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Highlights 11 

1. Electric vehicles (EVs) offer Small Island Developing States (SIDS) solutions for electricity storage, grid 12 

services, reduced fuel imports, reduced pollution and associated health benefits, and the potential 13 

for improved resilience to natural hazard events. 14 

2. Electrification of transport sectors, particularly given potential Vehicle-to-Grid (V2G) services, should 15 

be explored and incorporated into national energy planning strategies of Small Island Developing 16 

States. 17 

3. Aging public vehicle fleets offer great opportunity for electric vehicle transition, substantially reducing 18 

cost of travel and subsidy support for the transportation sector. 19 

 20 
Abstract: Small Island Developing States (SIDS), while at the forefront of international climate action, face 21 

a number of development challenges linked to their historic, geographic and socio-economic 22 

characteristics. Small populations and limited energy demand cap the penetration of renewable energy 23 

technologies. Electric vehicles offer solutions for electricity storage, grid services, reduced fuel imports, 24 

and reduced pollution with associated health benefits. This paper provides a comprehensive review of 25 

literature on island applications of electric vehicles, making the case for SIDS as an area of opportunity for 26 

further exploration, and presenting the southern Caribbean island of Barbados as a case study.  27 

Keywords: Islands; electric vehicles; vehicle-to-grid services. 28 
 29 

1 Introduction 30 

The international electric vehicle market is growing exponentially, with over 1 million fully electric vehicles 31 
in operation globally (IEA, 2017). Experts conservatively predict that by 2040, 35% of new car sales globally 32 
and 25% of the world’s car fleet will be electric cars (BNEF, 2017). One of the major barriers to their 33 
widespread adoption is cost, but with lithium battery prices dropping rapidly, experts expect the standard 34 
electric car to have cost parity by 2021 in Europe and China (BNEF, 2017). Small islands are a prime market 35 
for electric vehicles with limited road networks, high fuel costs and the need for direct grid storage 36 
solutions. Conversion of local passenger and public transportation fleets could have major cost savings 37 
and dramatic regional environmental benefits whilst bringing typically marginalized communities to the 38 
forefront of global technological advancement. 39 
 40 
This paper provides a comprehensive review of recent studies that explore the effect of electric vehicle 41 
integration on isolated island grids. All the studies to-date focus on islands that are overseas territories or 42 
constituents of developed/industrialized countries. Small Island Developing States do share similar 43 



technical challenges in the design of their energy systems and the management of their electricity grids. 44 
However, they differ in several areas; including weaker governance structures and lower research and 45 
development capacities, but mainly in attracting foreign direct investment and domestic private finance 46 
(World Bank, 2017). This paper discusses the application of electric vehicles and vehicle-to-grid services 47 
to SIDS, highlighting the impact of electric vehicles on greenhouse gas emissions. The Caribbean island of 48 
Barbados is making substantial private sector-led headway in the creation of an electric vehicle market 49 
and a case study of this island is presented to relate the principles of vehicle-to-grid services to an existing 50 
SIDS context. 51 
 52 

2 Special considerations of Small Island Developing States 53 

2.1 Development challenges inherently connected to their energy systems 54 

Small Island Developing States face many economic and technical challenges that differ to those of larger, 55 
more developed nations. These challenges primarily stem from their geography – specifically their limited 56 
areas, small populations and often-remote locations. Many also have limited natural resources, which 57 
hinder their ability to earn foreign exchange, resulting in economies that depend heavily upon imported 58 
goods and services (Weisser, 2004; IRENA, 2015). Their insularity and remoteness limit their market access 59 
for the trade of goods and services. The flight of human capital is also common with many professionals 60 
migrating to more developed countries in search of better prospects (Weisser, 2004). Fossil fuel imports, 61 
for electricity and transportation, comprise a large share of their GDP and limit their ability to develop. 62 
Figure 1 and Table 1 present an overview of some of the key statistics for SIDS and compare them with 63 
selected US States and EU countries. In an effort to pay for increasing fuel import bills, governments often 64 
sacrifice investments on infrastructure upgrades, improving local technical capacity and other important 65 
areas required for economic development, which can lead to ‘locked-in’ scenarios in times of high oil 66 
prices (IRENA, 2015). 67 
 68 
The fact that their fossil fuel derived energy systems create ‘locked-in’ scenarios is often paradoxical given 69 
that many of these islands have plentiful renewable energy resources (Weisser, 2004; Dornan and Shah, 70 
2016; Worldwatch 2015). As most SIDS are located in the equatorial regions, they have an abundance of 71 
solar resources. Exposure to trade winds can provide them with enviable wind resources (Scheutzlich, 72 
2011), with the deployment of utility-scale wind often emerging as the cheapest way to generate 73 
electricity (Hohmeyer, 2015). Waste management challenges and declining agricultural sectors lead to 74 
strong bioenergy potential. They also have marine energy potential, be it wave, tidal and/or ocean thermal 75 
energy conversion, and many volcanic islands have the potential for geothermal energy production 76 
(Worldwatch, 2015; Hohmeyer, 2015; Wolf et al., 2016). 77 
 78 



 
(a) 

(b) 
Figure 1. (a) GDP spent on fuel imports for selected SIDS. (b) Cost of electricity and gasoline for selected 

countries/US states (from Table 1) 

 79 
Table 1. Key transport and energy statistics for SIDS (blue), other islands (green), selected US states (red) 80 
and selected EU countries (brown) (compiled from Ochs et al, 2015; NREL, 2015; Knoema, 2018; Numbeo, 81 

2018). 82 
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Antigua and Barbuda  $1.29 $0.98 $0.37 5.76% 

Bahamas $1.15 $1.20 $0.32 11.35% 

Barbados $1.67 $1.40 $0.28 6.90% 

Belize $1.48 $1.43 $0.22 1.95% 

Dominica $0.87 $0.75 $0.38 7.79% 

Dominican Republic $1.27 $1.00 $0.19 3.51% 

Fiji $1.01 $0.86 $0.14 9.44% 

Grenada $1.22 $1.23 $0.43 18.00% 

Haiti $0.92 $0.71 $0.28 5.32% 

Jamaica $1.22 $1.21 $0.32 9.00% 

Mauritius $1.39 $1.23 $0.18 5.39% 

Micronesia $1.15 $0.79 $0.48 17.10% 

Palau $0.93 $0.59 $0.28 11.90% 

Seychelles $1.29 - $0.11 11.92% 

St. Kitts and Nevis $0.94 $0.43 $0.25 3.99% 

St. Lucia $1.23 $1.15 $0.34 16.45% 

St. Vincent & the Grenadines $1.31 $0.41 $0.26 10.00% 

Trinidad and Tobago $0.59 $0.36 $0.04 13.58% 

Vanuatu $1.60 $0.84 $0.50 7.95% 

Tenerife $1.16 - $0.34 - 

Flores $1.66 - $0.24 - 

São Miguel $1.66 - $0.27 - 
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SIDS 
Other islands 
US States 
EU countries 

Trinidad & Tobago 
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Hawaii $0.82 - $0.31 - 

California $0.82 $0.80 $0.15 - 

Florida $0.63 $0.64 $0.11 - 

New York $0.73 $0.71 $0.18 - 

Texas $0.58 $0.65 $0.11 - 

Ohio $0.61 $0.68 $0.12 - 

UK $1.63 $1.99 $0.22 - 

Spain $1.53 $1.55 $0.27 - 

Portugal $1.80 $1.64 $0.26 - 

 83 

2.2 The transportation sector in Small Island Developing States 84 

Many of the development challenges that affect the energy sector in SIDS also impacts their transport 85 

sectors. As may be expected, challenges of remoteness and diseconomies-of-scale significantly impact 86 

island maritime and air transportation, and these are the subjects of several studies on island transport 87 

presented in UNCTAD (2014). These same development challenges also impact their road transport 88 

sectors. Worldwatch (2015) highlights a key observation in the Caribbean, in that road transport is often 89 

difficult to manage given a lack of available data on its status, which can subsequently lead to under-90 

regulated and ill-designed transportation policies. This often results in negative impacts on local pollution 91 

levels, noise levels, congestion and subsequently human health. The World Bank’s report on ‘Climate and 92 

Disaster Resilient Transport in Small Island Developing States’ (2017) makes similar observations for SIDS 93 

in other parts of the world.  94 

 95 

3 Application of vehicle-to-grid services for Small Island Developing States 96 

Whilst the prospect of increased electricity demand from electrification of transport systems may be 97 
attractive to utility operators, e-mobility, as it’s often referred, will pose challenges to their grids. Weisser 98 
(2004) provides a useful background into the structure and operation of existing electricity grids for small 99 
island developing states. Here, we discuss the challenges of charging and charging strategies on these 100 
grids at the earlier stages of electric vehicle adoption, before discussing the potential benefits of more 101 
advanced charging capabilities to utility operators. 102 
 103 

3.1 Charging and charging strategies 104 

Given that the conventional energy demand of an electric vehicle is somewhere between 10kWh and 105 
100kWh per charge, the cumulative charging of electric vehicles will have an impact on grid performance 106 
and stability. This is particularly so for relatively small, isolated grids whose installed capacities are below 107 
200MW.   108 
 109 
Due to the high capital cost of electric vehicles, early adopters tend to be clustered in more affluent 110 
neighbourhoods, or businesses with large vehicle fleets (couriers, delivery firms, etc.), and due to an early 111 
lack of public charging infrastructure, charging typically takes place at home or places of business during 112 
the evening and nighttime. Therefore, in the early stages of electric vehicle adoption, isolated overloading 113 
of the grid may occur (Waldron and Kobylarek, 2011; Boulanger, 2011; Muratori, 2014). Distribution 114 
transformers and feeders can quickly become overloaded since an electric vehicle can increase the home 115 
or business’s demand by 25% or more whilst charging (Boulanger, 2011). This can result in unscheduled 116 
maintenance, early equipment replacement, and loss of revenue from increased outages. It is therefore 117 
in the interest of the electric utilities to investigate the economics of different incentive schemes and the 118 
legal processes involved in their implementation. 119 



 120 
Grid operators have several options to ensure that vehicle charging minimises any impact on their grids. 121 
Known collectively as charge management, these options involve the operators applying demand charges, 122 
time-of-use rates and dynamic pricing, which are in widespread use today given their application to larger, 123 
industrial clients (Amjad et al., 2018). Due to recent technological developments, additional options are 124 
emerging for charge management and are introduced throughout the remainder of this section. 125 
 126 
If charge management is not employed, as the number of electric vehicles increases the additional loads 127 
posed by charging can lead to a change in an island’s daily load profile and an increase the demand peak 128 
(see Figure 2). Any change in the daily load profile can subsequently affect a utility’s ability to manage 129 
generation, supply and distribution with respect to time and grid constraints, while increasing peak 130 
demand can put a strain on existing generating capacity (Dyke et al., 2010).  The uncoordinated charging 131 
of a large number of electric vehicles could therefore compromise the grid’s reliability, security, efficiency 132 
and economy. 133 
 134 
The aforementioned charge management, or ‘coordinated charging’, is the simplest strategy to execute 135 
and is most suitable in the early stages of electric vehicle adoption (Ehsani et al. 2012). Coordinated 136 
charging can be implemented using unidirectional chargers with programmable timers, which can be set 137 
to charge the vehicle at pre-determined off-peak times. Utilities can encourage off-peak charging by 138 
offering incentives, such as preferential time-of-use rates, when demand on the grid is low or when there 139 
is excess renewable energy being generated. This method of charging can help ensure that no additional 140 
generating capacity is required and minimises the impact on the daily demand profile (Waldron and 141 
Kobylarek, 2011). Optimisation of charging times and energy flows can help reduce daily electricity costs 142 
with little effect on peak capacity, while coordinated charging can help flatten the load curve (see Figure 143 
2) (Hota et al., 2014). This most basic form of grid-to-vehicle service is easy to incorporate into existing 144 
infrastructure and suitable for low electric vehicle penetration rates. 145 
 146 

 147 
Figure 2. Grid services that can be provided by electric vehicles and renewables, based on a 24-hour demand 148 

curve for Barbados (Hohmeyer, 2014). 149 
 150 

Ioakimidis and Genikomsakis (2018) model the potential for Plug-in Hybrid Electric Vehicles (PHEVs) on 151 
the island of São Miguel in the Azores, an autonomous state of Portugal. They examine one-way grid-to-152 
vehicle (G2V) charging strategies for different scenarios of electric vehicle market penetration (up to 32% 153 
penetration), in effect assessing the capability of electric vehicles for valley-filling in the island’s daily 154 
demand curve. They found that a 32% share of electric vehicles in the island’s vehicles fleet could be 155 
realized, yielding major benefits countering the environmental impact of their heavily fossil-fuel 156 

Load levelling – flattening of the demand 

curve to reduce need for new capacity. 

Peak shaving – Long-term storage (hours) 

used to reduce peak demand, along with 

solar/wind. 

Voltage/frequency regulation – short-

term storage (seconds) used to improve 

power quality. 

Spinning reserve - capacity available to the 

system operator within a short interval of 

time (seconds/minutes) to meet 

unplanned changes in demand. 

 



dependent energy system through allowing more intermittent renewables onto the grid. Importantly, this 157 
could be accomplished with no technical barriers to integration. 158 
 159 

3.2 Provision for vehicle-to-grid services 160 

At higher penetration rates, electric vehicles will have the potential to supply the grid with substantial 161 
amounts of power using bidirectional chargers, which enable the transfer of power and communication 162 
between the electric vehicle and the grid and vice versa (Waldron and Kobylarek, 2011; Ehsani et al., 2012; 163 
Hota et al. 2014). In the literature, this method is often referred to as ‘smart charging’ or ‘vehicle-to-grid’ 164 
services. Smart charging allows the electric vehicle’s on-board battery to help maintain the quality of the 165 
electricity supply (Waldron and Kobylarek, 2011; Eshani et al. 2012). Excess energy from intermittent 166 
renewable energy sources can then be stored for later use. In energy systems with a high penetration 167 
wind and solar, research has found that engaging in smart charging can aid the grid operator’s task of 168 
matching supply to demand (Fattori et al., 2014). Electric vehicles can also act as controlled storage, 169 
providing ancillary grid services such as spinning reserve, voltage and frequency regulation (see Figure 2). 170 
Electric vehicles can therefore increase the efficiency of power systems while at the same time reducing 171 
the emissions contribution and offsetting expensive fuel use in the transportation sector.  172 
 173 
Colmenar-Santos et al. (2017) examine the adoption of an electric vehicle fleet employing a vehicle-to-174 
grid arrangement and applies it to the island of Tenerife, an autonomous state of Spain. Their study uses 175 
an optimization model with a multi-objective function to establish whether a charge/discharge pattern is 176 
possible that facilitates the penetration of electric vehicles in an isolated grid. Their study concludes that 177 
island grids can incorporate a low level, described as a “transition” level, penetration of electric vehicles, 178 
whereby their use as a quasi-distributed storage system can accommodate a significant reduction in the 179 
amplitude difference between valleys and peaks (load levelling) of the Tenerife’s demand curve. 180 
 181 
Studies on the economic benefits of providing vehicle-to-grid services in developed countries are 182 
emerging in the literature. Due to its relatively recent development and a range of potential methods of 183 
application, a consensus has not yet been reached as to the most effective type of vehicle-to-grid system. 184 
Peterson et al. (2010) examine the economic feasibility of using electric vehicle batteries in energy 185 
arbitrage in the cities of Boston, Rochester and Philadelphia in the United States. In their model, grid 186 
energy was stored during off-peak hours, or when energy prices were low, and sold back to the grid during 187 
peak hours, or when energy prices were high. Their study revealed that the annual revenues received may 188 
not be attractive to most electric vehicle owners. Tomic and Kempton (2007) compare the profitability of 189 
two fleets of electric vehicles participating in five differently regulated markets, with one vehicle fleet 190 
providing regulation during the day and the other one at night. The conclusion drawn was that the use of 191 
electric vehicles to provide regulation services can be profitable and would help improve grid stability.  192 
 193 
A study performed by Sioshansi and Denholm (2010) on the Texas electricity grid indicates that using 194 
electric vehicles to support spinning reserve will open up the possibility of savings to power system 195 
operators and electric vehicle owners. Pavic et al. (2015) created a generic computer model of a power 196 
system that could be configured to represent that of any national power system. Simulations using this 197 
model established that providing spinning reserve would result in savings to the power plant operators 198 
and reduce total system emissions. Building on their earlier study for Tenerife, Colmenar-Santos et al. 199 
(2017) analysed the economics of vehicle-to-grid electric vehicle integration for the Canary Islands 200 
through the application of time-of-use tariffs for residential electric vehicle owners. They concluded that 201 
vehicle-to-grid would benefit both the grid operator, through more flexible load management, as well as 202 
the electric vehicle owner, with potential for 50% reduction in mobility energy costs.  203 
 204 



Vehicle-to-grid services are not without their disadvantages. Engaging in vehicle-to-grid services can 205 
shorten the useful life of the electric vehicle by increasing the rate of battery degradation. Studies by 206 
Ehsani (2012), Tomic and Kempton (2007), White and Zhang (2011) suggest that providing ancillary 207 
services, such as voltage and frequency regulation, do not significantly affect battery life and, with fair 208 
tariff structures, will be beneficial to electric vehicle owners. However, services that require large amounts 209 
of energy such as spinning reserve and peak shaving lead to significant depth-of-discharge of the batteries, 210 
thereby reducing battery life. This suggests that electric vehicles are currently more suited to vehicle-to-211 
grid services that require fast response and reactive power, which do not require excessive depth-of-212 
discharge. What is not known at present is how much the cost of electric vehicle-based energy-storage 213 
compares to the cost of the alternatives, such as static battery options, compressed air storage, pumped-214 
storage hydro. Each alternative would be impacted differently when deployed on the electricity grids of 215 
small islands and this is therefore recognised as a future research need. 216 
 217 
All studies reviewed thus far, regardless of their findings, are optimistic about the implementation of 218 
vehicle-to-grid services but advise that further research is still needed. Vehicle-to-grid services present 219 
particular opportunities in the SIDS. Small island energy systems are often owned and operated by a 220 
monopoly utility and only one energy market is available for trade. The generating capacity required to 221 
provide grid services, such as spinning reserve and regulation, is small in comparison to large power 222 
systems, so the possibility of electric vehicles being able to provide these services without seriously 223 
affecting the lifespan of the electric vehicle exists. Small island states therefore present a new perspective 224 
for research in this area. 225 
 226 

3.3 Battery and End of life considerations 227 

When electric vehicle batteries age and are no longer suitable for driving, vehicle-to-grid services are still 228 
possible. An electric vehicle’s battery may be considered insufficient for use when it reaches between 70% 229 
and 80% of its original storage capacity. Cready et al. (2003) point out that, with minor refurbishment, the 230 
battery can then be used in stationary applications. Some stationary applications include storage for 231 
renewable energy installations, spinning reserve and localised voltage/frequency regulation.  232 
 233 
The literature debates the feasibility of using expired electric vehicle batteries in large-scale stationary 234 
applications and appears to favour their use in residential installations. Hein et al. (2012) performed a 235 
study that compared electric vehicle batteries engaged in vehicle-to-grid services, old electric vehicle 236 
batteries used in stationary applications, and new electric vehicle batteries used in stationary applications. 237 
They concluded that in the long term, battery re-use would not be profitable due to the decline in capacity 238 
of the batteries and the corresponding decline in value. On the other hand, Cready et al. (2003) looked at 239 
eight possible stationary applications for used electric vehicle batteries and found that half of the re-use 240 
applications were in fact economically possible. Studies on electric vehicle battery reuse for domestic 241 
purposes show that battery buffer-packs help match the availability of household renewable energy 242 
systems to the household demand and in some cases completely eliminate the need for grid power, 243 
effectively making the property a stand-alone system (Knowles and Adrian, 2014). Stationary used electric 244 
vehicle battery packs also have the ability to reduce the strain on the electricity grid by shifting power 245 
from peak to off-peak times, an application that, as discussed in section 3.2, is not suited to the batteries 246 
whilst they are installed in electric vehicle (Heymans et al., 2014). 247 
  248 
In small island developing states, roof-top solar photovoltaic installations presently make up the majority 249 
share of installed renewable energy capacity (Worldwatch 2015). Due to the high cost of battery systems, 250 
they tend to be grid-tied without battery backup. Battery systems can be attractive to homeowners in 251 
small island developing states for two main reasons. Firstly, as a method for further reducing electricity 252 



bills and secondly for improved reliability. Batteries offer security, especially in the event of power outages 253 
due to natural hazards, to which small island developing states are prone (see Section 3.5). There is 254 
therefore great potential for a thriving battery reuse market in small island developing states, which could 255 
help reduce the cost of ownership of electric vehicles while stimulating local economies.  256 
    257 

3.4 Electric vehicle impact on greenhouse gas emissions 258 

Early publications on electric vehicles suggest that they would help reduce greenhouse gas emissions from 259 
the transport sector, as opposed to relocating tail pipe emissions to the local power plant. A 2004 article 260 
by Chan and Wong (2004) reviewed the status of the electric vehicle market in the early 2000s and 261 
reported that electric vehicles can reduce global air pollution, even when the emissions from the power 262 
plant that supplied its electricity are considered. In 2011, Waldron and Kobylarek reviewed the 263 
introduction of electric vehicles and vehicle-to-grid services and further supported this position by 264 
demonstrating that a net reduction in greenhouse gas emissions is attainable through the adoption of 265 
electric vehicles, even if they are charged by coal-fired generation, their reasoning being that power plants 266 
will operate more efficiently than individual automobiles. 267 
 268 
More recent studies explore the reduction in greenhouse gas emissions provided by electric vehicles and 269 
its dependence upon the original energy source. These studies also compare the efficiency of the internal 270 
combustion engine and different drive cycles of electric vehicles – efficient and inefficient driving styles 271 
(Sioshansi and Miller, 2011). More detailed analyses show that for the same energy mix, emissions depend 272 
on the time of day that charging occurs (Faria et al. 2013). For example, Abdul-Manan (2015) presents a 273 
life cycle assessment comparing electric vehicles with traditional internal combustion engine vehicles and 274 
demonstrates that when a country’s generation mix is fossil fuel based, the use of electric vehicles does 275 
not result in reduced emissions. The study concluded that decarbonising the power plant sector, rather 276 
than converting to electric vehicles, could actually obtain a greater reduction in emissions.  277 
 278 
Sioshansi and Miller (2011) investigated the effect of enforcing emission caps on the electricity used to 279 
charge electric vehicles in the Texas power system and found them to be successful in ensuring that 280 
electric vehicles are charged from cleaner sources. The case study on the Flores island, carried out by Pina 281 
et al. (2014), explored the impact of electric vehicles on Flores’s small isolated grid with a high share of 282 
renewable energy and showed that having a high share of renewable energy does not guarantee a 283 
reduction in carbon dioxide emissions. The reason being that, mirroring other studies, the reduction in 284 
emissions depends on the time of day that the electric vehicles were charged and the amount of excess 285 
renewable energy available at the time. Therefore, it is apparent that electric vehicles should be directly 286 
charged from clean energy sources in order to guarantee significant reductions in GHG emissions. 287 
 288 
Small island developing states have a predominantly fossil fuel-based electricity sector, with most 289 
employing low speed diesel engines to generate their electricity, resulting in emissions factors of around 290 
760 gCO2e/kWh (Honorio et al., 2003). This is in stark comparison to more developed countries, with 291 
averages for Europe of 340 gCO2e/kWh and 499 gCO2e/kWh for North America (Brander et al., 2011; Mora 292 
and Lonza, 2017). Many small island developing states also have favourable renewable energy resources, 293 
and renewable energy transition roadmaps are emerging (Worldwatch, 2015). Small island developing 294 
states are further boosted by their highly dispatchable low speed diesel engines, which can help support 295 
high penetrations of renewable energy generation (Hohmeyer, 2015). For example, with minimal 296 
modifications to its infrastructure, the Caribbean island of Barbados can accommodate at least 20% 297 
renewable energy penetration onto its grid (Emera, 2015). Due to their grid supporting measures the 298 
energy storage potential of vehicle-to-grid services can lead to an increase in this penetration potential. 299 



Electric mobility should therefore occur in tandem with power sector reform to ensure that emissions are 300 
reduced rather than transferred. 301 
 302 
Using data for a second-generation Nissan Leaf, Figure 3 graphically represents the key issues around 303 
emissions reductions from an electric vehicle when considering the carbon intensity of an island’s 304 
electricity source, 760 gCO2e/kWh in this case. As the penetration of non-carbon sourced electricity 305 
increases, the grid’s carbon intensity decreases, along with effective electric vehicle emissions. Emissions 306 
are particularly sensitive to how the car is driven, or in which ‘mode’ the vehicle is driven. Road networks 307 
on small island developing states tend to restrict the ability for cars to be driven efficiently. High ambient 308 
temperatures mean the use of air-conditioning may be necessary during the daytime, and congested road 309 
networks may lead to stop-go driving conditions, both of which place a strain on battery range and mean 310 
that efficient use of electric vehicle fleets can be difficult to maintain (see Table 2).  311 
 312 
Figure 3 also compares the emissions of the different types of internal combustion engine vehicles (ICE). 313 
Due to the higher emissions factors for small island developing states, hybrid drive vehicles with good fuel 314 
economy may actually have lower greenhouse gas emissions than electric vehicles. Unless the electric 315 
vehicle achieves a range of 5.93km/kWh, a small family sized internal combustion engine car achieves 316 
similar greenhouse gas emissions. It’s not until electricity generation has been decarbonised by 20% that 317 
electric vehicles start to make sense from an emissions perspective, and not until 50% renewable 318 
penetration that their transport systems may start to be considered as becoming decarbonised. This 319 
supports the earlier discussion that in order to expedite the decarbonisation of transport systems, electric 320 
vehicle introduction must be accompanied by the introduction of renewable energy sourced electricity. 321 
In reality however, many electric vehicle owners are often motivated to decarbonise their energy 322 
consumption and invest in renewable energy systems that offset their household and electric vehicle use. 323 
 324 

 325 
Figure 3. Emissions of different vehicle types and impact of carbon intensity of electricity supply for an 326 

island energy system. 327 
    328 
 329 



Table 2. Summary of Nissan's results operating the 2011 Leaf under different real-world scenarios (Muller, 330 
2010). 331 

Driving conditions 
Speed 
(km/h) 

Temperature 
(°C) 

Range 
(km) 

Efficiency 
(km/kWh) Air conditioner 

Cruising (ideal conditions) 61 20 222 9.25 Off 

City traffic 39 25 169 7.04 Off 

Highway 89 35 110 4.58 In use 

Heavy stop-go traffic 10 30 76 3.17 In use 

 332 

3.5 Resilience to natural hazards 333 

Small island developing states have always been vulnerable to natural hazards with many experiencing 334 
particular susceptibility to cyclones, heavy rain, storm surges, earthquakes, volcanoes and tsunamis. 335 
Strengthening their infrastructure resilience is of rising importance given increasing concerns over the 336 
impact of climate change (UNOHRLLS, 2015). According to the World Bank (2017), whilst the impact 337 
caused by natural hazards will often affect all economic sectors, damage to transport assets (air, marine 338 
and road) often accounts for a large share of economic losses. Damage to road transport will tend to 339 
impact infrastructure rather than vehicles. However, given vehicles play a key role before, during and after 340 
natural hazard events (for evacuation, emergency response and recovery), any substantial changes to an 341 
island’s transport infrastructure, such as electrification, should be carefully considered.  342 
 343 
At present, there has been minimal literature emerging in this area for SIDS. Adderly et al. (2018) raises 344 
awareness of the issues associated with electric vehicle use during potential evacuation events in Florida, 345 
which mainly relate to the availability of charging infrastructure during mass evacuations. SIDS will have 346 
different needs during natural hazard events, some of which may favour electric vehicles (using electric 347 
vehicles as mobile power sources during recovery) whilst others may prove problematic, such as a lack of 348 
mobility in the longer term if electrical power outages are prolonged. The question of electric vehicle 349 
integration and resilience to natural hazards feeds into a bigger conversation around the use of smart 350 
grids for SIDS. Colmenar-Santos et al. (2017) concludes that electric vehicles will play an active role in 351 
smart grids for isolated islands, in this case Tenerife. An observation that has been voiced by energy sector 352 
experts discussing the role of decentralised smart grids in improving resilience to natural hazard events 353 
after the 2017 hurricanes that affected much of the Northeast Caribbean (Mooney, 2017). 354 
 355 

4 Case study: Barbados creating an island EV market 356 

4.1 Progress in decarbonising its energy system  357 

Barbados was one of 13 small island developing states to fully ratify the Paris climate agreement on the 358 

day it was signed in April 2016 and is a dominant player in encouraging increasingly aggressive country 359 

commitments during continued UNFCCC negotiations. Driven mostly by the private sector, Barbados 360 

serves as a strong example of a country that is working towards sustainable energy independence. The 361 

share of renewable energy in its electricity sector has been steadily increasing since 2010, primarily from 362 

solar PV. Distributed solar PV penetration has now exceeded 14MW, and a 10MW utility scale solar 363 

photovoltaic plant has been online since the last quarter of 2016 (Government of Barbados, 2017). This 364 

brings the total share of renewable energy in its electricity generation mix to approximately 10%, resulting 365 

in an estimated emissions factor reduction to approximately 680 gCO2e/kWh.  366 

Through its Intended Nationally Determined Contribution (INDC) Barbados intends to achieve an 367 

economy-wide reduction in greenhouse gas emissions of 40% by 2030 (UNFCCC, 2015). Part of this 368 



commitment involves renewable energy technologies contributing 65% of total peak electrical demand. 369 

Following its general elections in May 2018, the island’s new Government has stated its goal of achieving 370 

100% renewable energy supply by 2030. Given its low peak demand of 150MW, the Government has 371 

recognised that policies to encourage the business case for energy storage and demand response will be 372 

necessary to actualize large-scale deployment of intermittent resources like solar and wind in such a small 373 

and isolated power system (Government of Barbados, 2017).  374 

Electric vehicles have been shown to represent both an energy storage and demand response solution, 375 

especially where the timing of charge can be aligned with solar and wind generation profiles. More 376 

specifically, the charging of electric vehicles during the day-time would create additional demand that 377 

matches solar generation (and wind generation in the evening/night-time), leading to less curtailment, 378 

increased renewable resource capacity deployment and lower system costs overall. According to IRENA’s 379 

recent long-term capacity expansion analysis, transport electrification, where the electric vehicles are 380 

used to limit curtailment of intermittent renewable energy technologies, can be seen as a least cost 381 

pathway for Barbados to exceed a 65% renewable energy penetration (Taibi and del Valle, 2017). 382 

The specific effect of electric vehicles depends on penetration and charging strategy. At low penetration 383 
levels electric vehicles are likely to have little impacts on generation, but at high penetration, different 384 
charging strategies can provide different types of grid services. Uncontrolled nighttime charging can lead 385 
to a need for significant additional capacity, such as wind power, which conveniently has a strong 386 
nighttime presence. Electric vehicles would act as nighttime storage, off-taking from wind power, which, 387 
for small island developing states like Barbados, would often be curtailed due to low nighttime demand. 388 
Daytime charging on the other hand, is another strategy. Charging is incentivized around central hours of 389 
the day to coincide with solar PV generation peak. Again, due to low demand, especially on small island 390 
developing states with low consumption, solar PV generation is often curtailed during the day. Thus, high 391 
electric vehicle penetration can increase renewable energy integration on grid by acting as storage, 392 
increasing consumption when cost of supply is lowest, therefore minimizing curtailment and reducing the 393 
levelized cost of energy. Further, with controlled charging, where the chargers are centrally or 394 
automatedly controlled, electric vehicles as a collective fleet can provide ancillary services to the grid (see 395 
Section 3.1), however charge controlling requires significant infrastructure investment.  396 

Government support of the electrification of the transport sector is shown in the Barbados National 397 

Energy policy (Government of Barbados, 2017). The objectives and policy measures outlined in the 398 

document, such as the development of proper standards and introduction of a comprehensive 399 

information system, are geared towards the development of a framework to support the widespread 400 

adoption of electric vehicles. Linkages between sectors are also constantly highlighted and it is clear that 401 

the policy strives to tie together various elements of the developmental process to date with those 402 

planned for the future.   403 

4.2 Electric vehicle market progress and future potential  404 

Barbados’ limited land area (431 km2), its dense road network, generally flat topography and the relatively 405 

large size of its total vehicle fleet (132,000 registered vehicles for a population of 286,000) was enough 406 

incentive for the creation of a local company, Megapower Ltd, and for them to begin the importation of 407 

electric vehicles, quickly becoming the main stakeholder for electric vehicle adoption in Barbados. To date, 408 

they have deployed over 40 charging points, of which 34 are publicly accessible and the remainder located 409 

in the car parks of businesses (see Figure 4). In an effort to help decarbonise the transportation system, 410 



they have also installed solar PV covered car port infrastructure at two locations and support the 411 

installation of renewable energy projects within the country (Figure 4) (Plugshare, 2018). The began in 412 

2012 and sold over 150 electric vehicles in less than two years of operation (predominantly Nissan Leafs), 413 

which highlighted both interest and demand despite limited regulatory financial incentive (Edgehill and 414 

McGregor, 2014). 415 

 416 
Figure 4. Map of Barbados with major roads and public charging points (Source: OpenStreetMap and 417 

Plugshare, 2018). 418 
 419 

Across the entire passenger-vehicle fleet, electrification represents a major fuel saving to the individual 420 

car-owner in Barbados. Car owners in Barbados drive on average 40 km per day (Taibi and del Valle, 2017). 421 

At a cost of US$0.04/km, electric vehicles offer a cost savings of more than 50% over both petrol and 422 

diesel vehicles, as shown in Figure 5. Based on Figure 3, with a carbon intensity of around 680 gCO2e/kWh, 423 

an electric vehicle (Nissan Leaf), driven efficiently, would be the mode of transport with the least 424 

emissions per kilometre (80 gCO2e/km). Furthermore, with a battery capacity of 24kWh (Nissan Leaf), 425 

electrification of all 132,000 registered vehicles would potentially provide a distributed energy storage of 426 

0.5GWh1. This additional storage would limit the need for curtailment of intermittent renewables (wind 427 

and solar), thereby helping to support higher levels of renewable energy penetration. If each parked and 428 

fully-charged vehicle is connected to a V2G charger, and each charger can discharge the vehicle’s battery 429 

at 6.6kW (as per the Nissan Leaf’s onboard charger) then the rated capacity, available for various grid 430 

services, would be 0.72GW, substantially higher than the island’s peak demand of ~0.15GW.  431 

 
1 This value assumes that all parked, fully charged electric vehicles are available for distributed storage and that cars 
are typically on the road for 1.5 hours and charging for 2.5 hours (so available for storage 83% of the time). It also 
assumes a 20% maximum depth-of-discharge for grid services in order to conserve battery life. 



In reality the above calculations will be affected by issues caused by using electric vehicle batteries for 432 

grid services (discussed in Section 3.2) as well as system losses, charging/storage demand profiles and 433 

ongoing technology advancements. Charging and storage demand profiles are partly explored for 434 

Barbados by Taibi and del Valle (2017) and are discussed later as an area of further research. 435 

Given the earlier 40km/day assumption for average mileage and an average vehicle efficiency of 436 

5.25km/kWh (see Figure 3), the annual energy consumption for an all-electric vehicle transportation 437 

sector can be estimated at 367GWh, which represents a 40% increase to the island’s current annual 438 

electricity consumption (Emera, 2015). 439 

 440 

Figure 5. Comparison of cost per km for electric vehicles (Nissan Leaf), petrol and diesel vehicles in 441 
Barbados. 442 

 443 

Although electric vehicles have emerged as a real option to meet future transportation needs, while at the 444 
same time supporting increased penetration of renewable energy technologies onto the grid, transport 445 
electrification needs to be carefully planned by both the utility and the Government. Given the 446 
abovementioned 40% increase in electricity consumption, the utility would need to prepare for localised 447 
overloading and a shift in the daily load profile as charging will initially take place at home in the night, 448 
beginning in the most affluent neighbourhoods (Taibi and del Valle, 2017). Time-of-use rates and similar 449 
incentives would need to be implemented as part of the overall coordinated charging plan, while keeping 450 
an eye on the profitability of its operation. The government would also have its share of planning and 451 
preparation. Besides the barriers of a lack of supportive legal and policy framework, along with the lack of 452 
charging infrastructure and technical capacity in the operation and maintenance of electric vehicles, there 453 
would be a need to consider the impact on its balance of payments. Presently, taxes on fuel sales, vehicle 454 
import duties and road tax are lucrative revenue streams for Government. 455 

Further research is needed to determine the optimum solution of incentivisation and investment needed 456 
to support the market for both the Utility and the Government. The ability of electric vehicles to support 457 
intermittent renewable energy technologies through vehicle-to-grid services needs to be exploited and 458 
long-term indirect benefits, such as improved health because of reduced noise and air pollution, should 459 
be included in the analysis.    460 

4.3 Targeting the public service fleet  461 
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Another proposal for further research would explore the benefits of a focus on public service fleet 462 

conversion. Public service vehicles typically have high mobility levels, lower fuel efficiencies and higher 463 

daily usage so that the diesel substitution per vehicle is higher. Replacing a single maxi-taxi bus with an 464 

electric bus in Barbados would yield equivalent diesel savings of 33 passenger vehicles (Taibi and del Valle, 465 

2017). Comparing a diesel bus in Barbados with a conservative fuel economy of 2km/litre with a similar 466 

sized e-Bus (Proterra Catalyst XR), at $0.27/km the running cost of the e-Bus would be less than half that 467 

of the diesel bus ($0.70/km). Not only do fuel savings accrue faster but having plied routes and bus 468 

terminal locations allows for easier determination of optimal location for charging infrastructure, while 469 

predictability of daily use profiles allows for greater ease in controlling charging behaviour and fitting 470 

charging profiles to resource availability profiles for maximum renewable energy integration. It is also 471 

easier for governments to support the deployment of electric vehicles in public and fleet vehicles through 472 

legislation and/or regulation (e.g. mandates for public vehicle purchasing) without the additional 473 

complication associated with private market adoption. Finally, deployment of public and fleet electric 474 

vehicles also creates an excellent opportunity for public outreach and education programs that help 475 

familiarize the general public with clean transportation technologies and sustainable energy use 476 

behaviour. 477 

In small island developing states, government run transportation is not normally a revenue stream. It is 478 

usually subsidized and used as a social benefit to promote economic development and ‘give back’ to 479 

society. This is the case in Barbados. Pensioners and school-aged children travel for free and the fare for 480 

all other passengers is fixed at US$1 regardless of destination. For privately owned route taxis, this affects 481 

the owner’s ability to recover the operation and maintenance costs of their vehicles, which results in 482 

overcrowding and leads to aggressive driving as bus drivers compete for passengers. In 2009, this 483 

translated into approximately 30% of all passengers travelling for free and the government funding over 484 

60% of the costs through a subsidy of US$5 million (Robinson, 2012).  485 

The importance of this social benefit however, cannot be underestimated. Surveys find that more than 486 

20% of the population is entirely reliant on public transportation (Robinson, 2012). More than 75% of 487 

commuters using public transport do so on a daily basis and yet research estimates that even with 488 

approximately 24 million passenger trips being made annually, only 60% of total demand is being served. 489 

In particular, many rural parishes in Barbados are under-served in terms of total vehicle availability relative 490 

to demand (Robinson, 2012).  491 

Thus, while the passenger car is the highest share of vehicles and fuel consumption in Barbados, the public 492 

service fleet - buses, taxis and hired cars – can be considered to be prime targets for early adopters. In 493 

addition to cost savings, upgrading to an electric fleet equates upgrading to a smart fleet – one with routes 494 

and vehicle dispatch optimised by demand and supporting real-time collection and dissemination of 495 

information for consumer and operator efficiencies. 496 

Given its advances in renewable energy deployment and leadership in international negotiations, 497 

Barbados provides a promising proving ground for the rest of the Caribbean and other small island 498 

developing states for the promotion of electric vehicles as a sustainable, efficient and cost-effective 499 

solution to transportation and energy sector challenges for island communities. However, a significant 500 

amount of data collection and analysis is required to understand the benefits and inform planning strategy 501 

for fleet conversion. The current bus fleet of the Barbados Transportation Board consists of approximately 502 

300 45-seater buses, mostly Mercedes Engines ranging in age from 10 to 20+ years. However, due to 503 



maintenance needs and high servicing costs, 50% of the fleet is out of service on an average day. This 504 

drastically limits passenger numbers, which totalled 17.5 million journies in 2015/2016. In addition to the 505 

Transportation Board’s large maxi-taxi fleet, the public is also served by a fleet of privately owned taxis, 506 

mini-buses and 14-seater mini-vans (known locally as ZRs or route taxis). Public service vehicles alone 507 

form over 20% of Barbados’ total fleet, so there is a major opportunity for rapid market adoption by 508 

focusing on this sector. The Alliance of Public Transport Operators (APV) represents the owners and 509 

operators of these vehicles and they note that fuel and maintenance costs are becoming increasingly 510 

prohibitive for drivers (Barbados Today, 2018). As such, there is voiced interest in exploring alternative 511 

technology within the Alliance.  512 

Nevertheless, there are a number of challenges for e-Bus adoption, including the cost of buses, the cost 513 

of charging infrastructure and more. For instance, in order for e-buses to support increased share of 514 

renewables in the national energy balance, charging must come predominantly from renewables, and 515 

thus charging would need to directly align with resource profiles. For daytime (solar PV) charging 516 

infrastructure needs to be deployed across the island in the locations where vehicles spend significant 517 

periods of time parked during daylight hours. This requires the tracking bus routes and understanding 518 

trends to optimize public charging locations with respect to time and geography. Furthermore, the cost 519 

of public charging infrastructure is often double the cost of private charging for equivalent charge capacity 520 

(more complex infrastructure and maintenance). To determine the right balance of charge management 521 

strategies, further research is required on time-of-use tariffs, and how they can impact private charging 522 

profiles. Also needed is simulation of demand-side smart control technology on moderating charging 523 

during the evening peak; and research into billing strategies to encourage maximum use or investment 524 

returns for public charging infrastructure. These are critical research needs to understand the technical 525 

benefits of fleet conversion. 526 

Finally understanding the economic benefits of fleet conversion itself will require further study.  Economic 527 

equilibrium analysis is needed to understand the trade-off between revenue streams for government (i.e. 528 

scale of fuel import savings versus reduced fuel tax earnings, the impact of potential electric vehicle 529 

import tax reduction and exemption incentives on government revenues, and the indirect impacts on the 530 

local economy through sectoral interaction and jobs creation). 531 

5 Conclusions 532 

For the many small island developing states that depend heavily on imported fuel, the prospect of 533 
reducing dependency on fossil fuel imports and improving energy security can act as a key incentive 534 
towards transportation sector reform. These countries currently pay premium prices for they fuel and in 535 
many cases their transportation sectors represent a 50% share of fuel imports. Reducing the fuel demand 536 
of this sector will therefore save foreign exchange and improve their economies. 537 
 538 
One of the main concerns of electrification of the transport sector is the impact of electric vehicles on the 539 
isolated electricity grids, at both low and high penetration levels. Without careful planning, electric 540 
vehicles may lead to overloaded distribution feeders and transformers and, at high penetration rates, 541 
could result in grid destabilisation. Strategies have been proposed to mitigate these impacts starting with 542 
coordinated charging, where electric vehicles are charged at a predetermined time of day, and ultimately 543 
leading to the adoption of vehicle-to-grid services, where electric vehicle charging and discharging is 544 
deployed centrally by grid operators to assist in matching supply to demand. The prospect of vehicle-to-545 
grid services in small island developing states could result in electric vehicles going from being a grid 546 



liability to a key grid asset. However, to promote the decarbonisation of transportation sectors, 547 
transitioning to electric vehicles should develop in tandem with increasing the renewable energy share in 548 
the primary energy mix, which should be reflected in national energy policies. Many small island states 549 
have already set renewable energy targets and have begun the process of power sector reform. This has 550 
been brought about not only because of their need to reduce dependence on imported fuel but also 551 
because of their fragile environments. Climate change along with their growing energy demand threaten 552 
the health of their ecosystems, which form the backbone of their economy. Incorporating transportation 553 
sector reform by way of electric vehicles and vehicle-to-grid services will complement these overall goals. 554 
 555 
Our paper provides a comprehensive review of literature on island applications of electric vehicles, making 556 
the case for small island developing states as an imminent area of opportunity for further exploration. 557 
Current literature mainly focuses on the economic aspects of vehicle-to-grid services for large 558 
interconnected grids. Due to the complexity of these grids and their energy markets, these studies are 559 
often unable to completely analyse all variables. With their small isolated grids and often monopoly 560 
electricity utilities (controlling generation, transmission, and distribution), small island developing states 561 
present an attractive environment for the exploration and successful adoption of electric vehicles and 562 
implementation of vehicle-to-grid services. It may be more useful to model these simpler systems, 563 
especially at this early stage of vehicle-to-grid development.  564 
 565 
The present status of the Barbados electric vehicle sector captures some of the challenges that will be 566 
faced by small island developing states in the development of their electric vehicle markets and vehicle-567 
to-grid services. Whilst the island is witnessing a successful uptake of electric vehicles in its private vehicle 568 
sector, an aging public transportation vehicle fleet with unsustainable subsidy support holds great 569 
potential for electric vehicle transition. This would result in substantially reducing the costs of travel 570 
around the island, whilst raising public awareness of the economic viability of a clean transport sector. 571 
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