known as the regressor. In case, where there is more than one regression, then SLR takes the 

form of a multivariate linear regression (MLR): 

0

1

N

n n

n

y b b x


                                                                    (29) 



where b0 is the intercept and bn the regression coefficients. In the case of Eq. (29) the population 

of regressors (variables) is equal to N. Therefore, the predicted value y is the result from 

contributions coming from multiple parameters. 

Regression coefficients are evaluated by minimizing the distance of the curve defined by (Eq. 

(29) from the available data. This distance is expressed in term of a mean square error between 

the available datapoints and the values of y (Bishop, 2006).  

In the current work, MLR is applied on the available data in order to evaluate is coefficients 

and subsequently to predict the weld stress profile. Notably the number of regressors is N=3; the 

variables of MLR are the variables shown in Eq. (30). 

 

3.4. Benchmark datasets 

The GPR, SVR and MLR models were developed using residual stress data in stainless steel 

pipe welds collated in Bouchard (2007). These measurements were undertaken by diverse 

measurement techniques such as deep hole drilling, neutron diffraction, and block removal 

splitting and layering as part of a UK nuclear power industry research programme. A detailed 

description of the residual stress data and the experimental techniques can be found in Bouchard 

(2007). Training data are comprised of weld residual stress profiles from eight different pipe 

components fabricated from austenitic stainless steel. A schematic diagram defining the stress 

components and the geometry of a welded pipe is shown in Fig. 2. The measurement database 

covers a wide range of welding heat input Q in the range [0.8-2.2] kJ/mm, wall thickness (t) in the 

range [16-110] mm, and mean radius-to-wall-thickness ratio (R/t) in the range [1.8-25.0], which 

are considered to be the key input parameters controlling the residual stress distribution in 

circumferentially welded pipes (Song et al., 2015). The validation datasets are obtained from two 



butt-welded pipe components also fabricated from austenitic stainless steel of type 316L, with 

dimensions 320mm long, 250mm diameter and 25mm thickness, measured using neutron 

diffraction (Mathew et al., 2017).  In the present study, the input parameters to the tested models, 

are 3x1 vectors with entries of 1) the radius to thickness ratio R/t; 2) the thickness t; and 3) the net 

heat input Q, as given in Eq. 30: 

Input = [R/t   t   Q]T                                                          (30) 

while the output of the model is the predicted residual stress profiles expressed as the through-wall 

position x/t, which is the ratio of position from the inner surface of the pipe wall to pipe thickness. 

It should be noted that in the current work, we use two different validation datasets, that we name 

them dataset 1 and dataset 2 respectively, to assess the predictive performance of the adopted tools. 

Each validation dataset contains experimental measurements undertaken using neutron diffraction 

for measuring both axial and hoop residual stresses.  

 

3.3. Results 

The probabilistic kernel machines equipped with kernels (i)-(xvi) are utilized for prediction of 

weld residual stress profiles in the two benchmark datasets. Likewise, SVR is also equipped with 

the same kernel models, while both benchmark methods, i.e., SVR and MLR are applied to the 

same data as GPR. The predictive performance between the predicted and the experimentally-

obtained profiles in the validation dataset is evaluated using the root mean square error (RMSE): 

RMSE = √
1

𝑁
∑ (𝐸𝑛 − 𝑃𝑛)2𝑁

𝑛=1                                                         (31) 

where En is the experimental value, Pn is the predicted value and N is the total number of 

measurements. In particular, we examine the predicted profiles for the axial and hoop components 

of the residual stresses, which were determined by the neutron diffraction measurements. It should 



be noted that in this study the output data was not normalized, and therefore RMSE is expected to 

be anywhere in the range [0 +oo].    

The RMSE results are presented in Table 1 and Table 2, and provide a quantitative measure of 

the difference between the predicted profile and the actual measurements for axial and hoop stress 

profile prediction respectively. In particular, each Table presents a set of 66 RMSE values, i.e., 33 

taken with respect to dataset 1 (16 values from GP, 16 values from SVR and 1 from MLR); and 

33 taken with respect to dataset 2 (16 values from GP,16 values from SVR and 1 from MLR). It 

should be noted that MLR is not a kernel machine – keeps the same form – and thus provides only 

one value. 

With regard to the axial predictions provided in Table 1, we observe that the two kernel based 

tested methods provide very close RMSE values, with their absolute differences being very small 

in the majority of the cases. It should be noted that by taking into consideration all tested kernels, 

GP provides more accurate results for 19 out of 32 kernel functions (11 for dataset 1 and 8 for 

dataset 2) compared to SVR with respect to axial stress profile prediction. Furthermore, we observe 

that there is no dominant kernel machine model in predicting the axial profile: in dataset 1 the 

lowest RMSE is provided by SVR equipped with the sum of Matérn and Neural Network kernel, 

while in dataset 2 the best performance is taken with the GP-Linear kernel model: i.e., two different 

models give the best performance for two different datasets. With regard to MLR, we observe that 

the value of RMSE for dataset 1 is equal to 102.434. This value indicates that MLR performs worse 

than all GP models with the exception of GP-Constant kernel. Furthermore, in comparison to SVR, 

MLR outperforms 5 out of the 16 tested models for predicting axial performance of dataset 1. With 

respect to dataset 2, MLR performance is pretty close to most of the GP models (i.e., RMSE values 



around 135), but it is clearly outperformed by the GP-Linear kernel. By comparing MLR to SVR, 

we observe that MLR provides better prediction in 11 out of 16 cases.    

The RMSE values imply that both probabilistic and non-probabilistic kernel machines exhibit 

similar performance. However, there are three factors that make GP superior to SVR. Firstly, all 

GP models provide RMSE values within a narrow range of values, while the SVR fall within a 

much wider range. In particular, for dataset 1 the GP range is [95-145] (if excluding constant kernel 

then it becomes [95-99.7]), while the respective SVR range is [91-304]. Likewise, we also observe 

that GP models provide RMSE values that fall within a smaller interval than those by SVR. Those 

observations imply that the GP predictions are more robust and more stable than SVR, promoting 

the adoption of GP models for axial weld stress prediction; independently of the kernel function, 

GP will give low RMSE as opposed to SVR that may provide much higher error. Given that we 

do not know a priori which kernel function will be the best fit, then probabilistic kernel machines 

are preferable to non-probabilistic ones. A second advantage of GP is the absence of modeler-

defined parameters: on one hand, SVR requires the a priori determination of the hyperparameters 

v and C in addition to any kernel parameters, a process that requires extra datasets and may be time 

consuming, while there is no guarantee that the optimal dual can be identified. On the other hand, 

the GP formula has no user defined hyperparameters that need to be explicitly defined by the 

modeler (note: in GP only kernel parameters, if any, need to be evaluated), and thus, it ensures the 

best possible prediction-making (Chatzidakis et al., 2014; Alamaniotis et al., 2011). The third 

factor refers to the ability of GP to provide a predictive distribution, i.e., a mean value and variance 

around the mean value: SVR does provide a simple point estimation, i.e., no variance parameter. 

In such complex systems implementing maintenance strategies necessitates the evaluation of 

variance before any decision-making.  



The predicted axial stress profiles obtained by GP and SVR with each kernel are depicted in 

Fig. 3 (a and b) and 4(a and b) respectively, along with the actual measurements of dataset 1 used 

for testing. In Fig. 3, a shaded band is shown that is defined as the interval of values in the range 

[m-σ, m+σ]. Likewise, the axial profiles computed by GP and SVR for kernels (i)-(iv) pertaining 

to dataset 2 are provided in Fig. 5. 

For the hoop stress profiles, our observations are not any different to the axial stress profiles. 

For both datasets, the RMSE values taken by GP and SVR are very close. However, in this case 

SVR provides better accuracy than GP in 18 out of 32 cases. Observations made are the same as 

in the axial prediction case, and also exhibit the robustness of GP in contrast to SVR. In contrast 

to the axial case, in the hoop stress prediction there is a single model that provides the highest 

accuracy in both tested datasets, namely, the SVR-Matérn model. Based on that, it should be noted 

that the datasets were obtained with the neutron diffraction method and we may state that Matérn 

kernel provides good results for neutron diffraction measured data. Comparison with MLR exhibits 

that a high number of GPR models provides a more accurate prediction than MLR (only three 

models outperformed by MLR). The same behavior is also observed between MLR and SVR. 

Thus, as a general conclusion, on the average GPR is a better predictor than MLR. 

Visualizations of predicted hoop stress profiles with kernels (i)-(iv) plotted against the real 

values of datasets 1 and 2 are given in Fig. 6 and 7 respectively. The GP profiles are visualized in 

terms of [m-σ, m+σ] bands. In addition, he profiles taken with MLR for both axial and hoop 

profiles of datasets 1 and 2 are depicted in Fig. 8, while the obtained RMSE values for both axial 

and hoop stress datasets are plotted in Fig. 9, to exhibit the variance of those values. Visual 

inspection of Fig. 9 confirms that the RMSE from the GP prediction varies within a narrower band 

than that from SVR in all four cases.  



In addition to the root mean square error (RMSE) we have adopted a second performance 

metric: the correlation coefficient, which is computed by the respective predicted weld residual 

profile and the measured values of each test dataset. The average of the two dataset computed 

correlation values are provided in Fig. 10 and 11 for axial and hoop stress profiles respectively. In 

Fig. 10, we observe that the GP model provide the highest correlation in the vast majority of the 

tested kernels with regard to axial stress profile prediction. In particular, GP provides the best 

average correlation in 9 out of 16 cases, SVR in 4 out of 16, whilst in 3 cases correlation is exactly 

the same. With regard to hoop stress profiles, Fig. 11 shows that GP provides the highest 

correlation in the most of the cases: specifically, in 10 cases. SVR provides the highest correlation 

in 2 cases, while in the remaining 4 cases the average correlation coefficient coincides for both 

models. In general, we observe that a) correlation values are very close to each other, and b) 

correlation coefficients are very high (>0.75 in all cases), demonstrating the ability of kernel 

machines to provide accurate prediction of weld residual stress profiles. Furthermore, Table 3 

provides the average correlation coefficient taken between real values and predicted profiles by 

MLR. By comparing table 3 values with Fig. 10 and 11, we observe that GPR provides profiles 

that are more similar to real values than MLR for both axial and hoop profile. 

As a general finding, we observe that the complexity of the kernel is not correlated with the 

prediction performance. From the cases presented here, we see that composite kernels do not 

necessarily provide more accurate profiles than simpler kernels. Overall, it is the modeler’s 

responsibility to select an appropriate kernel. 

 

4. Conclusion 



We have studied and compared the application of sixteen probabilistic kernel models in 

predicting weld residual stress profiles, and benchmarked them against non-probabilistic kernel 

machines, and against a widely used tool such as linear regression. In particular, we used sixteen 

Gaussian process (GP) models, where each is equipped with a different kernel function, and 

compared them to Support Vector Regression (SVR) models also equipped with the same kernel 

functions. As an additional benchmark method, we selected the multivariate linear regression. We 

see that the Gaussian Process models provide robust predictions compared to the SVR and MLR 

models. In addition, probabilistic kernel machines are able to provide a predictive distribution, i.e., 

mean and standard deviation, instead of single point estimation. Thus, GP provide a band of 

possible values and implicitly quantify the uncertainty over the predicted value. From a practical 

point of view, GP accommodate the implementation of predictive monitoring techniques in 

complex energy systems, and allow the timely as well the low-cost maintenance and replacement 

of critical components. 

Further, we conclude that a highly sophisticated kernel (sum of two or more simple kernels) 

does not prevail in prediction-making for this problem compared to simple kernels, and this 

implicitly denotes that the role of the modeler in selecting the form of kernel used in prediction is 

critical in determining the overall outcome. This is a clear advantage of the current approach since 

it allows a significant degree of flexibility in model selection (i.e., the form of the kernel) to the 

modeler. Future work will be follow two directions. Firstly, we perform testing of the GP models 

in higher variety of weld residual stress datasets; several experiments have been scheduled 

regarding the stresses in harsh environments such as nuclear power plants. Secondly, we intend to 

adopt other valid kernel functions beyond the set of 16 ones that were used in the current work. 



The second direction, i.e., the extensive testing of several other kernels, will give us the opprotunity 

us to build ensemble GP models and applying them in weld stress profile prediction making.     
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Highlights:  

 

• Application of probabilistic kernel learning machines for weld stress prediction 

• Adoption of sixteen different kernel functions for prediction 

• Benchmark of GP against Support Vector Regression 

• Performance is measured by RMSE and Correlation Coefficient 

• GP is shown to be robust and advantageous compared to SVR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 1.  Weld stress profile prediction method using kernel modeled Gaussian Process (GP). 
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Fig. 2.  Schematic illustration of a welded pipe showing the residual stress components. 

 

 

 



 

Fig. 3a.  Axial residual stress profile prediction for dataset 1 obtained by a Gaussian Process (GP) equipped with a) 

Constant kernel, b) Linear kernel, c) Matérn kernel, d) Neural Network kernel, e) Sum of Linear and Neural 

Network kernel, f) Sum of Linear and Matérn kernel, g) Sum of Neural Network and Matérn kernel, h) Sum of 

Constant and Linear kernel,  



 

 

Fig. 3b.  Axial residual stress profile prediction for dataset 1 obtained by a Gaussian Process (GP) equipped with i) 

Sum of Constant and Matérn, j) Sum of Constant and Neural Network, k) Sum of Constant, Linear and Matérn, l) 

Sum of Constant, Neural Network and Matérn, m) Sum of Linear, Neural Network and Matérn, n) Sum of Constant, 

Linear and Neural Network, o) Sum of Constant, Linear and Matérn, and p) Sum of Constant, Linear, Neural 

Network and Matérn. 



 

Fig. 4a.  Axial residual stress profile prediction for dataset 1 obtained by Support Vector Regression (SVR) 

equipped with a) Constant kernel, b) Linear kernel, c) Matérn kernel, d) Neural Network kernel, e) Sum of Linear 

and Neural Network kernel, f) Sum of Linear and Matérn kernel, g) Sum of Neural Network and Matérn kernel, h) 

Sum of Constant and Linear kernel.  



 

Fig. 4b.  Axial residual stress profile prediction for dataset 1 obtained by Support Vector Regression (SVR) 

equipped with i) Sum of Constant and Matérn, j) Sum of Constant and Neural Network, k) Sum of Constant, Linear 

and Matérn, l) Sum of Constant, Neural Network and Matérn, m) Sum of Linear, Neural Network and Matérn, n) 

Sum of Constant, Linear and Neural Network, o) Sum of Constant, Linear and Matérn, and p) Sum of Constant, 

Linear, Neural Network and Matérn. 



 

 

 

Fig. 5.  Axial residual stress profile prediction for dataset 2 obtained by Gaussian Process (GP) equipped with a) 

Constant kernel, b) Linear kernel, c) Matérn kernel, and d) Neural Network kernel, compared to those obtained by 

Support Vector Regression with e) Constant kernel, f) Linear kernel, g) Matérn kernel, and h) Neural Network 

kernel. 



 

Fig. 6.  Hoop residual stress profile prediction for dataset 1 obtained by Gaussian Process (GP) equipped with a) 

Constant kernel, b) Linear kernel, c) Matérn kernel, and d) Neural Network kernel, compared to those obtained by 

Support Vector Regression with e) Constant kernel, f) Linear kernel, g) Matérn kernel, and h) Neural Network 

kernel. 



 

Fig. 7.  Hoop residual stress profile prediction for dataset 2 obtained by Gaussian Process (GP) equipped with a) 

Constant kernel, b) Linear kernel, c) Matérn kernel, and d) Neural Network kernel, compared to those obtained by 

Support Vector Regression with e) Constant kernel, f) Linear kernel, g) Matérn kernel, and h) Neural Network 

kernel. 



 

 

Fig. 8.  a) Axial residual stress profile prediction for dataset 1 obtained by Multivariate Linear Regression (MLR), b) 

Axial residual stress profile prediction for dataset 2 obtained by Multivariate Linear Regression (MLR), c) Hoop 

residual stress profile prediction for dataset 1 obtained by Multivariate Linear Regression (MLR), d) Hoop residual 

stress profile prediction for dataset 2 obtained by Multivariate Linear Regression (MLR), 

 

 

 



 

Fig. 9.  Plot of RMSE values taken by Gaussian Process (GP) and Support Vector Regression (SVR) for residual 

stress profile prediction for dataset 1 and 2, aiming at exhibiting the variance of RMSE. 

 

 

 

 

 

 

 



 

Fig.10.  Average Correlation Coefficient values of axial weld stress profile prediction on datasets 1 and 2 obtained 

by GP and SVR with kernels (i)-(xvi). 

 

 

 



 

 

 

 

Fig. 11.  Average Correlation Coefficient values of hoop weld stress profile prediction on datasets 1 and 2 obtained 

by Gaussian Process (GP) and Support Vector Regression (SVR) with kernels (i)-(xvi). 

 



Table 1 

Root Mean square error (RMSE) of Axial weld stress profile prediction using probabilistic kernel machines, i.e., 

kernel modeled Gaussian processes (GPs), and non-probabilistic kernel machines, i.e., SVR and MLR. 

 
  RMSE for AXIAL WELD STRESS PROFILE PREDICTION 

ID Type of Kernel Dataset 1 Dataset 2 

Gaussian 

Process (GP) 

Support 

Vector 

Regression 

(SVR) 

Multi 

Linear 

Regression 

(MLR) 

Gaussian 

Process 

(GP) 

Support Vector 

Regression 

(SVR) 

Multi Linear 

Regression 

(MLR) 

i Constant  144.770 145.128  

 

 
 

 

 
 

 

102.434 

155.449 155.008  

 

 
 

 

 
 

 

135.123 

ii Linear 95.471 101.228 123.026 128.298 

iii Matérn 98.623 94.41 135.122 133.305 

iv Neural Net 99.203 304.380 135.178 341.068 

v Sum: Linear & Neural Net 99.381 106.701 135.277 139.700 

vi Sum: Linear & Matérn 98.623 94.547 135.708 135.674 

vii Sum: Neural Net & Matérn 98.622 91.936 135.710 131.954 

viii Sum: Constant & Linear  95.477 113.398 126.420 141.002 

ix Sum: Constant & Matérn 99.269 93.451 135.708 133.065 

x Sum: Constant & Neural Net 99.202 99.116 136.115 132.863 

xi Sum: Constant & Linear & 
Matérn 

99.269 138.822 135.708 137.971 

xii Sum: Constant & Neural Net 

& Matérn 

99.269 99.427 135.708 136.069 

xiii Sum: Linear & Neural Net & 

Matérn 

99.272 100.540 135.699 138.073 

xiv Sum: Constant & Linear & 

Neural Net 

99.196 100.565 135.277 147.049 

xv Sum: Constant & Linear & 

Matérn 

99.269 100.889 135.708 135.644 

xvi Sum: Constant & Linear & 

Neural Net & Matérn 

99.271 100.801 135.708 134.156 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 

Root Mean square error (RMSE) of Hoop weld stress profile prediction using probabilistic kernel machines, i.e., 

kernel modeled Gaussian processes, and non-probabilistic kernel machines, i.e., SVR, and MLR. 

 
RMSE for HOOP WELD STRESS PROFILE PREDICTION 

ID Type of Kernel Dataset 1 Dataset 2 

Gaussian 

Process 

(GP) 

Support Vector 

Regression 

(SVR) 

Multi 

Linear  

Regression 

(MLR) 

Gaussian Process 

(GP) 

Support Vector 

Regression 

(SVR) 

Multi Linear  

Regression 

(MLR) 

i Constant  306.470 305.343  

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

198.74 

279.356 278.431  

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

216.53 

ii Linear 210.047 277.428 228.648 279.890 

iii Matérn 188.629 151.841 194.167 173.315 

iv Neural Net 188.535 198.611 194.175 203.597 

v Sum: Linear & 
Neural Net 

200.283 203.224 228.648 224.721 

vi Sum: Linear & 

Matérn 

188.628 238.462 194.167 217.169 

vii Sum: Neural Net & 
Matérn 

188.629 168.324 194.164 178.810 

viii Sum: Constant & 

Linear  

210.047 206.460 228.648 225.375 

ix Sum: Constant & 

Matérn 

188.629 184.729 194.167 193.463 

x Sum: Constant & 

Neural Net 

188.537 185.065 194.176 194.573 

xi Sum: Constant & 

Linear & Matérn 

188.633 182.025 194.175 197.266 

xii Sum: Constant & 

Neural Net & 
Matérn 

188.629 165.241 194.167 177.298 

xiii Sum: Linear & 

Neural Net & 
Matérn 

188.629 216.577 194.168 212.736 

xiv Sum: Constant & 

Linear & Neural 

Net 

210.047 206.073 228.648 223.938 

xv Sum: Constant & 

Linear & Matérn 

188.626 192.868 194.166 214.937 

xvi Sum: Constant & 

Linear & Neural 
Net & Matérn 

188.629 285.655 194.170 304.361 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Correlation Coefficient between real values and predicted profile by MLR. 

 
MLR Dataset 1 Dataset 2 

 Average of Axial And Hoop Stress Average of Axial And Hoop Stress 

Correlation 

Coefficient 

0.7943 0.9142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


