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35 ABSTRACT

36

37 Ticks are important vectors of pathogens affecting humans and animals worldwide. They do not only 

38 carry pathogens but diverse commensal and symbiotic microorganisms are also present in ticks. A 

39 molecular screening for tick-borne pathogens and endosymbionts was carried out in Ixodes ricinus, 

40 Dermacentor reticulatus and Haemaphysalis inermis questing ticks collected in Slovakia. The presence 

41 of Rickettsia spp., Coxiella burnetii, Coxiella-like and Francisella-like microorganisms was evaluated by 

42 PCR in 605 individuals and by randomly sequencing 66 samples. Four species of rickettsiae (R. raoultii, 

43 R. slovaca, R. helvetica and R. monacensis) were identified and reported with an overall prevalence 

44 range between 0.4 and 50.3% (±8.0) depending on tick species, sex and locality. Partial sequencing of 

45 the gltA gene of 5 chosen samples in H. inermis showed 99% identity with Candidatus Rickettsia 

46 hungarica. The total prevalence of C. burnetii in ticks was 2.2±1.7%; bacteria were confirmed in I. 

47 ricinus and D. reticultaus ticks. The sequences from 2 D. reticulatus males and 1 I. ricinus female ticks 

48 were compared to GenBank submissions and a 99.8% match was obtained with the pathogenic C. 

49 burnetii. Coxiella–like endosymbionts were registered in all three species of ticks from all studied sites 

50 with an average prevalence of 32.7±3.7%. A phylogenetic analysis of this Coxiella sp. showed that it 

51 does not group with the pathogenic C. burnetii. The prevalence of Francisella-like microorganisms in 

52 questing ticks was 47.9±3.9%, however H. inermis (n = 108) were not infested. Obtained sequences 

53 were 98% identical with previously identified Francisella-like endosymbionts in D. reticulatus and I. 

54 ricinus. Coxiella-like and Francisella-like microorganisms were identified for the first time in Slovakia, 

55 they might be considered as a non-pathogenic endosymbiont of I. ricinus, D. reticulatus and H. inermis, 

56 and future investigations could aim to assess their role in these ticks. However, this work provided 

57 further data and broadened our knowledge on bacterial pathogens and endosymbionts present in ticks 

58 in Slovakia to help understanding co-infestations, combined treatments and public health issues linked 

59 to tick bites.
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70 1. Introduction

71 Ticks are obligate blood sucking ectoparasites of vertebrate animals. Microbial communities 

72 hosted by ticks include tick-borne pathogens (viruses, bacteria, protozoa) and non-pathogenic 

73 microorganisms such as commensal and mutualistic microbes abundant in ticks (Andreotti et al., 2011; 

74 Carpi et al., 2011; Williams-Newkirk et al., 2014; Duron et al., 2015a, 2017). Diversity within microbial 

75 communities could be correlated to tick species, different tissues and organs, season, geographical 

76 regions, tick life stage, and feeding statuses (Carpi et al., 2011; Lalzar et al., 2012; Menchaca et al., 

77 2013; Zhang et al., 2014; Egyed and Makrai, 2014; Budachetri et al., 2014; Qiu et al., 2014; Williams-

78 Newkirk et al., 2014; Zolnik et al., 2016;).

79 Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus, Haemaphysalis concinna, 

80 Haemaphysalis inermis and Haemaphysalis punctata tick species are common and widespread in 

81 Slovakia. Ixodes ricinus ticks, considered as vectors and reservoir hosts, were collected from different 

82 localities in Slovakia, where it had been previously found to be infected with Rickettsia helvetica and  

83 Rickettsia monacensis, while Dermacentor spp. ticks were found infected with Rickettsia slovaca and 

84 Rickettsia raoultii (Špitalská et al., 2012, 2014, 2016; Minichová et al., 2017). Although these rickettsial 

85 species (Proteobacteria: Rickettsiales) are known to be pathogenic to humans they are usually linked 

86 to mild clinical symptoms (Uchiyama, 2012; Oteo and Portillo, 2012).  Rickettsial species and the role 

87 of Haemaphysalis ticks as vectors in Slovakia have not been revealed to this day. 

88 Coxiella burnetii (Proteobacteria: Legionellales) is the etiological agent of human Q fever,  a 

89 zoonotic disease distributed worldwide and causing a disease with symptoms including fever, 

90 hepatitis, and respiratory complications (Raoult, 1993). Ticks play an important role in the circulation 

91 of C. burnetii in natural foci and are responsible for the dissemination of the infection among animals. 

92 The presence of C. burnetii was previously isolated from I. ricinus, D. reticulatus, D. marginatus, H. 

93 concinna and H. inermis ticks in Slovakia (Řeháček et al., 1991, Špitalská and Kocianová, 2003). Coxiella-

94 like endosymbionts (CLEs), similar to C. burnetii are present in different tick species such as 

95 Ornithodoros muesebecki, Rhipicephalus sanguineus, Haemaphysalis longicornis, Ixodes woodi, I. 

96 ricinus, Amblyomma americanum (Zhong, 2012; Al-Deeb et al., 2016), without specific tissue location. 

97 The prevalence of CLEs varies among different species of ticks. As summarised by Zhong (2012) it is 

98 ranging from 5 to 100%. CLEs have not been studied in arthropods in Slovakia so far.

99 Francisella tularensis (Proteobacteria: Thiotrichales) is the etiological agent of the tularemia 

100 (Chu and Weyant, 2003). Francisella tularensis naturally occurs in vertebrates, invertebrates, and in 

101 contaminated soil, water, and vegetation (Mörner, 1992). The clinical presentation of tularemia varies 

102 depending upon the route of infection. The principal tick vectors include species of the genera 

103 Amblyomma, Dermacentor, Haemaphysalis, Ixodes and Ornithodoros (Gordon et al., 1983). Many tick 

104 species are also hosts of Francisella-like endosymbionts (FLEs), bacteria closely related to F. tularensis 
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105 (Dergousoff and Chilton, 2012). The pathogenic potential of FLEs remains unknown. FLEs appear to 

106 replicate intracellularly, and they are transmitted transovarially. To date, there is no evidence of 

107 horizontal transmission through tick bites (Ivanov et al., 2011). FLEs are widely distributed in Europe 

108 and were identified in D. reticulatus, Hyalomma marginatum, Hyalomma aegyptium and Rhipicephalus 

109 sanguineus sensu lato in Hungary, Portugal, France, Germany and Bulgaria (Sréter-Lancz et al., 2009; 

110 Ivanov et al., 2011; Kreizinger et al., 2013; De Carvalho et al., 2011; Michelet et al., 2013; Gehringer et 

111 al., 2013;). No data are known for the occurrence of FLEs in ticks of Slovakia.

112 No recent reports are available on the occurrence of rickettsial species in Haemaphysalis ticks, 

113 Coxiella-like and Francisella-like endosymbionts in ticks, and simultaneous occurrence of pathogenic 

114 Rickettsia species and C. burnetii with CLEs and FLEs in potential arthropod vectors in Slovakia. To 

115 understand better the circulation in Slovakia of these pathogens and symbionts we collected questing 

116 D. reticulatus, I. ricinus and H. inermis ticks. 

117

118 2. Material and methods

119 2.1. Collection of ticks

120 A total of 605 questing ticks of following species D. reticulatus, I. ricinus, and H. inermis were 

121 collected in March and April 2012, during year 2016 and in May 2017. Ticks were collected by dragging 

122 a woollen flag over the lower vegetation and along the paths in mixed forests in four localities 

123 Gabčíkovo, Zohor, Stará Lesná, and Hrhov. Gabčíkovo (47°54 N, 17°34.983 E) is situated in southwest 

124 Slovakia, 110 m above sea level (asl), alluvial habitat near river Danube. Zohor (48°20.374 N, 16°56.791 

125 E) is situated in west Slovakia, 144 m asl, with mixed deciduous forest of oak, hornbeam and hazel near 

126 river Morava. Ticks were collected on the edge of forests near the Zohor, Láb and Vysoká pri Morave 

127 villages. Stará Lesná (49°08.166 N, 20°18.575 E), High Tatras, 770 m a.s.l is located in north Slovakia, 

128 with deciduous forest of birch, rowan and spruce. Ticks were collected across the woods along the 

129 forest path, while the last site was a typical mixed forest with a predominance of beech, oak and 

130 hornbeam. The last sampling site was located in the Slovak Karst National Park, near the village  Hrhov 

131 (200–220 m a.s.l., 48°34.899 N, 20°46.743 E). Ticks were collected on the edges of the forests and 

132 pastures in this area. 

133

134 2.2. DNA extraction from ticks

135 Ticks were washed with sterile water, dried, transferred to individual tubes and crushed with 

136 a sterile carbon steel surgical scalpel blade (Surgeon, JAI Surgicals Ltd., India). Total DNA was isolated 

137 from ticks separately using the method of alkaline hydrolysis (Rijpkema et al., 1996). The concentration 

138 and purity of DNA were measured by NanoPhotometer Pearl (Implen, Germany). DNA samples were 

139 stored at −20 °C and later used as templates for the PCR amplifications. 
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140

141 2.3. Molecular analysis

142 Ticks samples were screened by PCR-based methods for the presence of Rickettsia spp. and C. 

143 burnetii tick-borne pathogens, CLEs and FLEs tick endosymbionts. Rickettsia species were identified 

144 based on the amplification of the gltA, ompA and sca4 genes, C. burnetii and FLEs based on the 16S 

145 rRNA, and CLEs based on the GroEl gene (Forsman et al., 1994; Roux et al., 1996; Sekeyová et al., 2001; 

146 Melničáková et al., 2003; Boretti et al., 2009; Duron et al., 2014). Rickettsial species were identified by 

147 species-specific real-time PCR, Rickettsia helvetica identification was based on the 23S rRNA gene, 

148 Rickettsia slovaca and R. raoultii identification were based on the ompB gene (Boretti et al., 2009; Jiang 

149 et al., 2012). PCR amplifications were performed on a TPersonal thermocycler (Biometra, Germany) or 

150 a Labcycler (SensoQuest, Germany). PCR products were analysed by electrophoresis in a 1% agarose 

151 gel stained with GelRed™ (Biotium, Hayward, California, USA) and visualized under a UV 

152 transilluminator. The real-time PCR assays were performed using a Bio-Rad CFX96TM Real-Time System. 

153 Negative and positive controls were included in each PCR-based assays.

154

155 2.4. DNA sequencing and phylogenetic analysis

156 In total, 66 randomly selected amplicons from gltA, ompA, 16S rRNA and GroEl genes were 

157 purified and both strands were sequenced by Macrogen Inc. (Amsterdam, The Netherlands). Obtained 

158 sequences were compared with available sequences listed in the GenBank nucleotide sequence 

159 database. The phylogenetic trees were produced according to the Neighbor-Joining method using 

160 bootstrap analyses with 1,000 replicates using MEGA 5 software (Felsenstein, 1985; Saitou and Nie, 

161 1987; Tamura et al., 2011).

162

163 2.5. Statistical analysis

164 Statistical analyses to test for differences in the prevalence of microorganisms in questing ticks 

165 between tick species, tick sex and sites were carried out using Fisher's exact test with an online 

166 calculator (http://www.socscistatistics.com). A p value < 0.05 was considered significant. Ninety-five 

167 percent confidence intervals (CI) were calculated using an online calculator 

168 (http://epitools.ausvet.com.au).

169

170 3. Results

171 A total of 605 ticks of three species, 334 D.reticulatus (154 females and 180 males), 163 I. 

172 ricinus (93 females, 48 males and 22 nymphs), and 108 H. inermis (75 females, 33 males) were collected 

173 from vegetation of natural sites Zohor, Gabčíkovo, Stará Lesná and Hrhov, in Slovakia (Table 1). 
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174 Rickettsia spp. DNA was confirmed in 215 (35.5±3.8%) ticks of all three species in all studied 

175 sites. DNA of R. raoultii and R. slovaca were identified in D. reticulatus ticks (78 females and 90 males), 

176 R. raoultii was dominant species.  DNA of R. helvetica and R. monacensis were found in I. ricinus ticks 

177 (9 females, 6 males and 3 nymphs), R. helvetica was dominant species (Table 1). No significant 

178 difference was found in the prevalence of R. raoultii (49.4±7.9% versus 49.4±7.3%) or R. helvetica 

179 (9.7±6% versus 12.5±9.4%) between female and male ticks, respectively. No significant difference was 

180 also observed for R. helvetica between adult and nymphal stages (9.7±6%, 12.5±9.4%). 12 positive 

181 samples for Rickettsia in H. inermis were randomly selected for further sequencing. Partial sequencing 

182 of gltA gene of 5 samples (MG821159) showed 99% identity with Candidatus Rickettsia hungarica 

183 isolate Hu5-2007 (EU853834) identified in H. inermis collected in Hungary (Hornok et al., 2010). 

184 Unfortunately, partial sequencing of the gltA gene of 7 samples (MG821160) did not match any 

185 rickettsial species identified in this study. They showed 99% identity with uncultured Bartonella sp. 

186 (KJ663731) previously identified in R. sanguineus collected in Sicily, Italy (Otranto et al., 2014). 

187 Appendix 1 shows a phylogenetic tree constructed on the basis of the gltA sequences. Partial 

188 sequencing of ompA gene of all randomly chosen 12 samples did not show any identity with known 

189 rickettsial species and fragments of sca4 gene were not successfully amplified.

190 Coxiella burnetii DNA was found in 7 D. reticulatus (4 females and 3 males) and in 8 I. ricinus (3 

191 females, 3 males and 2 nymphs) ticks.. H. inermis ticks were C. burnetii negative (Table 1). However, 

192 the overall prevalence of CLEs in this study was 32.7±3.7%. The highest prevalence was recorded in H. 

193 inermis (58 females, 33 males) with significant difference between the prevalences in males and 

194 females. However, the differences between prevalence in males and females of D. reticulatus (36 

195 females, 56 males) and I. ricinus (13 females, 4 males and 6 nymphs) were not statistically significant. 

196 The presence of CLEs in I. ricinus collected in Zohor and Stará Lesná was statistically significantly 

197 different. Totally 33 randomly chosen Coxiella spp.-positive samples were analysed by sequencing of 

198 the groEL gene fragments (Appendix 2). Sequences from 2 D. reticulatus males and 1 I. ricinus female 

199 samples (MG860513) were 99% identical with sequences of C. burnetii (CP014557, CP020616, 

200 LK937696). A phylogenetic analysis of 30 Coxiella spp. from this study showed that they do not group 

201 with the pathogenic C. burnetii. Eighteen sequences, 7 from H. inermis females and 11 from H. inermis 

202 males (MG860512) were 80% identical to Coxiella endosymbiont of Rhipicephalus geigyi isolate Rgei1 

203 (KP985514) identified in R. geigyi from Benin (Duron et al., 2015a). Two sequences from D. reticulatus 

204 females (MG860511) were 87% identical to Coxiella endosymbiont of Ornithodoros sonrai isolate 

205 Oson1 (KP985474) identified in O. sonrai collected in Senegal (Duron et al., 2015a). Next two 

206 sequences, from D. reticulatus female and I. ricinus male (MG860510) were 99% identical to 

207 Rickettsiella endosymbiont of Ixodes ventalloi isolate ixoventa6 (KY678006) identified in I. ventalloi tick 

208 tissues (Duron et al., 2017). Two sequences derived from 1 female and 1 male I. ricinus (MG860509) 
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209 were 99% identical to Rickettsiella endosymbiont of Ixodes arboricola isolate ixoarbo827 (KY677998) 

210 identified in I. arboricola (Duron et al., 2017). And the last six sequences (MG860514) derived from 3 

211 I. ricinus males, 2 D. reticulatus males and 1 D. reticulatus female were 99% identical to Serratia 

212 proteamaculans (CP000826). 

213 Analysis of the 16S rRNA gene revealed that FLEs were present in 47.9±3.9% ticks. The 

214 highest prevalence (79.9±4.3%) was found in D. reticulatus ticks (140 females, 127 males) , while H. 

215 inermis ticks were negative (Table 1). Statistically, significant differences were found between the 

216 prevalence in D. reticulatus collected in Zohor and Gabčíkovo (86.6±4.0% versus 47.4±13.0%), the 

217 prevalence in the sex of D. reticulatus (70.6±6.7% in males and 90.9±4.5% in females), and  the 

218 prevalence in I. ricinus ticks in Stará Lesná and Zohor (33.3±11.9 versus 2.9±3.3). Totally,  21 randomly 

219 selected Francisella sp.-positive ticks (11 from females and 10 from males of D. reticulatus) showed 

220 identical DNA sequences to each other (MG889594) and were 98% identical with FLEs from isolate FLE 

221 D1 (JX561116)  identified in D. reticulatus tick collected in France (Michelet et al., 2013) and with FLEs 

222 of I. ricinus (JQ740890) previously identified in I. ricinus larvae collected from birds in Hungary (Hornok 

223 et al., 2013) (see Appendix 3). 

224 The simultaneous occurrence of endosymbionts (CLEs, FLEs) and pathogens Rickettsia spp., C. 

225 burnetii) was recorded in 74 (41.1±7.2%) D. reticulatus males, 90 (58.4±7.9%) D. reticulatus females, 1 

226 I. ricinus male, 3 I. ricinus females, and 2 I. ricinus nymphs. All H. inermis males and 42 females carried 

227 DNA of Rickettsia spp. and CLEs. 

228

229 4. Discussion

230 This study is the first survey focusing on the simultaneous occurrence of bacterial tick-borne 

231 pathogens and endosymbionts in D. reticulatus, I. ricinus and H. inermis ticks in Slovakia. All three 

232 species represent epidemiologically and epozootiologically important genera. The list of known tick-

233 borne pathogens is still evolving and their presence in ticks and hosts in Slovakia have been previously 

234 studied. Non-pathogenic microorganisms, commensal and mutualistic microbes are also abundant in 

235 ticks, but their presence was not identified in ticks from Slovakia until our study. Results of PCR assays 

236 and sequences analyses revealed that Rickettsia spp., Coxiella burnetii, CLEs and FLEs co-infect D. 

237 reticulatus, I. ricinus and H. inermis collected in four localities in Slovakia. The prevalence range of 

238 Rickettsia spp. in ticks in the present study was 0.4-50.3% according to tick species as in the previous 

239 studies done in Slovakia (Špitalská et al., 2012, 2014, 2016; Švehlová et al., 2014; Minichová et al., 

240 2017). Species identification confirmed the presence of R. helvetica and R. monacensis in I. ricinus ticks, 

241 and R. raoultii, R. slovaca in D. reticulatus. These rickettsial species were identified as well in previous 

242 studies in Slovakia (Špitalská et al., 2012, 2014, 2016; Švehlová et al., 2014; Minichová et al., 2017). In 

243 this study the occurrences of R. raoultii in D. reticulatus and R. helvetica in I. ricinus ticks were without 
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244 statistical significance for localities, adult sex or between adults and nymphs. The absence of 

245 statistically significant differences could be explanated by transovarial transmission and/or 

246 transstadially survival of these rickettsiae. However, the presence of rickettsial species in 

247 Haemaphysalis spp. ticks have been determined only by the haemocyte test or PCR without the further 

248 identification and so the species present in this tick species in Slovakia was not known (Špitalská et al., 

249 2002; Špitalská and Kocianová, 2003; Boldiš et al., 2008). The sequence data analysis of the gltA gene 

250 suggested the presence of Cand. R. hungarica. The identification of the above species, in this study, 

251 expands the range of rickettsial species circulating in Slovakia.

252 The prevalence of C. burnetii in ticks in the present study was 1.7-2.9% in D. reticulatus and 5% 

253 in I. ricinus. Coxiella burnetii was identified by PCR in questing ticks in Slovakia in 2003 (Špitalská and 

254 Kocianová, 2003). After more than one decade, Minichová et al. (2017) did not detect any questing 

255 ticks or rodents-feeding ticks. However, this pathogen was confirmed in 2.7% of ticks feeding on birds 

256 (Berthová et al., 2016), which is similar prevalence than in this study. Coxiella – like bacteria are diverse 

257 and widespread in ticks and distinct from C. burnetii. Coxiella – like bacteria can be transovarially and 

258 transstadially transmitted (Duron et al., 2015a, b; Machado-Ferreira et al., 2016). Coxiella – like 

259 bacteria are very common in ticks, but their presence has not been studied previously in Slovakia, thus 

260 information about prevalence and molecular identification in this study are new for this region. The 

261 total prevalence of CLEs was 32.7±3.7% and CLEs were found in all three species of ticks from all studied 

262 sites with the highest prevalence in H. inermis (84.3%). The occurrence of CLEs in D. reticulatus and I. 

263 ricinus ticks was without statistical significance between males and females. There was also no 

264 statistical difference between localities for the prevalence of CLEs in D. reticulatus  (contrary to what 

265 we found in I. ricinus), which could be due to different habitats, the low number of tested ticks, and 

266 the presence of tested nymphs in one locality while being absent in the second one. The differences in 

267 CLEs occurrence are common and can be explained by many factors but it still indicates that it is the 

268 most widespread and biologically relevant tick symbiont (Bonnet et al., 2017). Molecular analysis 

269 showed that they do not group with the pathogenic C. burnetii, but they group with CLEs identified in 

270 different tick species (Appendix 2). Four samples in our study were similar also to Rickettsiella 

271 endosymbionts, a facultative mutualist genus in aphids with unknown effect in ticks, identified in 

272 Ixodes ticks by Duron et al. (2017), which is also the first identification in Slovakia.

273 FLEs have not been studied in Slovakia to this time. Genetic analysis of FLEs identified in our 

274 samples showed a close relationship with the FLEs of Dermacentor spp., Hyalomma spp., Rhipicephalus 

275 spp. and Amblyomma spp. previously identified and distinct from the FLEs of Ornithodoros spp. 

276 (Michelet et al., 2013). Effect of FLEs in tick is unknown. They probably are obligate symbionts (Duron 

277 et al., 2017). 
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278 Previous studies suggested that tick endosymbionts could have evolved from mammalian 

279 pathogens or infective ancestors (Noda et al., 1997; Scoles, 2004; Machado-Ferreira et al., 2009; 2016; 

280 Gerhart et al., 2016). The composition of microbial communities in tick is highly variable. Differences 

281 in the internal bacterial flora among ticks of three species (I. ricinus, D. reticulatus, H. concinna) at the 

282 same localities were confirmed by Egyed and Makrai (2014) too. Infestation of ticks can occur by 

283 ingestion from the soil environment or through the blood (or skin) of the host. Variations in the 

284 prevalence and the occurrence of tick symbionts can be linked to host preferences from the larval and 

285 nymphal tick stages. For example, H. inermis larvae prefer lizards and feed on hosts very rapidly, only 

286 1 - 2 hours (e.g. Nosek, 1973). By contrast, D. reticulatus larvae prefer several insectivores and rodent 

287 species, feeding for several days on the hosts (Nosek, 1972; Főldvari et al., 2016).

288 Our results showed the presence of pathogenic species of Rickettsia and Coxiella burnetii and 

289 symbiotic Coxiella-like and Francisella-like microorganisms and their sympatric occurrence in D. 

290 reticulatus, I. ricinus and H. inermis ticks. To know tick-borne bacteria, which could be affected by the 

291 presence of another pathogens or symbionts is essential for monitoring and diagnosis of tick-borne 

292 diseases in humans and animals. 

293

294 Conflict of interest

295

296 The authors declare that they have no conflict of interest.

297

298 Acknowledgements

299

300 This study was financially supported by the Scientific Grant Agency of Ministry of Education, 

301 Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences (project Vega 

302 2/0068/17 and 1/0084/18). This contribution is also the result of using infrastructure acquired by the 

303 project implementation (code ITMS: 26240220044), supported by the Research & Development 

304 Operational Programme funded by the ERDF.

305

306 References

307

308 Al-Deeb, M.A., Frangoulidis, D., Walter, M.C., Kömpf, D., Fischer, S.F., Petney, T., Muzaffar, S.B., 2016. 

309 Coxiella-like endosymbiont in argasid ticks (Ornithodoros muesebecki) from a Socotra Cormorant 

310 colony in Umm Al Quwain, United Arab Emirates. Ticks Tick Borne Dis. 7, 166-171.

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

https://www.ncbi.nlm.nih.gov/pubmed/26515059


311 Andreotti, R., Perez de Leon, A.A., Dowd, S.E., Guerrero, F.D., Bendele, K.G., Scoles, G.A., 2011. 

312 Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-

313 encoded pyrosequencing. BMC Microbiol. 11, 6. 

314 Berthová, L., Slobodník, V., Slobodník, R., Olekšák, M., Sekeyová, Z., Svitálková, Z., Kazimírová, M., 

315 Špitalská, E., 2016. The natural infection of birds and ticks feeding on birds with Rickettsia spp. and 

316 Coxiella burnetii in Slovakia. Exp. Appl. Acarol. 68, 299-314.

317 Boldiš, V., Kocianová, E., Štrus, J., Tušek-Žnidarič, M., Sparagano, O.A.E., Štefanidesová, K., Špitalská, 

318 E., 2008. Rickettsial agents in Slovakian ticks (Acarina, Ixodidae) and their ability to grow in Vero and 

319 L929 cell lines. Animal Biodiversity and Emerging Diseases: Ann. N.Y. Acad. Sci. 1149, 281–285.

320 Bonnet, S.I., Binetruy, F., Hernández-Jarguín, A.M., Duron O., 2017. The tick microbiome: Why non-

321 pathogenic microorganisns matter in tick biology and pathogen transmission. Front. Cell. Infect. 

322 Microbiol. 7, 236.

323 Boretti, F.S., Perreten, A., Meli, M.M., Cattori, V., Willi, B., Wengi, N., Hornok, S., Honegger, H., Hegglin, 

324 D., Woelfel, R., Reusch, C.E., Lutz, H., Hofmann-Lehmann, R., 2009.  Molecular investigation of 

325 Rickettsia helvetica infection in dogs, foxes,humans, and Ixodes ticks. Appl. Environ. Microbiol. 75, 

326 3230–7.

327 Budachetri, K., Browning, R.E., Adamson, S.W., Dowd, S.E., Chao, C.C., Ching, W.M., Karim, S., 2014. An 

328 insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae). J. Med. Entomol. 51, 

329 119–129.

330 Carpi, G., Cagnacci, F., Wittekindt, N.E., Zhao, F., Qi, J., Tomsho, L.P., Drautz, D.I., Rizzoli, A., Schuster, 

331 S.C., 2011. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS 

332 ONE 6, e25604. 

333 Chu, M.C., Weyant, R., 2003. Francisella and Brucella, in Murray, P.R.,  Baron, E.J., Jorgensen, J.H., 

334 Pfaller, M.A., Yolken, R.H. (Eds.), Manual of clinical microbiology, 8th ed. American Society for 

335 Microbiology, Washington, D.C., p.789–797.

336 De Carvalho, I.L., Santos, N., Soares, T., Zé-Zé, L., Núncio, M.S., 2011. Francisella-like endosymbiont in 

337 Dermacentor reticulatus collected in Portugal. Vector Borne Zoonotic Dis. 11, 185–188.

338 Dergousoff, S.J., Chilton, N.B., 2012. Association of different genetic types of Francisella-like organisms 

339 with the Rocky mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor 

340 variabilis) in localities near their northern distributional limits. Appl. Environ. Microbiol. 78, 965–971.

341 Duron, O., Jourdain, E., McCoy, K.D., 2014. Diversity and global distribution of the Coxiella intracellular 

342 bacterium in seabird ticks. Ticks Tick Borne Dis. 5, 557–563.

343 Duron, O., Noel, V., McCoy, K.D., Bonazzi, M., Sidi-Boumedine, K., Morel, O., et al., 2015a. The recent 

344 evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q Fever 

345 pathogen, Coxiella burnetii. PLoS Pathog. 11, e1004892. 

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590



346 Duron, O., Sidi-Boumedine, K., Rousset, E., Moutailler, S., Jourdain, E., 2015b. The importance of ticks 

347 in Q fever transmission: what has (and has not) been demonstrated? Trends Parasitol. 31, 536–552. 

348 Duron, O., Binetruy, F., Noël, V., Cremaschi, J., McCoy, K. D., Arnathau, A., et al., 2017. Evolutionary 

349 changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921. 

350 Egyed, L., Makrai, L., 2014. Cultivable internal bacterial flora of ticks isolated in Hungary. Exp. Appl. 

351 Acarol. 63, 107-122. 

352 Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 

353 783-791.

354 Forsman, M., Sandstrom, G., Sjostedt, A., 1994. Analysis of 16S ribosomal DNA sequences of Francisella 

355 strains and utilization for determination of the phylogeny of the genus and for identification of strains 

356 by PCR. Int. J. Syst. Bacteriol. 44, 38–46.

357 Főldvari, G., Široký, P., Szekeresz, S., Majoros, G., Sprong, H., 2016 Dermacentor reticulatus: a vector 

358 on the rise. Parasites Vectors 9, 314. 

359 Gehringer, H., Schacht, E., Maylaender, N., Zeman, E., Kaysser, P., Oehme, R., Pluta, S., Splettstoesser, 

360 W.D., 2013. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks 

361 from south-western Germany. Ticks Tick Borne Dis. 4, 93–100.

362 Gerhart, J.G., Moses, A.S., Raghavan, R., 2016. A Francisella-like endosymbiont in the Gulf Coast tick 

363 evolved from a mammalian pathogen. Scientific Reports, 6, 33670.

364 Gordon, J.R., McLaughlin, B.G., Nitiuthai, S., 1983. Tularaemia transmitted by ticks (Dermacentor 

365 andersoni) in Saskatchewan. Can. J. Comp. Med. 47, 408–411.

366 Hornok, S., Meli, M.L., Perreten, A., Farkas, R., Willi, B., Beugnet, F., Lutz, H., Hofmann-Lehmann, R., 

367 2010. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as 

368 potential vectors of rickettsial and mycoplasmal agents. Vet. Microbiol. 140, 98-104.

369 Hornok, S., Csörgő, T., de la Fuente, J., Gyuranecz, M., Privigyei, C., Meli, M.L., Kreizinger, Z., Gönczi, 

370 E., Fernández de Mera, I.G., Hofmann-Lehmann, R., 2013. Synanthropic birds associated with high 

371 prevalence of tick-borne rickettsiae and with the first detection of Rickettsia aeschlimannii in Hungary. 

372 Vector Borne Zoon. Dis., 13, 77-83.

373 Ivanov, I.N., Mitkova, N., Reye, A.L., Hübschen, J.M., Vatcheva-Dobrevska, R.S., Dobreva, E.G., 

374 Kantardjiev, T.V., Muller, C.P., 2011. Detection of new Francisella-like tick endosymbionts in Hyalomma 

375 spp. and Rhipicephalus spp. (Acari: Ixodidae) from Bulgaria. Appl. Environ. Microbiol. 77, 5562–5565.

376 Jiang, J., You, B.J., Liu, E., Apte, A., Yarina, T.R., Myers, T.E., Lee, J.S., Francesconi, S.C., O’Guinn, M.L., 

377 Tsertsvadze, N., Vephkhvadze, N., Babuadze, G., Sidamonidze, K., Kokhreidze, M., Donduashvili, M., 

378 Onashvili, T., Ismayilov, A., Agayev, N., Aliyev, M., Muttalibov, N., Richards, A.L., 2012. Development 

379 of three quantitative real-time PCR assays for the detection of Rickettsia raoultii, Rickettsia slovaca, 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

http://www.zora.uzh.ch/view/authors_for_linking_in_citation/Hofmann-Lehmann=3ARegina=3A=3A.html


380 and Rickettsia aeschlimannii and their validation with ticks from the country of Georgia and the 

381 Republic of Azerbaijan. Tick Tick Borne Dis. 3, 327–331.

382 Kreizinger, Z., Hornok, S., Dán, A., Hresko, S., Makrai, L., Magyar, T., Bhide, M., Erdélyi, K., Hofmann-

383 Lehmann, R., Gyuranecz, M., 2013. Prevalence of Francisella tularensis and Francisella-like 

384 endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents. 

385 Vector Borne Zoonotic Dis. 13, 160–163.

386 Lalzar, I., Harrus, S., Mumcuoglu, K. Y., Gottlieb, Y., 2012. Composition and seasonal variation of 

387 Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl. Environ. 

388 Microbiol. 78, 4110–4116. 

389 Machado-Ferreira, E., Piesman, J., Zeidner, N.S., Soares, C.A.G., 2009. Francisella-like endosymbiont 

390 DNA and Francisella tularensis virulence related genes in Brazilian ticks (Acari: Ixodidae). J. Med. 

391 Entomol. 46, 369 – 374.

392 Machado-Ferreira, E., Vizzoni, V.F., Balsemao-Pires, E., Moerbeck, L., Gazeta, G.S., Piesman, J., Voloch, 

393 C.M., Soares, C.A.G., 2016. Coxiella symbionts are widespread into hard ticks. Parasitol. Res. 115, 4691-

394 4699.

395 Melničáková, J., Derdáková, M., Barák, I., 2013. A system to simultaneously detect tick-borne 

396 pathogens based on the variability of the 16S ribosomal genes. Parasites Vectors 6, 269.

397 Menchaca, A.C., Visi, D.K., Strey, O.F., Teel, P.D., Kalinowski, K., Allen, M.S., et al., 2013. Preliminary 

398 assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma 

399 americanum nymph to adult transition using semiconductor sequencing. PLoS ONE 8, e67129. 

400 Michelet, L., Bonnet, S., Madani, N., Moutailler, S., 2013. Discriminating Francisella tularensis and 

401 Francisella-like endosymbionts in Dermacentor reticulatus ticks: evaluation of current molecular 

402 techniques. Vet. Microbiol. 163, 399–403.

403 Minichová, L., Hamšíková, Z., Mahríková, L., Slovák, M., Kocianová, E., Kazimírová, M., Škultéty, Ľ., 

404 Štefanidesová, K., Špitalská, E., 2017. Molecular evidence of Rickettsia spp. in ixodid ticks and rodents 

405 in suburban, natural and rural habitats in Slovakia. Parasites Vectors 10, 158.

406 Mörner, T., 1992. The ecology of tularemia. Rev. Sci. Technol.11, 1123–1130.

407 Noda, H., Munderloh, U.G., Kurtti, T.J.,  1997. Endosymbionts of ticks and their relationship to 

408 Wolbachia spp and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63, 3926 – 

409 3932.

410 Nosek, J., 1972. The ecology and public health importance of Dermacentor marginatus and D. 

411 reticulatus ticks in Central Europe. Folia Parasitologica (Praha), 19, 93 – 102.

412 Nosek, J., 1973. Some characteristic features of the life history, ecology and behaviour of the ticks 

413 Haemaphysalis inermis, H. concinna and H. punctata, in: Daniel, M., Rosický, B. (Eds.), Proceedings of 

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708



414 the 3rd International Congress of Acarology, August 31/September 6, 1971, Prague, 837 p., pp. 479 – 

415 482. 

416 Oteo, J.A., Portillo, A., 2012. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis. 3, 271–278.

417 Otranto, D., Dantas-Torres, F., Giannelli, A., Latrofa, M.S., Cascio, A., Cazzin, S., Ravagnan S., Montarsi, 

418 F., Zanzani, S.A., Manfredi, M.T., Capelli, G., 2014. Ticks infesting humans in Italy and associated 

419 pathogens. Parasites Vectors, 7, 328. 

420 Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F., Sugimoto, C., 2014. Microbial population analysis of the 

421 salivary glands of ticks: a possible strategy for the surveillance of bacterial pathogens. PLoS One. 9, 

422 e0103961.

423 Raoult, D., 1993. Treatment of Q fever. Antimicrob. Agents Chemother. 37, 1733-1736.

424 Rijpkema, S., Golubic, D., Moelkenboer, M., Verbeek-De Kruif, N., Schellekens, J., 1996. Identification 

425 of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme 

426 borreliosis endemic region of northern Croatia. Exp. Appl. Acarol. 20, 23–30.

427 Roux, V., Fournier, P. E., Raoult, D., 1996. Differentiation of spotted fever group rickettsiae by 

428 sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the 

429 gene encoding the protein rOmpA. J. Clin. Microbiol. 34, 2058 – 2065.

430 Řeháček, J., Úrvolgyi, J., Kocianová, E., Sekeyová, Z., Vavreková, M., Kováčová, E., 1991. Extensive 

431 examination of different tick species for infestation with Coxiella burnetii in Slovakia. Eur. J. Epidemiol. 

432 7, 299–303.

433 Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic 

434 trees. Mol. Biol. Evol. 4, 406-425.

435 Scoles, G.A., 2004. Phylogenetic analysis of the Francisella-like endosymbiont of Dermacentor ticks. J. 

436 Med. Entomol. 41, 277 – 276.

437 Sekeyová, Z., Roux, V., Raoult, D., 2001. Phylogeny of Rickettsia spp. inferred by comparing sequences 

438 of ‘gene D’, which encodes an intracytoplasmic protein. Int. J. Syst. Evol. Microbiol. 51, 1353–1360.

439 Sréter-Lancz, Z., Széll, Z., Sréter, T., Márialigeti, K., 2009. Detection of a novel Francisella in 

440 Dermacentor reticulatus: a need for careful evaluation of PCR-based identification of Francisella 

441 tularensis in Eurasian ticks. Vector Borne Zoonotic Dis. 9, 123–126.

442 Špitalská, E., Kocianová, E., Výrosteková, V., 2002. Natural focus of Coxiella burnetii and rickettsiae of 

443 spotted fever group in southwestern Slovakia. Biologia, 57, 585-591.

444 Špitalská, E., Kocianová, E., 2003. Detection of Coxiella burnetii in ticks collected in Slovakia and 

445 Hungary. Eur. J. Epidemiol. 18, 263-266.

446 Špitalská, E., Štefanidesová, K., Kocianová, E., Boldiš, V., 2012. Rickettsia slovaca and Rickettsia raoultii 

447 in Dermacentor marginatus and Dermacentor reticulatus ticks from Slovak Republic. Exp. Appl. Acarol. 

448 57, 189–197. 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



449 Špitalská, E., Boldiš, V., Derdáková, M., Selyemová, D., Rusňáková Tarageľová, V., 2014. Rickettsial 

450 infection in Ixodes ricinus ticks in urban and natural habitats of Slovakia. Ticks Tick Borne Dis. 5, 161–

451 165. 

452 Špitalská, E., Stanko, M., Mošanský, L., Kraljik, J., Miklisová, D., Mahriková, L., Bona, M., Kazimírová, 

453 M., 2016. Seasonal analysis of Rickettsia species in ticks in an agricultural site of Slovakia. Exp. Appl. 

454 Acarol. 68, 315-324.

455 Švehlová, A., Berthová, L., Sallay, B., Boldiš, V., Sparagano, O.A.E., Špitalská, E., 2014. Sympatric 

456 occurrence of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks and Rickettsia 

457 and Babesia species in Slovakia. Ticks Tick Borne Dis. 5, 600-605.

458 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nie, M., Kumar, S., 2011. MEGA5: molecular 

459 evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum 

460 parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

461 Uchiyama, T., 2012. Tropism and pathogenicity of Rickettsiae. Front Microbiol 3, 230.

462 Zhang, X.C., Yang, Z.N., Lu, B., Ma, X.F., Zhang, C.X., Xu, H.J., 2014. The composition and transmission 

463 of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 5, 864–870. 

464 Zhong, J., 2012. Coxiella-like endosymbionts, in: Toman, R., et al. (Eds.), Coxiella burnetii: Recent 

465 advances and new perspectives in research of the Q fever bacterium. Advances in experimental 

466 medicine and biology 984. Springer Science+Business Media, Dordrecht, pp. 365-379.

467 Zolnik, C.P., Prill, R.J., Falco, R.C., Daniels, T.J., Kolokotronis, S.O., 2016. Microbiome changes through 

468 ontogeny of a tick pathogen vector. Mol. Ecol. 25, 4963–4977. 

469 Williams-Newkirk, A.J., Rowe, L.A., Mixson-Hayden, T.R., Dasch, G.A., 2014. Characterization of the 

470 bacterial communities of life stages of free living lone star ticks (Amblyomma americanum). PLoS ONE 

471 9, e102130. 

472

473 Legends

474

475 Table 1 Prevalence of Rickettsia spp., Coxiella burnetii, Coxiella-like and Francisella-like 

476 microorganisms in questing ticks collected at four sites in Slovakia [no. of infected/ no. of captured 

477 (prevalence %±95% CI)]

478 Appendix 1 Phylogenetic tree inferred from comparison of the Rickettsia gltA partial sequences using 

479 Neighbor-Joining method (Saitou, Nie, 1987). GeneBank accession numbers are included. Included 

480 sequences without GeneBank accession numbers were previously published and not submitted to 

481 GenBank (Minichová et al. 2017). Bootstrap values of neighbor-joining (1,000 replicates) are shown.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



482 Appendix 2 Phylogenetic tree inferred from comparison of the Coxiella groEL partial sequences using 

483 Neighbor-Joining method (Saitou and Nie, 1987). GeneBank accession numbers are included. 

484 Bootstrap values of neighbor-joining (1,000 replicates) are shown.

485 Appendix 3 Neighbor-joining phylogenetic tree showing relationships of 16S rRNA gene sequences 

486 obtained from Francisella species and Francisella-like endosymbionts (FLEs) with the novel Francisella-

487 like isolate from Dermacentor reticulatus ticks collected in Slovakia. Bootstrap values of neighbor-

488 joining (1,000 replicates) are shown.
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509 Table 1

Rh Rm Rr Rs Rsp. CB CLEs FLEs

Zohor

DR males 65/130 

(50)

0/130 2/130 

(1.5)

42/130 

(32.3)

105/130 

(80.8)

DR 

females

74/147 

(50.3)

1/147 

(0.7)

4/147 

(2.7)

35/147 

(23.8)

135/147 

(91.8)

DR 

Subtotal 

139/277 

50.2±6.0

1/277 

0.4±0.7

6/277 

2.2±1.7

75/277 

27.1±5.3

240/277 

86.6±4.0

Gabčíkovo

DR males 24/50 

(48)

1/50 

(2)

1/50  

(2)

14/50 

(28)

22/50    

(44)

DR 

females

2/7 

(28.6)

1/7 

(20)

0/7 1/7   

(14.3)

5/7     

(71.4)

Subtotal 26/57 

45.6±12.9

2/57 

3.5±5.0

1/57 

1.8±3.4

15/57 

26.3±11.4

27/57 

47.4±13.0

Total DR 168/334 

50.3±5.4

7/334 

2.1±1.5

90/334 

26.9±4.7

267/334 

79.9±4.3

Stará Lesná

IR males 5/18 

(27.8)

0/18 0/18 1/18 

(5.6)

3/18 

(16.7)

IR females 0/20 0/20 1/20  

(5)

6/20 

(30)

11/20    

(55)

IR nymphs 1/22 

(4.5)

2/22 

(9.1)

2/22 

(9.1)

4/22 

(18.2)

6/22 

(27.3)

Subtotal 6/60 

10±7.6 

2/60 

3.3

3/60 

5±5.5

11/60 

18.3±9.8

20/60 

33.3±11.9

Zohor

IR males 1/30 

(3.3)

3/30 

(10)

1/30 

(3.3)

1/30 

(3.3)

IR females 9/73 

(12.3)

2/73 

(2.7)

5/73 

(6.8)

2/73 

(2.7)

IR Subtotal 10/103 

9.7±5.7

5/103 

4.9±4.1

6/103 

5.8±4.5

3/103 

2.9±3.3

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
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913
914
915
916
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920
921
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924
925
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935
936
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938
939
940
941
942
943
944



Total IR 18/163 

11.0±4.8

8/163 

4.9±3.3

17/163 

10.4±4.7

Hrhov

HI males 8/33 

(24.2±14.6)

33/33 

(100)

HI females 21/75 

(28±10.2)

58/75 

(77.3)

Total HI 29/108 

26.9±8.4

91/108 

84.3±6.9

510 Rh – Rickettsia helvetica, Rm – Rickettsia monacensis, Rr – Rickettsia raoultii, Rs – Rickettsia slovaca, 

511 Rsp – Rickettsia species, CB – Coxiella burnetii, CLEs – Coxiella-like endosymbionts, FLEs – Francisella-

512 like endosymbionts, DR – Dermacentor reticulatus, IR – Ixodes ricinus, HI – Haemaphysalis inermis
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