
Fracture Toughness of a Zirconia 
Engineering Ceramic and the 
Effects Thereon of Surface 
Processing with Fibre Laser
Radiation 
Shukla, P., Lawrence, J. & Wu, H. 

Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink:  

Shukla, P, Lawrence, J & Wu, H 2010, 'Fracture Toughness of a Zirconia Engineering 
Ceramic and the Effects Thereon of Surface Processing with Fibre Laser Radiation' 
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, vol. 224, no. (B10), pp. 1555-1569. 
https://dx.doi.org/10.1243/09544054JEM1887 

DOI 10.1243/09544054JEM1887 
ISSN 0954-4054 
ESSN 2041-2975 

Publisher: SAGE Publications 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  

This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  



 1 

Determination of Fracture Toughness of Zirconia 

Engineering Ceramics and its Effects from 

processing with fibre laser radiation  

 

P. P. Shukla*, J. Lawrence Ж and H. Wu Ш 

 

*Loughborough University, Wolfson School of Mechanical and Manufacturing 

Engineering, Leicestershire, LE11 3TU, United Kingdom.  

Email: P.Shukla@lboro.ac.uk 

 

Ш
 Loughborough University, IPTME, Leicestershire, LE11 3TU, United Kingdom.  

 

 

 

 

 

 

 

Correspondents Address: 

Pratik P. Shukla* 

Loughborough University,  

Wolfson School of Mechanical and Manufacturing Engineering 

Leicestershire  

LE11 3TU 

United Kingdom  

Email: P.Shukla@lboro.ac.uk 

Direct Line: +44 (0) 1509227592  

Mob: +44 (0) 7739461805 

 



 2 

Abstract 
 

Vickers hardness indentation tests were employed to investigate the near surface changes in the 

hardness of the fibre laser treated and as received ZrO2 engineering ceramic. Indents were created 

using 5 kg, 20 kg and 30 kg loads to obtain the hardness. Optical microscopy, white-light 

interferometery and co-ordinate measuring machine were then used to observe the, crack lengths 

and crack geometry within the engineering ceramic. Palmqvist and half-penny median crack 

profiles were found which indicated the selection of the group of equations used herein. 

Computational and analytical approach was then adapted to determine the ceramics K1c. It was 

found that the best applicable equation for ZrO2 was: *K1c = 0.016 [E/H]
 ½

 x [P/C
3/2

] and 

confirmed to be 42 % accurate in producing K1c values within the range of 8-12 MPa m
1/2  

for 

ZrO2 ceramics. Fibre laser surface treatment reduced the surface hardness and produced smaller 

surface cracks lengths in comparison with the as received surface. The surface crack lengths, 

hardness and the indentation loads were found to be important particularly the crack length which 

significantly influenced the end K1c value when using the equation*. Longer crack lengths proved 

lower ceramics resistance to indentation and moreover the end K1c value. The hardness influenced 

the K1c as softer surface was produced by the laser treatment which resulted in higher resistance to 

propagate a crack and enhanced the ceramics K1c. Increasing the indentation load also varied the 

end K1c value as higher indentation loads resulted in a bigger diamond footprint and the exhibited 

longer crack lengths.  

 

 

 

 

Keywords: Fracture Toughness (K1c), Vickers indentation technique, ZrO2 Engineering 

Ceramics. 
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Introduction 

Applications of ceramics have been limited due to their crack sensitivity and low fracture 

toughness (K1c). Nevertheless, the use of ceramics has increased over the years. They are now 

considered as the new age materials used to manufacture components for the aerospace, 

automotive, military and power generation sectors. Engineering ceramics offer exceptional 

mechanical properties, which allows them to replace the more conventional materials currently 

used for high demanding applications [1-8].  

 

Fracture Toughness (K1c) is a very important property of any material and especially ceramics 

in particular due to their brittle nature. Ceramics in comparison with metal and metal alloys 

have a low K1c, hence, it would be an advantage if the K1c of ceramics could be improved. This 

could open new avenues for ceramics to be applicable to high demanding applications where 

metals and metal alloys fail due to their low thermal resistance, co- efficient of friction, wear 

rate and hardness in comparison with ceramics. K1c is a measure of the materials resistance to 

fracture or crack propagation, it is the plane strain fracture toughness. Materials with high K1c 

are much softer and ductile. Those types of material can resist cracks at higher stress levels and 

loading. Materials with low K1c are much harder, brittle and allow crack propagation at lower 

stresses and loading. Unlike metals, it is difficult for dislocations to propagate with ceramics 

which makes them brittle. Ceramics also do not mechanically yield as well as metals in 

comparison which leads to much lower resistance to fracture. The measure of K1c was carried 

out using the Vickers indentation method which calibrates the hardness of the material and 

induces a crack. Measured hardness and the crack lengths were then placed into empirical 

equations to calculate the materials K1c after and prior to the surface treatment. K1c of 

engineering materials can be determined using various different techniques. Single edge 

notched beam (SENB), shevron notched beam (CVNB) and double cantilever beam (DCB), as 

well as Vickers indentation method are all conventionally employed for industrial applications. 

The Vickers indentation test can be used to determine the K1c of ceramics and glasses from 
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empirical relationships derived by Antis et al [9-11]. The advantage of the Vickers hardness test 

is the cost effectiveness, ease of set up and is one of the most simple and least time consuming 

in comparison with the other techniques available to determine the K1c of ceramics. The Vickers 

indentation test method is less responsive in comparison with other techniques, minimum 

preparation is requires with quick and cost effective set up and use. There are disadvantages to 

the Vickers indentation test such as the lack of accuracy to measure the length of the cracks 

which influences the final K1C value [9, 10], the diversity of the use of the indentation equations 

and its accuracy. The crack lengths are also visualized after conducting the test by means of 

optical microscopy. Change in the K1c has an influence on the materials functionality or 

diversity to its applications. Improving the K1c of  materials can enhance its functional 

capabilities such as longer functional life, improved performance under higher cyclic and 

mechanical loading particularly for demanding applications where engineering ceramics are 

applicable. This research illustrates a method to determine the K1c using Vickers indentation 

method for laser treated CIP ZrO2 ceramics. The test samples were investigated for their near 

surface hardness, generated crack profiles and surface finish from the diamond indentations 

prior to and after the laser treatment.  

 

Background to determining the K1c of ceramics 

K1c is considered to be one of the most important mechanical properties, particularly for 

engineering ceramics [12, 13]. Materials with high K1c are much softer and ductile. Those types 

of materials can resist cracks at higher stress levels and loading [10, 14-16]. Materials with low 

K1c are much harder, brittle and allow crack propagation at lower stresses and loading such as 

most ceramics. Unlike metals, it is difficult for dislocations to propagate with ceramics which 

makes them brittle [17-19]. Ceramics also do not mechanically yield as well as metals in 

comparison which leads to a much lower resistance to fracture in comparison.  
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A common method of measuring the materials K1c is by using the Vickers indentation technique 

which measures the hardness of the material by inducing an indentation aided by a diamond 

indenter to produce a crack in the material surface [9, 10, 20]. Measured hardness and the crack 

lengths are then placed into an empirical equation to calculate the materials K1c [9, 10, 14-16, 

21, 22]. The results from the Vickers indentation test can then be applicable to the empirical 

equations which are derived by Ponton [9, 10], Chicot [21], Liang et al [23]. The equations 

derived by Ponton et al [9, 10] originate from various other authors [25-35]. However, they are 

modified by Ponton et al and applied specifically to hard and brittle materials such as ceramics 

and glass [9, 10]. The equations have a geometrical relationship with various ceramics. 

Different ceramics have various equations applicable to calculate the ceramics K1c. Preparations 

of the samples involve polishing in order to create a reflective surface plane (this would mean 

that the surface has been well polished) [9, 10, 22, 36,] prior to the Vickers indentation process. 

There are still constraints with the Vickers indentation techniques as reported by Gong et al 

[13], over the more conventional technique applied such as single edge notched beam (SENB) 

and double –torsion (DT) method as mentioned elsewhere [11, 37- 39]. The constraints are: (a) 

the dependence of the crack geometry on the applied indentation load and the properties of the 

material; (b) indentation deformation (non-uniform fracture progression or rapid fracture 

growth) such as lateral cracking; and (c) unsuitable consideration of the effect of Young’s 

modulus and the material hardness [13].  

 

The procedure and steps which one must comply to in order to produces a genuine Vickers 

indentation test result and produce K1c values that are genuinely valid [10]: Those namely are: 

(a) each indentation must be performed at a sufficient distance from one another. This would 

avoid the formed cracks to inter-connect and bridge with the other diamond indentations 

performed on the ceramic surface [40, 41], (b) a minimum load of 50 N must be used and 

recommended as the ceramic materials comprise of sufficient hardness requiring enough 

loading to produce an indent, (c) it is ideal to coat the test surface with gold so the performed 

indentations are visible. Post indentation coating may affect the crack tip and give an inaccurate 
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reading, (d) the test samples should be near to 20c in thickness and have minimum porosity. 

The author also states that the adjacent indents should be no closer than 4c. The term “c” in the 

literature is defined as the crack length. (It is unknown what the term “c” is unless a Vickers 

indentation test is conducted. The indentation test is hence, required to be performed in  order to 

determine if the process is valid.  

 

Liang et al [23] followed an investigation on the K1c of ceramics using the indentation method. 

He also used several equations by various authors as listed in [23]. It was stated by Liam et al 

that equations differ as the crack geometry changes (from Palmqvist to median half-penny 

cracks). He introduced a new equation stated elsewhere [23], which was said to be more 

universal as opposed to the pervious work conducted. However, in order to use the formula, it 

was required that it had to be manipulated for sufficient use. Ponton et al’s formula in 

comparison is much simplified and is easy to apply. Chicot et al [20] conducted further 

investigation by applying two other equations to produce results using materials such as 

tungsten carbide (Nickel phosphorus treated) and pure silicon. He uses the concept of median 

half-penny crack and a Palmqvist crack system to determine the most applicable equation [20]. 

It is stated that high indenter loads produce a median half-penny crack within the material 

which is on the edges of the diamond indentation (foot print produced). This type of crack will 

always remain connected. A Palmqvist crack is produced during low indenter loading and is of 

a smaller scale in comparison. The Palmqvist crack will always appear at initial stage of the 

crack generation during the indentation process, then, a median half-penny crack is produced 

once the impact of the indenter is exerted. It can be assumed that a median half-penny crack 

may be the result since the ceramics comprise of high hardness, indicating that high indenter 

loads are required in order to induced visible and measurable diamond foot prints.  

 

Orange et al [37] investigated the K1c of Al2O3-ZrO2 by comparing the notched beam and the 

Vickers indentation techniques. Cracking behaviour was observed as Palmqvist and median 

half-penny crack geometries were found. Low indentation loading produced Palmqvist cracks 
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and with increasing loading; median half-penny cracks were found. High micro-cracking was 

also found with Vickers indentation technique when a fine grain size (0 – 3 µm) ceramics were 

tested and with increasing grain size (0- 5 µm), the micro cracking was reduced. With the 

notched beams technique; a higher K1c value was achieved and with increasing grain size [37]. 

This meant that the ceramics with smaller grain boundaries comprise of higher K1c value and 

consists of higher resistance to fracture. From Oragne et al’s investigation it can be gathered 

that notched beam indentation technique produced better results in comparison with the Vickers 

indentation method, although, the reasons behind this were not justified in his work [37].  

 

Equations for median half penny-shaped cracks as presented in Table 1 were used for high 

indenter load applications. One equation was selected to calculate the K1c value for the treated 

and as received samples from  applying the equations to real experimental values. The equations 

in the tables have been derived by the materials geometrical value that has been obtained from 

experimental means, of ceramics and glass [9-10]. The suitability of applying various equations 

to ZrO2 is not particularly defined, so it was required that an investigation was carried out in 

order to determine the best employable equation for this study. There are 10 equations selected 

for this study from various equations discussed in [9-11], to first determine the K1c of the as 

received surface of ZrO2 and then the laser treated surfaces. The selected equations applicable 

to calculate the K1c, by using the Vickers indentation methods are [9]: 

 

Table 1: Equations used to investigate the most employable equation significant for calculating 

the K1c of the treated and as received ZrO2 ceramics. 

Equation 
Number 

Equations Equation Number 

1 K1c = 0.0101 P/ (ac
1/2

) Lawn & Swain 

2 K1c = 0.0824 P/c
3/2

 Lawn & Fuller 

3 K1c = 0.0515 P/C
3/2

 Evans & Charles 

4 K1c = 0.0134 (E/Hv)
 1/2

 (P/c
3/2

) Lawn, Evans & Marshall 

5 K1c =0.0330 (E/Hv)
 2/5

 (P/c
3/2

) Niihara, Morena and Hasselman 

6 K1c =0.0363 (E/Hv)
 2/5

(P/a
1.5

) 
(a/c)

 1.56
 

Lankford 

7 K1c =0.095 (E/Hv)
 2/3

 (P/c
3/2

) Laugier 

8 K1c = 0.022 (E/Hv)
 2/3

 (P/c
3/2

) Laugier 
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9 K1c =0.035 (E/Hv)
 1/4

 (P/c
3/2)

) Tanaka 

10 K1c = 0.016 (E/Hv)
 1/2 

(P/c
3/2

) Anstis, Chantikul, Lawn & 
Marshall 

 

Median half-penny shaped cracks occur when high indentation loads are applied [21, 22, 42]. The 

profile of a median half-penny shaped cracks are illustrated in Figure 1 (a). It can be predicted 

that the outcome for most of the crack profiles in this study would be of median half-penny shape. 

For cracks that are of median half-penny shape; the applicable equations differ and presented in 

this paper (equations 1-15) [15, 16]. The indention load at which the median half-penny crack 

occurs for most ceramics is 3 N [21]. This was lower for the loads applied for this study, hence, it 

could be assumed that the generated cracks would always be of half-penny median crack profile, 

so this indicates that only equation particularly applicable for median-halfpenny cracks should be 

utilised for this study in order to determine the K1c. Figure 1 (b) illustrates a profile of a Palmqvist 

crack which tends to occur at low indentation loads [21, 42]. A Palmqvist crack is part of the 

median-half penny crack because when a load above 3 N is applied the indenter “pop in” occurs; 

a Palmqvist crack is already produced and further developed into a median half-penny crack [21, 

42]. These cracks are shallow and lie in the axis of the indenter as there would be a small 

extension at the edge of the diamond indenter [42]. Up to 50 N of indentation loads were used for 

this work, hence, it is likely that a Palmqvist crack will occur leading to a half-penny median 

crack geometry.  

 

(a)      (b) 
Figure 1: Schematic of the median Half–penny crack (a) and (b) Palmqvist crack system. 
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Where l is the surface crack length, 2c or 2a is the length of the diamond indent, c is the centre of 

the diamond to the end of the crack tip and pc is the load impact, lc is an interior crack. 

 

Ponton et al [10] state that equation suggested by Chantikul et al [31] suggested that equation 10 

has an accuracy of 30 to 40 % for ceramics that which are well behaved in their indentation 

response. However, it is first required that the propagation of the crack geometry is understood 

from performing the Vickers indentation test on the as received ZrO2 ceramics as further justified 

in this paper. It is not made clear as to why this equation was particularly used for the ceramic. It 

was therefore, required that some of the relevant equations were applied to the tested values from 

this experiment to determine what sort of results are obtained. Hardness test was performed on the 

ceramics assuming that the resulting cracks were of half-penny median type (due to applying a 

sufficient indentation load applied). Ten equations were employed as previously stated to 

establish which particular equation type produces the K1c value that is nearest to the known value 

for the as received ZrO2 ceramics which is normally between 8 –12 MPa m
1/2

.  

 

Experimental Methodology 

Background of Test materials 

The material used for the experimentation was cold isostatic pressed (CIP) ZrO2 with 95 % ZrO2 

and 5 % yttria (Tensky International Company, Ltd). Each test piece was 10 x 10 x 50 mm
3
 bars 

and comprised the surface roughness of 1.58 µm as provided by the manufacturer (Tensky 

International Company, Ltd.). This was to reduce the laser beam reflection as shinier surfaces 

would reduce beam absorption, although, rougher surfaces of the ceramics can often be more 

prone to cracking in comparison [9, 21]. The experiments were conducted in ambient temperature 

(20
◦
C). All surfaces of the ceramic to be treated were marked black prior to the laser treatment to 

enhance the absorption of the laser beam. 
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Hardness Indentation test and background of the Vickers indentation 

technique  

An indenter of a specific shape made from a diamond material was used to indent the 

surface of the ceramics under investigation [8-21]. The diamond was initially pressed on 

to the as received surface of ZrO2 ceramics and the load was then released. A diamond 

indentation was hence created onto the surface which was then measured in size. 

Thereafter, the surface area of the indentation was placed in to Equation 16 to calculate 

the hardness value:   

 

HV= 2P sin [θ/2]/ D2
 = 1.8544P / D

2                   
(16) 

 

where P is the load applied in kilograms (Kg), D is the average diagonal size of the 

indentation in mm and θ is the angle between the opposite faces of the diamond indenter 

being 136
◦
 with less than ±1

◦ 
of tolerance.

 
 Indentation load of 5 Kg, 20 Kg and 30 Kg, 

were applied. The indented surface and the resulting crack lengths were measured using 

the optical microscopy. This method was then implemented for the laser treated surfaces 

of the ceramics tested. The test samples were placed under the macro indenter and were 

initially viewed using the built in microscope to adjust the distance between the surface of 

the work-piece and the diamond indenter. This maintained a sufficient distance during 

each indentation and allowed a standardised testing method which complies to [11].  

 

Calculating the crack lengths 

Crack lengths generated by the Vickers diamond indentation test as presented in Figure 2 were 

measured using a Contact-less, Flash 200, CMM (Co-ordinate Measuring Machine). The ceramic 

samples are placed under the traversing lens (Optical Microscopy). The lens traverses in the Y 
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direction and to adjust the magnification it is also able to move in the Z direction. Motion in the Y 

direction is provided by the bed on which the test-piece is mounted for analysing the surface. The 

image appears on the screen as the optical lens traverses above the surface of the test-piece. The 

diamond indentations and the resulting crack lengths were measured by moving the lever in the X 

and the Y direction and selecting a starting point on the screen where the crack ends (crack tip) 

and stopping on the symmetrical side of the other crack tip, which produced a measurement in 

both the X and the Y direction. 

 

Figure 2: Schematic of a Vickers diamond indentation with propagation of the cracks. 

 

Calculation of the Fracture Toughness (K1c) 

Initial investigation used 15 equations to determine which equation type was best suited for 

calculating the K1c [9, 10]. As received surface of ZrO2 were first tested for its hardness. Fifty 

indentations were produced on one side of the particular surface of the ZrO2 ceramics from 

various test samples. Calibrated hardness was then recorded and a mean average was measured of 

the as received surfaces. Each indentation was then viewed at microscopic level by the aid of the 

optical microscope to observe the surface morphology. The crack lengths were measured using 

the Flash 200 CMM and crack geometry was observed by a 3-D surface topography using the 

white-light interfrometry (Alicona Ltd., Infinite focus, IFM 2.15). The crack lengths, produced by 

the indentations were then placed into the various K1c equations with its measured average 
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hardness. In order to confirm that the cracks generated by the diamond indentation at 5 Kg were 

of median half-penny crack profile. This insured that the equations (1-15) used for median half-

penny crack profile were the correct. Figure 3 and 4 presents an example of a typical surface 

profile produced of the Vickers diamond indentation using a 5 Kg (see Figure 3) and 20 Kg (see 

Figure 4) loads. Both showed evidence of median half-penny type crack profile where an indenter 

“pop in” indicated in Figure 3 and 4 is exerted and then a linear crack is produced. A Palmqvist 

crack profile which tends to occur with lower indentation loads has occurred (as indicated from 

the indenter “pop in”) already in this crack geometry. The concept is more present with higher 

indentation loading as presented in Figure 4. 

 

Figure 3: Topography of the Vickers diamond indentation of the as received surface of ZrO2 

ceramics indented at 5 kg, illustrating a median half-penny crack geometry.  

 

Figure 4: Topography of the Vickers diamond indentation of as received surface of ZrO2 ceramics 

indented at 20 kg, illustrating a median half-penny crack geometry.  
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The equations used for this study are for half-penny median cracks. It was found that the cracks 

produced from the Vickers indentation test were half-penny median cracks so other equations 

illustrated for Palmqvist cracks were not used.  Equations 1 to 10 were used to calculate the K1c 

value for the as received surface of the tested ZrO2 ceramics. The results have been tabulated and 

are as presented in Table 3 and 4. The equations were set up using Microsoft Excel which made it 

easy to be able to input three major parameters from the full equation. These values were 

hardness, crack length and the Vickers indention load. It can be seen that all the values which 

range between 8 to 12 MPa
 
m

1/2 
for ZrO2 ceramics, allow the equation to be accurate and useable 

for calculating the K1c for the laser treated and as received surfaces of the ceramics.  

 

Table 2: Presents the end value of K1c after applying the obtained hardness and the resulting crack 

lengths from the Vickers diamond indentation test conducted on as received ZrO2 Ceramics. 

Equation 
No. 

Equation 
Origin 

Equation Average K1c 
(MPa m1/2) 

% accuracy 
(K1c value 

within 
Range) 

Status 

1 Lawn & 

Swain 

K1c = 0.0101 

P/ (ac
1/2

) 

0.90 0 Unacceptable 

2 Lawn & 
Fuller 

K1c = 0.0515 
P/C

3/2
 

3.25 0 Under 

3 Evans & 

Charles 

K1c = 0.0824 

P/c
3/2

 

5.20 0 Under 

4 Lawn, Evans 
& Marshall 

K1c = 0.0134 
(E/Hv)

 1/2
 

(P/c
3/2

) 

28.70 0 Unacceptable 

5 Niihara, 
Morena and 

Hasselman 

K1c =0.0330 
(E/Hv)

 2/5
 

(P/c
3/2

) 

683.64 0 Unacceptable 

6 Lankford K1c = 0.0363 

(E/Hv)
 

2/5
(P/a

1.5
) 

(a/c)
 1.56

 

783.93 0 Unacceptable 

7 Laugier K1c =0.095 

(E/Hv)
 2/3

 
(P/c

3/2
) 

2024.98 0 Unacceptable 

8 Laugier K1c = 0.022 

(E/Hv)
 2/3

 
(P/c

3/2
) 

759.60 0 Unacceptable 

9 Tanaka K1c =0.035 

(E/Hv)
 1/4

 

(P/c
3/2

) 

1208.44 0 Unacceptable 

10 Anstis, 

Chantikul, 

K1c = 0.016 

(E/Hv)
 1/2 

12.66 42 Acceptable 
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Lawn & 

Marshall 

(P/c
3/2

) 

 

For all tested samples the indentation load is 5 Kg and 30 Kg (Vickers indentation test), E 

(Young’s Modulus) is 210 GPa m1/2 
for ZrO2. Range (required equation accuracy) is 8 to 12 MPa 

m
1/2

 +/- 0.40 MPa m
1/2 

for ZrO2 ceramics. Average of the K1c was obtained by using values from 

50 different Vickers indentation tests. This allowed more consistency in calculating the K1c, as 

values were used from a bigger pool of data (results). 

 

Different values for K1c were obtained. The K1c value of untreated ZrO2 was 8 to 12 MPa
 
m

1/2 
, so 

the values that do not lie between the rang given for both ceramics were not considered as 

acceptable and therefore, those equations were discarded. The K1c value using equation 10, were 

reasonable for both of the material and comply within the desired range so the equation was 

accurate and useable. Other equations were discarded and were not taken into consideration for 

use. Each of the equation was set up by the aid of an Excel spreadsheet. The experimental values 

obtained were an input into the equation such as the indentation load, crack length created by the 

Vickers diamond indentations and the measured hardness. The equation that generated the most 

accurate result was equation 10. Up to 42 % accuracy was found with using the same equation 

with the as received surface of ZrO2 ceramics. Other equations applied were discarded as they 

proved to be of minimal use due to their results for this investigation. Values obtained using 

equations 10 were most accurate in comparison with the other equations. Hence, this equation was 

used for all as received ZrO2 ceramics and laser treated samples to determine the K1c. Where P = 

load (kg), N = load in Newton’s (N), c = average flaw size, a = 2c, m = length in meters, Hv = 

Vickers material hardness value, E = Young’s modulus. (Young’s modulus for all untreated 

samples of ZrO2 was kept to 210 GPa m
1/2

. 

 

The ceramic surfaces were first treated with the CO2 laser and a fibre laser. The K1c values were 

then calculated using equation 10. The reason for changing the Young’s modulus from 210 GPa
 

m
1/2 

to 260 GPa
 
m

1/2 
for ZrO2 ceramics was due to the ceramics being isotropic (meaning the 

Young’s modulus of the material not being uniform around all orientations of the material). This 
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may occurs due to certain manufacturing impurities and further modifications to have occurred 

during processing of the ceramics. As the ceramic is exposed to the laser beam (thermal energy); 

which leads to induce further changes within the material from the induced thermal stress which 

indicate that the Young’s modulus value for all laser treated samples should ideally change for 

calculating the ceramics K1c. 

 

Fibre Laser Treatment 

A 200 W fibre laser (SPI, Ltd.) was employed using continuous wave (CW) mode. The laser 

wavelength was 1.07µm. Trials ranged from 75 to 150 W by varying the traverse speed for the 

initial experiments to find that traverse speed of 100 mm min
-1

 was an ideal constant to maintain 

for all trials with only changing the laser power. Hence, all speeds were kept to 100 mm min
-1

 for 

the main set of experiments presented in Figure 1 and Table 1. Trials below 75 W for ZrO2 

ceramics at 100 mm min
-1 

showed no evidence of any influence on both of the ceramic the 

surfaces. Focal position was kept to 20 mm above the work-piece to obtain a 3 mm spot size for 

all trials. The processing gases used was compressed air at a flow rate of 25 l min
-1

. Programming 

of the laser was conducted using an SPI software which integrated with the laser machine. A 50 

mm line was programmed using numerical control (NC) programming as a potential beam path 

which was transferred by .dxf file.  The nozzle indicated in Figure 2 was removed for all 

experiments. 

Table 1: Parameters used for fibre laser treatment of ZrO2 ceramics. 

Trial 
No 

Power (W) Comments 
 

1 75 No visual effect 

2 100 Small change in colour 

3 125 Small cracks apparent 

4 130 Small cracks on the edges. 

5 150 Large crack apparent 

6 137.5 Crack –free 

7 143.25 Crack-free 

8 150 Apparent cracks 
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Results and Discussion 

Analysis of the as received surfaces 

The average surface finish of the as received surface was found to be 1141 Hv for ZrO2 as 

illustrated in Figure 10. The values provided by the supplier (manufacturer) for the as received 

surfaces are 800-1200 Hv for ZrO2. The ceramics were manufactured using the CIP method which 

may have left porosity and surface flaws into the ceramic in comparison with the HIP (Hot 

Isostatic Pressing). The deviation of the hardness values from its mean. The average surface 

hardness of ZrO2 is 889 Hv with the highest value of 1129 Hv and lowest being 757 Hv. This was 

when an indentation load of 30 Kg was applied. This fluctuation has occurred due to several 

factors such as porous structure, the ceramics response to the diamond indentation, surface flaws 

and micro-cracks pre-existing on the ceramic, operator and machine accuracy in measuring the 

sizes and footprints of the diamond indentations. 

 

The fluctuation found in the mean hardness from the results of this study were over 11 % in 

comparison with the values for ZrO2 given by the manufacture which is 1 % higher for ZrO2 from 

the ± 10 % range given in the literature [16] and can be an except from being a non- conformance. 

 

The results for the crack lengths produced by the Vickers diamond indentations ZrO2. The 

average crack length 276 µm for ZrO2 ceramics. Results from 50 indentations present that the 

crack lengths range from 221 µm as the lowest and 335 µm being the maximum for ZrO2 

ceramics. The variation from its mean value is wide due to the micro-cracks pre-existing on the 

materials surface. If the surfaces were well polished the results of the crack lengths would be 

much lower as the surface would be less prone to cracking after grinding and fine polishing of the 

ceramic. However, a smother surface would prevent the laser from being absorbed sufficiently 

into the material surface and often has the tendency to reflect more than absorb, hence, the 

surfaces were not polished and were tested as received from the manufacturer.  
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From applying a 30 Kg load, it was found that the cracks were significantly large due to the 

amount of force exhibiting on the surface area of the ceramic. An example of such crack profile is 

shown in Figure 5. It was therefore, interesting to investigate the crack lengths produced with a 

lower indentation load which predictably would have a smaller effect on the end value of the 

ceramics K1c. Hence, a 5 Kg of indentation load was used due to the force over the surface area 

being much lower which produces a smaller footprint of the diamond and the resulting crack 

lengths. This would therefore, result to producing a lower K1c value than the literature and the 

manufacturers range given for the ZrO2 ceramics. However, with this particular investigation, 

hardness, crack length and the K1c value of the near surface layer was only determined as the 

depth of the diamond indentation from a 5 Kg load was much smaller in comparison with the 

depth of the diamond produced by s 30 Kg load.  

 

 

Figure 5: as received surface of ZrO2 ceramics indented with by a 30 Kg load (hardness =926 

(Hv), crack length = 437 µm, K1c = 6.94 MPa m
1/2

). 
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The K1c for as received surfaces after applying an indentation load of 30 Kg as presented in 

Figure 6. The values obtained from conducting the indentation test complies with the values given 

in the literature and the values given by the manufacturer [1, 16]. The average K1c for ZrO2 was 

found to be 12.7 MPa m
1/2

. It is indicative from the graph in Figure 8 that there is a significant 

level of fluctuation for the values above and below the mean range. 
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Figure 6: K1c of the as received surfaces ZrO2 ceramics after applying a load of 30 Kg. 

 

The highest value above the mean was found to be 18.11 MPa m
1/2

 and the lowest value above the 

mean was 8.52 MPa m
1/2

. This has occurred due to the following factors: (a) a change in the 

material hardness influences the end K1c value. The change in the hardness by ± 100 Hv resulted 

into a change in the final K1c value by ± 0.34 MPa m
1/2

, (b) change in the crack length (being the 

major parameter in the equation as used in this work (equation 10)) by ± 100 µm results into change 

in the end K1c value over ± 6.31 MPa m
1/2 

if the hardness was up to 1250 Hv as a particular input 

parameter in the calculation. Hence, the crack length has a bigger influence on the K1c end value in 

comparison with the hardness, (c) the surface micro-cracks and porosity pre-existing on the ceramic 

surface making it prone to cracking and reduces the ceramics resistance to fracture, (d) the response 
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of ZrO2 ceramics to diamond indentation as some of the areas within the ceramic produced 

fluctuating values to other areas from the view point of the crack length, porosity and the surface 

flaws.  

 

The hardness for ZrO2 ceramics from applying a 5 Kg load was much lower than the hardness 

values obtained after applying a load of 30 Kg. This is because of the 5 Kg load applied to the 

material’s surface area resulted into lower penetration of the diamond indentation into the ceramic 

as well as the surface area of the diamond footprint also being smaller in dimension resulting in a 

lower calibration of  the hardness value. The average hardness value for ZrO2 ceramics was 983 Hv 

with the highest value being 1330 Hv above the mean and lowest being 707 Hv below the mean. 

The hardness values of ZrO2 using a 5 Kg load comply with the hardness values provided by the 

manufacturer, however, they were found to be towards a bottom limit. A possible cause of this vast 

fluctuation in the values may have occurred due to the material being much softer on its top (near 

surface) layer in comparison with the bulk hardness and due to the surface being a much porous 

structure and comprising of cracks which often produced non-uniform results. 

 

The results showed minimal difference in the generated crack lengths for ZrO2 ceramics from 

applying a 5 Kg load in comparison with the results from applying 30 Kg load. The average crack 

length was 279 µm. Despite the indentation load and the applied force being much smaller in 

comparison with the 30 Kg load; the material was yet cracking equivalently compared to the results 

of the trials conducted using a higher load. This clearly indicates that the surface did not exhibit a 

good response during the indentation test. This could mean that a smoother surface finish is 

required for the indentation test in order to overcome this problem so that the surface scaring and 

micro-cracks pre-existing on the ceramics are minimized and the strength of the top (near) surface 

layer is further enhanced. This has a possibility of increasing the surface hardness yet at the same 

time also reduces the resulting cracks from the Vickers diamond footprints. 
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Ponton and Rawlings et al [9] suggested that a minimum loading of 50 N must be indented in order 

to produce a diamond indent which some way or another agrees to the work in this study although, 

the loading herein is 49.05 N and we yet see a diamond indentation in Figure 7 with a median half-

penny shape profile. Initial experiments using lower indentation loads such as 24.5 N and 9.8 N also 

presented a sufficient indentation footprint from the Vickers hardness test. The diamond indentation 

in Figure 7 is smaller in size when compared with the indentation created by the 30 Kg load. 

However, the crack lengths found from using a 5 Kg indentation load were equally the same size as 

that of the 30 Kg. The difference between the two tests results were 3 % and less when considering 

a larger pool of data. From this it can be gathered that macro hardness the indentation test may be 

more stable at higher indentation loads particularly with hard brittle materials such as engineering 

ceramics.   

 

Figure 7: as received surface of ZrO2 ceramics indented with by a 5 Kg load (hardness =1120 

(Hv), crack length = 425 µm, K1c = 1.10 MPa m
1/2

). 

 

This result found for hardness herein when employing a 30 Kg indentation load match with the 

values provided by the manufacturer and proves that the method used for the hardness calculation 
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and measurement of the crack lengths is valid. Although, the values for the hardness are much 

smaller than the values provided in the manufacturer specification when using a 5 Kg load. This 

was due to the fact that the indentation load was much smaller and produced smaller footprints of 

the diamond which exerted lower force to the surface area and reduced the end value of the K1c. 

The average K1c was found to be 2.53 MPa m
1/2 

for ZrO2 ceramics as presented in Figure 8. The 

highest value K1c value was 2.53 MPa m
1/2 

with the highest value being 6.02 MPa m
1/2 

and the 

lowest being 0.88 MPa m
1/2

. A possible occurrence of this has led due to the as received surface 

of the ceramic being scared and comprising of micro-cracks during its processing. The hardness 

can become much if the surfaces were ground and polished prior to the Vickers indentation test. 

This would minimizes the surface micro-cracks and results in obtaining a better consistency in 

achieving the hardness value and the resulting crack lengths. The surfaces were tested as received 

due to the comparison made with the laser treated surface as the ground and polished surfaces 

would enhance the materials reflectivity to the laser beam and would minimize the laser beam 

absorbing into the ceramic.    
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Figure 8: K1c of the as received surfaces of ZrO2 ceramics from applying a 5 kg indentation load. 
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Analysis of the fibre laser treated surfaces 

The mean hardness found was 941 (Hv) for the ZrO2 ceramics after conducting the fibre laser 

treatment. The highest value above the mean was 1089 (Hv) and the lowest being 826 (Hv). The 

average surface hardness of the as received surface of ZrO2 was 983 (Hv). There is a 4.5 % 

difference between the hardness values obtained for the fibre laser treated ceramic in comparison 

with the hardness values obtained by the as received surface. The fibre laser has decreased the 

hardness in comparison to that of the as received surface of ZrO2.  The average crack length of the 

fibre treated ZrO2 ceramics was 171 µm. The crack length was much reduced in comparison with 

the crack length of the as received surface being 277 µm. The fibre laser treated surfaces also 

comprised of much smaller cracks in comparison with the as received surface (see example in 

Figure 9). Reduction in the surface hardness indicated that the laser surface treatment had 

softened the top (near) surface layer of the ceramic. From this it can be assumed that some degree 

of melting and solidification may have taken place during the laser/ ceramic interaction. Through 

this would have caused a localised ductile surface to have formed along with change in the 

surface composition. Further study is being undertaken to determine this effect.    

 

Figure 9: Fibre laser treated surface of ZrO2 ceramic indented by a 5 Kg load, laser power = 150 

W, 100 mm  min
-1

, 3 mm post size, (hardness = 654 (Hv), crack length = 232 µm, K1c = 3.97 MPa 

m
1/2

). 
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The final K1c value for ZrO2 after the fibre laser treatment was 5.62 MPa m
1/2

. The highest K1c 

value obtained for above the mean was 9.85 MPa m
1/2

. The lowest value below the mean for was 

2.97 MPa m
1/2 

for ZrO2  ceramics as presented in Figure 10. The K1c values of the fibre laser 

treated ceramics were enhanced by 56 % for ZrO2 in comparison with that of the as received 

surfaces. The values in Figure 10 fluctuate due to the softening of the treated surface that would 

have generated lower cracks during the indentation test. In those areas where the K1c is high, 

indicate that the localised near surface layer has more resistance to crack propagation under cyclic 

loads or during the onset of any tensile stresses. The Young’s modulus being another factor which 

also influenced this change in the ceramics K1c. The Young’s modulus was increased from 210 

GPa (as received surface) to 260 GPa (laser treated surface) whilst determining the K1c. This was 

because of the ratio of stress and strain being higher after conducting the laser treatment. Due to 

the way in which the Young’s modulus contributing to the K1c equation used; it is likely that the 

influence of the Young’s modulus was significant in end value of the K1c found in this 

investigation.   
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Figure 10: K1c of the fibre laser treated surfaces of ZrO2 ceramics from applying 5 kg indentation 

load. 
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Conclusions 

Empirical equations as derived (Antis et al 1981) were used on the as received surfaces of the 

ZrO2 ceramics to investigate the most suitable equation for calculating the K1c. Palmqvist cracks 

were produced leading to half-penny median type cracks which confirmed the use of for the group 

of equations applied for the investigation. The results showed that equation 10 (K1c = 0.016 

(E/Hv)
 1/2 

(P/c
3/2

)
 
by Anstis, Chantikul, Lawn & Marshall was the most accurate and produced 42 

% accuracy with ZrO2 ceramics. The most influential parameter in calculating the K1c was crack 

length as is it proved that longer cracks produced by the diamond indentation led to lower 

resistance for the ceramic to propagate a crack. Shorter cracks lengths exhibited higher resistance 

to indentation further resulting to improved K1c. Hardness also influenced the ceramics K1c as the 

results showed that high ceramic hardness produced bigger crack lengths which reduced the K1c 

value. From varying the indentation loads; it was found that higher indentation loads produced 

bigger diamond footprints and generated higher crack lengths. It was also found that from 

increasing the Young’s modulus had effected the K1c value due to the ratio of stress over strain 

possibly increasing after the laser treatment. This resulted in producing a higher K1c value. 

Despite the advantages, the Vickers indentation method to calculate the ceramics K1c comprises of 

many flaws such as the results obtained from the hardness test heavily depend on operators ability 

to detect the crack lengths and its geometry, the ceramics ability to indentation response and the 

surface conditions that are used during the indentation test as smother surfaces would result to 

higher surface strength and influence the hardness value and hence, the resulting crack length. 

The K1c results could be much accurate if a consistent material hardness value was obtained along 

with its crack geometry which could be found from employing other indentation techniques. 

Various other methods by using several other equations from the literature would produce 

variation in the K1c value.  

 

Comparison of the as received surface with the fibre laser treated surface as presented in Table 3 

showed improvement in the of the K1c value of the top (near) surface layer of the fibre laser 
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treated ZrO2 ceramics. This was due to the hardness and the crack lengths produced by the 

Vickers indentation were lower than that of the as received surface to increase the K1c value. From 

this it was indicative that the laser treatment had softened the localised surface layer whilst 

melting the surface melted and solidified. Further investigation is being undertaken to elaborate 

this effect. 

 

Table 3: Summery of the results illustrating an increase or decrease in the parameters tested for 

calculating the K1c of the laser treated ZrO2 ceramics.  

 

 Average Surface 
Hardness (Hv) 

Average Surface 
Crack length (µm) 

Average Surface 
K1c (MPa m1/2) 

As received surface 
983 0 277 0 2.48 0 

Fibre laser treated 
surface 

940 4 % 

decrease 
171 38 % 

decrease 
5.62 56 % rise 
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Notations 

Fracture Toughness           K1c 

Hardness             Hv 

Young’s Modulus            E 

Newtons             N 

Average Flaw Size            c  

Load (Kg)             P 

Load Impact             Pc  

Interior Cracks            Ic  

Metre per minute            m min-1 
 

Hot Isostatic Pressed            HIP  

Cold Isostatic Pressed           CIP 

Oxygen             O2 
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Zirconia Oxide            ZrO2  

Alumina             Al2O3  

Silicon Nitride            Si3N4  

Kilo gram             Kg  

Mega Pascal             MPa  

Giga Pascal             GPa  

Micro Metre             µm 

Meters            m  

Milimeters            mm 

Litres             l 

Meter Cubed             m2 

Co-Ordinate Measuring Machine           CMM 

Delta             δ 

Beta              ß 

Degrees Centigrade         
    ◦C 

Numerical Control            NC 

Theta             θ 

Average diagonal size           D  
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