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Abstract 

Our aim was to identify the best anthropometric index associated with waist adiposity. The six weight-

status indices included body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHTR), 

and a new waist-by-height0.5 ratio (WHT.5R). The association between three waist skinfolds and the 

six anthropometric indices was conducted using ANCOVA, MANCOVA, allometric modelling and non-

linear regression. The strongest predictors of waist adiposity were (1st) WHT.5R, (2nd) WHTR, (3rd) 

waist circumference (WC), (4th) BMI, (5th) WHR, and lastly (6th) a body shape index ABSI = WC/(BMI2/3
 

* height1/2). The allometric and non-linear regression analyses identified the optimal waist-to-height 

ratio associated with waist adiposity to be (waist * height -0.6). The 95% confidence intervals of the 

height exponents encompassed -0.5 but excluded -1.0 assumed by WHTR. Assuming that excess 

waist adiposity is an important cardiovascular risk factor, we recommend that the new WHT.5R be 

used to advise people how to maintain a “healthy” weight.  

Keywords: Allometric Models; Waist-to-Height ratios; Abdominal Skinfolds; Healthy Weight 
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Introduction 

Clinicians and health professionals are always seeking to find a simple weight-status index associated 

with cardio-metabolic risk that they can use to advise either their patients or members of the public 

how to maintain a “healthy” weight. The World Health Organization considers body mass index (BMI 

=weight (kg)/height2 (m2), to be such an index, with the advice that having a BMI within the range 18.5 

to 24.9 kg.m-2 was normal, 25-29.9 kg.m -2 was overweight and 30 kg.m-2 and above was obese 

(WHO, 2000).  Despite its widespread use, BMI is often criticized for failing to assess fatness, in 

particular the fat centralization on the abdomen, which is recognized as harmful to health. Although 

visceral and intra abdominal fatness are more precisely determined using computerized tomography, 

magnetic resonance imagining and dual x-ray absorptiometry (DEXA) (Roriz, et al., 2014), 

anthropometric measures provide a time efficient and economical means of estimating central 

adiposity and weight status that are widely used in public health practice. As a consequence, a range 

of alternative anthropometric indices which encompass some abdominal girth assessment have 

sought to overcome the limitations of BMI, including waist circumference (WC), waist to height ratio 

(WHTR) and a Body Shape Index (ABSI) as defined by Krakauer and Krakauer (2012). Excess intra-

abdominal fat is associated with greater risk of obesity-related morbidity than is overall adiposity (Ho, 

et al., 2001; Visscher, Kromhout, & Seidell,  2002) and, as a consequence, waist circumference (WC) 

has historically been shown to be the best simple measure of both intra-abdominal fat mass and total 

fat (Han, McNeill, & Seidell, 1997; Lemieux, Prud'homme, Bouchard, Tremblay, & Desprs 1996). A 

recent study by Nevill, Duncan, Lahart, & Sandercock (2017) suggests that a better index for adiposity 

that also demonstrates a stronger association with cardio-metabolic risk is a new waist-to-height ratio 

(WHT.5R) obtained by dividing WC by height0.5. The index was derived, based on the allometric power 

law WC=a.HTb, in order to obtain a waist circumference index that is independent of height (HT). The 

fitted HT exponent was b=0.528 (SEE=0.04), suggesting that the simple body-shape or weight-status 

index for WC to be independent of stature or height (HT) should be WC.HT-0.5. A new ratio was given 

the acronym WHT.5R. Subsequent research by Swainson, Batterham, Tsakirides, Rutherford, & Hind 

(2017) recently reported that WHT.5R, alongside WHTR, was the best predictor of visceral adipose 

tissue, derived by DEXA in a sample of 81 adults. However, these results should be treated with some 

caution given the relatively small sample size and the fact that the authors failed to control for the 

confounding effect of age. 
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Nevill et al. (2017) went on to demonstrate that when comparing the associations of the six 

adiposity indices (including BMI) with a measure of cardio-metabolic risk, the new index WHT.5R was 

found to have the strongest relationship of all six indices. In their study, Nevill, et al (2016) used a 

measure of cardio-metabolic risk that was derived from combining: Triglycerides + average blood 

pressure ((diastolic + systolic)/2) + glucose + HDL (*-1)). Although WHT.5R was found to have the 

strongest association with cardio-metabolic risk (rank=1), the second and third strongest ranked 

indices were the waist-to-height ratio (WHTR) and absolute WC respectively, leaving BMI ranked only 

fourth out of the six indices (Nevill, et al., 2017). Nevill, et al (2017) concluded that WHT.5R was the 

best anthropometric index of cardio-metabolic risk compared to other commonly-used anthropometric 

indices of weight status. Importantly, the findings of the aforementioned study suggest that weight-

status indices that can detect excess subcutaneous central obesity are more likely to detect cardio-

metabolic risk.  Waist circumference may be a more sensitive measure to detect changes in cardio-

metabolic health but normalizing for height to the power of 0.5 may be a more suitable anthropometric 

index as height0.5 is unaffected by changes in adiposity unlike measures such as hip girth that was 

used as the denominator in WHR and BMI, used as a denominator in ABSI. However, the 

aforementioned study by Nevill, et al (2017) did not examine the association between WHT.5R and 

any measure of adiposity and much remains to be discovered regarding the relationship of directly 

measured subcutaneous central obesity assessed using skinfolds to the anthropometric indices 

available to assess health. The current study addresses this issue. Determining the association 

between measures of weight status using surface anthropometry with directly measured adiposity is a 

necessary step in establishing the utility and criterion validity of such measures as proxies for 

adiposity. Hence the purpose of the current study was to examine this association and identify the 

best weight-status index associated with subcutaneous central obesity, the latter being assessed by 

three measures of skinfolds that represent adiposity around the waist region, i.e., the iliac crest, 

supraspinale, abdominal skinfolds.  

 

METHODS 

Participants 

All participants (n = 478) were adults (18 years or over), and included untrained controls, and athletes 

in a variety of sports competing at club, regional and national level. They were measured either by 
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level 3 and 4 anthropometrists accredited by the International Society for the Advancement of 

Kinanthropometry (ISAK), at Universities in Aberdeen, UK, and South Australia.  All measurements 

were made subject to informed consent and in accordance with the ethical requirements of the local 

institutions.  Participants were measured for height, mass, waist and hip girth, and skinfolds at the iliac 

crest, supraspinale and abdominal sites according to standard procedures (Stewart, Marfell-Jones, 

Olds, & de Ridder, 2011). The physical characteristics (mean SD) of the participants, by training 

status (athlete vs control) and sex, are given in Table 1. Healthy male and female participants were 

classified according to training status, with athletes taking part in a variety of sports including running, 

orienteering, long jumping, power lifting and field games such as football and hockey.  

 

Table 1 near here – 

 

Anthropometric indices of weight status 

The anthropometric indices of weight status were calculated as follows: Body mass index (BMI) was 

calculated as weight /height2 with weight assessed to 0.1 kg and stature to 0.001 m. Waist-to-hip ratio 

(WHR) was calculated by dividing waist circumference (WC) by hip circumference (HC), and waist-to-

height ratio WHTR, by dividing WC by height. Both girths were assessed to 0.1 cm. A body shape 

index (ABSI) was calculated using formula: ABSI = WC/(BMI2/3
 * height1/2) (Krakauer and Krakauer, 

2012). Finally, a new waist-to-height ratio (WHT.5R), independent of height, was calculated by dividing 

WC by height0.5 (see Nevill, et al., 2017). Note that all calculations of anthropometric indices involving 

height and WC are in recorded in metres (m). 

 

Procedures 

Three skinfold sites in close proximity to the measured waist circumference were taken as our 

measure of subcutaneous adiposity. The three sites and their respective skinfold orientations were 1) 

the iliac crest: a near-horizontal fold superior to the iliac crest (defined where a vertical line from the 

axilla meets the ilium); 2) supraspinale: an oblique fold at approximately 45°at the intersection where a 

line from the anterior superior iliac spine to the anterior axillary fold meets a horizontal line from iliac 

crest; and 3) abdominal: a vertical fold 5 cm lateral to the omphalion (the mid-point of the navel). The 
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skinfolds were measured using Harpenden calipers (British Indicators, Luton, UK) to 0.1 mm at each 

site on the right side of the body, according to standard procedures (Stewart et al., 2011). 

 

Statistical Methods 

To explore the strength of the association between the three waist skinfold measures (either 

individually or collectively) and six anthropometric indicators of weight status (BMI, WC, WHR, WHTR, 

ABSI and WHT.5R), we conducted five methods of analysis. The first two methods involve considering 

the three skinfold measures collectively, either (1) by summing the three skinfolds (SSF) and using 

ANCOVA to identify the best weight-status index as a predictor/covariate having controlled for age, 

sex and athletic status (athlete vs. control), or (2) by conducting a MANCOVA (adopting all three 

skinfold variables as the multivariate dependent variable), once again incorporating the six 

anthropometric indicators of weight status as separate covariates, and controlling for age, sex and 

athletic status (athlete vs. control). The third method of analyses (3) used separate univariate 

ANCOVAs to explore each skinfold variable separately, i.e., incorporating each of the six 

anthropometric indicators as separate covariates, once again controlling for age, sex and athletic 

status (athlete vs. control). The fourth method of analysis (4), adopted a proportional allometric model 

(see Nevill, et al., 2006), to identify which waist-to-height ratio is best able to describe the sum-of-waist 

skinfolds (SSF). The proposed proportional allometric model was, 

SSF= a * W b1 * HT b2 * exp (c.age + d.age2) * , (1) 

where a is the scaling constant, allowed to vary between sex and athletic status, and b1 and b2 are the 

waist (W) and stature (HT) scaling exponents respectively. Note that age was incorporated into the 

models as a quadratic polynomial (using both age and age2 terms) to accommodate the likelihood that 

the sum of skinfolds may decline during adolescence to reach a minimum sometime in early adulthood 

and increase thereafter. The model (1) can be linearized with a log-transformation, and multiple 

regression/ANCOVA can then be used to estimate unknown parameters, including the waist (W) and 

stature (HT) exponents. Note that the multiplicative error ratio ‘’ assumes that the error will increase in 

proportion to body size (see Figure 1), a characteristic in data known as heteroscedasticity that can be 

controlled by taking logarithms. Categorical or group differences within the population, e.g. sex and 

athletic status can be explored by allowing the constant intercept parameter ‘a’ in (1) to vary for each 

group (by introducing them as fixed factors and their interactions within the ANCOVA).  
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Finally, recognising that the allometric model (1) forces the association between SSK and the 

waist-by-height ratio through the origin (Y=0, X=0), we fitted an alternative non-linear model that 

allows a non-zero constant intercept W0 to exist as SSK tends towards zero.  

SSF + W0= a * W * HT b * exp (c.age + d.age2), (2) 

The model (2) was rearranged as follows  

SSF = a * W * HT b * exp (c.age + d.age2) - W0, (3) 

and fitted using the non-linear least-squares regression routine provided in SPSS. 

For all the above analyses, the significance level was set at P<0.05. 

 

RESULTS 

A strong association between the sum-of-waist skinfolds (iliac crest, supraspinale, abdominal 

skinfolds) and waist circumference, can be seen in Figure 1. The Pearson’s correlations between the 

sum-of-waist skinfolds and waist circumference were, for male controls (r=0.67; P<0.001), female 

controls (r=0.64; P<0.001), male athletes (r=0.64; P<0.001), female athletes (r=0.67; P<0.001) and all 

four groups combined (r=0.42; P<0.001), 

 

Figure 1 about here –  

  

A two-way ANOVA reveals significant differences in the sum-of-waist skinfolds between athletic status 

(controls mean 40.8mm (SE=1.3) vs. athletes mean 35.6mm (SE=1.2); P=0.004) but no difference 

between sex nor a sex-by-athletic status interaction (both P>0.05). When the four groups were 

analysed using a one-way ANOVA, the rank order in sum-of-waist skinfolds was as follows (male 

controls=43.4mm female controls=38.1mm, female athletes=35.8mm, and male athletes=35.3mm; 

P=0.004). 

 

In order to assess the extent to which the six anthropometric indices made to the above two-way 

ANOVA, each anthropometric index was incorporated as covariates separately. The resulting 

covariate F ratios from the six ANCOVA analyses are given in Table 2a, having controlled for age 

(incorporated as a quadratic), athletic status and sex.  
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The MANCOVA analyses adopting the three skinfold measures as the multivariate dependent 

variable identified the following Wilk’s lambda and F ratio contributions for the six anthropometric 

covariates having controlled for age (incorporated as a quadratic), athletic status and sex.  The results 

are given in Table 2b. In all six MANCOVA analyses, the effects of the quadratic terms in age, athletic 

status sex were significant (P<0.001). Note that the Wilks lambda ranges from 0 to 1 and the lower the 

Wilks lambda, the stronger the relationship. This was confirmed by the larger F ratios.  

 

Table 2 about here –  

 
Further evidence (using the covariate F ratios) of the strength of association between subcutaneous 

adiposity (adopting the three separate skinfolds of iliac-crest, supraspinale, abdominal skinfolds as 

separate dependent variables) and the six weight-status anthropometric covariates, having controlled 

for age (as a quadratic), athletic status and sex in the 18 univariate ANOVAs, are given in Table 3. As 

before, in all 18 ANOVAs, the effects of age, athletic status and sex were significant (P<0.001). 

 

Table 3 about here –  

 

 

Using the proportional allometric model (1), the ANCOVA of log-transformed sum-of-waist skinfolds 

Ln(SSF) resulted in the following results and fitted parameters (Table 4).  

 

Table 4 about here – 

 

The waist (3.751) and height (-2.340) exponents associated with the log-transformed sum-of-waist 

skinfolds in the above model have opposite signs that can be rearranged and expressed as a waist-to-

height ratio within a power function relationship as follows: 

Waist3.751 · height-2.34= (waist · height -0.624)3.751,  

since height-2.34 = (height-0.624)3.751. The 95% confidence interval (CI) for the rearranged/rescaled height 

exponent -0.624 is (-0.826 to -0.440). Note that the quadratic in age is “U” shaped and reaches a 

minimum at age = -(-0.03)/2*(.0004)=37.5 years (using elementary differential calculus). 
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Finally, the results and fitted parameters, obtained from fitting the non-linear least-squares regression 

model (equation 3) using the SPSS non-linear least-squares regression algorithm, are given in Table 

5. 

 

Table 5 about here -  

 

Once again, the stature exponent b=-0.641 (SE=0.092) had a 95% confidence interval (CI) from -

0.822 to -0.460, very similar to that estimated and reported using the allometric model (1) in Table 4. 

Note that the quadratic in age is “U” shaped and reaches a minimum at age = -(-0.007)/2*(8.77E-

06)=39.9 years (again using elementary differential calculus). 

 

DISCUSSION 

The current study examined the association between commonly-used surface anthropometric 

surrogates for subcutaneous central obesity and subsequently determined a hierarchy of preference of 

the indices using a variety of statistical approaches. This is the first study to present such data and, as 

such, adds new insight into the literature on the topic of which anthropometric index is the best proxy 

for centralized adiposity. Such information directly relates to health, is of pivotal value for accurate 

translation into public health practice, and could be used to refine anthropometric proxies for adiposity 

as used in healthcare policy worldwide. Understanding the strength of association between surface 

anthropometric measures and subcutaneous central obesity in healthy, non-obese, adults is equally 

as important as determining this association in obese individuals for two reasons. First, it is commonly 

overlooked that the antecedents of obesity might be present in individuals whose weight has been 

historically considered to be in the healthy range.  Secondly, the cut-offs of reference ranges and 

categorization has the potential to mislead, because such a ‘cliff edge’ phenomenon has no equivalent 

physiological basis. To clarify, the commonly used BMI cut point of 30 kg/m2 to classify an individual 

as obese does not have a physiological basis (See Nevill and Holder, 1995). The validity of BMI is 

based on the assumption that as BMI increases so does adiposity but classifying based on 30 kg/m2 

has no biological validity (Nevill and Holder, 1995) and instead appears to have arisen from the need 

for a conveinient measure of weigth status for statistical analysis and classification of individuals at a 
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population level. The current study demonstrates the erroneous nature of such a ‘cliff edge’ approach 

(i.e., classification of individuals as obese/non-obese based on BMI) as erroneous for the participant 

group examined as, for example, athletically trained adults may be classified as obese, based on BMI, 

but in reality, may be lean but muscular.  The participants in the current study comprised untrained 

and athletically trained adults. Determining associations between surface anthropometry and 

subcutaneous central obesity in such a population is useful as it allows a better understanding of 

which anthropometric measure might have best clinical relevance in a sample that are yet to present 

with obesity. Such information is key for preventive purposes and population-based screening of 

weight status before individuals become obese and recognizing that adiposity may have associated 

metabolic abnormality in the absence of obesity (Amato, Guarnotta, & Giordano, 2013).  

The results of the first three methods of analyses identified the strongest predictor of, or 

association with, subcutaneous central obesity (using the three waist skinfolds either collectively in 

Tables 2a and 2b or separately in Table 3) was the waist-to-height0.5 ratio. Indeed, the strongest 

through to the weakest anthropometric covariate associated with subcutaneous central obesitywas 

found to be the following order, #1 the waist-to-height0.5 ratio (WHT.5R), #2 waist-to-height ratio 

(WHTR), #3 absolute waist, #4 BMI, #5 waist-to-hip ratio (WHR), and finally #6 ABSI, an order that 

remained consistent in all three types of analyses, see Tables 2a, 2b, and 3. The second and third 

best predictors of subcutaneous central obesity were waist-to-height ratio and absolute waist 

circumference, certainly better than either BMI, waist-to-hip ratio, or ABSI. This rank order is identical 

with that reported by Nevill et al. (2017) when reporting the associations between weight status indices 

and cardio-metabolic risk using an entirely independent population.  

Further evidence that the WHT.5R index is the best (rank=1) indicator of subcutaneous central 

obesity compared with the WHTR (rank=2) comes for the fourth “allometric” and fifth “non-linear 

regression” analyses. These analyses identified the optimal waist-to-height ratio associated with the 

sum-of-waist skinfolds was (waist · height -0.624) and (waist · height -0.641) respectively (having 

controlled for differences in age, sex and athletic status). The empirically derived ratios are not too 

dissimilar to the WHT.5R since both 95% confidence intervals (CI) encompass the height exponent -

0.5 but precludes -1.0 (i.e., that assumed for the waist-to-height ratio, WHTR).  

Interestingly, both quadratics in age from Tables 4 and 5 suggest that, for the same waist-by-

height ratio (approximately waist · height -0.6), the waist-skinfold adiposity reaches a minimum at age 
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37-40 years. This period broadly corresponding to an age when both fat-free mass and appendicular 

muscle mass appear to commence an age-related decline in healthy adults (Kyle et al., 2001).  This 

further underscores the inappropriateness of using body weight alone to predict adiposity, because 

age-related muscle loss and fat gain may balance one another out (Spirduso, 1995, p 68). Although 

Ashwell, Gunn, & Gibson (2012) concluded, having performed a systematic review and meta-analysis 

with data representing over 300,000 adults, that WHTR (rank 2nd  in the current study) was superior to 

both WC (ranked 3rd) and BMI (ranked 4th) for detecting cardio-metabolic risk in both males and 

females, the WHTR suffers from the following drawback: Absolute or unadjusted waist circumference 

(WC) will clearly penalise the taller subject who might have a larger waist suggesting that their cardio-

metabolic risk is greater than a shorter individual with the same waist circumference. However, by 

dividing waist by height, the waist-to-height ratio (WHTR) will “over-scale” an individual’s waist 

circumference predicting a taller subject to have a lower cardio-metabolic risk than the shorter 

individual with the same waist circumference. The only index that will do neither over- or under-

estimate the subject’s cardio-metabolic risk would appear to be the WHT.5R, found to be independent 

of height/stature. Height0.5 is unaffected by changes in adiposity whereas measures such as BMI 

(adopted as a denominator in the ABSI) and hip girth, (adopted as a denominator in WHR), are (Nevill, 

et al., 2017), i.e., by dividing WC by such body-size dimensions also known to be inflated by waist 

adiposity will lead to a dilution in the impact of the ratio to detect abdominal adiposity. Thus, 

normalizing or scaling waist girth for height0.5 is more suitable in providing a proxy for subcutaneous 

central obesity that accounts for, but is independent of, differences in body size. Such an assertion 

also agrees with conclusions recently made by Swainson et al (2017) based on their analysis of DEXA 

determined visceral adipose tissue. It would however be prudent for additional study to cross validate 

the methods presented in the current study. 

Across the epidemiological literature, there has been justifiable criticism of some of the early 

indices to be adopted such as BMI and WHR including failing to represent adiposity, or being 

insensitive to tracking its changes (Ho, et al, 2001; Javed, et al., 2015; WHO, 2000). It is also 

important to note that the definitions of overweight and obesity commonly used in the literature and 

recommended by the WHO (2000) (BMI > 25 and > 30 kg.m-2 respectively) were based on the 

relationship between BMI with morbidity and mortality outcomes (Dalton, et al., 2003). Nevertheless, 

BMI remains in widespread use to classify weight status in relation to body fat, yet crucially fails to 
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take into account the composition of body mass (e.g., muscle vs fat) and nor does it account for the 

distribution of excess fat. WHR had previously been acknowledged as a clinically relevant method of 

identifying patients with excess abdominal fat, although fat accumulation in the hip area, or a large 

overhanging abdomen which reaches hip level may mean this ratio fails to alter with increasing 

fatness.  Latterly WC has been identified as a more practical measure than WHR which is more 

strongly correlated with visceral fat than WHR (Camhi, et al., 2011; Pouliot, et al., 1994).  However, 

viable alternatives to these have experienced considerable resistance, which may be due to 

development of reference ranges for different population groups.  Our data not only demonstrate how 

poorly such trusted ratios perform, but point to a hitherto unexplained flaw in most of these, and 

elucidate an alternative which does not artificially penalise taller or shorter individuals.   

The data presented in the present study add support to the findings of Nevill et al (2016) in 

regard to the utility of WHT.5R. When attempting to determine the superiority of simple anthropometric 

measures of weight status, assessing the association of that measure with various disease risk 

factors, as was demonstrated by Nevill et al (2017), is essential but forms only part of the answer. The 

present study establishes the validity of WHT.5R as a measure of subcutaneous central obesity that 

was superior to all other simple anthropometric indices of obesity. In this case, the present study 

demonstrates the criterion validity of WHT.5R. This should be considered a key novel finding of the 

present work. Finally, consideration needs to be given to the practicality and accuracy of 

measurement, particularly if widespread use in public health settings for health screening is intended. 

It should be noted that WHT.5R is no more difficult to measure than BMI or WC. WHT.5R therefore 

provides a measure which is more strongly related to cardio-metabolic risk, as demonstrated 

previously, is more strongly related to subcutaneous central obesity and is as easy to assess with high 

accuracy as any other simple anthropometric measure of weight status or obesity. 

In conclusion, the current study has identified that the new index WHT.5R was the strongest 

predictor of subcutaneous central obesity. Given that WHT.5R is independent of stature and is also 

the strongest predictor of cardio-metabolic risk (see Nevill, et al., 2017), we recommend that clinicians 

and health professionals should consider adopting the new waist-by-height0.5 ratio (WHT.5R) to advise 

either their patients or members of the public how to maintain a “healthy” weight. 

 

 



13 

 

 13 

References 

Amato, M. C., Guarnotta, V., Giordano, C. (2013). Body composition assessment for the definition 
of cardiometabolic risk. Journal of Endocrinological Investigation, 36, 537-543. 

Ashwell, M., Gunn, P., & Gibson, S. (2012). Waist‐ to‐ height Ratio is a Better Screening Tool 
than Waist Circumference and BMI for Adult Cardiometabolic Risk Factors: Systematic 
Review and Meta‐ analysis. Obesity Reviews, 13, 275-286. 

Camhi, S. M., Bray, G. A., Bouchard, C., Greenway, F. L., Johnson, W. D., Newton, R. L., 
Ravussin, E., Ryan, D. H., Smith, S. R., & Katzmarzyk, P.T. (2011). The Relationship of 
Waist Circumference and BMI to Visceral, Subcutaneous, and Total Body Fat: Sex and 
Race Differences. Obesity, 19, 402-408. 

Dalton, M., Cameron, A. J., Zimmet, P. Z., Shaw, J. E., Jolley, D., Dunstan, D. W., & Welborn, T. 
A. (2003). Waist Circumference, Waist–hip Ratio and Body Mass Index and their 
Correlation with Cardiovascular Disease Risk Factors in Australian Adults. Journal of 
Internal Medicine, 254, 555-563. 

Han, T. S., McNeill, G., Seidell, J. C., & Lean, M. (1997). Predicting Intra-Abdominal Fatness from 
Anthropometric Measures: The Influence of Stature. International Journal of Obesity & 
Related Metabolic Disorders, 1997, 21. 

Ho, S. C., Chen, Y. M., Woo, J., Leung, S., Lam, T. H., & Janus, E. D. (2011). Association 
between Simple Anthropometric Indices and Cardiovascular Risk Factors. International 
Journal of Obesity, 25, 1689. 

Javed, A., Jumean, M., Murad, M. H., Okorodudu, D., Kumar, S., Somers, V. K., Sochor, O., & 
Lopez-Jimenez, F. (2015). Diagnostic Performance of Body Mass Index to Identify 
Obesity as Defined by Body Adiposity in Children and Adolescents: A Systematic Review 
and Meta‐ analysis. Pediatric Obesity, 10, 234-244. 

Krakauer, N.Y., & Krakauer, J. C. (2012). A New Body Shape Index Predicts Mortality Hazard 
Independently of Body Mass Index. PloS One, 7, e39504. 

Kyle, U.G., Genton, L., Hans, D., Karsegard, L., Slosman, D.O. & Pichard, C. (2001). Age-related 
differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 
and 94 years. European Journal of Clinical Nutrition, 55, 663-672. 

Lemieux, S., Prud'homme, D., Bouchard, C., Tremblay, A., & Desprs, J. (1996). A Single 
Threshold Value of Waist Girth Identifies Normal-Weight and Overweight Subjects with 
Excess Visceral Adipose Tissue. American Journal of Clinical Nutrition, 64, 685-693. 

Nevill, A. M., Duncan, M. J., Lahart, I. M., & Sandercock, G. R. (2017) Scaling Waist Girth for 
Differences in Body Size Reveals a New Improved Index Associated with 
Cardiometabolic Risk. Scandinavian Journal of Medicine and Science in Sports, e-pub 
ahead of print. 

Nevill, A. M., Stewart, A. D., Olds, T., & Holder, R. (2006). Relationship between Adiposity and 
Body Size Reveals Limitations of BMI. American Journal of Physical Anthropology, 129, 
151-156. 

Nevill, A. M., Holder, R. L. (1995). Body mass index: a measure of fatness or leanness? British Journal 

of Nutrition, 73, 507-516. 

Pouliot, M., Desprs, J., Lemieux, S., Moorjani, S., Bouchard, C., Tremblay, A., Nadeau, A., & 
Lupien, P.J. (1994). Waist Circumference and Abdominal Sagittal Diameter: Best Simple 
Anthropometric Indexes of Abdominal Visceral Adipose Tissue Accumulation and Related 
Cardiovascular Risk in Men and Women. American Journal of Cardiology, 73, 460-468. 



14 

 

 14 

Roriz, A. K. C., Passos, L. C. S., de Oliveira, C. C., Eickemberg, M., Moreira, P. d.A. , Sampaio, L. R. 
(2014), Evaluation of the Accuracy of Anthropometric Clinical Indicators of Visceral Fat in 
Adults and Elderly. PLoS ONE,9, e103499. 

Spurduso. W. W. (1995). Physical dimensions of aging.  Champaign, IL: Human Kinetics, p 68.  

Stewart, A., Marfell-Jones, M., Olds, T., & Ridder, d.H. (2011). International Society for 
Advancement of Kinanthropometry. International Standards for Anthropometric 
Assessment. Lower Hutt, New Zealand: International Society for the Advancement of 
Kinanthropometry. 

Swainson, M. G., Batterham, A. M., Tsakirides, C., Rutherford, Z. H., Hind, K. (2017). Prediction of 
whole-body fat percentage and visceral adipose tissue mass from five anthropometric 
variables. PLoS ONE, 12, e0177175 

Visscher, T., Kromhout, D., & Seidell, J.C. (2002). Long-Term and Recent Time Trends in the 
Prevalence of Obesity among Dutch Men and Women. International Journal of Obesity, 
26, 1218. 

World Health Organization (2000). Obesity: Preventing and Managing the Global Epidemic. 
Geneva, World Health Organization . 

 



15 

 

 15 

  

FIGURE CAPTIONS 

 

Figure 1. The association between the sum-of-waist skinfolds (iliac crest, supraspinale, abdominal 

skinfolds) and waist circumference by sex and group (athletes versus controls). 
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Figure 1.  

 

Table 1. Physical characteristics of participants   

 

Female 
 

age (y) mass (kg) stature (cm) BMI (kg.m-2) waist girth (cm) 

Control (n=104) Mean 30.2 61.7 166.0 22.4 71.8 

 
SD 8.8 8.7 6.1 2.6 6.8 

Athletes (n=87) Mean 27.9 60.5 168.4 21.3 69.3 

 
SD 9.0 9.0 8.6 2.1 5.0 

Total  (n=191) Mean 29.1 61.2 167.1 21.9 70.7 

 
SD 8.9 8.8 7.5 2.5 6.1 

Male 
      

Control (n=95) Mean 30.0 75.2 178.5 23.6 81.2 

 
SD 9.6 9.2 8.2 2.3 7.2 

Athletes (n=192) Mean 26.8 86.5 182.7 25.8 85.6 

 
SD 7.6 14.6 9.0 3.5 8.7 

Total  (n=287) Mean 27.9 82.7 181.3 25.1 84.2 

 
SD 8.4 14.1 9.0 3.3 8.5 

SD=Standard Deviation 

 

 

 

 

 

 

 



17 

 

 17 

Table 2. The contributions for the six anthropometric weight-status covariates to a) the 

univariate ANCOVA (using the sum of skinfolds as the dependent variable), and b) 

MANCOVA (using the iliac-crest, supraspinale, abdominal skinfolds as the three dependent 

variables) having controlled for age, athletic status and sex. Rank order with 1=best fit 

through to the 6=worst fit 

2a. Univariate ANCOVA using 

Sum-of-skinfolds as dependent 

variable. 

Rank 

order 

2b.MANOVA with three 

skinfold as dependent 

variables 

Rank 

order 

Anthropometric 

covariate variables 
F1,468  

Wilks' 

Lambda 
F3,466 

 

BMI 244.176 4 0.635 89.557 4 

Waist 291.694 3 0.608 100.21 3 

WHR 58.009 5 0.888 19.547 5 

WHTR 337.543 2 0.569 117.67 2 

ABSI 20.224 6 0.953 7.730 6 

WHT.5R 353.602 1 0.559 122.51 1 

 
 

Table 3. The contributions (F ratios) for the six anthropometric weight-status covariates 

associated with the three separate skinfolds dependent variables (the iliac-crest, supraspinale, 

abdominal skinfolds) having controlled for age (as a quadratic), athletic status and sex. 

 

Skinfolds  

Anthropometr

ic 

variables 

Iliac-crest Supraspinale Abdominal 
Rank order 

F1,468 F1,468 F1,468  

BMI 193.6 261.1 185.3 4 

Waist 231.9 272.7 234.5 3 

WHR 52.2 53.1 48.4 5 

WHTR 268.5 323.8 260.4 2 

ABSI 18.2 12.2 21.8 6 

WHT.5R 278.3 333.5 275.8 1 
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Table 4. The estimated parameter (B) obtained from the ANCOVA, predicting log-

transformed sum-of-waist skinfolds Ln(SSK). 

Dependent variable Ln(SSK) 
   

95% Confidence Interval for 

B 

Model 
Parameters 

(B) 
SE P 

Lower 

Bound 

Upper 

Bound 

constant Ln(a) .119 1.875 .949 -3.565 3.803 

Ln(W) 3.751 .200 .000 3.358 4.143 

Ln(HT) -2.340 .383 .000 -3.093 -1.588 

age -.030 .010 .002 -.049 -.011 

age2 .0004 .0001 .0064 .0001 .0007 

male (Ln(a)) -.426 .058 .000 -.541 -.311 

sport (Ln(a)) -.037 .052 .478 -.138 .065 

male*sport (Ln(a)) -.161 .069 .020 -.297 -.025 

The female controls were used to estimate the baseline constant measure Ln(a) and all other 

groups compared with it, indicated by Ln(a). 
 

 

Table 5. The estimated parameters obtained from fitting the non-linear least-squares 

regression model equation (3) 

 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower Bound 
Upper 

Bound 

b -0.641 0.092 -0.822 -0.46 

constant a 4.308 0.484 3.356 5.26 

male (a) -0.358 0.094 -0.542 -0.174 

male*sport (a) -0.059 0.013 -0.084 -0.034 

age -0.007 0.002 -0.011 -0.002 

age2 8.77E-05 3.50E-05 1.99E-05 1.56E-04 

W0 136.393 12.518 111.794 160.991 

W0 * male (W0) -39.097 14.867 -68.311 -9.883 

The female controls were used to estimate the baseline constant a, and all other groups 

compared with it, indicated by a. 
 

 


