

OpenMath and SMT-LIB

Pritchard, J, Küster, T, George, D, Sparagano, O & Tomley, F

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:
Davenport, JH, England, M, Sebastiani, R & Trentin, P 2017, OpenMath and SMT-LIB.
in Proceedings of the 2017 OpenMath Workshop., OpenMath Workshop,
Edinburgh, United Kingdom, 17-17 July

Publisher: CEUR-WS

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

OpenMath and SMT-LIB

James H. Davenport
Department of Computer Science

University of Bath, Bath U.K.
J.H.Davenport@bath.ac.uk

Matthew England
Faculty of Engineering, Environment & Computing

Coventry University, Coventry, U.K.
Matthew.England@coventry.ac.uk

Roberto Sebastiani and Patrick Trentin
Dipartimento di Ingegneria e Scienza dell’Informazione (DISI),

Università di Trento, Treno, Italy
{roberto.sebastiani, patrick.trentin}@unitn.it

Abstract

OpenMath and SMT-LIB are languages with very different origins, but
both “represent mathematics”. We describe SMT-LIB for the Open-
Math community and consider adaptations for both languages to sup-
port the growing SC2 initiative.

1 Motivation: The SC2 Project

The authors are all members or associates of the EU-funded Horizon 2020 Project SC2. The overall aim of the
project is to create a new research community bridging the gap between Satisfiability Checking and Symbolic
Ccomputation, so that members well informed about both fields can ultimately resolve problems currently
beyond the scope of either.

The project was motivated by the movement of the Satisfiability Checking community outside of the Boolean
SAT problem to consider how their techniques may perform on other domains, creating the field of Satisfiability
Module Theories (SMT). The main idea here is to combine the sophisticated technology built for SAT with calls
to domain-specific theory solvers when information beyond the logical structure is required. Most recently SMT
has started to include the domain of non-linear polynomials over the reals, a field of study since the early days
of Symbolic Computation.

However, as described in [Ábr15] it is not sufficient to call leading Computer Algebra Systems as theory
solvers. Rather the algorithms need to be adapted to make them suitable for SMT. The two communities now
find themselves addressing similar problems and so will share the challenge to improve their solutions to achieve
applicability on complex large-scale applications. For further details we refer to the project introduction paper
at CICM 2016 [ABB+16] and the project website: http://www.sc-square.org/CSA/welcome.html.

1.1 An SC2 Goal: Extending SMT-LIB

The increasing variety of the theories considered by SMT solvers created an urgent need for a common input
language. The SMT-LIB initiative provided this and a large and increasing number of benchmarks. Once a
problem is formulated in the SMT-LIB language, the user can employ any SMT solver to solve the problem. It

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

is housed at: htpp://www.smt-lib.org. The initiative has proved to spur on research, providing the basis for
competitions and collaboration.

Although a proven valuable resource for the general SMT community (and far surpasses anything in Symbolic
Computation), SMT-LIB has been found lacking on the domains relevant to SC2. There is an NRA (Non-linear
Real Arithmetic) category of the SMT-LIB benchmark library with several thousand problems in, but according
to [JdM12] this consists mostly of problems originating from attempts to prove termination of term-rewrite
systems. It has been noted in several papers how many of the problems are trivial (solved without calls to theory
solvers) or come from a small number of classes and may have some hidden uniformity (see for example [ED16b]).

However, the work needed here is more than a greater variety of benchmark problems. Rather the depth of
problems that can be tackled in this domain requires an extension of the SMT-LIB language instead. Indeed,
this is one of the specific SC2 goals, as described in SC2 [ABB+16]:

Extend the SMT-LIB language to cover a wider range of interests in the joint SC2 community. These
of course include conjunctive arithmetic fragments on various (maybe mixed) domains. Among other
potential extensions are: optimisation (finding a solution maximising a goal function), allowing the use
of differential equation theory, simplification of formulas, quantifier elimination.

Hence, at this stage in the development of SMT-LIB we consider what lessons can be learnt from the OpenMath
community, and how both languages could be adapted to support the growing SC2 initiative.

2 Background

2.1 MathML

MathML is described in [Wor14] and is usually encoded in XML. A special aspect of MathML is that there are
two main strains of markup: Presentation Markup is used to display mathematical expressions while Content
Markup is used to convey mathematical meaning [Wor14, §1.3].

2.2 OpenMath

The OpenMathStandard is in [BCC+04]. A new version is in preparation, but the only substantive change is
to clarify the relationship with MathML. OpenMath objects are seen as trees, and can be encoded in XML
or in binary — for readability we use the XML encoding here. There are various basic objects: symbols OMS,
integers OMI, 64-bit IEEE [IEE08] floating point objects OMF, uninterpreted byte arrays OMB, strings OMSTR and
variables OMV, all of which are leaves of the tree; and various constructions: application OMA, binding OMB and
the statement of bound variables OMBVAR, errors OME, attributes OMATTR and attribution pairs OMATP, and foreign
objects OMFOREIGN.

The mathematical expression x+ 1 would be encoded as the application of the symbol ’+’ to x and 1:

<OMA>

<OMS name="plus" cd="arith1"/>

<OMV name="x"/>

<OMI> 1 </OMI>

</OMA>

As can be seen this is somewhat verbose. An alternative syntax, POPCORN [HR09] has been proposed, which
would shorten this algorithmically to arith1.plus($x,1), and then, knowing about arith1, still further to
$x+1.

2.2.1 Symbols

We have written this explicitly with the integer 1. If, however, we wanted the multiplicative identity of whatever
ambient algebra we were working in, we would have used the nullary symbol <OMS name="one" cd="alg1"/>.
alg1 also defines zero as the additive identity.

The symbol plus comes from the Content Dictionary arith1, which contains various basic mathematical
operators, including a (not necessarily commutative) times operator. If one wants an explicitly commutative
times operator, there is one in arith2 which has the property that x∗y = y∗x, or, from the Content Dictionary,
the Formal Mathematical Property in Figure 1. These Formal Mathematical Properties describe (some of)
teh semantics of the OpenMath symbols.

Figure 1: Commutatiivity of times from arith2

<FMP>

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0"

cdbase="http://www.openmath.org/cd">

<OMBIND>

<OMS cd="quant1" name="forall"/>

<OMBVAR>

<OMV name="a"/>

<OMV name="b"/>

</OMBVAR>

<OMA>

<OMS cd="relation1" name="eq"/>

<OMA>

<OMS cd="arith2" name="times"/>

<OMV name="a"/>

<OMV name="b"/>

</OMA>

<OMA>

<OMS cd="arith2" name="times"/>

<OMV name="b"/>

<OMV name="a"/>

</OMA>

</OMA>

</OMBIND>

</OMOBJ>

</FMP>

2.2.2 Small Type System

OpenMath per se is type-agnostic. It is expected that serious type systems will build, parallel with the Content
Dictionary system, a set of files describing the type system for the symbols. There is a simple Small Type
System described in [Dav00]. The entry for <OMS name="times" cd="arith2"/> (which comes from the file
arith2.sts) is given in Figure 2: it states that the symbol is nary and associative1, takes arguments from a
structure which has the property AbelianSemiGroup, and returns an answer in the same AbelianSemiGroup.

2.2.3 Binders

OpenMath does not have a fixed set of binders. However, binders are introduced through a fixed syntactic
marker OMBIND which enables correct recognition of free/bound variables. There is an example in Figure 1, and
further discussion in [DK09].

2.3 SMT-LIB

This is described in [BFT15], though a near-final draft of the next version is in [BFT17].

SMT-LIB specifies four languages:

1. a language for writing terms and formulas in a sorted (i.e., typed) version of first-order logic;

2. a language for specifying background theories and fixing a standard vocabulary of sort, function, and pred-
icate symbols for them;

3. a language for specifying logics, suitably restricted classes of formulas to be checked for satisfiability with
respect to a specific background theory;

1Both properties have to be stated: set construction is nary but not associative, for example.

Figure 2: Small Type System for times from arith2

<Signature name="times">

<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMA>

<OMS name="nassoc" cd="sts"/>

<OMV name="AbelianSemiGroup"/>

</OMA>

<OMV name="AbelianSemiGroup"/>

</OMA>

</OMOBJ>

</Signature>

4. a command language for interacting with SMT solvers via a textual interface that allows asserting and
retracting formulas, querying about their satisfiability, examining their models or their unsatisfiability proofs,
and so on.

Of these, Language 1 corresponds to OpenMath, Languages 2 and 3, essentially, to a typing system as in Section
2.2.2, and Language 4 more to a command system such as SCSCP [LHK+13].

The syntactic encoding of SMT-LIB expressions (Language 1 above) is as LISP S-expressions2:

<spec_constant> ::= <numeral> | <decimal> | <hexadecimal> | <binary> | <string>

<s_expr> ::= <spec_constant> | <symbol> | <keyword> | (<s_expr>*)

Just as in OpenMath, the mathematical expression x+ 1 would be encoded as the application of the symbol ’+’
to x and 1:

(+ x 1)

where + and 1 would be defined in the logic of the file: the logic itself would refer to a theory for arithmetic.

Their [spec_constant] semantics is determined locally by each SMT-LIB theory that uses them. For
instance, it is possible for an SMT-LIB theory of sets to use the numerals 0 and 1 to denote respectively
the empty set and universal set. Similarly, the elements of binary may denote integers modulo n in
one theory and binary strings in another; the elements of decimal may denote rational numbers in one
theory and floating point values in another.

This contrasts with OpenMath’s behaviour, as described in Section 2.2.1: OpenMath would use
<OMS name="one" cd="alg1"/> to get the effect SMT-LIB gets from 1.

2.3.1 Well-Sorted Terms

The sort declarations in SMT-LIB state the types of symbol operators, so that we can state that an SMT-LIB
formula is well-sorted with respect to a given sort declaration. Besides the sorts used in the theories, it is possible
to declare other sorts, whose domain is uninterpreted, that is, they can be interpreted as any non-empty set
of elements. Also, besides the functions and predicates provided by the theories, uninterpreted functions and
predicates can be used; these can have uninterpreted sort either as a domain or as range, but SMT-LIB makes
it also possible to declare, for instance, a unary function from integer to integer that is arbitrary.

2.3.2 Binders

SMT-LIB has precisely three binders: let, forall and exists. The last two are sorted, in the sense that the
syntax is

(forall ((x1 σ1) · · · (xn σn)) φ).

2An argument for an XML encoding is made in [MJ04], but there has been little progress on this recently.

The semantics are those of nested unary forall, so that, while the xi may be repeated, earlier occurrences are
shadowed by later ones. For let, the syntax is

(let ((x1 τ1) · · · (xn τn)) φ),

equivalent to the mathematical φ[τ1/x1, . . . , τn/xn] with simultaneous substitution. Hence the xi must be distinct
in this case.

3 Exists Uniquely

A relatively recent3 addition to mathematical notation is ∃!, meaning “exists uniquely”. It is, of course, not
logically necessary: two alternative definitions4 are as follows:

∃!P (x)⇔ ∃x (P (x) ∧ ∀y(P (y)⇒ x = y)) (1)

∃!P (x)⇔ (∃xP (x)) ∧ (∀y∀zP (y) ∧ P (z)⇒ y = z) (2)

Considered computationally, (1) introduces an alternation, but fewer distinct quantifiers, and fewer repetitions
of P than (2).

3.1 OpenMath

Since it is both useful and economical (saving the repetition of P , and the human/computer needing to recognise
that it is the same P), there seems no reason not to introduce it.

3.2 SMT-LIB

Here the argument is more finely balanced. The arguments for are the same as for OpenMath (except that an
SMT solver is expected to have clever heuristics, and idiom recognition might well be one of those). The converse
argument is that adding syntactic sugar is adding noise too.

4 Maxima

4.1 OpenMath

The fundamental construct in OpenMath is minmax1.max, which returns the maximum of a set. Hence we could
encode maxx∈[0,1] x(1− x) (whose value is 1

4) as the following.

<OMA>

<OMS cd="minmax1" name="max"/>

<OMA>

<OMS cd="set1" name="map"/>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR>

<OMV name="x"/>

</OMBVAR>

<OMA>

<OMS cd="arith1" name="times"/>

<OMV name="x"/>

<OMA>

<OMS cd="arith1" name="minus"/>

<OMI> 1 </OMI>

<OMV name="x"/>

</OMA>

</OMA>

</OMBIND>

3A textbook usage is [Alu09, p. 3], but it is more commonly found in research papers.
4There are more perverse but more compact ones.

<OMA>

<OMS cd="interval1" name="interval_cc"/>

<OMI> 0 </OMI>

<OMI> 1 </OMI>

</OMA>

</OMA>

<OMA>

This is a perfectly legitimate encoding, but one could argue that it is not very constructive, since the maximum
is being taken over an uncountable set. Essentially, minmax1.max(set1.map(...)) is an idiom for “use the
calculus operational semantics of max”, except of course when it isn’t. It would be more helpful to have an
explicit max constructor that took a set and a function. There are essentially two options here (OpenMath
could, of course, adopt both).

1. An operator that took both a set and a function: essentially making explicit the idiom
minmax1.max(set1.map(...)) referred to above.

2. A binder that took both a function body and a predicate, using the same bound variable for both.

<OMBIND>

<OMS cd="minmax2" name="max"/>

<OMBVAR>

<OMV name="x"/>

</OMBVAR>

<OMS cd="arith1" name="times"/>

<OMV name="x"/>

<OMA>

<OMS cd="arith1" name="minus"/>

<OMI> 1 </OMI>

<OMV name="x"/>

</OMA>

<OMA>

<OMS cd="set1" name="in"/>

<OMV name="x"/>

<OMA>

<OMS cd="interval1" name="interval_cc"/>

<OMI> 0 </OMI>

<OMI> 1 </OMI>

</OMA>

</OMA>

<OMA>

The second one probably has the abvantage of being closer to common usage.
A further complication is the lack of distinction between max and inf.

4.2 SMT-LIB

SMT-LIB does not have a max operator. However, OptiMathSAT’s input language [ST15] is SMT-LIB extended
with maximize, minimize “commands”. In fact, these are statements as to the nature of the goal(s), and the
goal is achieved by check-sat.

4.3 argmax

A relatively recent piece of mathematical notation is argmax, which does not have an extremely formal definition.
The Wikipedia5 definition is that these “are the points of the domain of some function at which the function

5https://en.wikipedia.org/wiki/Arg_max [20th June 2017].

values are maximized.” Hence näıvely,

argmax
x∈R

sin(x) =
{π

2
+ 2nπ|n ∈ Z

}
.

Though it can be defined in terms of other objects, it might be helpful to have a argmax constructor in OpenMath,
capable of encoding argmaxx∈[0,1] x(1− x) (whose value is

{
1
2

}
) .

This is a perfectly sound mathematical definition, but does not really meet the requirements of SC2, or
computation in general. What SC2 really needs is a witness point, i.e. a single value x0 such that f(x0) =
maxf∈S f(x). For the sake of mathematical notation, we term this argmax(1) — one important point would be
that it is not necessarily deterministic. This constructor could be called argmaxone.

The OptiMathSAT approach is, after calling check-sat, to allow (get-value argument1) etc. to find the
values at which the maximum discovered by check-sat was achieved. This is essentially an argmax(1) approach.
The precise details are more technical, as multiple maxima can be searched for: see Appendix A.

5 Output formats

OpenMath is agnostic about whether its formulae are input or output: it is aimed at a world where one system’s
output is the next system’s input. SMT-LIB, by contrast, is largelythe input language for an SMT system.
The output is, curdely, either SAT or UNSAT. However, SAT should have a model produced, i.e. a constructive
demonstration of satisfiability.

The SMT-LIB standard does not specify what a model should be. There is thus the possibility to use any
term, possibly to build algebraic numbers, etc... However, the current SMT-LIB requires that two terms with
different expressions in the description of the model have a different value in the model. So it would be necessary
to use some form of canonicalization of algebraic numbers that guarantees this.

6 Conclusions

6.1 Recommendations to OpenMath

1. Formalise the rôle of POPCORN in the OpenMath stable.

2. Consider an explicit ∃! constructor (Section 3.1).

3. Consider an explicit max constructor that took a set and a function (Section 4.1). OpenMath would then
need to decide which variant(s) to adopt.

4. Clarify distinction between max and inf (Section 4.1).

5. Consider an explicit argmax constructor (Section 4.3).

6. Consider an explicit argmax(1) constructor (Section 4.3).

6.2 Recommendations to SMT-LIB

1. Consider having an operator to express quantifier elimination. This would also mean expressing the output,
which could be done by reusing the input language6.

2. Consider an explicit max constructor.

3. Consider an explicit argmax(1) constructor.

Acknowledgements

We are grateful to Pascal Fontaine (LORIA) for many useful comments.

We are grateful for support by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689).

6At least over the reals, by the Tarski–Seidenberg Theorem.

References

[Ábr15] Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Pro-
ceedings ISSAC 2015. pp. 1–6. ACM (2015)

[Alu09] Aluffi,P., Algebra: Chapter 0. American Mathematical Society, 2009.

[ABB+16] E. Ábrahám, B. Becker, A. Bigatti, B. Buchberger, C. Cimatti, J.H. Davenport, M. England,
P. Fontaine, S. Forrest, D. Kroening, W. Seiler, and T. Sturm. SC2: Satisfiability Checking meets
Symbolic Computation (Project Paper). In Proceedings CICM 2016, pages 28–43, 2016.

[BCC+04] S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaëtano, and M. Kohlhase. The OpenMath
Standard 2.0. http://www.openmath.org, 2004.

[BFT15] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5. http://smtlib.cs.

uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf, 2015.

[BFT17] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6 (draft 5 June 2017).
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-draft-2017-06-05.pdf, 2017.

[Dav00] J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin 2, 34:16–21, 2000.

[DK09] J.H. Davenport and M. Kohlhase. Quantifiers and Big Operators in OpenMath. https://www.

researchgate.net/profile/Dan_Roozemond/publication/253932330_OpenMath_in_SCIEnce_

Evolving_of_Symbolic_Computation_Interaction/links/00b7d5375cc5cea0ce000000.pdf#

page=119, 2009.

[ED16b] M. England and J.H. Davenport. Experience with heuristics, benchmarks & standards for cylindrical
algebraic decomposition. In Proceedings of the 1st Workshop on Satisfiability Checking and Symbolic
Computation (SC2 2016), number 1804 in CEUR Workshop Proceedings, 2016.

[HR09] P. Horn and D. Roozemond. OpenMath in SCIEnce: SCSCP and POPCORN. In J. Carette et al., ed-
itors, Proceedings Intelligent Computer Mathematics, Springer Lecture Notes in Artificial Intelligence
5625, pages 474–479, 2009.

[IEE08] IEEE. IEEE Standard for Floating-Point Arithmetic (754-2008). IEEE, 2008.

[JdM12] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. In B. Gramlich, D. Miller, and
U. Sattler, editors, Automated Reasoning: 6th International Joint Conference (IJCAR), volume 7364
of Lecture Notes in Computer Science, pages 339–354. Springer, 2012.

[LHK+13] S. Linton, K. Hammond, A. Konovalov, C. Brown, P.W. Trinder, H.W. Loidl, P. Horn, and D. Rooze-
mond. Easy composition of symbolic computation software using SCSCP: A new Lingua Franca for
symbolic computation. Journal of Symbolic Computation, 49:95–119, 2013.

[MJ04] F. Marić and P. Janičić. SMT-LIB in XML clothes. 2nd International Workshop on Pragmatics of
Decision Procedures in Automated Reasoning (PDPAR-04), pages 86–89, 2004.

[ST15] R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization Modulo Theories. In Daniel
Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification: 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pages 447–454,
Cham, 2015. Springer International Publishing.

[Wor14] World-Wide Web Consortium. Mathematical Markup Language (MathML) Version 3.0: second edi-
tion. http://www.w3.org/TR/2014/REC-MathML3-20140410/, 2014.

A OptiMathSAT Example

(set-option :produce-models true)

(declare-fun cost () Real)

(declare-fun s1 () Bool)

(declare-fun s2 () Bool)

(declare-fun s3 () Bool)

(declare-fun s4 () Bool)

(declare-fun q1 () Real)

(declare-fun q2 () Real)

(declare-fun q3 () Real)

(declare-fun q4 () Real)

; set goods quantity

(assert (= 250 (+ q1 q2 q3 q4)))

; set goods offered by each supplier

(assert (or (= q1 0) (and (<= 50 q1) (<= q1 250))))

(assert (or (= q2 0) (and (<= 100 q2) (<= q2 150))))

(assert (or (= q3 0) (and (<= 100 q3) (<= q3 100))))

(assert (or (= q4 0) (and (<= 50 q4) (<= q4 100))))

; supplier is used if sends more than zero items

(assert (and (=> s1 (not (= q1 0))) (=> s2 (not (= q2 0)))

(=> s3 (not (= q3 0))) (=> s4 (not (= q4 0)))))

; supply from the largest number of suppliers

(assert-soft s1 :id unused_suppliers)

(assert-soft s2 :id unused_suppliers)

(assert-soft s3 :id unused_suppliers)

(assert-soft s4 :id unused_suppliers)

; set goal (A)

(minimize (+ (* q1 23) (* q2 21) (* q3 20) (* q4 10)))

; set goal (B)

(minimize (+ (* q1 25) (* q2 19) (* q3 10) (* q4 20)))

; box: independent optimization

(set-option :opt.priority box)

(check-sat)

; print model for A

(set-model 0)

(get-value (q1))

(get-value (q2))

(get-value (q3))

(get-value (q4))

; print model for B

(set-model 1)

(get-model)

