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Abstract 20 

BACKGROUND 21 

It is evident that a growing number of studies advocate a wrist-worn accelerometer for the 22 

assessment of patterns of physical activity a priori; yet, the veracity of this site over any other 23 

body-mounted location for its accuracy in activity classification is hitherto unexplored. 24 

OBJECTIVE 25 

The objective of this review was to identify the relative accuracy for classifying physical 26 

activities according to accelerometer site and analytical technique. 27 

METHODS 28 

A search of electronic databases was conducted using Web of Science, PubMed and Google 29 

Scholar. This review included studies written in the English language, published between 30 

database inception and December 2017, which characterised physical activities, using a single-31 

accelerometer and reported technique accuracy. 32 

RESULTS 33 

A total of 118 articles were initially retrieved. After duplicates were removed and remaining 34 
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articles screened, 32 full-text articles were reviewed, resulting in the inclusion of 19 articles 1 

that met the eligibility criteria.  2 

CONCLUSION 3 

There is no ‘one site fits all’ approach to the selection of accelerometer site location or 4 

analytical technique. Research design and focus should always inform the most suitable 5 

location of attachment, and should be driven by the type of activity being characterised. 6 

 7 

1 Introduction 8 

In recent years, pervasive, consumer-level wearable physical activity monitors have become 9 

commonplace (Thompson, 2016, 2015). With consumerism in mind, manufacturers of such 10 

commercial devices offer several wear sites and attachment options, including wrist, hip and 11 

pocket attachment. Examples include Fitbit, Polar, Misfit and Jawbone devices (Thompson, 12 

2016, 2015). Conversely, until recently, research-grade accelerometers used for empirical 13 

investigations, considered to be the de facto standard device for objective physical activity 14 

monitoring (Mathie et al., 2004; van Hees et al., 2012), were most commonly worn close to 15 

the centre of gravity of the body. Devices were traditionally placed at a standardized location, 16 

usually at the hip, in order to reflect whole body movement and, thus, energy expenditure 17 

(Westerterp, 1999). Recently, however, concerns regarding low compliance to hip-worn 18 

accelerometers in empirical studies have resulted, in part, in a shift to utilizing the wrist as the 19 

preferred site of attachment (Rowlands et al., 2018). Research-grade accelerometers that are 20 

designed to be worn at the wrist are now commonplace (for example; ActiGraph, GENEActiv 21 

and Axivity accelerometers). Globally, large-scale, epidemiological projects have advocated 22 

the use of accelerometers attached at the wrist, including the National Health and Nutrition 23 

Examination Survey (NHANES) in the USA (Freedson and John, 2013), Brazilian birth cohorts 24 

(da Silva et al., 2014), the Growing up in Australia Checkpoint (Wake et al., 2014), and 25 

Biobank investigations in the UK (http://www.ukbiobank.ac.uk/about-biobank-uk/). 26 

When utilizing accelerometers for empirical investigations, qualitative evidence suggests that 27 

participants prefer a wrist-worn monitor (van Hees et al., 2011; Schaefer et al., 2014), whilst 28 

comparable evidence suggests hip-worn monitors are equally desirable (van Hees et al, 2011) 29 

and that preference may sometimes depend on the type of activity being undertaken. Offering 30 

participants a choice of wear-sites in research studies has been postulated to facilitate greater 31 

compliance during a monitoring period, yet this is no more than mere anecdotal reporting. 32 

Notwithstanding, although accelerometer output across sites is correlated (Rowlands and 33 

http://www.ukbiobank.ac.uk/about-biobank-uk/
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Stiles, 2012), the output does differ by wear-site, for example, higher magnitudes are generally 1 

found at the wrist vs waist (Rowlands and Stiles, 2012; Hildebrand et al., 2014; Rowlands et 2 

al., 2014). Hildebrand et al. (2014) noted significant differences between the hip and wrist 3 

placement in children where acceleration values (physical activity (PA) counts) from the wrist 4 

placement, in general, were higher compared with that from the hip. Conversely, Kamada et 5 

al. (2016) highlighted that, in older adults, this difference was insignificant. Similarly, 6 

Rowlands et al. (2014) concluded that, based on strong linear correlations, output could be 7 

predicted from hip- or wrist-worn accelerometer for comparative purposes at the group level. 8 

Notwithstanding, it has been asserted that further research needs to be conducted to examine 9 

comparisons of specific activities or physical activity intensity levels. Furthermore, due to 10 

relatively wide limits of agreement, individual-level comparisons are not, currently, 11 

recommended (Mannini et al., 2013; Mannini et al., 2017). 12 

Whilst there exists some conjecture as to the optimal wear site for the measurement of PA 13 

quantities (PA counts, energy expenditure), this lacks consensus and represents only one, 14 

temporal analytical viewpoint. Alternate to traditional temporal analyses; signal processing of 15 

accelerometer data has moved beyond the descriptive approach of simply quantifying overall 16 

activity using time spent in thresholds or counts per minute (Clark, 2017; Clark et al., 2017b; 17 

Clark et al., 2016). It has been shown that more substantive insights are attainable, allowing 18 

both quantity and quality to be reported (Chen and Bassett, 2005; Preece et al., 2009; Yang and 19 

Hsu, 2010; Clark et al., 2018; Clark et al., 2017a). Recently, Clark et al. (2017a) highlighted 20 

that the emergence of novel analytical techniques has resulted in the attainment of more 21 

sensitive information about physical activity. Further, three separate reviews, (Chen and 22 

Bassett (2005), Yang and Hsu (2010) and Clark et al. (2017a)) all highlighted that future 23 

technological improvements will necessitate examining raw acceleration signals and 24 

developing advanced models for accurate energy expenditure prediction and activity 25 

classification (Chen and Bassett, 2005; Preece et al., 2009; Yang and Hsu, 2010). In addition 26 

to refinement, to account for participant differences, an acceptable level of accuracy for 27 

measuring physical activity must be established for analytical techniques, and that ‘qualities’ 28 

of different activities, such as characteristics of gait, activity duration and idiosyncratic 29 

differences be further investigated (Clark et al., 2017a). 30 
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There have been a number of approaches used for the classification of PA data, starting from a 1 

wide set of classification features, then adopting different feature selection/extraction strategies 2 

and finally by choosing different automatic classification methodologies (Jain et al., 2000).  3 

Pioneering studies in the field attempted the recognition of activities from the output of 4 

actigraphy, i.e. activity counts. Such quantities, were obtained by time integrating on fixed time 5 

epoch (e.g., 1-min, 1-s) accelerometer recordings with the purpose of estimating the physical 6 

activity level of a person (de Vries et al., 2011a). However, the processing of such aggregated 7 

quantities only allowed a very rough activity recognition, subsequently, researchers targeted 8 

activity recognition by using raw accelerometry data. In fact, raw data retains all of the 9 

necessary information for a more accurate and robust activity classification, and has progressed 10 

our ability in recognizing even complex vocabularies of activities (Bao and Intille, 2004). 11 

Whilst raw acceleration data have been directly processed to recognise activities, per se 12 

(Hikihara et al., 2014), most of the data reported in the literature were based on the evaluation 13 

of accelerometer data for classification features, both in the time and frequency domain. Time 14 

domain features are generally obtained by processing windowed portions of the available data. 15 

Concerning frequency domain features, fast Fourier transform (FFT) and discrete wavelet 16 

transform (DWT) have been used extensively on streaming data. FFT uses the frequency 17 

spectrum analysis to distinguish different types of PA (Barralon et al., 2005; Hester et al., 2006; 18 

Noury et al., 2004; Mannini et al., 2017; Mannini and Sabatini, 2010; Clark et al., 2017a). 19 

Compared with FFT, and its short-time version for time-frequency analysis, DWT allows non-20 

uniform frequency resolution and it has been used in PA studies to detect walking activities 21 

based on data collected from hip/lower back accelerometers (Sekine et al., 2002; Barralon et 22 

al., 2006). 23 

An important consideration when classifying data is that large datasets obtained with multiple 24 

sensing units will result in multiple features, which necessitates time-consuming data analysis, 25 

and may significantly impact the classification methods. In fact, large feature sets may need 26 

huge datasets for training computational methods that could be unavailable (the so-called curse 27 

of dimensionality) and, notwithstanding, would slow down the development of the 28 

classification system. Consequently, automatic feature selection and feature extraction 29 

methods can help reduce the dimensionality of classification problems (Mannini and Sabatini, 30 

2010). An example of commonly adopted feature extraction method that remaps features in a 31 

different space (that can have reduced dimensionality) is the principal component analysis 32 
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(PCA), which has been used to define the input of activity classification methods (Long et al., 1 

2009). 2 

A variety of classification methods have been applied to PA characterisation, ranging from 3 

Logistic Regression to Artificial Neural Networks, Support Vector Machines and Decision 4 

Trees. Most of the available solutions process data windows independently, whereas in some 5 

cases, the time evolution of activities is also used to classify sequences of activities using 6 

methods such as Hidden Markov model (HMM)  (Mannini and Sabatini, 2010) or Conditional 7 

Random Fields (Vinh et al., 2011). Finally, another important aspect to be compared across 8 

existing solutions is the cross-validation approach, that is how data are split between subsets 9 

for training for machine learning methods and for testing them. The most common approaches 10 

are the N-fold cross-validation and the leave-one-subject-out cross validation. Whilst in the 11 

former the split is randomized across the full available dataset, in the latter, one participants’ 12 

data is excluded from training and used for testing. This procedure is repeated to test all subject 13 

data, and in doing so, it is possible to simulate the behaviour of the classifier on a new subject’s 14 

data. 15 

Concerning placement site, adjunct to the aforementioned classification methods, there exists 16 

no, current, evidence suggesting that one site is better than another. However, previous studies 17 

suggest that the wrist is the site that allows higher wear time for long monitoring studies 18 

(Freedson and John, 2013; da Silva et al, 2014). Historically speaking, Actigraphy proponents 19 

have advocated the hip/pelvis because they are close to the body centre of mass (Westerterp, 20 

1999); whilst, distal lower limb sites appear preferred for ambulation-related activities because 21 

they are close to the impact site (Mannini and Sabatini, 2010). With further reference to sensor 22 

placement site, it is evident that a growing number of studies are advocating a wrist-worn 23 

accelerometer a priori, yet the veracity of this site over any other body-mounted location for 24 

its accuracy in activity recognition and classification is hitherto unexplored. Therefore, the aim 25 

of this review is to identify the relative accuracy for classifying physical activities according 26 

to accelerometer site, and analytical technique. 27 

2 Methods  28 

We registered this systematic review on the international prospective register of systematic 29 

reviews, PROSPERO (http://www.crd.york.ac.uk/prospero/): Registration number 30 

CRD42018092217. The PRISMA statement for transparent reporting of systematic reviews 31 

was followed (Moher et al., 2009). 32 

http://www.crd.york.ac.uk/prospero/
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Eligibility criteria 1 

 2 

Coding of papers only allowed for studies that attempted to characterise or classify physical 3 

activities using one accelerometer and assessed accuracy. We utilized the acronyms PECOT 4 

(Population, Exposure, Comparing, Outcome and Type of study) (in accordance with the 5 

Preferred Reporting Items for Systematic Reviews and Meta-Analysis protocols; PRISMA-P) 6 

to support inclusion of studies. We included studies if they were: (P) Population: children, 7 

adolescents, adults and elderly, with positive health conditions; (E) Exposure: accelerometer 8 

affixed on the human body; (O) Outcome: relative accuracy for classifying physical activities 9 

according to accelerometer site and analytical technique; (T) Type of study: For the purpose of 10 

this review, we included observational (e.g., cohort, case-control or cross sectional) and peer 11 

reviewed studies. 12 

We excluded articles if they: (1) were not human based, or studies that only reported temporal 13 

characteristics (e.g. activity counts or energy expenditure); (2) did not report technique 14 

accuracy; (3) were technical reports or review articles; (4) case studies, comments, case series, 15 

editorial and answers; (5) duplication studies. 16 

Search strategy 17 

 18 

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 19 

(PRISMA) statement, a computerised search was conducted using the following electronic 20 

databases; Web of Science, MEDLINE (accessed by PubMed) and Google Scholar. We used 21 

the logic based in specific descriptors, Booleans operators (AND & OR) and help of 22 

parentheses. A combination of the following key words were used to locate studies, from 23 

database inception to December 2017: ‘accelerometer’, or ‘accelerometry’ or ‘inertial’, and 24 

‘physical activity’, or ‘movement’, or ‘activity’, and ‘classification’, or ‘accuracy’, or 25 

‘identification’. Terms were combined such that every search included one term related to 26 

accelerometer, one term related to activity; and one term related to classification. Search string 27 

utilised: (Acceleromet* OR inertial) AND ("physical activity" OR movement OR activity) 28 

AND (classifi* OR accuracy OR identification OR recogn*). Figure 1 displays the Flow chart 29 

of study selection. 30 

 31 

 32 

 33 
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Figure 1. Flow chart of the search and selection process.  24 

 25 

Data management 26 

The exportations of the papers were made in Medline, Ris e Bibtex extension. The data were 27 

imported by specific software for systematic reviews, StArt (State of the Art through Systematic 28 

Review) (Fabbri et al., 2016), to facilitate the identification of duplication, excluded and include 29 

papers. This procedure was performed by two authors. 30 
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Selection process 1 

The selection process sought to identify studies that characterised or classified physical 2 

activities using a single-accelerometer unit, assessed the accuracy of the associated analytical 3 

technique and were published in the English language between database inception and 4 

December 2017. Title and/or abstracts retrieved using the search strategy and those from 5 

additional sources were screened independently by two review authors to identify studies that 6 

potentially meet the inclusion criteria. The full text of these potentially eligible studies was 7 

retrieved and independently assessed for eligibility by two review authors. In instances where 8 

the first and second author could not agree, a third, independent, reviewer helped achieve 9 

consensus. Duplicates and articles failing to meet inclusion criteria were removed. 10 

Data collection process  11 

Two raters independently extracted data from all articles and reported in the following 12 

categories: (A) Aim (activity classified): aim of studies and physical activity measures ; (B) 13 

Population: number of subjects, gender, years-old, health conditions and anthropometric 14 

characteristics; (C) Device local: human body segment which the accelerometer was worn; (D) 15 

Analysis/characterisation technique: computational algorithms utilized in accelerometer signal 16 

analysis and classification of physical activity; (E):  Overall accuracy: accuracy measure in 17 

record movement during exercise; (F) Activity and Device information: type, model, 18 

manufacturer, activities classified and recording frequency; (G) Main findings and others 19 

relevant information reported by studies. The abstract and full-text of suitable manuscripts were 20 

reviewed initially by the same two reviewers, with conclusion supported by a third, 21 

independent reviewer. 22 

Outcomes and prioritization 23 

The primary outcome of interest was relative accuracy for classifying physical activities 24 

according to accelerometer site. The second outcome are the analytical technique utilized to 25 

assessment and classification of physical activities. Given the heterogeneity of samples and 26 

instruments observed in studies, we did not load a meta-analysis. 27 

 28 

Critical appraisal of the included studies  29 

The quality of the studies was appraised using a scale adapted from the ‘Newcastle/Ottawa 30 

Scale (NOS) (Wells et al., 2014). Based on the NOS, each study was evaluated using the point 31 

system. The authors did critical appraisal of the included studies following these categories: 32 

(1) Selection Representativeness of the sample, Sample size, Description of Groups, 33 
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Ascertainment of exposure; (2) Confound Comparability - Based on design and analysis; (3) 1 

Outcome - Assessment of outcome and Statistical test. The assessment considered the follow 2 

cut offs: maximum ten score for cross sectional studies. The two raters achieved consensus 3 

through discussion. Discrepancies were settled by third author. 4 

3 Results 5 

The electronic search identified 118 potentially relevant articles. Following screening and 6 

detailed assessment, 19 studies were deemed suitable for review. (see Figure 1). 7 

Table 1 summarises; study aims, population, device locale, analytical technique, overall 8 

accuracy, activity and device information and overarching conclusions. Within the 19 studies, 9 

included; centre of mass, ankle, and wrist accelerometer positions were investigated. The 10 

classification techniques varying across studies (e.g., decision tree, artificial neural network, 11 

random forest and hidden Markov model, receive operator characteristic curve analysis, 12 

support vector machine (SVM), feed-forward neural networks and k-nearest neighbour).  13 

Heterogeneous results were reported in accuracy, varying according device location (between 14 

20.35% and 100%). Regarding devices utilised, eight studies (42.1%) utilized the ActiGraph 15 

Acc device (de Vries et al., 2011a; De Vries et al., 2011b; Ellis et al., 2014; Ellis et al., 2016; 16 

Kuhnhausen et al., 2017; Rowlands et al., 2016; Strath et al., 2015; Trost et al., 2014). Three 17 

research groups (15.8%) assessed the physical activity by GENEActiv device (Zhang et al., 18 

2012a; Zhang et al.; 2012b; Rowlands et al., 2016). Other studies utilized the following 19 

accelerometer manufacturers: Moto360 SmartWatch Acc (Amiri et al., 2017), ADXL210E 20 

accelerometers (Bao and Intille, 2004), Tracmor Acc (Gyllensten and Bonomi, 2011), Omron 21 

Acc (Hikihara et al., 2014), MVN Studi Acc, (Laudanski et al., 2015), Philips NWS Activity 22 

Acc (Long et al., 2009), ActiNav system (Mannini and Sabatini, 2011), ST-Microelectronics 23 

tri-axial Acc (Oshima et al., 2010) and Minmax tri-axial Acc (Wundersitz et al., 2015).  24 

Table 2 (available as supplementary material) shows the critical appraisal of the included 25 

studies. The majority (89.5%) reached 70% or superior in Newcastle-Otawa total score. Two 26 

studies scored 100% (Laudanski et al., 2015; Oshima et al., 2010). Only one study accrued a 27 

50% NOS total score (Gyllensten and Bonomi, 2011). All studies scored maximum points in 28 

outcome criteria (independent assessment and statistical test used to analyse the data was 29 

clearly described and appropriate). In contrast, the majority of studies did not highlight 30 

representativeness of the sample (63.2%), sample size (63.2%) and description of groups from 31 

NOS items for observation research (84.2%). 32 
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Table 1. Accelerometer position and classification accuracy 

 

Study Aim (activity 

classified) 

Population a Device 

location 

Analyses Overall 

accuracy 

Activity and Device information Main findings 

Amiri et al. 

(2017) 

To detect stereotypic 

behaviours in children 

with autism 

Fourteen 

participants, 12 

healthy subjects 

aged between 23-

33y, and two 

subjects (ages 15 

and 16) diagnosed 

with ASD. 

Wrist Features: Time 

and frequency 

domain features 

(FFT, Bispectrum 

and Wigner Ville 

Transform). 

Classifier: 
Decision tree (best 

performance) and 

SVM.  

Validation:10-

fold cross 

validation 

94.6% Moto360 SmartWatch Acc, recording 

at 50 Hz. Stereotypic autistic 

behaviour was classified. 

Wrist worn sensors may be 

used to monitor 

stereotypical movements 

associated with ASD. 

Bao and 

Intille 

(2004) 

To develop and 

evaluate algorithms to 

detect physical 

activities  

Twenty 

participants (no 

other information 

provided) 

Hip, 

wrist, 

arm, 

ankle and 

thigh 

Features: Time 

and frequency 

domain features 

(FFT). Classifier: 

SVM.  

Validation: leave-

one-subject- out  

Hip: 49.88% 

Wrist: 

32.01% 

Arm: 20.35% 

Ankle: 46.92 

Thigh: 54.53 

ADXL210E accelerometers from 

Analog Devices, recording at 76.25 

Hz. Activities classified; walking, 

sitting, standing, running, stretching 

scrubbing, household chores, reading, 

cycling, strength training, and stair 

climbing. 

Accelerometers can 

distinguish multiple types of 

activity. Multi-sensors 

outperform single units. 

de Vries et 

al. (2011a) 

To identify children's 

physical activity type 

using ANN models in 

children. 

Fifty-eight 

children (31 boys 

and 27 girls, age 

range = 9-12 y) 

(age: 11.0 ±0.7y, 

height: 

1.49 ± 0.6 m, 

weight 

42.6 ± 7.8 kg, 

BMI: 

19.0 ±3.0 kg,m2) 

Hip and 

ankle 
Features: 

statistics extracted 

form activity 

counts. Classifier: 

ANN.  

Validation: leave-

one-subject-out  

Uniaxial hip 

Acc: 72%, 

triaxial hip 

Acc: 77%. 

Uniaxial 

ankle Acc: 

57%, triaxial 

ankle Acc: 

68%. 

ActiGraph Acc (uni-and triaxial), 

recording frequency unspecified, 1-s 

epochs. Activities classified; sitting, 

standing, walking, running, rope 

skipping, playing soccer, and cycling. 

ANN models can 

characterise common 

physical activities in 

children. Triaxial Acc are 

superior to uniaxial Acc. 

De Vries et 

al. (2011b) 

To identify types of 

physical activity in 

adults using an ANN 

Forty-nine 

subjects (21 men 

and 28 women) 

(age 38±11 years, 

Hip and 

ankle 
Features: 

statistics extracted 

form activity 

Hip Acc: 

80.4% and 

ankle Acc: 

Actigraph Acc used, recording 

frequency unspecified, 1-s epochs. 

Activities classified were; sitting, 

ANN models perform well 

in identifying the type but 

not the speed of the activity 
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height 1.75±0.1 

m, weight 

73.4±13.3 kg, 

BMI 23.8±3.4 

kg,m2) 

counts. Classifier: 

ANN.  

Validation: leave-

one-subject-out 

77.7% for 5 

activities. 

standing, using the stairs, and walking 

and cycling at two self-paced speeds. 

of adults from 

accelerometer data. 

Ellis et al. 

(2014) 

To compare 

accelerometers worn 

on the 

wrist and hip for 

predicting 

PA type and EE using 

machine learning 

Forty adults (21 

women, 19 men). 

Age: 35.8 ± 12.1 

y, BMI: 24.8 ± 

2.9 kg,m2) 

Wrist and 

Hip 

(analysed 

individua

lly) 

Features: Time 

and frequency 

domain features 

(FFT). Classifier: 

Random Forest.  

Validation: leave-

one-subject- out 

Hip Acc: 

92.3%. Wrist 

Acc: 87.5%, 

for 4 

household 

activities.  

Hip Acc: 

70.2%. Wrist 

Acc: 80.2%, 

for 8 

combined 

household 

activities.  

 

ActiGraph Acc, recording at 30 Hz, 

analysed in 1-minute epochs. Eight 

activities performed and characterised; 

1) laundry, 2) window washing, 3) 

dusting, 4) dishes, 5) sweeping, 6) 

stairs, 7) walking, 8) running. 

Wrist Acc better at 

predicting activities with 

significant arm movement. 

Hip Acc superior for 

predicting  

locomotion 

Ellis et al. 

(2016) 

To test the 

performance of 

machine learning 

algorithms for 

classifying PA types 

from both hip and 

wrist accelerometer 

data. 

Forty overweight 

or obese women 

(age: 55.2 ± 15.3 

y; BMI: 32.0 ± 

3.7 kg,m2) 

Wrist and 

hip 

(analysed 

individua

lly)  

Features: Time 

and frequency 

domain features 

(FFT). Classifier: 

Random Forest + 

hidden Markov 

models for 

temporal filtering.  

Validation: leave-

one-subject-out 

Hip Acc: 

89.4%. Wrist 

Acc: 84.6% 

for 4 

activities. 

ActiGraph Acc, recording at 30 Hz. 

Four activities were; sitting, standing, 

walking/running, and riding in a 

vehicle. 

Hip and wrist accelerometry 

can be used to classify free-

living activities. 

Gyllensten 

and 

Bonomi 

(2011) 

To analyse the 

reproducibility of the 

accuracy of 

laboratory-trained 

classification 

algorithms in free-

living subjects during 

daily life 

20 healthy 

subjects (10 

males) (age: 30 ± 

9y; BMI: 23.0 ± 

2.6 kg,m2) 

Waist 

(lower 

back) 

Features: Time 

and frequency 

domain features 

(FFT). Classifier: 

SVM; feed-

forward NN; DT.  

Validation: leave-

one-subject- out 

SVM: 95.1%, 

NN: 91.4%, 

and DT: 

92.2%. 

Tracmor Acc, recording at 20 Hz. 

Activities classified were; lying down, 

sitting, sitting working at a personal 

computer, standing still, standing 

washing dishes, sweeping the floor, 

walking (treadmill, indoors, outdoors, 

upstairs, and downstairs), cycling 

(cycle ergometer and outdoors), and 

running (treadmill and outdoors). 

Capturing daily-life data is 

essential to training and 

testing accurate 

classification models. 

Combining laboratory and 

daily-life data to develop 

classification models should 

be undertaken.  
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Hikihara et 

al. (2014) 

To discriminate 

between non-

locomotive and 

locomotive activities 

for various physical 

activities 

68 participants 42 

boys: 15 (6–9y), 

and 27 (10–12y). 

26 girls: 14 (6–

9y), and 12 (10-

12y). 

Undisclo

sed  

Features: pre-

processed 

acceleration 

signals. 

Classifier: 
threshold-based  

Validation: no 

validation 

99.1% 

discriminatin

g between 

non-

locomotive 

and 

locomotive 

activities 

Omron Acc, recording at 32 Hz, 10-s 

epochs. Non-locomotive activities; 

desk work, Nintendo DS, sweeping 

up, clearing away, washing the floor, 

throwing a ball. Locomotive activities; 

stair descent, stair ascent, normal 

walking, brisk walking, jogging. 

ROC analysis can be used to 

distinguish between 

locomotion and non-

locomotion. 

Kuhnhause

n et al. 

(2017) 

To classify children’s 

activities against 

reference 

measurements. 

70 (43 boys and 

27 girls). 8 to 11 

years (9.77± 0.62 

y). 

Hip Features: Time 

and frequency 

domain features 

(FFT)..  

Classifier: SVM.  

Validation: leave-

one-subject- out 

Individual 

accuracy: 

96.9%. Group 

accuracy: 

87.5%. 

ActiGraph Acc, recording at 30 Hz. 

Activities classified; sit, stand, lie, 

walk, fast run, walk, non-wear. 

SVM can provide a reliable 

method for classifying 

activities. 

Laudanski 

et al. 

(2015) 

To develop an activity 

classification 

algorithm for over-

ground walking, stair 

ascent, and stair 

descent by individuals 

presenting with post 

stroke hemiparesis. 

Ten chronic, 

hemiparetic stroke 

survivors (67.0 ± 

10.9 y) 

Shank-

mounted 

Features: Time 

and frequency 

domain features 

(FFT)..  

Classifier: SVM.  

Validation: leave-

one-out 

100% for 

three-

activities and 

94% for five-

activities 

MVN Studi Acc, recording at 120 Hz. 

Five gait activities, 1) over-ground 

walking, 2) stair ascent, and 3) 

descent, 4) descent with a distinction 

between stepping pattern used while 

negotiating stairs (step-over-

step(SOS) and 5) step-by-step (SBS)). 

Only Z-axis component of 

accelerometer signal analysed. 

Clinical population. No gender 

information. 

Shank-mounted 

accelerometry can be used 

to reliably characterise gait 

activity in individuals with 

post stroke hemiparesis 

Long et al. 

(2009) 

To characterise daily 

real-life activities in a 

naturalistic 

environment 

24 subjects (11 

females, ranging 

in age from 26 to 

55 (33.6 ± 7.9y). 

Hip Features: Time 

and frequency 

domain features 

(FFT). Spatial 

domain features 

defined as sensor 

orientation 

variations. PCA is 

also applied. 

Classifier: 
NB,DT. 

Validation: leave-

one-subject- out 

NB: 71.5%. 

DT:72.8%. 

Philips NWS Activity Acc, recording 

at 30 Hz. Activities classified; 

walking, running, cycling, driving, 

and sports, 

Daily activities can be 

characterised using different 

analytical techniques. 
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and 10-fold cross-

validation 

Mannini 

and 

Sabatini 

(2011) 

To investigate the 

accuracy of single 

accelerometer in 

classifying activity 

Six healthy 

subjects (age: 

27.3 ± 2.0y) 

Thigh  Features: Time 

domain features.  

Classifier: SVM. 

Validation: 

individual, leave-

one-subject- out 

and 10-fold cross-

validation 

Walking: 

>99%, 

running 

>99%. 

ActiNav system, recording at 250 Hz. 

Activities classified; walking and 

running 

A single thigh mounted 

sensor can be used to 

accurately distinguish 

between walking and 

running. 

Oshima et 

al. (2010) 

To develop a new 

algorithm for 

classifying physical 

activity into either 

locomotive or 

household activities 

using a triaxial 

accelerometer. 

Sixty-six 

volunteers (31 

men and 35 

women) (age 

42.3±13.3 y, 

height 1.63± 0.85 

m, weight 

61.3±13 kg, BMI 

22.7±3.5 kg,m2) 

Hip  Features: 

Frequency domain 

features (FFT).  

Classifier: 
threshold-based 

Validation: 

dataset split in 44 

subjects for 

training and 22 for 

testing. 

63.6%-98.7% ST-Microelectronics tri-axial Acc, 

recording at 32 Hz. Twelve physical 

activities (personal computer work, 

laundry, dishwashing, moving a small 

load, vacuuming, slow walking, 

normal walking, brisk walking, 

normal walking while carrying a bag, 

jogging, ascending stairs and 

descending stairs). 

TAU/TAF cut-off value can 

accurately classify 

household and locomotive 

activities. 

Rowlands 

et al. 

(2016) 

To evaluate the 

accuracy of posture 

classification using the 

Sedentary Sphere. 

Thirty-four 

participants (14 

male and 20 

female patients; 

age, 27.2 ± 5.9 y; 

BMI, 23.8 ± 3.7 

kg,m2 

Wrist Features: 

statistics extracted 

form activity 

counts. Classifier: 

Threshold based 

methods  

Validation: not 

disclosed 

GENEActiv 

accuracy, 

sedentary: 

74%, 

postural; 

91%. 

ActiGraph 

accuracy, 

sedentary: 

75%, 

postural: 

90%. 

GENEActiv and ActiGraph Acc, both 

recording at 100 Hz. Activities 

classified; sedentary lying, sedentary 

sitting and upright posture. 

These data support the 

efficacy of the Sedentary 

Sphere for classification of 

posture from a wrist-worn 

accelerometer in adults. 

Strath et 

al. (2015) 

To investigate 

multiple accelerometer 

sites and their 

associated PA 

classification accuracy 

in adults 

Ninety-nine 

subjects (age: 

49±17.4 y, 

weight: 75.5±16.6 

kg) 

Ankle, 

hip and 

wrist  

Features: data 

representation 

based on 1s 

accelerometer 

epoch. Classifier: 

SVM  

Ankle 

accuracy: 

83%. Hip 

accuracy: 

81.59%. 

Wrist 

ActiGraph Acc, recording frequency 

unspecified. Activities characterised; 

six treadmill walking activities, 7 min 

each. In addition to; daily living, 

computer work, vacuuming, mopping/ 

sweeping, carrying/lifting boxes of 

three different weights (4.5, 6.8, and 

Whilst accurate in 

characterising PA, age 

group specific analyses 

would be more beneficial. 
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Validation: leave-

one-subject-out. 

accuracy: 

69.25% 

9.1 kg), and walking/intermittent stair 

climbing, for 7 min each. 

Trost et al. 

(2014) 

To compare the 

activity recognition 

rates of an activity 

classifier trained on 

acceleration signal 

collected on the wrist 

and hip. 

Fifty-two children 

(28 boys, 24 girls) 

(age: 13.7±3.1 y, 

height: 1.60 ±0.15 

m, weight: 

50.6±13.5 kg) 

Hip and 

wrist 

Features: Time 

domain features.  

Classifier: 
Logistic 

regression (LR).  

Validation: 3-fold 

modified cross 

validation (non-

overlapping 

subsets by 

subject) 

Hip accuracy: 

91%, wrist 

accuracy: 

88.4%. 

ActiGraph Acc, recording at 30 Hz. 

Activities characterised; lying down, 

hand writing, laundry task, throw and 

catch, comfortable over-ground walk, 

and aerobic dance. In addition; 

computer game, floor sweeping, brisk 

over-ground walk, basketball, over-

ground run/jog, and brisk treadmill 

walk. 

Both the hip and wrist 

algorithms achieved 

acceptable classification 

accuracy, allowing 

researchers to use either 

placement for activity 

recognition. 

Wundersit

z et al. 

(2015) 

To investigate whether 

a single wearable 

tracking device can be 

used to classify team 

sport related activities 

Seventy-six 

recreationally 

active, healthy 

male participants 

(age 24.4 ± 3.3 y; 

height 1.82 ± 0.75 

m; mass 77.4 ± 

11.6 kg) 

Neck, in-

line and 

dorsal to 

the first 

to fifth 

thoracic 

vertebrae 

of the 

spine 

Features: Time 

and frequency 

domain features 

(FFT). Features 

selected by 

ANOVA and 

Lasso methods 

Classifier: RF; 

SVM; LMT. 

Validation: 

hybrid 10-

fold/leave-one-

out. 

The LMT 

(79-92% 

classification 

accuracy) 

outperformed 

RF (32-43%) 

and SVM 

algorithms 

(27-40%) 

Minmax tri-axial Acc, 100 Hz 

recording frequency. Each activity 

circuit included three 

countermovement jumps, an eight-

metre jog, an 8-m COD agility 

section, two jumps for distance, a 10-

m sprint, seven metres of walking, and 

a tackle bag to be taken to ground 

with maximum force. 

In sporting scenarios where 

wearable tracking devices 

are employed, it is both 

possible and feasible to 

accurately classify team 

sport-related activities. 

Zhang et 

al. (2012a) 

To classify semi-

structured activity 

Sixty participants 

(23 males) (age, 

49.4 ± 6.5 y); 

BMI, 24.6 ± 3.4 

kg,m2) 

Right 

wrist 

Features: Time 

and frequency 

domain features 

(FFT + DWT). 

Classifier: DT, 

NB,LR,SVM, 

ANN. 

Validation: 10-

fold cross-

validation 

94.5%-97.4% 

(depending 

on recording 

frequency) 

GENEA Acc used, recording at 5-

80Hz. The activities assessed were 

lying, standing, seated computer work, 

4 km.h-1 walk, 5 km.h-1 walk, 6 

km.h-1 walk, walking up and down 

stairs, free-living 6 kmIhj1 walk, two 

household activities (randomly 

selected from window washing, 

washing up, shelf stacking, and 

sweeping), one run 

(8 km.h-1, 10 km.h-1 or 12 km.h-1 run), 

and an optional 

free-living 10 km.h-1 run. 

Wrist accelerometry for 

classifying semi-structured 

activities is accurate, 

however sampling 

frequencies >10 Hz and/or 

more than one axis of 

measurement are not 

associated with greater 

classification accuracy. 
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Zhang et 

al. (2012b) 

To develop methods to 

classify physical 

activities into walking, 

running, household, or 

sedentary activities 

based on raw 

acceleration data 

Sixty participants 

(23 males) (age: 

49.4 ± 6.5 y, 

BMI: 24.6 ± 3.4 

kg,m2) 

Hip and 

wrist 

Features: Time 

and frequency 

domain features 

(FFT + DWT). 

Classifier: DT, 

NB,LR,SVM, 

ANN. 

Validation: 10-

fold cross-

validation 

Hip accuracy: 

99%. Wrist 

accuracy: 

96%. 

GENEA Acc used, recording at 80Hz. 

Activities characterised; sedentary, 

household, walking, and running. 

Wrist accelerometry has 

good concordance to hip 

accelerometry for 

classifying activities. 

Table I definitions; ASD: Autism Spectrum Disorder, ANN: Artificial neural network, ANOVA: Analysis of Variance, Acc: Accelerometer, EE: Energy Expenditure, RF: Random Forest, SVM: Support Vector 1 
Machine, LMT: Logistic Model Tree, COD: Change of Direction, SD: Standard Deviation, M: Metres, Y: Years, Kgm2: Kilograms per metres squared, BMI: Body Mass Index, FFT: fast Fourier transformation, PA: 2 
Physical Activity, NN: Neural Network, TAU: Total Acceleration Unfiltered, TAF: Total Acceleration Filtered, LR: Logistic Regression, DT: Decision Tree, NB: Bayes Classifier, FFT: fast Fourier transformation, 3 
ROC: Receive Operator Characteristic, a Age data are mean ± SD, or range.  4 

 5 
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4 Discussion 1 

The aim of the present systematic review was to identify the relative accuracy for classifying 2 

physical activities according to accelerometer site and analytical technique. In accord with the 3 

aim of this review, 19 studies that evaluated centre of mass, ankle, and wrist accelerometer 4 

positions were reviewed. 5 

The modal attachment site of accelerometers for the purpose of characterising physical 6 

activities was (circa) the centre of mass, and a range of accuracies and techniques were 7 

highlighted (see Table 1). Contemporary studies had a propensity to either focus solely upon, 8 

or at least include, wrist-worn accelerometers, and demonstrated comparable accuracy in 9 

activity characterisation as hip or centre-of-mass affixed accelerometers. Notwithstanding, the 10 

least utilised accelerometer position for physical activity characterisation, in the review, was 11 

the lower limbs. Characterising human physical activities and qualities using accelerometers 12 

(Umstattd Meyer et al., 2013; Leutheuser et al., 2013; Clark et al., 2018; Clark et al., 2017b; 13 

Clark et al., 2017a) demonstrates promising results, with comparably high accuracies between 14 

analytical techniques, and across a broad range of activities, including sitting, standing, 15 

walking, running, rope skipping, general sports, cycling, general household activities, and stair 16 

climbing. In general, studies that compared multiple-sites noted that the hip (centre-of-mass) 17 

attachment providing better estimates of whole body activity, wrist attachment provided better 18 

estimates in tasks where the centre-of-mass is not mobile, e.g. cycling, whilst ankle attachment 19 

facilitated the classification of gait related activity. 20 

4.1 Hip (centre-of-mass) attachment 21 

The most prevalent attachment site for accelerometers, when characterising PA was the aim, 22 

was the hip or centre-of-mass. Within this attachment site, ANN, random forest classifier, 23 

HMM and SVM were employed. De Vries et al (2011a) and De Vries et al (2011b) utilised 24 

ANN in an attempt to identify sitting, standing, walking, running, soccer and cycling, and 25 

general concordance of classification accuracy was reported. De Vries et al (2011a) 26 

investigated a child population, whilst De Vries et al (2011b) utilised middle aged adults, 27 

notwithstanding both studies reported accuracies of 77 and 80%, respectively, suggesting that 28 

age of the population has little impact on activity classification accuracy. 29 

Ellis et al (2014) and Ellis et al (2016) utilised a random forest classifier, an ensemble machine 30 

learning technique, to investigate household and basic postural movements. Ellis et al (2014) 31 

demonstrated that characterising four basic household movements, an accuracy of 92% was 32 
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attainable. Similarly, for a comparable number of basic postural movements, Ellis et al (2016) 1 

reported a characterisation accuracy of ~90% using the random forest classifier technique. 2 

However, when more physical activities (eight in total) were added to the classifier matrix, 3 

overall accuracy fell by ~20% (Ellis et al., 2014), indicating that there may not be enough 4 

degrees of difference between basic movements, when classified from hip mounted 5 

accelerometers. 6 

Another machine learning algorithm, SVM, has been used extensively with the aim of 7 

classifying physical activities in children and adults. Gyllensten and Bonomi (2011) attempted 8 

to capture daily-life data in adults, assessing primarily postural-, and some locomotion-based 9 

movements. Through the combination of laboratory and daily living measures, respectively, a 10 

classification accuracy of over 95% was reported. Similarly, Kuhnhausen et al (2017) were 11 

able to classify basic postural and locomotor movements, on an individual basis, with an 12 

accuracy of over 96%. However, when group-based classifications were attempted, the 13 

accuracy fell to 87.5%, highlighting that idiosyncratic differences in even basic movements 14 

may hinder sophisticated machine learning techniques. Strath et al (2015), whilst investigating 15 

an adult population of broad age range (49±17.4 years), showed that a variety of treadmill 16 

walking speeds, stair climbing and daily living activities, an overall accuracy of 81.6% was 17 

achievable. Impairing the overall accuracy in the study of Strath et al (2015), was the large age 18 

range of the participants, with the authors asserting that whilst centre of mass mounted 19 

accelerometers, combined with SVM, are accurate in characterising PA, age group specific 20 

analyses would be more beneficial. Wundersitz et al (2015), although not hip mounted, did 21 

utilise a central locale in an attempt to classify sport specific activities, including 22 

countermovement jumps, walking, jogging, sprinting, change of direction agility drills (COD), 23 

jumps for distance, and a tackle bag to be taken to ground with maximum force. It was evident 24 

that in sporting scenarios, where wearable tracking devices are employed, whilst it is both 25 

possible and feasible to classify team sport-related activities, accuracy, as compared to daily 26 

living and basic postural and locomotor movements, is drastically reduced. In contrast to the 27 

high level of classification accuracy SVM and random forest classifier techniques display for 28 

basic movements, Wundersitz et al (2015) reported a range of accuracies between 27-40%, and 29 

32-43% for SVM and random forest classifiers, respectively, in recognising a set of 10 30 

activities.  31 

Feature extraction and recognition of physical activities may take many forms, with 32 

probabilistic classifiers (Long et al., 2009), filtered accelerations (Oshima et al., 2010), and 33 
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FFT (Zhang et al., 2012b) highlighted in this review.  Long et al (2009) demonstrated that hip 1 

mounted accelerometers using Bayes probabilistic classifiers could determine locomotor and 2 

sporting activities with accuracies up to 71.5% in adults. Whilst in a comparable population, 3 

Oshima et al (2010) reported accuracies ranging from 63-98%, concluding that the more 4 

complex movement, the less accurate feature extraction may be. In a child population, Trost et 5 

al (2014) found that hip (accelerometer) algorithms achieved good classification accuracy 6 

(91%) for basic postural and locomotor activities. Finally, Zhang et al (2012b) extracted 7 

features of activity through the use of FFT, with focus on basic distinction between 8 

sedentarism, household activity, walking and running, and reported classification accuracy of 9 

99%. 10 

 11 

It was evident that daily activities can be characterised using different analytical techniques, 12 

with a hip or centrally placed accelerometer. A common theme that has emerged from this 13 

review is that basic postural and locomotor type distinction is very accurate, with relative 14 

accuracies of 77-99%. However, when more complex, or indeed intense, movements are 15 

investigated, accuracy deleteriously suffers, with accuracies dropping as low as 27%.  Many of 16 

these studies failed to account, or indeed, explicitly report, anthropometric and physiological 17 

metrics such as age, sex and fitness, which could conceivably affect patterns of movement. 18 

Concerningly, a confounding limitation was that key accelerometer information was omitted 19 

in many cases, such as recording frequencies utilised and band-pass filters applied, which are 20 

vital pieces of information to standardise and replicate analyses. Although substantial gains 21 

have been made utilising classification analytics to develop deeper insights into human 22 

physical activity data, the underlying algorithms require further development. Further, work 23 

surrounding age and population specific algorithms need to be addressed, it is evident that 24 

analyses that were able to take into account idiosyncratic movement patterns were consistently 25 

accurate, yet in many cases, when analyses were scaled up to group or cohort-based analyses, 26 

accuracy is reduced.  27 

4.2 Leg attachment 28 

Similar to centrally located accelerometer sites, analytical techniques employed for 29 

accelerometers attached to the leg included; ANN, FFT, and SVM. In children, De Vries et al 30 

(2011a) highlighted that ankle-affixed accelerometers were less able to accurately classify 31 

sitting, standing, walking, running, rope skipping, playing soccer, and cycling, collectively, 32 

than centrally located monitors, 68 vs. 77%, respectively. Interestingly, De Vries et al (2011a) 33 
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reported better accuracy in identifying locomotion/gait with a hip vs ankle accelerometer; this 1 

is in contrast to previous reports. Barnes et al. (2017) systematically demonstrated the 2 

capability of an ankle mounted accelerometer to distinguish specific portions of gait and 3 

ambulation, whilst Mannini et al. (2013) highlighted that for movement quality characteristics 4 

related to ambulation, an ankle-mounted monitor is most suitable. This discrepancy was 5 

highlighted by the authors (De Vries et al., 2011a), and attributed to the low sampling fidelity, 6 

where data were transformed into 1-s epochs, opposed to maintaining the raw data. In adults, 7 

De Vries et al (2011b) noted ~78% accuracy in identifying postural movement and cycling, 8 

which was less accurate than a centrally placed monitor, identifying the same activities (80%). 9 

It was evident (De Vries et al., 2011a; De Vries et al, 2011b) that using ANN and leg-mounted 10 

accelerometers for identifying the type of activity demonstrates good accuracy, however, the 11 

speed of the activity of adults from accelerometer data is less distinguishable. Notwithstanding, 12 

a common limitation of De Vries et al (2011a) and De Vries et al (2011b) is that the raw 13 

acceleration data (both 30 data points per second) were filtered into 1-s epochs, thereby 14 

reducing the sensitivity and ability of the analyses to differentiate specific portions of gait or 15 

locomotion.  16 

Whilst most studies included in this review focussed on healthy individuals, Laudanski et al 17 

(2015) utilised hemiparetic stroke surviving participants and assessed five specific locomotor 18 

activities. In contrast to De Vries et al (2011a) and De Vries et al (2011b), who reduced raw 19 

acceleration data, Laudanski et al (2015) recorded at a high frequency (120 Hz) and did not 20 

artificially reduce the data points. The resultant analyses, FFT, yielded a classification accuracy 21 

of 100% and 94% for three and five activities, respectively. Notwithstanding, however, 22 

limitations in Laudanski et al (2015) included a paucity of sex information and no exact 23 

description of the accelerometer placement. The final study utilising an ankle-mounted 24 

accelerometer to classify PA, in this review, is Strath et al (2015), who utilised SVM and 25 

showed that in a variety of treadmill walking speeds, stair climbing and daily living activities, 26 

an overall accuracy of 83% was achievable. Whilst Strath et al (2015) included no recording 27 

frequency or data reduction information, given that the ankle- outperformed the hip 28 

accelerometer in locomotor activity classification (83 vs 81%), this suggests that the raw 29 

acceleration data were utilised and not reduced. Strath et al (2015) asserted that whilst accurate 30 

in characterising PA, age group specific analyses are necessitated. Furthermore, whilst age 31 

specific analyses could be used, maturation specific may be more relevant and accurate i.e. a 32 

different approach must be taken in youth than in adults. 33 
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It was apparent that for whole body movements, leg mounted accelerometers were 1 

systematically less accurate than hip or centrally located devices, and given the well-2 

established link between centrally located accelerometers and energy expenditure estimation 3 

(Siervo et al., 2013), it is unsurprising that monitors attached to the leg were less accurate. 4 

Conversely, however, when locomotion, or gait, was the focus of analyses, leg mounted 5 

monitors were more consistently accurate, highlighting that one (accelerometer) site, does not 6 

fit all. In some cases, however, excessive data reduction (i.e. reducing 30 data points per second 7 

to one) led to hip- outperforming leg-mounted accelerometers for locomotor classification 8 

accuracy. Furthermore, limitations present across studies included limited reporting of sex 9 

information, accelerometer recording frequencies and band-pass filtering applied, thereby 10 

confounding researchers’ abilities to replicate and discuss data analyses.  11 

4.3 Wrist attachment 12 

In recent years, the tendency for empirical investigations to incorporate wrist-worn 13 

accelerometry has grown, and within such investigations, analytical techniques have remained 14 

consistent between central, leg and wrist accelerometer sites. In this review, studies utilising 15 

wrist mounted accelerometers used SVM, FFT, random forest classifier and HMM.  16 

Amiri et al (2017) sought to detect stereotypic behaviours in children with autism, including 17 

flapping, sibbing (self-hitting) and painting with an accuracy of 94%. Given the propensity of 18 

ASD sufferers to gesticulate with their arms, a wrist-mounted accelerometer was asserted to be 19 

a logical placement (Amiri et al., 2017), giving further credence to a one site does not fit all 20 

approach. Strath et al (2015) utilised SVM and showed that in a variety of treadmill walking 21 

speeds, stair climbing and daily living activities, an overall accuracy of ~70% was achievable. 22 

This was, however, markedly lower than both hip and ankle monitors used to characterise the 23 

same movements (~70 vs 81 and 83%, respectively). Trost et al (2014) compared wrist and hip 24 

accelerometer placements, combined with feature extraction methods, to classify sedentary and 25 

daily life behaviours, and asserted that both the hip and wrist algorithms provide acceptable 26 

classification accuracy, allowing researchers to use either placement for activity recognition. 27 

The relative accuracies of hip and wrist monitors were 91% and 88%, respectively, 28 

demonstrating very good agreement between the two placements. The concordance in 29 

accuracies reported by Trost et al (2014) are contrary to Strath et al (2015) and this is likely 30 

due to the former focussing on whole-body type activity whilst the latter predominantly 31 

analysed locomotion types.  32 
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Ellis et al (2014) and Ellis et al (2016) reported that wrist-mounted accelerometers were less 1 

accurate than hip-mounted counterparts when characterising four, mainly locomotor 2 

movements (household, stairs, walking, running), in children and adults, were analysed. Ellis 3 

et al (2014) and Ellis et al (2016) demonstrated accuracies of 87 and 84, respectively for wrist 4 

monitors, vs. 92 and 89%, respectively for hip monitors. However, in Ellis et al (2014), when 5 

more activities (four wrist-dominant activities; laundry, window washing, dusting, dish 6 

cleaning) were added into the random forest classifier, this led to the wrist- outperforming the 7 

hip-mounted monitor (80% vs. 70%, respectively). Zhang et al (2012a) investigated postural 8 

and locomotor data from single, dual, and three axes at sampling rates of 5, 10, 20, 40, and 80 9 

Hz, where mathematical models based on features extracted from mean, standard deviations, 10 

FFT, and wavelet decomposition were built. Zhang et al (2012a) reported high classification 11 

accuracy, irrespective of the number of accelerometer axes for data collected at 80 Hz (97%), 12 

40 Hz (97%), 20 Hz (97%), and 10 Hz (97%) and 5 Hz (95%). The authors further asserted 13 

that sampling frequencies of 10 Hz and/or more than one axis of measurement were not 14 

associated with greater classification accuracy. Utilising the same analytical approach as Zhang 15 

et al (2012a) (i.e. FFT and wavelet decompression), Zhang et al (2012b) showed that when 16 

classifying sedentary, household, walking, and running behaviours, wrist accelerometry has 17 

good concordance to hip accelerometry, 96 vs 99%, respectively. Notwithstanding, it was 18 

concluded in both, Zhang et al (2012a) and Zhang et al (2012b), that classification of a small 19 

number of basic postural and locomotor movements is reliable and accurate, yet further work 20 

and refinement, considering a wider range of activities, is necessary. The final study included 21 

in this review, Rowlands et al (2016), pioneered a novel analytical approach to activity 22 

classification; a threshold-based concept coined the ‘sedentary sphere’. The algorithm and cut-23 

points developed were primarily targeted at classifying postural movement and changes, and 24 

as such, noted an accuracy of ~90%, irrespective of accelerometer type.  25 

One site is clearly not suitable for all types of PA assessment, whether the activity being 26 

classified is locomotor (or gait) based, whole body, or wrist dominant has large impact on the 27 

capability of single-position accelerometers to accurately characterise activity, regardless of 28 

analytical technique employed. When activities go beyond basic postural or locomotor 29 

movements, wrist-mounted accelerometers, irrespective of analytical technique, lose efficacy 30 

in such tasks.  31 

4.4 Considerations 32 
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Although comparison of overall accuracy of physical activity characterisation provides an 1 

overarching view of the literature, precautions must be taken when interpreting this, or indeed 2 

any, accuracy-based metric. For instance, the dataset, i.e., the number of activity classes and 3 

amount of data classified must be considered. If the dataset is complex involving many classes, 4 

for example in De Vries et al (2011a) and De Vries et al (2011b), whom attempted to identify 5 

sitting, standing, walking, running, soccer and cycling,  a 10% gross-error is contrasting from 6 

a 10% error in a two-class problem, as in Mannini and Sabatini (2011) whom distinguished 7 

between walking and running. Moreover, if an investigation is designed on a complex dataset, 8 

the accuracy meaning is necessarily different from that inferred from comparably simplistic 9 

studies. Likewise, the activity type is also important; empirical investigations that target very 10 

simple, usually postural, activities, like sit-stand-walk, will necessarily be more likely to 11 

characterise, accurately, the activity, whereas those studies targeting very complex sets, such 12 

as Bao and Intille (2004), conversely, require a far more robust and comprehensive set of 13 

computational methods.  14 

A further consideration, and indeed avenue for further research, is the classifier training and 15 

validation approach utilised, for example; 60%-40% train test split, n-fold cross-validation, 16 

individual validation, leave-one-subject-out cross-validation. In fact, by using a validation 17 

approach that uses data from a specific subject that is used also for testing, greater accuracy is 18 

more easily attainable than using leave-one-subject out cross validation which means testing 19 

the solution on a subject that was excluded from training. Further work must also be conducted, 20 

examining the influence of time domain, frequency domain, PCA-based statistical analyses. 21 

The varying analytics and outputs relate to computational complexity of the solutions; complex 22 

features can translate into complex data processing that could, therefore, limit the real-time 23 

capabilities of the method. 24 

The accelerometer brand-specific details and operational capabilities and/or set-up need to be 25 

concomitantly considered. Evident in this review, band-pass filtering applied to raw 26 

accelerometer is, for the most part, unreported; accelerometer-recording frequencies (ranging 27 

from 10-120 Hz) are varied, inconsistent and, often, not rationalised against the expected 28 

frequency of human activity. The Nyquist-Shannon sampling theorem specifies that the sample 29 

must contain all the available frequency information from the signal to result in a faithful 30 

reproduction of the analogue waveform signal. Further, put simply, if the highest frequency 31 

component, in Hz, for a given analogue signal is fmax, according to the Nyquist-Shannon 32 

sampling Theorem, the sampling rate must be at least 2fmax, or twice the highest analogue 33 
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frequency component. If the sampling rate is less than 2fmax, and/or if all the available frequency 1 

information is not available, the signal will not be correctly represented in the digitized output 2 

(Shannon, 1949; Farrow et al., 2011). 3 

Practically, most of the state of the art solutions adopt machine learning algorithms for which 4 

the computational cost is mainly associated with the training phase. The test phase most 5 

commonly compatible with online solutions that process data as soon as they are available by 6 

the wearable sensor. The only limitations are related to the fact that acceleration signals are 7 

processed on a window-by-window base and then, a delay related to the filling of the data 8 

window and to the features calculation is usually present, notwithstanding, this should not 9 

generally prevent any researcher from implementing online working solutions.  10 

Overall, these considerations must be appreciated when researchers, practitioners and 11 

clinicians are attempting to characterise physical activities. Furthermore, the expert-led 12 

consensus of van Hees et al. (2016) asserts authors must; consider and present sensor 13 

specification, algorithms for data processing must be, comprehensively, reported, and 14 

important decisions regarding empirical aims, motivations and expected outcomes must be 15 

established and documented, thereby facilitating interpretation. 16 

5 Conclusion 17 

The aim of the present review was to identify the relative accuracies for classifying physical 18 

activities according to accelerometer site and analytical technique. In accord with the aim of 19 

this review, it was found that overall accuracy for various accelerometer sites for activity 20 

recognition were comparable; accelerometer site for activity recognition needs to be carefully 21 

considered based on the type of activity being investigated; and that there is no ‘one site fits 22 

all’ approach to accelerometer site, or indeed analytical technique,. Whilst contemporary 23 

research has cited accelerometer position as a rationale for poor compliance, this is 24 

inconclusive and not a logical reason in itself to favour one position a priori, further 25 

confounding, the current literature pool is bereft of uniformity and consistency. We therefore 26 

believe that this systematic review will provide practical information and guidance to current 27 

and prospective researchers. Research design and focus should always inform the most suitable 28 

location of attachment, and driven by what type of activity is being characterised. Furthermore, 29 

in line with the expert consensus of van Hees et al (2016), detailed specification of sensors 30 

need to be routinely provided and each fundamental step of algorithms for processing raw 31 
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accelerometer data need to be documented and motivated, to facilitate interpretation, 1 

replication and discussion. 2 
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