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Abstract 

Computer Numerical Controlled (CNC) machining is one of the most widely-deployed manufacturing 

processes. It is important to develop energy-efficient CNC machining processes to achieve the overall goal of 

sustainable manufacturing. Due to the complexity of machining parameters, it is challenging to develop effective 

modelling and optimisation approaches to implement energy-efficient CNC machining. In this paper, via 

experiments and qualitative analysis, the impact that key machining parameters have on energy consumption of 

milling processes on BS EN24T alloy (AISI 4340) has been investigated in detail. A multi-objective optimisation 

model has been formulated, and a novel improved multi-swarm Fruit Fly optimisation algorithm (iMFOA) has 

been developed to identify optimal solutions. Case studies and algorithm benchmarking have been conducted to 

validate the effectiveness of the optimisation approach. The relationships between energy consumption and key 

machining parameters (e.g., cutting speed, feed per tooth, engagement depth) have been analysed to support 

process planners in implementing energy saving measures efficiently. The optimisation approach developed is 

effective in fine-tuning the key parameters for enhancing energy efficiency while meeting other production 

technical requirements. 

Keywords: CNC machining, optimisation, sustainable manufacturing 

1. INTRODUCTION 

Ambitious goals to achieve significant energy savings have been set by major economies such as 

Europe, China and the USA. The manufacturing sector is a major consumer of energy and critical raw 

materials. Therefore, it is vital to develop effective sustainable manufacturing approaches to achieve the 

targets of energy savings for global societies. Within the manufacturing sector, Computer Numerical 

Controlled (CNC) machining is one of the major processes. For CNC machining, process planning is a 

significant decision-making stage to determine the quality and productivity of machining. In addition, 

according to [1], process planning is increasingly concerned with reducing energy consumption of 

machining processes. The exponential growth in research publications related to process planning for 

energy-efficient CNC machining, which has been recently summarised by Moreira et al. [2], 

demonstrates the importance of this topic worldwide. 

Energy information from machining process is the key to assist process planning or lifecycle analysis 

and improve energy efficiency [3]. Furthermore, it is crucial to develop effective energy consumption 

modelling and optimisation methodologies to support process planning in implementing energy-

efficient machining. CNC machining processes are complex in terms of various cutting parameters, 

machining strategies and operations, which decision-making for process planning are overwhelming 

human capabilities. It is important to develop an effective optimisation solution, by creating knowledge-

embedded soft computing methods, to assist humans in planning more efficient processes. To-date, some 

energy consumption optimisation approaches for process planning for CNC machining have been 

developed [4]. To address the current research gaps, this paper presents qualitative analysis and 

optimisation considering key machining parameters for CNC processes to achieve energy efficient 

processes. 

In this paper, experimental investigation on the relationship between key machining parameters and 

energy consumption has been conducted. This facilitates machining process planners to choose suitable 

cutting parameters to minimise energy consumption during machining. A multi-objective optimisation 

model has been formulated, considering the energy efficiency, productivity and cutting tool life to fine-

tune machining parameters. An improved multi-swarm fruit fly optimisation algorithm (iMFOA) has 

been developed for solving the optimisation problem. Case studies and algorithm benchmarking have 

been conducted to validate the effectiveness of the algorithm. 
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2. BACKGROUND 

2.1 Energy consumption modelling 

Rising energy costs and proposed environmental taxes have driven industrial enterprises to improve 

their energy efficiency [5]. An exponential growth in research publications in the last two decades 

clearly shows the academic and practitioners’ strong interests on this topic. The electricity demanded 

by CNC-enabled machine tools’ servomotors on a factory shop floor produces energy consumption data 

that, when well-processed, is a valuable information source. Based on the data, energy consumption 

(EC) predictive models can be developed to enhance the sustainability of machining. Energy 

consumption models can be used to assess and improve the overall efficiency of shop floors, aid 

production engineers in scheduling optimisation, and support machining systems to be self-controlled 

and self-optimised through embedded optimal control algorithms. To develop effective EC models, 

research work must be carried out for both qualitative and quantitative understanding. 

Recently, methods such as analysis of variance (ANOVA), Response Surface Methodology (RSM), 

Taguchi signal-to-noise ratio, and Artificial Neural Networsk (ANN) have been employed to analyse 

the relationships between cutting parameters and energy consumption, and establish energy predictive 

models [6]–[12]. Also, [13] carried out an experimental investigation on different machine tools using 

non-linear regression. The results show that the motion of the CNC machine tool is the primary source 

of energy consumption. 

Many other researchers have used several approaches and techniques for understanding the energy 

consumption of CNC machining processes. A common way of energy and productivity assessment is 

through the Material Removal Rate (MRR) [8] and [9]. That is because the MRR is estimated based on 

key cutting parameters: spindle speed (S), feed rate (f), depth of cut (ae) and width of cut (ap). Although 

this approach simplifies the modelling process, since it comprises of two coefficients to be estimated 

and only one input is necessary, the MRR, by doing this, it assumes that all cutting parameters have the 

same effect on the energy consumption. Sealy et al. [14] observed low predictive accuracy of such 

models when employed estimating the net specific energy, or specific energy consumption for the state 

of engagement (SECSoE), which represents the amount of energy required to remove a unit volume of 

material during actual cutting (or engagement), that is, the energy required to maintain the CNC machine 

ON (known as basic and idling energy), and the energy consumed during air cutting (also known as 

travelling energy) are not considered. This way, this indicator is mainly influenced by the cutting 

parameters, workpiece material and tooling. 

To date, there has been little research focused on the net specific energy [15]. Further, no effort has 

been made towards the implementation of machining net power and time estimation models to obtain 

optimum cutting parameters which can maximise the energy efficiency of milling operations. Other 

factors involved in the machining process, such as tool wear, mode of milling, types of cutter tool holder 

and workpiece holding systems, are still lacking analysis regarding their impact on energy consumption, 

so should be involved in the empirical modelling to develop more robust predictive models. 

Based on that, this paper develops an effective energy consumption model considering the machining 

cutting variables spindle speed, feed rate and engagement depth (depth of cut and width of cut. Also, 

the machining net power (power load) is introduced for the first time to assess the cutting tool life. 

2.2 Optimisation approaches for machining 

The use of optimisation algorithms is a key step towards increasing machining efficiency, cost 

reduction and manufacturing sustainability. Significant efforts have been made by the research 

community to address complex manufacturing scenarios, involving environmental, legal, economic and 

quality requirements.  

Table 1 shows related work and summarises the optimisation methods and objectives that have been 

used in recent years. 

The energy consumption modelling and optimisation approach developed in this paper follows the 

required steps highlighted by [16] and [17], respectively, which are: 

 Knowledge of the machining processes under analysis. 

 Empirical equations of the objective(s) and constraint(s) to define the optimisation problem. 
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 Specifications for the CNC machine capabilities. 

 Draw optimisation criteria and the problem formulation. 

 Knowledge of mathematical and numerical optimisation techniques. 

Table 1 Related work on the use of optimisation methods for machining processes 

Related Work Methods Objectives Cutting parameters 

Wang et al. [18] 

Pattern search (PS), Genetic 

algorithm (GA) and Simulated 

annealing (SA) 

Energy consumption and 

Productivity 

Cutting speed (vc),  

ap and ae 

Sonmez et al. [17] 
Dynamic programming and 

Geometric programming 
Production rate vc and feed per tooth (sz) 

Ozcelik et al. [19] GA Surface roughness vc, f, ap and ae 

Sreeram et al. [20] GA Tool life ap 

Li et al. [21] GA SEC and machining time S, f, ap and ae 

Baskar et al. [22] 
GA, Hill climbing algorithm and 

Memetic algorithm 
Maximum profit S and f 

As shown in Table 1, genetic algorithm is amongst the most popular algorithm for solving machining 

optimisation problems. Also, a considerable number of optimisation objectives have been considered. 

However, an efficient and reconfigurable optimisation strategy, especially considering both the specific 

energy and the manufacturing requirements for cutting tool life and productivity, has not yet been 

accomplished. The trade-offs involved between these criteria are the core motivations of this work. 

3. EXPERIMENTAL DESIGN 

3.1 Experimental set-up 

The experimental trials were carried out on a 3-axis vertical milling machine Haas VF-3, which 

comprises a 30HP (22.4kW) 415 V vector drive, with maximum spindle speed of 8100 rpm. 

 
Fig. 1 (a) Haas VF-3 vertical milling machine (b) machined workpiece and cutting tool 

BS EN24T alloy steel (AISI 4340) was selected as the workpiece material. There are two reasons for 

using this material: 1) the material is widely used for several engineering applications such as gear 

shafts, propellers, and so on [23]; 2) BS EN24T alloy steel is a hard material, and the energy 
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consumption for machining hard materials is higher than that of mild and soft materials owing to the 

greater torque required during the cutting process. The material’s properties are displayed in Table 2. 

Table 2 The material properties for the workpiece 

BS EN24T Alloy Steel (AISI 4340) 

Composition: C 0.36-0.44 / Si 0.10-0.35 / Mn 0.45-0.70 / S<0.040 / P<0.035 / Cr 1.00-1.40 / Mo 0.20-0.35 / Ni 1.30-1.70 

Property Value Unit 

Density 7850 kg/m3 

Young’s modulus 210 GPa 

Hardness - Brinell 248-302 HB 

The cutter tool used is a solid carbide (Table 3), held by a side-lock tool holder. The machining 

processes were carried out under dry conditions and up milling mode. 

Table 3 Cutting tool specifications 

Tool property Specifications 

Tool ID End mills RF 100 DIVER No. 6736 

Tool diameter (D)  16 mm 

No. of teeth 4 

Feed per tooth (sz) 0.025 – 0.1 mm/tooth 

Cutting speed (vc)  150 – 250 mm/min 

Corner radius 0.16 mm 

Cutter material Solid carbide. 

The part selected is a jaw-type geometry with slotting features on both sides (Fig. 2). The tool-path 

strategy is a unidirectional route with constant tool engagement (linear motion). A safe clearance 

distance of 8 mm is set in the X direction for the cutting tool on the start and end of the machining 

process, and 1 mm clearance in Z. That is, the cutting tool travels 8 mm with the supplied feed rate 

before and after engaging onto the workpiece. 

 
Fig. 2 CAD design of the machined metal component and dimensions 

The power consumption is monitored by a Cyber Physical System (CPS) mounted on CNC machines 

with measuring frequency of 10 Hz (further specifications provided in Lu et al. [24]). Experiments were 

designed to analyse the significance and the interaction effects of spindle speed (S), feed rate (f) and 

width of cut (ae) on the energy consumption for the roughing stage of milling. Firstly, five levels of 
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cutting speed (vc) and feed per tooth (sz) were selected to calculate the experimental values for S and f. 

The selected levels range from the lower (Lo) and higher (Hi) boundaries of vc and sz, defined based on 

the machinist experience; and the recommended (Re) value by the tooling handbook is also included. 

This provides a good range for each parameter, which supports reliable observation of the relationship 

between inputs (i.e., machining parameters) and the outputs (i.e., power, energy and time). 

The intermediate values: middle-low (M-L) and middle-high (M-H) of cutting speed (vc) and feed per 

tooth (sz) were obtained using the following Equations (1) to (4): 

    (1) 

    (2) 

    (3) 

    (4) 

where I is the interval between each level of vc, and sz; i stands for the intermediate levels M-L and M-

H; nlevel is the number of levels desired, which 5 levels are chosen in this study (this impacts on the 

number of experimental trials and resources available). 

The levels of spindle speed (S), feed rate (f) and width of cut (ae) are obtained based on the levels of 

vc, and sz, and the tool diameter (D), using the following Equations (5) to (7). 

    (5) 

    (6) 

    (7) 

where D is the diameter of the cutter; N is the number of tool teeth; i stands for the different levels 

(Lo, M-L, M-H and Hi); 𝑎𝑒𝑓 is the final width from the part design; 𝑛𝑝𝑎𝑠𝑠𝑖
 is the i-th number of cutting 

passes based on the ae value, and it must be an integer. The maximum ae supported by the process is 4 

mm, which has been revealed by pre-experimental testing considering the actual machining holding and 

fixtures capabilities. 

Table 4 shows the levels of the cutting parameters obtained according to the above Equations. 

Table 4 Cutting parameters 

Levels vc / mm min–1 D / mm N / tooth  sz / mm tooth-1 S / rpm f / mm min-1 ae / mm  

1.  Re 200.0 16 4 0.070 4000 1115 4.00  

2.  Lo 150.0 16 4 0.025 3000 300 1.60  

3.  M-L 184.5 16 4 0.059 3670 870 2.00  

4.  M-H 218.7 16 4 0.082 4350 1430 2.67  

5.  Hi 250.0 16 4 0.100 5000 2000 4.00  

3.2 Design of experiments 

Taguchi fractional factorial was used to define the design of experiments, and a total of 24 

experiments were carried out based on the orthogonal principle. Moreover, Material Removal Rate 

(MRR) is a significant evaluation factor on the energy consumption [15]. Thus, to evaluate the results 

considering this factor, the MRR of each trial is calculated using Equation (8). 

   (8) 

   
c Hi Lov c c levelI v v n 1  

i i 1 cc c vv v I


 

   
z Hi Los z z levelI s s n 1  

i i 1 zz z ss s I


 

ii cS v 1000 D  

ii z if N s S  

i f ie e passa a n

 e p c z e pMRR f a a v 1000 N s D a a         
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where 𝑎𝑝 is the depth of the cut (in this research, it was chosen 32 mm as the full depth of the designed 

part); and MRR is the material removal rate in mm3/min. 

To correlate the MRR as an indicator for the productivity and facilitate decision-making, the minimum 

and maximum calculated values of MRR have been used to define the lowest (Lo) and Highest (Hi) 

productivity levels. While the intermediate levels were defined heuristically considering the distribution 

of MRR values within the range. Table 6 shows the experimental design, including the machining 

parameters and productivity levels. 

Table 5 Experimental design based on orthogonal principle 

Trial S / rpm f / mm min–1 ae / mm ap / mm MRR 

/ mm3 min–1 

Productivity Level 

1 3000 1115 4.00 32 142720 M 

2 3670 1115 4.00 32 142720 M 

3 4350 1115 4.00 32 142720 M 

4 5000 1115 4.00 32 142720 M 

5 4000 300 4.00 32 38400 Lo 

6 4000 870 4.00 32 111360 M-L 

7 4000 1430 4.00 32 183040 M-H 

8 4000 2000 4.00 32 256000 Hi 

9 3000 870 4.00 32 111360 M-L 

10 3000 1430 4.00 32 183040 M-H 

11 3000 2000 4.00 32 256000 Hi 

12 3670 870 4.00 32 111360 M-L 

13 3670 1430 4.00 32 183040 M-H 

14 3670 2000 4.00 32 256000 Hi 

15 4350 870 4.00 32 111360 M-L 

16 4350 1430 4.00 32 183040 M-H 

17 4350 2000 4.00 32 256000 Hi 

18 5000 870 4.00 32 111360 M-L 

19 5000 1430 4.00 32 183040 M-H 

20 5000 2000 4.00 32 256000 Hi 

21 4000 1115 1.60 32 57088 M-Lo 

22 4000 1115 2.00 32 71360 M-L 

23 4000 1115 2.67 32 95266 M-L 

24 4000 1115 4.00 32 142720 M 

3.3 Experiment results 

During the 24 experimental trials, the power data monitored as a function of time shows that different 

sets of machining parameters generated different power profiles. Fig. 3 shows the power profiles of 

trials, which demonstrate the impacts of parameter sets on machining time and power loads. 
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Fig. 3 Power profile of machining experiments on BS EN24T Alloy workpiece (a) Spindle speed analysis: power 

load in C is not significantly affected from Lo to Hi levels of S (b) Feed rate analysis: power load (PSoE) 

increases, while machining time (t) decreases significantly from Lo to Hi levels of f 

The data obtained from the CPS and sensors (Lu et al. [24]) was analysed considering two distinct 

machining states: state of engagement (SoE) and state of non-engagement travelling (SoT). The former 

represents the process of material removal (actual cutting), while the latter represents non-cutting 

movements (air cutting). 𝑃̅𝑆𝑜𝐸 , which is the average of the power of SoE (i.e., 𝑃𝑆𝑜𝐸), is introduced to 

assess the electricity consumption performance during a machining process. Similarly, 𝑃̅𝑆𝑜𝑇  is the 

average of the power of SoT (i.e., 𝑃𝑆𝑜𝑇). Energy consumption 𝐸𝐶𝑆𝑜𝐸  and 𝐸𝐶𝑆𝑜𝑇 are the total energy 

consumption for SoE and SoT respectively. Specific Energy Consumption (SEC) during the SoE is used 

to indicate the machine energy efficiency when removing materials [25]. The relevant computations are 

in the following Equations (9) to (13). 

   (9) 

   (10) 

    (11) 

Power Consumption

Power Consumption

Legend: A) Spike of 
Spindle ON 

B) Spindle ON + 
Standby Power 

C) Power Load (SoE):
Net Cutting Power 

D) Power SoT:
Air Cutting Power

E) Standby 
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t n

SoE SoE SoE

nt

P P dt / t 

SoT

1

t

SoT SoT SoT

t

P P dt / t 

SoE

1

t

SoE SoE

t

EC P dt 
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    (12) 

    (13) 

where V is the volume removed during machining, tSoE is the machining time during SoE for each cutting 

pass n. 

The data collected using the smart sensor network for power consumption and time of all 

experimental trials were treated using data analysis software and are summarised in Table 6. The sensor 

system was calibrated by commercial company before running the experimental trials. 

Table 6 Experimental results for milling on BS EN24T alloy steel 

Trial 

EC / kJ 

% SoT 

t / s 
𝑷̅𝑺𝒐𝑬 

/ kW 

Cutting 

Tool Life 

Level 

SECSoE  

/ kJ cm–3 

Energy 

Efficiency 

Level 
SoE SoT SoE SoT 

1 580 92 14 20 10 29 M 11 M-H 

2 595 94 14 20 10 30 M 12 M-H 

3 608 97 14 20 10 30 M 12 M-H 

4 603 100 14 20 10 30 M 12 M-H 

5 1297 128 9 78 21 17 Hi 25 Lo 

6 694 94 12 26 11 27 M-H 14 M-H 

7 544 79 13 16 8 34 M-Lo 11 M-H 

8 497 63 11 12 6 41 M-Lo 10 Hi 

9 1519 185 21 80 23 19 Hi 20 M-L 

10 1222 146 19 63 17 21 M-H 16 M 

11 1199 103 8 48 13 25 M-H 16 M 

12 1011 61 6 32 9 32 M-L 13 M-H 

13 1066 86 7 40 10 27 M-H 14 M-H 

14 878 88 9 24 8 37 M-Lo 11 M-H 

15 650 143 18 16 9 41 Lo 8 Hi 

16 1105 97 8 40 10 28 M-H 14 M 

17 828 107 11 24 8 35 M-L 11 M-H 

18 675 142 17 16 9 42 Lo 9 Hi 

19 1118 97 8 40 10 28 M-H 15 M 

20 848 106 11 24 8 35 M-L 11 M-H 

21 686 146 18 16 9 43 Lo 9 Hi 

22 1158 107 8 40 10 29 M 15 M-H 

23 902 113 11 24 8 38 Lo 12 M-H 

24 688 159 19 16 9 43 Lo 9 Hi 

4. QUALITATIVE ANALYSIS ON EXPERIMENTS 

Qualitative analysis is an efficient means for obtaining knowledge from a complex environment, and 

thus this method is used in this section to understand the relationships of key cutting parameters in 

machining processes and the energy consumption to produce BS EN24T (AISI 4340) parts. 

The analysis of the significance of the key parameters on the energy consumption reveals the 

important order of relationships between each input and this response and supports the selection of the 

correct mathematical model for the optimisation. 

The results of 𝑃̅𝑆𝑜𝐸  and SEC in Table 6 show that the machining performance (analysed through the 

power, energy and time) is highly affected by the selection of machining parameters and key trade-offs 

have been identified. For instance, Trial 24 requires the highest power load, 43 kW, while Trial 5 

presents the lowest, 16.53 kW. Nevertheless, the energy efficiency of Trial 24 (SEC=9 kJ/cm3) is lower 

than that of Trial 5 (SEC=25 kJ/cm3), that is due to the greater machining time spent for Trial 5. 

SoT

1

t

SoT SoT

t

EC P dt 

SoE SoESEC EC V
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In addition, there are two main observations based on the results for the energy consumed during the 

SoE and SoT: 

 The energy required for air travelling (SoT) is between 6% to 21% of the overall EC (𝐸𝐶𝑆𝑜𝐸+𝐸𝐶𝑆𝑜𝑇) 

for all trials. The results reveal that the amount of energy consumed during the SoE is the most 

representative over the SoT. Moreover, SoE is varied from 79% to 94% of the overall energy 

consumed. Consequently, the investigation finds that the machining parameters play an even more 

critical role on the energy efficiency of the production. 

 Based on the energy results for SoT, it is observed that the amount of energy varies significantly 

between the experimental trials. This was caused by the different safe clearance distance set in the 

NC code, in which the cutting tool moves with the supplied feed rate and spindle speed (i.e., the 

experimental values) to approach the workpiece. These observations are machine-dependent (e.g., 

vector drive horsepower and drive technology). 

The effects of machining parameters, spindle speed (S), feed rate (f) and width of cut (𝑎𝑒) on the 

power, energy and time required during SoE are investigated as follows. 

4.1 Spindle Speed effects 

The main effects of spindle speed on the power load and energy are analysed. The results of the 

experiments are presented in Fig. 4. 

 

 
Fig. 4 Experimental results on BS EN24T alloy (a) Relationship between S and 𝑷̅𝑺𝒐𝑬, mean power oscillation is 

± 5% (b) Relationship between S and SEC 

The main results from the experimental trials show that: 

 Changes in S do not generate substantial effects on 𝑃̅𝑆𝑜𝐸 , as shown in Fig.4(b). S does not affect the 

machining time as prior known. 

 During the travelling time, more energy is wasted at higher levels of spindle speed, since the spindle 

motor requires more power at higher speeds. An increasing energy demand of approximately 3% 

between each level of S is revealed. 
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 The power load 𝑃̅𝑆𝑜𝐸 increases slightly from the Lo until the Re levels of S. Beyond this level, a 

slight drop of 𝑃̅𝑆𝑜𝐸  is identified (shown in Fig. 4(a)). This way, the M-H level is the point at which 

increasing S, when all other parameters are kept constant, the amount of material removed per cutting 

tool revolution has a positive effect on the energy consumption. Consequently, the cutting load per 

unit time is smaller. High levels of S promote a slight decrease in the power load (𝑃̅𝑆𝑜𝐸). 

 S does not have substantial effects on the energy efficiency, as shown in Fig.4(b). 

The results show that a selection of Lo or Hi levels of S is more appropriate to achieve energy 

efficiency in machining processes (Fig. 4(b)), although higher machining speeds are known to decrease 

the cutting tool life [26]. 

4.2 Feed Rate effects 

Feed rate (f) is one of the major factors that determines the material removal rate (MRR), as shown in 

Equation (8). That is, the increase in f and maintaining other parameters unchanged will lead to a greater 

MRR. Fig. 5 shows the results for the experimental trials for the feed rate analysis. 

The main findings of this experimental investigation are: 

 Substantial effects of the feed rate f on the power load 𝑃̅𝑆𝑜𝐸  and machining time 𝑡𝑆𝑜𝐸 are observed. 

Through the standard deviations of the power load ( , and mean kW), and 

machining time ( , and mean s), these values show that f generates a greater impact 

on the machining time compared to the power load, in approximately 3 times. It could be conflicting 

when considering a sustainable process, since the increase in the feed rate would increase the 

productivity rate but, at the same time, increase the power load. 

 Increasing the feed rate reduces the machining time, as shown in Fig. 5(a). The machining time is 

reduced by approximately 85% at the maximum level of f when compared to the lowest level of f.  

 Increasing the feed rate increases the machining power load, as shown in Fig. 5(b). The power load 

f at the Hi level is approximately 3 times greater than at the Lo level of f. 

 A High feed rate promotes better energy efficiency owing to savings in machining time. The process 

at the Lo level required 2.6 times more specific energy (kJ/cm3) compared to the Hi level, shown in 

Fig. 5(c). However, the drawback is that it produces higher cutting forces and higher temperatures at 

the cutting tool, consequently, shortening the tool life. 

The results suggest that the selection of M-L or M-H cutting feed levels are more appropriate to make 

a balance between energy, time and cutting tool life. 

PSoE
f 8 

PSoE
fx 30

tf
26 

tf
x 33
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Fig. 5 Experimental results on BS EN24T alloy (a) Relationship between tSoE and f (b) Relationship between f 

and 𝑃̅𝑆𝑜𝐸, mean power oscillation is ± 5% (c) Relationship between SEC and f 

4.3 Width of Cut effects 

Width of cut influences MRR in a machining process, as shown in Equation (8). The experimental 

results of ae on machining processes are presented in Fig. 6. 
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Fig. 6 Experimental results on BS EN24T alloy (a) Relationship between tSoE and ae (b) Relationship between ae 

and PSoE, mean power oscillation is ± 5% (c) Relationship between SEC and ae 

Significant effects of ae on the power load, machining time and energy efficiency are revealed. A 

summary of the observations is provided below: 

 The clarify the significant effects of ae on the power load and machining time, the standard deviations 

and means are provided as follows. For the power load , and mean kW. For the 

machining time, , and mean s. These values show that changes in the width of cut 

will affect the machining time 3.5 times more than the power load, which supports positively a trade-

off when considering productivity and cutting tool life. 

 Increasing the width of cut gives significant decrease in machining time, as shown in Fig. 6(a). The 

machining time at the Hi level was 60% shorter compared to time at the Lo level. 

 Increasing the width of cut increases the radial contact between the cutter tool and the workpiece. It 

causes higher stress and power load for material removal. Consequently, it increases the workload at 

the tool, which can be seen through the power load response shown in Fig. 6(b). The results reveal 

that the power load at Hi level (4 mm) is 38% greater than at the Lo level (1.67 mm), and furthermore, 

it is described by a nonlinear relationship. 

 A High width of cut will give a more energy-efficient process owing to reductions in machining time. 

However, the drawback is the higher power load, which means greater cutting forces and chip load 

on the cutter tool, consequently, shortening the tool life. For instance, at Hi level of ae the operation 

was 33% more energy efficient compared to the Lo level shown in Fig. 6(c). 

ePSoE
a 7 

e PSoE
ax 24

et
a 24 

et
ax 56

 

 

 



 

13 

 

The results suggest that the selection of M-L or M-H levels are more appropriate when considering 

energy, time and tool life for a sustainable process. 

Nevertheless, the trade-offs revealed by the qualitative analysis emphasise that the selection criteria 

of optimal cutting parameters should also consider production constraints such as lead time or cutting 

tool availability; otherwise the process is not productive, energy efficient nor improves the cutting tool 

life. This observation is considered further in the optimisation problem. 

5. OPTIMISATION ON ENERGY CONSUMPTION 

In this section, an optimisation problem is presented considering the experimental results presented 

in Section 4. In addition, the fitness functions for the optimisation, i.e., energy efficiency, cutting tool 

life and productivity are defined. 

5.1 Optimisation modelling 

The energy required during the state of engagement (SoE) for the milling on BS EN24T alloy (AISI 

4340) accounted for 79% to 94% of the overall energy consumption. Therefore, significant energy 

saving in machining processes is possible if the energy during SoE, (ECSoE) could be minimised. The 

following formulas represent ECSoE and the related parameters: 

    (14) 

    (15) 

    (16) 

    (17) 

where 𝑃̅𝑆𝑜𝐸  is the average power used during SoE, 𝑉 is the removed volume of material, MRR is the 

material removal ate, S, f, ae, ap are the cutting parameters spindle speed, feed rate, width of cut and 

depth of cut, respectively. 

In order to establish the function of 𝑃̅𝑆𝑜𝐸 , a Responsive Surface Regression Model was developed. 

The model structure is presented below: 

   (18) 

where   are coefficients to be determined. 

Apart from experimental trials 4, 5, 9, 10, 14 and 23 (which are later used for model validation) other 

trials were used to generate the coefficients. The output data was filtered using a single exponential 

smoothing technique. This is an additional step prior to the coefficient estimation process to reduce the 

random fluctuations in the time series for the collected data, thus, providing a more accurate pattern of 

the power load of each experimental trial. By taking this step, the accuracy of the final predictive model 

is increased by 2.92%. Subsequently, non-linear regression and least squares methods are employed to 

estimate the model’s coefficients. The estimated coefficients   are given in Table 7. The 

accuracy of the smoothed model is R2-adjusted equal to 0.94, which shows the achievement of 

satisfactory predictive accuracy. 

Table 7 Power load model coefficients 

Coefficient Value Significance (P value: α < 0.05) * 

 
–16.1700 0.000 

 
0.00577 0.036 

 
0.01225 0.000 

 
0.1751 0.000 

SoEt V MRR

SoE SoE SoE SoEEC P t P V MRR   

 SoE 1 e pP f S, f ,a a 

 2 e p e pMRR f f ,a ,a f a a   

2 2

SoE 0 1 2 3 e p 11 22 12P S f a a S f S f                  
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–0.0000010 0.001 

 
–0.0000020 0.000 

 
0.0000020 0.005 

* Interval of confidence is 95%, i.e., α=0.05. 

This model was validated using data collected from experimental trials 4, 5, 9, 10, 14 to 23. The 

results of the estimated 𝑃̅𝑆𝑜𝐸  presents a predictive accuracy R2 of 0.98, which shows good performance. 

From Equation (15), it can be observed that to minimise 𝐸𝐶𝑆𝑜𝐸, 𝑃̅𝑆𝑜𝐸  should be minimised and MRR 

should be increased. Based on this, an optimisation objective (fitness) to minimise 𝑆𝐸𝐶𝑆𝑜𝐸, the indicator 

for the energy efficiency, is set up below: 

  (19) 

where 𝑥1, 𝑥2 and𝑥3, are cutting speed, feed per tooth and engagement depth, respectively; and,  and 

 are weights, where . 

𝑃̅𝑆𝑜𝐸  is also related to the cutting tool’s life. Increases of 𝑃̅𝑆𝑜𝐸  will generate increases in cutting forces 

and temperature on the cutting tool so that the life of the tool will be reduced. MRR represents the process 

productivity. Regarding the setting of the two weights, a strategy has been designed heuristically based 

on the relevance of the power load and material removal rate to the cutting tool life and productivity, 

respectively, as well as personal communications with experts in the field. The strategy for the settings 

can be defined as presented in Table 8. 

Table 8 Production weighting strategy 

Description Weighting Selection* 

Cutting tools are the major constraint.  0.8 ≤  ≤ 0.9  

Cutting tools are more constrained than lead time. 0.5 < < 0.8 

Both resources are constrained. =  = 0.5 

Lead time is more constrained than cutting tools. 0.5 < < 0.8 

Lead time is the major constraint. 0.8 ≤  ≤ 0.9 

*Weights law:  

The appropriate strategy is chosen by the engineer or process planer based on the immediate 

availability of the resources, cutting tools, and lead time – or which has the greatest priority – in the 

factory. After that, the appropriate weights,  and , are selected from the weighting strategy table 

and combined with the objective function for energy saving. Consequently, the importance of the 

objective within the optimisation process is reconfigured to align these with the factory’s immediate 

requirements. As a result, the optimal solution achieved by the optimisation process for the machining 

operation is also the best solution for the factory. 

5.2 Optimisation algorithm: improved multi-swarm fruit-fly optimisation algorithm (iMFOA) 

An improved optimisation algorithm, based on the recent fruit fly optimisation algorithm (FFOA), 

was initially considered to solve the optimisation problem formulated in Section 5.1. FFOA is a nature-

inspired algorithm for solving optimisation problems by mimicking the highly-advanced sense of smell 

of insects to detect food locations [27]. This modern algorithm has presented outstanding performance 

on solving optimisation problems, especially in business and finance areas which require highly reliable 

predictions [28]–[31]. However, its ability to solve trade-offs of machining parameters has not yet been 

fully investigated. 

To address this gap, a multi-swarm fruit fly optimisation algorithm (MFOA) developed by [32] was 

then improved to cope with the machining optimisation. The problem formulated in Section 5.1 

SoE 1 SoE 2

1

2

3

Minimise SEC P 1 MRR

Subject  to :

                150 x 250

             0.025 x 0.10

             51.20 x 128

     




 
  

  
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comprises three input variables (i.e., machining parameters) which are constrained by the safe 

boundaries. However, the MFOA algorithm is designed to solve problems with two non-constrained 

input variables. Thus, further improvements were made to the original MFOA algorithm. Major changes 

to achieve the improved MFOA (iMFOA) can be found below: 

 A third axis is included to specify the fruit fly coordinates (i.e., positions), so the algorithm can cope 

with the three input variables. 

 A sphere function is embedded to define the search space, i.e., the fruit flies’ flying space, so ensuring 

the cutting parameters selected are within the safe boundaries. 

 A penalty function is included to constrain the power load fitness function, which cannot be above a 

certain level to guarantee energy sustainability. 

Fig. 7 shows the algorithm schematic and illustration of the iMFOA. 

 
Fig. 7 Flowchart of the improved MFOA (iMFOA) algorithm 

Firstly, an engineer or process planner defines the production weights (i.e., 1 and 2), to align the 

optimisation engine with the production constraints so the algorithm can be initialised (STEP I). Then, 

based on the process safe boundaries (calculated in STEP II) the fruit flies’ populations (i.e., sub 

swarms) are generated in STEP III. Each fruit fly position, i.e., (x, y, z)i, represents a combination of the 

cutting parameters S,  f and ap ae. This process can be represented as follows: 

  (21) 

  (22) 

  (23) 

where X, Y and Znew are the fruit flies’ positions of the new populations; i is the fruit fly and j is the sub 

swarm; x, y and zinitial are the initial positions which are set to be zero at the start; randi is a computational 

function to select the respective values within the cutting parameters minimum and maximum 

boundaries;  

new initial SpindleSpeedX ( i, j ) x ( i, j ) randi(boundaries ) 

new initial FeedRateY ( i, j ) y ( i, j ) randi(boundaries ) 

new initial EngagementDepthZ ( i, j ) z ( i, j ) randi(boundaries ) 
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To calculate the smell concentration (fitness) of each fruit fly, in STEP IV, the new populations for 

fruit flies are called into each of the fitness function, i.e., SEC, 𝑃̅𝑆𝑜𝐸  and MRR. In the optimisation 

problem, these fitness functions are combined to save computational time as follows: 

   (24) 

The output values of 𝑃̅𝑆𝑜𝐸  and smell concentration are evaluated by a penalty function which judges 

the energy efficiency and cutting tool life based on the knowledge embedded into the system. If the 

power load is above the thresholds defined empirically, it reduces the smell concentration considerably. 

This supervisory loop ensures that inefficient cutting conditions are not identified as local or global best, 

in STEP V and, consequently, not retained in STEP VI. 

Fruit flies (i) with the highest smell concentration within a sub swarm (j) are identified as local bests, 

while the global best is represented by the fruit fly with highest smell concentration among all sub 

swarms. Further, the local bests are used to substitute the initial positions and generate the new 

populations in the next iteration. This process occurs recursively until the maximum number of iterations 

is reached, so the global best fruit fly, which holds the optimal cutting parameters, and smell 

concentration path are achieved. 

5.3 Case Study for validation of optimisation approach 

A case study including three real-case manufacturing scenarios are presented in this section. This 

way, the proposed optimisation problem and iMFOA algorithm can be assessed. This will be done by 

evaluating the optimisation outputs considering some key rules to achieve sustainable machining. 

The details of the manufacturing scenarios are given in Table 9. 

Table 9 Manufacturing scenarios for the optimisation problem 

Real-case scenarios of factory immediate requirements Production Constraints 

a) The production batch requires highly expensive cutting tools; however, the lead 

time is also a constraint since the penalty for not meeting the deadline is high. 

Both resources are constrained. 

1=2 = 0.5 

b) The deadline for delivering the production order has been extended; the manager 

asks to reconfigure the machining operations to prolong cutting tool life. 

Cutting tools become the 

constraint. 

1=0.8, 2=0.2  

c) The deadline for delivering the production order has been shortened; the manager 

asks to reconfigure the machining operations to boost the productivity. 

Lead time becomes the 

constraint. 

2=0.8, 1=0.2 

Specific energy consumption (SEC), power load (PSoE) and material removal rate (MRR) are used as 

Key Sustainable Indicators (KSI) for the energy efficiency, cutting tool life and productivity, 

respectively. Furthermore, the optimal performances are analysed considering the rules for sustainable 

machining, as below: 

 The smaller the SEC the better the energy efficiency. 

 The greater the MRR the better the productivity. 

 The smaller the PSoE the better the cutting tool life. 

Accordingly, the optimisation results for each manufacturing scenario will be discussed based on the 

above rules. This further supports the selection of the best result amongst the three optimisation 

algorithms employed for benchmarking analysis: GA [33], FFOA [27] and the iMFOA, presented in 

Section 5.2. 

The details for the algorithm initialisation are: the production constraints’ weights are defined 

heuristically based on each scenario characteristics. Then, the initial set up for the algorithm engine is 

defined as: number of sub swarms equal to 10, size of population of fruit flies per sub swarm equal to 

25, and maximum number of iterations equal to 1000. 

The optimisation algorithm was run under the initial set-up. Fig. 8 shows the smell concentration path 

containing the global best values during the convergence to the optimal solution from the iMFOA 

algorithm. Based on this figure, the algorithm does not present significant improvements in the smell 

concentration beyond 375 iterations. As the computation time is a critical factor to indicate the system 

SEC 1 SoE 2Smell ( i, j ) P ( i, j ) 1 MRR( i, j )    
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performance of an online optimisation, 400 iterations are selected in this work as a trade-off between 

computation time and system performance. 

 
Fig. 8 Smell concentration path during optimisation using the iMFOA algorithm 

Table 11 shows the optimisation results, i.e., optimal cutting parameters and estimated SEC, MRR 

and 𝑃𝑆𝑜𝐸 , obtained from the algorithms used to solve the three manufacturing scenarios. 

Table 11 Optimisation results and KSI 

Scenario 

Constraint 

Optimisation 

Algorithm 

Optimal Cutting Parameters Key Sustainable Indicators 

Cutting 

Speed / mm 

min–1 

Feed per 

tooth / mm 

tooth-1 

Engagement 

depth / mm 

SEC / 

kJ cm–3 

MRR / 

cm3 min–

1 

Power 

Load / 

kW 

a) 

Lead time 

and 

Cutting 

tools 

iMFOA 250.3 0.0336 80.10 17.6* 53.7 15.8 

FFOA 167.8 0.0444 103.30 20.1 61.3 20.6 

GA 250.4 0.0338 77.59 17.7 52.2 15.4 

b) 
Cutting 

tools 

iMFOA 151.1 0.0188 55.00 15.8 20.6 5.4* 

FFOA 175.2 0.0259 58.80 24.8 21.2 8.8 

GA 237.8 0.0212 52.00 17.9 20.9 6.3 

c) Lead time 

iMFOA 250.2 0.1236 105.70 12.7 157.2* 33.4 

FFOA 152.5 0.0611 90.60 18.3 67.1 20.5 

GA 163.4 0.1096 107.12 13.1 152.8 33.5 

*Optimal value based on rules and manufacturing requirements. 

The results from the optimisation process highlighted in Table 11, are summarised below: 

 From case a), since both technical requirements lead time and cutting tools are constrained, the best 

solution will be decided considering the most energy-efficient process. That is, the set of machining 

parameters that provides the lowest specific energy consumption represents the optimal solution for 

this scenario. From Table 11, the results of the iMFOA algorithm promote the most energy efficient 

process, indicating this is the optimal solution. Although the genetic algorithm shows similar 

performance, when compared to traditional fruit fly algorithm, the iMFOA results promote better 

energy savings, approximately 12% more energy efficient. 

 From case b), cutting tools are the production constraint, and as stated previously, the lifetime of the 

cutting tools is proportionally correlated with the power load. Consequently, the best solution will 
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be decided considering the lowest power load value. From Table 11, the iMFOA is able to predict 

conditions that have 13% lower power load in comparison with the popular GA algorithm, or 38% 

improvement compared to the FFOA algorithm. 

 From case c), lead time is the production constraint. The best solution will be decided considering   

the highest material removal rate value. From Table 11, MRR obtained from the results obtained by 

iMFOA presents 3% better performance compared to GA, and 134% improvement when compared 

to traditional fruit fly algorithm. 

Thus, the results from the iMFOA algorithm showed better performance, especially when compared 

to the FFOA algorithm. This validates the improvements made to the previous MFOA and the 

advantages of using this swarm algorithm in machining optimisation. 

This case study uses real-case manufacturing requirements to validate the optimisation approach 

proposed in this research. Furthermore, it proves that the weighting strategy is an easy and effective 

method to align the manufacturing requirements, this way, bridging the gaps between ideal academic 

solutions and best practical solutions for the industry sector. 

6. CONCLUSIONS 

To achieve energy-efficient CNC machining processes, it is essential to develop effective analysis 

and optimisation approaches to evaluate the impact of machining parameters on energy consumption, 

and identify optimal parameters. In this paper, via experiments and qualitative analysis, key machining 

parameters affecting energy efficiency have been analysed in detail. The findings facilitate machining 

process planners in choosing suitable machining parameters to minimise energy consumption during 

machining. Based on the analysis, an improved multi-swarm fruit fly optimisation algorithm has been 

developed to optimise machining parameters. Case studies and benchmarking have been conducted to 

test the algorithm. The main conclusions are: 

1)  The feed per tooth has the most significant effect on the machining time, specific energy and power 

load. For energy-efficient CNC machining, high feed rates are suggested due to the savings in 

machining time; however, if cutting tools limit production, the optimal machining conditions 

should be reconfigured to low levels of feed per tooth and cutting speed, while the engagement 

depth should be recommended by the tooling handbook.  

2)  The developed optimisation approach is an effective tool to fine-tune the key machining parameters 

to guarantee energy efficiency during machining processes, and furthermore meet the requirements 

for shorter lead time and longer cutting tool life. The improved multi-swarm fruit fly optimisation 

algorithm provided better performance compared to traditional fruit fly optimisation algorithm and 

the commonly used genetic algorithm. 

Further research will include generalising the optimisation approach to facilitate energy-efficient 

CNC machining for other types of operations such as turning, boring, and electro-discharge machining; 

and enhancing the robustness of the developed approach for online decision and optimisation. 
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