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Abstract: A new ramjet configuration using powder and solid fuel as propellant is investigated, namely, hybrid 

powder-solid ramjet (HPSR). Boron particles were used as the powder in this study. In order to improve 

combustion efficiency of boron and simplify the engine structure, a tangential swirl air inlet is adopted on the 

HPSR. Ignition model based on the multi-layer oxide structure and Global reaction combustion model of boron 

particles, the Lagrangian particle trajectory model and the realizable ��� turbulence model were implemented to 

calculate three-dimensional two-phase flow and combustion in the HPSR with the different tangential air inlet 

angles (0°,5°, 10°, 15°, 20°, 25°). The effects of tangential air inlet angles on the ignition and combustion of boron 

were analyzed. The results show that when the tangential swirl air inlet angle is 10°, the combustion efficiency of 

boron particles and the total combustion efficiency of engine are the highest; the temperature distribution in the 

second combustion chamber is uniform, and the ignition distance of particles is small, for the HPSR configuration 

tested.
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1. Introduction

High energy propellants with metallic particles have been applied in solid ramjet[1]-[5] on a large-scale. However, 

the content of metal powder is seriously limited to the propellant processing technique[6][8] and it is difficult to 

regulate the thrust of the engine for the solid ramjet[9][10]. In order to improve engine specific impulse and its 

maneuverability, the powder ramjet engine was proposed[11][15]. Although the fuel flow rate of the powder ramjet 

is easy to adjust for improving maneuverability, and the specific impulse is high because of the high energy 

contained in metal powder, it is difficult to achieve a self-sustaining burn of  pure metal powder because a high 

temperature environment is required for metal powder combustion. Therefore, in order to make use of the easy-to-

adjust characteristics of powder flow rate, combined with the high temperature environment of solid ramjets, a 

hybrid powder-solid ramjet (HPSR) is investigated here. 

A HPSR (as shown in Figure 1), not like the hybrid rocket engine[16][17], consists of the following main 

components: a combustion gas generator, a powder injector, an air inlet, a second combustion chamber and a 

nozzle. The solid powder is sprayed from the head of the second combustion chamber and a larger number of solid 

particles are burned in the combustion chamber to increase the working temperature and total pressure, which 

results in improved engine performance. There are many similarities in both the structural design and the working 

principle between a solid ramjet and a HPSR. Combustion gas coming from the generator and metal powder fuel 

enter the combustion chamber mix with ramming air which combusts to produce gas at high temperature. This gas 

is discharged at the engine nozzle to produce thrust. The key difference between them is that in a solid rocket ramjet 

oxygen deficient propellant contains the metal particles as additive fuel and metal particles in the HPSR are 



injected by a powder injector. This injection  allows the  adjustment of the  powder flow rate.

Figure 1 Hybrid powder-solid ramjet sketch

Among the choices of metal powders that can be used, such as aluminum, magnesium, boron, etc. Boron has higher 

volume and mass calorific values. Furthermore, in a high temperature engine environment, the combustion product 

of boron is gas phase rather than condensate phase because the boiling temperature of B2O3 is 2316K, which will 

not cause the loss of thrust. Therefore, boron has become the first choice for people to study the powder-based 

ramjet used for air-breathing missiles.

Solid ramjets using boron have been widely studied[18]-[23]. For example, T. dawara, et al. [18] measured ignition 

delay time of boron particles and analyzed  the ignition and combustion characteristics of boron containing gas 

generators by direct-connect tests. A. Gany[19] investigated the characteristics of boron combustion in air-

breathing propulsion, and found that the unfavorable thermochemical equilibrium results in energy trapping and 

loss of potential chemical energy, and a specific thermodynamic blocking effect, which can cause incomplete 

reaction in actual boron-loaded systems basing on the peculiar ignition phenomena of individual boron particles 

and the specific conditions required to sustain combustion. B. Chen, et al.[20] analyzed the effects of equivalence 

ratio and swirling flow on combustion performance of boron-based solid propellant which contain boron and 

magnesium particles in the ramjet with a chin-type inlet. B. Kalpakli, et al.[21] developed a detailed computational 

model for boron particle combustion in varying composition environments for simulations of solid propellant 

ducted rocket combustion chambers. The model considered the surface and the gas phase reactions with the phase 

change processes such as melting, solidification, evaporation, and boiling. Z. Xia, et al. [22] researched the details 

of the combustion processes and flowfields in the secondary combustion chambers and designed two-inlet ducted 

rocket engine system to improve the combustion efficiency. Y. Kazaoka, et al.[23] measured combustion times of 

single particles by direct photography and spectroscopic analysis and observed the flame structure of burning 

particles by schlieren photography, which proved that boron particles burn in two stages separately and the 

combustion time decrease with increasing temperature. In addition, the ignition and combustion model of boron 

particles were described in references [24][35]. 

According to the references above, boron particles burn in two stages separately, i.e. ignition and combustion 

stages. The ignition process of boron particle results in the removal of the oxide layer covered outside of particle. 

Then, clean boron reacts with oxygen during the combustion process. In order to be ignited and burned adequately, 

boron particles need to be blended well with the primary combustion gas and the air entering from intake ports. A 

swirl flow should improve mixing and residence time leading to improved combustion efficiency[20], [36]-[38].  B. 

Chen, et al.[20] setup a swirler at the entrance of primary combustion gas and proved that the boron particle 



combustion efficiency of the swirl structure was improved by more than 6.5% compared to the non-swirling 

configuration. However, the swirl number used was not indicated. Swirl generators being installed at the outlets of 

the engine's bilateral intake ports, H. Wang, Y. Xu, et al.[36] showed that the ignition time and combustion 

efficiency of boron particles under different swirl numbers in co-swirl and counter-swirl modes.  The results 

showed that the shortest ignition time and the highest combustion efficiency were obtained when the swirl number 

was 0.385. R. Pern and F. Vinnemeier [37][38] fixed vane swirl generators with a swirl number of 0.54  into the 

flameholder of solid-fuel ramjet (SFRJ) combustor to determine the influence of swirl flow and fuel composition 

on boron combustion efficiency. Their results showed that boron combustion efficiency and specific thrust were 

improved by 10% - 20% for swirl flow conditions. O. Musa, et al.[39][40] studied the effect swirling flow evoked 

by swirl generator on SFRJ by numerical calculation and experiment. The results showed a positive impact of 

swirling flow on SFRJ. The regression rate of propellant increased with swirl number increasing. Using swirling 

flow enhances the flame stability, however, it negatively affected the ignition process and specific impulse. All the 

swirling flow applications presented above used swirl generators, which would make the ramjet engine 

complicated. Also, the addition of a swirl generator results in total pressure loss.

On the basis of previous investigations, the work in this paper addresses the gap of powder ramjet and solid ramjet. 

The concept of HPSR is put forward. And in order to simplify the structure of the engine and reduce total pressure 

loss, the tangential swirling air intake mode will be used to generate swirling mixing combustion in the second 

combustion chamber of the HPSR. Also, the effects that different tangential swirl air inlet angles have on the 

combustion performance of the engine will be studied to provide insight with the aim to understand which 

configurations have the potential to result in enhanced engine performance.

2. Engine model

Figure 2 illustrates the structure of a HPSR combustion chamber. The total length of the combustion chamber is 

700 mm. The diameter is 150mm. Two primary gas nozzles with a diameter of 20 mm, the distance between them 

is 90mm. The Powder inlet diameter is 12mm. The diameter of the bilateral tangential air intake ports is 40mm. The 

tangential inlet angle is denoted using ��

Figure 2 HPSR combustion chamber structure diagram (units are in mm)

In order to simplify the analysis and reduce the difficulty of the numerical calculation, the flow field of the HPSR is 



simplified as follows:

(1). The gas in the secondary combustion chamber is quasi steady flow without heat exchange with its surrounding 

environment

(2). Radiation and the body force of the gas are ignored.

(3). The combustion gas is treated as an ideal gas i.e. abiding by the ideal gas state equation.

3. Numerical Setup

3.1 Governing equation and numerical methods

According to the above assumptions, the governing equations include: the continuum equation, the momentum 

equation, the energy equation and a transport equation for each component. The form of the general equation in the 

Cartesian coordinate system can be written as, 
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Kronecker delta function. For the energy equation, is the temperature of fluid, is the coefficient of thermal T

conduction, is the specific thermal capacity, is the source term of temperature which resulted by the heat of pc TS

reaction and phase transformation latent heat. For the component transport equation,   is the mass fraction of jY

species  , is diffusion coefficient of species in the flow, is the source of species which resulted by jD jS

reaction.



The trajectories of particles are traced by the Lagrangian particle trajectory model[41]. The effect of particles on 

gas phase is considered by adding source term to the gas phase governing equation. Realizable ��� model[42] with 

swirl modification was used to address turbulence. It not only preserves the advantages of the convergence stability 

and appropriate accuracy of the standard ��� model, but also modifies the model used for complex flow field with 

large pressure gradient or vortex.  

3.2 Combustion model 

3.2.1 Gas phase combustion model

The species of  HTPB pyrolysis products include CO, H2, CO2, H2O, N2 mainly and a small amount of HCl, Cl, H, 

NH3, HO[43]. To facilitate calculation, it is assumed that the combustion ingredients of fuel-rich HTPB propellant 

in the combustion gas generator consists of  CO, H2, CO2, H2O and N2.  Among them, CO and H2 will react with 

oxygen in the air coming from the inlet, and the chemical equation of the combustion reactions as follows�

                                                                     (2)

                                                                    (3)

The gas phase combustion model employs the Eddy-Dissipation Model (EDM)[44], which can effectively control 

the net reaction rate of each component and calculate the chemical reaction process of the complex flow inside the 

afterburner chamber of solid ramjet or HPSR. 

3.2.2 boron particle ignition and combustion model

Boron particles burn in two stages separately, i.e. ignition and combustion stages. The boron particle ignition 

model is based on the multi-layer oxide structure proposed in literature[32][33]. Figure 3 shows the reaction 

mechanism of boron particle ignition process. To some extent, the ignition process of boron particle means the 

removal of the inhibiting oxide layer. As is shown in figure 3, the layer of (BO)n(l) is generated by the dissolution 

reaction between boron and B2O3(l). Then, (BO)n(l) diffuses outward and reacts with oxygen. A liquid layer of 

B2O3(l) (outermost layer) is generated on the surface of the oxide layer. The evaporation rate of B2O3(l) is pressure-

dependent. With the increasing of temperature, the evaporation rate can be higher, and the phenomenon of the 

outermost layer consumption happens. Therefore, the outermost layer will be consumed completely before the end 

of the ignition process. Finally, the oxide layer presents a two-layer structure (see the right half of the Figure 3). 

Both the evaporation and heterogeneous reaction with oxidants on the surface will change. There is a tiny flame on 

the surface of the oxide layer during the first-stage combustion. The boundary between the ignition delay and the 

first-stage combustion can be told apart by the structure change of the oxide layer (whether xo=0). The particle 

temperature at that moment is defined as the ignition temperature.



Figure 3 Reaction mechanism of boron particle ignition process

The governing equations for the consumption of the particles and the removal of oxide layer can be written as:
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Where,  is the thickness of outer oxide layer,  is the thickness of the overall oxide layer,  is oxygen ox x

diffusivity to particle surface and the value of is detailed in references [34,35]. is the molar reaction rate of the iR

global reaction, is the molecular weight, is the density, is the heat of every global reaction, is the iM i jQ pr



radius of the particle,  is the temperature of particle,  is the ambient temperature,  is the specific heat,  pT T� Cp

is the Boltzmann constant, is the convective heat transfer coefficient, is the emissivity of the boron particle. ch B

Calculations or values of these parameters are found in the literature[32][33].

After ignition is completed, boron particles enter the burning stage. Regardless of combustion multi-step reaction, 

the total combustion equation for boron particle can be written as:

                                                               (8)(s) 2(g) 2 3(g)B +3/4O 1/2B O�

the boron particle burning rate[25] is listed below as:

                                                      (9)

where, is  represents the particle radius� is the product of the gas density and the diffusion coefficient of the pr D

ambient particles (a value of  was used in this work)� is the mass fraction of oxygen in the smkg ��  24102
�,2O

Y

ambient gas of the particles.

3.3  Mesh and Boundary Conditions

The computational domain and grid were generated using the commercial software ICEM[45]. A multiblock grid 

approach was used (as shown in Figure 4). Cells are highly concentrated close to the wall surface, the primary 

combustion inlet and the powder inlet to ensure the accuracy of the numerical simulation. The height of the first 

row of cells is set a distance of 0.1 mm for the walls, and the total number of cells is 870535.

The simulated flight conditions correspond to an altitude of 20,000m and the Mach number is 3. The boundary 

conditions are shown in Table 2. The mass fraction of primary combustion gas CO�H2�CO2�H2O and N2. is 

45%, 20%, 10%, 5% and 20% respectively. The mass flow rate is 0.26kg/s, the total temperature is 1800K. Boron 

powder is fluidized by gas N2,   its mass flow rate is 0.02kg/s, the total temperature is 300K; air mass flow rate is 

4kg/s, the total temperature is 573K, outlet pressure is 0.06MPa, temperature is 255K; boron particles mass flow 

rate is 0.1 kg/s. The primary diameter of boron particles is ��m, the thickness of the oxide layer is 1.3% of the 

particle radius, the initial temperature is 300K, the wall-normal reflect coefficient is 0.7 and the tangential reflect 

coefficient is 0.72.

Figure 4 Mesh applied in computational fluid dynamics

Table 2 boundary conditions

Boundary name
Boundary

 type
Mass flow 

rate
Gauge 

pressure
Total 

temperature
Species

Discrete
 phase



(kg/s) (MPa)  (K)

air inlet mass flow rate 4 0.5 573 22% O2, 78% N2 reflect

Primary 
combustion inlet

mass flow rate 0.26 0.4 1800
45% CO, 20% H2, 10% 
CO2, 50% H2O, 20% N2

reflect

powder inlet mass flow rate 0.02 0.1 300 N2 reflect

outlet presure outlet — — 0.06 255 — — escape

wall no slip wall — — — — — — — — reflect

Boron particles Surface injection 0.1 — — 300 B — —

4. Results and discussion

4.1 Test cases

In order to analyze the effect of the tangential air inlet angle on the ignition distance boron particles and combustion 

efficiency of HPSR, six angles were chosen from 0° to 25°. The cases are shown in the table 3.

Table 3 Test cases
 Condition Different tangential air inlet angle

(°)
Case A 0
Case B 5
Case C 10
Case D 15
Case E 20
Case F 25

4.2 Particle trajectory and ignition distance of boron particles

Ignition distance is the distance between the inlet port of boron particles and the position where the oxide layer is 

depleted. Figure 5 shows that the oxide layer of boron particles changes with particle trajectory. It can be seen that 

the particles with fluidizing gas enter the combustion chamber from the central inlet. At first, particles are located 

near the center line of chamber. When the tangential angle of the air intake is 0° (see Case A),   boron particles are 

impinged by air jets and move toward the wall. Due to the wall-attachment effect[46] of the air flow and the 

influence of local airflow pulsation, boron particles move in the recirculating zone with the air flow toward the head 

of combustion chamber, and then move toward the nozzle exit along with the air flow. When the tangential angle of 

air intake is 5°, 10°, 15°, 20° and 25° (see Case B-F), the particles exhibit a swirling mixing motion after the air 

inlet ports, and the number of particles entering the head decreases with the increase of the tangential swirl angle. 

This is mainly because the larger the tangential swirl angle, the smaller the interaction of the air flow, the smaller 

the velocity of the recirculating air flow, and the air flow can carry fewer particles back to the head. But the 

particles trajectory are more disordered with the increase of tangential angle of air intake after the air inlet.

According to Fig.5, the thickness change of boron particles oxide layer have the same trend for all cases. Ignition is 

completed near the air inlet port.  However, the ignition distance of the case B and C is less than that of case A, E ,D 

and F. The ignition distance of case A, B, C, D, E and F are the 185mm, 132mm, 131mm, 163mm, 188mm and 



195mm respectively.

Case A Case D

 

Case B Case E

Case C Case F

Figure 5 oxide layer of boron particles change with particle trajectory

In order to further illustrate the trend of particle trajectory as shown in Fig.5, the vorticity distribution within the 

combustion chamber is analyzed by taking a cross section every 150mm along the axial direction of the combustion 

chamber under various cases (see Fig.6). It can be seen from the diagram that 1) the vorticity in the combustor head 

is the largest, because the jet impinges and ejects in the confined space to form vortices, but the vorticity decreases 

rapidly from the downstream of the air inlet to the combustor outlet; 2) With the increase of tangential air inlet 

angle, the vorticity in the combustor head increases from 0° to 10°, but decreases gradually from 10° to 25°, while 

the vorticity increases from the downstream of the air inlet to the combustor outlet.  In order to understand the 

change of vorticity in more detail, Figure 7 shows the mean vorticity of the cross-section of combustion chamber at 

all cases.  It can be seen that the vorticity of tangential air inlet angle at 10° is the largest at x < 450mm, the next is 

at the 5°. This is why the ignition distance of the case B and C are less than that of case A, E ,D and F.



Case A

Case B

Case C

Case D

Case E

Case F

Figure 6 Vorticity distribution in the cross-section of combustion chamber at all cases

Figure 7 Mean vorticity of the cross-section of combustion chamber at all cases

4.3 Temperature distribution

In order to intuitively judge the effect of different tangential swirl inlet angles on combustion performance of boron 

HPSR, the temperature distributions of various sections and walls of the combustion chamber are shown in Figure 

8. And for quantitative analysis of temperature distribution, Figure 9 shows the mean temperature of section of the 

combustion chamber for all the test cases considered in this work. It shows that the temperature from the 

combustion chamber head to the air inlet is lower. For example, the mean temperature is in the range of 1600K-

1800K except that 2200K of case C when the section is at x=100.. When the tangential angle of air inlet is 0°, the 

low temperature region near the air inlet is the largest and the temperature in the whole combustion chamber is 

lower because of the large impulse and the deep penetration of the air jet. According to the air concentration zone 

shown in the Fig.8, it will be divided into two parts when  tangential swirl air intake angle is 10° and it is greater the 

distance with the increase of angle, which results in combustion zone being divided into two parts. It is seen 

obviously that the temperature in the combustion chamber downstream of the intake port differentiates with the 

tangential angle of air inlet. The temperature at the center of the combustion chamber  for case C ( i.e. 10° 

tangential swirl angle of air intake ) is the highest and is well-distributed. With further increasing  the tangential 



angle, a high temperature zone shifts closer to the wall. A two-zone distribution of high and low temperature is 

formed on the wall. This will translate into practical challenges for accomplishing  thermal shielding.

According to Figure 9, it can be seen that the temperature of case C is much more than that of other cases at the 

cross sections for x < 350 mm. Also, the  uniformity of the temperature distribution is better than that of any other 

cases because the mean temperature of section changes in the small range of 2177K to 2560K for the case C.

Case A 

Case B 

Case C 

Case D 

Case E 

 

 

 

 

 

 

Case F

Figure 8  Section and wall temperature distribution of the combustion chamber in all cases

Figure 9  Mean temperature of section of the combustion chamber in all cases

4.4 Combustion efficiency

4.4.1 Method for Calculating the Combustion Efficiency

Component combustion completion rate[36] is used to express the combustion efficiency of HPSR. Secondary 



combustion efficiency of gas phase components at any cross section is defined as follows:

                                                 (6)
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The combustion efficiency of boron particles at any cross section is defined as follows:
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where,  is the number sort of combustible gas, ,  are the heat of combustion of gas and boron particles cN ,i gQ BQ

respectively. The value of ,  and are ,  and  
2H

Q COQ BQ
81.208 10 /J kg� 71.01 10 /J kg� 81.17 10 /J kg�

according to reference[25] respectively.

Figure 10 shows the change of combustion efficiency of CO and H2 along the axial section in combustion chamber 

under different cases. The combustion efficiency of the gas at the combustion chamber cross section increases 

rapidly with the increase of the axial distance. For CO, when the axial position reaches 400 mm, the combustion 

efficiency of the case A to case D reaches more than 90%, and the combustion efficiency at the outlet of the 

combustion chamber reaches 100% almost; The combustion efficiency of case E to case F is low relatively, and it is 

94.8% and 94.2% at the exit of combustion chamber respectively. For H2, the combustion efficiency increases 

slowly relative to that of CO along the axial position. The combustion efficiency at the exit of combustion chamber 

from Case A to Case F are 99.94%, 98.15%, 99.29%, 98.08%, 80.54% and 80.88% respectively. According to the 

analysis, the tangential swirl air inlet angle has a certain influence on the gas phase combustion efficiency. When 



the tangential swirl air inlet angle is greater than 15 degrees, the combustion efficiency decreases significantly.

       

Figure 10 The variation law of CO and H2 combustion efficiency along the axial section

Figure 11 shows the variation of the combustion efficiency of boron particles along the axial section in the 

combustion chamber for the different cases examined. Undoubtedly, with the increase of the axial distance, the 

boron particles combustion efficiency at the cross section of the combustor increases, but the increase speed slows 

down compared with that of the gas combustion efficiency. In case A, when the tangential swirl air inlet angle is 0 

degrees, the combustion efficiency increases rapidly in the first half of the combustor, but slowly in the second half, 

and the combustion efficiency at the exit is 88.34%. The combustion efficiency of case E and case F in the first half 

of the combustor is low, and the combustion efficiency at the exit is 89.80% and 82.51%, respectively. Comparing 

the combustion efficiency of all cases at the exit, it can be seen that the combustion efficiency increases from case 

A to case C and decreases from case C to case F. That is, the combustion efficiency of particles in case C is 

maximum, and it is 94.76%. 

Figure 11 the variation of the combustion efficiency of boron particles along the axial section

Table 4 shows the statistical result of the combustion efficiency in different cases. This table shows that with the 

increase of the tangential angle of the inlet, the total combustion efficiency increases at first and then decreases later 

and the maximum combustion efficiency lies in case C, i.e. when the tangential swirl angle of air is 10 degrees, the 

combustion efficiency is the highest.

Table 4 the combustion efficiency under different cases

Case CO(%) H2(%) Boron Particle�%� total�%�



A (0o) 99.99 99.94 88.34 92.84

B (5o) 99.84 98.15 92.13 94.57

C (10o) 99.98 99.29 94.76 96.52

D (15o) 99.88 98.08 93.35 95.29

E (20o) 94.80 80.55 89.80 87.06

F (25o) 94.21 80.88 82.51 82.67

5. Conclusion

A hybrid powder-solid ramjet (HPSR) configuration was investigated. Boron particles were used as the powder 

propellant. Thrust regulation when using a solid-only ramjet is highly limited. However, hybridization using a 

powder propellant provides a means to regulate the thrust generated by the engine. A numerical investigation of the 

fluid flow and combustion in a boron HPSR was carried out. The focus of this work was to gain a better 

understanding of the effects that the tangential air inlet angle has on the ignition response of the boron particles, as 

well as the combustion efficiency of the HPSR configuration tested. As a result of the simulations performed, the 

following conclusions can be drawn:

(1) The ignition distance of boron particles decreases with the tangential swirl air inlet angle increasing from 0° to 

10°, while it increases with tangential swirl air inlet angle increasing from 10° to 25°. The minimal ignition distance  

of particles occurs when the tangential swirl air inlet angle  is 10° for the conditions tested in this work.

(2) The temperature of the cross sections x < 350 mm  for the case of 10° tangential swirl angle is much more than 

that of other cases. The uniformity of the temperature distribution is better than that of any other working 

conditions.

(3) The tangential swirl air inlet angle has a certain influence on the gas phase combustion efficiency. When the 

tangential swirl air inlet angle is greater than 15°, the combustion efficiency decreases significantly.

(4) The combustion efficiency of boron particles increases with the tangential swirl air inlet angle when it changes 

from 0° to 10°, while it decreases with tangential swirl air inlet angle when it is increased from 10° to 25°. The 

maximum combustion efficiency of particles and the total combustion efficiency of the boron HPSR occur when 

the tangential swirl air inlet angle  is 10° for the conditions tested in this work. 
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Abstract: This article contains data on ignition and combustion of a hybrid powder-solid ramjet under 

different tangential swirl air inlet angle. A new ramjet configuration using powder and solid fuel as 

propellant is put forward, namely, hybrid powder-solid ramjet (HPSR). Boron particles were used as the 

powder. The data of ignition distance of boron particles, the distribution of vorticity,  temperature in the 

HPSR and the combustion efficience of a HPSR with different tangential air inlet angles (0°,5°, 10°, 15°, 

20°, 25°) are shown here through cloud pictures, charts and tables. These data can be also found in the 

paper "Effect of tangential swirl air inlet angle on the combustion efficiency of a hybrid powder-solid 

ramjet".  

Specifications Table

Subject area Physics, Chemistry

More specific subject area Space propulsion, ramjet

Type of data Table,  figure

How data was acquired Numerical calculation

Data format Raw, filtered, analyzed

Experimental factors Establishment of ignition and combustion model of boron particles, 
selection of appropriate turbulence model, particle trajectory model.

Experimental features NA

Data source location School of Mechanical, Aerospace and Automotive Engineering, Coventry 
University, UK

Data accessibility Data is available with the article

Value of the data

� The data is used for researching new ramjet configuration using powder and solid fuel as 

propellant  (HPSR).

� The data present the construction of HPSR.

� The presented data provide details on ignition of boron in the HPSR.



� This data shows evidence of the effects of tangential air inlet angles on the combustion efficiency 

of HPSR.

1. Data

The data in this paper are calculated for the combustion flow of hybrid powder-solid ramjet (HPSR). The aim 

is to verify the effect of swirl inlet angle on ignition combustion of particles and total combustion efficiency in 

the HPSR. The data include ignition distance of boron particles (see Fig. 3), the vorticity distribution (see Fig. 

4), the mean vorticity of the cross-section of combustion chamber (see Fig. 5), the temperature distributions 

(see Fig. 6), the mean temperature of section of the combustion chamber(see Fig. 7),  the change of 

combustion efficiency of CO and H2(see Fig.8), combustion efficiency of boron particles(see Fig. 9) and the 

combustion efficiency in different cases(see Table 3).

2. Experimental Design and Methods

2.1 Design

Figure 1 shows the construction of a HPSR. The main components include a combustion gas generator, a 
powder injector, an air inlet, a second combustion chamber and a nozzle. The operation principle of HPSR is 
that the solid powder is sprayed from the head of the second combustion chamber, the air from the intake port 
provides sufficient oxygen, and the high temperature gas from the gas generator provides sufficient high 
temperature environment to ensure that the solid particles are fully burned in the afterburner to increase the 
working temperature and total pressure, which results in improving of engine performance.  

Figure 1 Hybrid powder-solid ramjet sketch

Figure 2 illustrates the structure of a HPSR combustion chamber. The total length of the combustion chamber 
is 700 mm. The diameter is 150mm. Two primary gas nozzles with a diameter of 20 mm, the distance between 
them is 90mm. The Powder inlet diameter is 12mm. The diameter of the bilateral tangential air intake ports is 
40mm. The tangential inlet angle is denoted using �� Six angles were chosen from 0° to 25° (shown in the table 
1) .

Figure 2 HPSR combustion chamber structure diagram (units are in mm)



Table 1 Tangential inlet angle
 Condition Different tangential air inlet angle (°)

Case A 0
Case B 5
Case C 10
Case D 15
Case E 20
Case F 25

2.2 Methods

Reynolds time-averaged N-S equations were solved. The trajectories of particles are traced by the Lagrangian 
particle trajectory model[1]. The effect of particles on gas phase is considered by adding source term to the gas 
phase governing equation. Realizable ��� model[2] with swirl modification was used to address turbulence.
The species of  HTPB pyrolysis products include CO, H2, CO2, H2O, N2 mainly and a small amount of HCl, 
Cl, H, NH3, HO[3]. To facilitate calculation, it is assumed that the combustion ingredients of fuel-rich HTPB 
propellant in the combustion gas generator consists of  CO, H2, CO2, H2O and N2.  Among them, CO and H2 
will react with oxygen in the air coming from the inlet, and the chemical equation of the combustion reactions 
as follows�

                                                                    (1)

                                                                    (2)

The gas phase combustion model employs the Eddy-Dissipation Model (EDM)[4]. Boron particles burn in two 
stages separately, i.e. ignition and combustion stages. The boron particle ignition model is based on the multi-
layer oxide structure proposed in literature[5][6]. The total combustion equation for boron particle can be 
written as:

                                                               (3)(s) 2(g) 2 3(g)B +3/4O 1/2B O�

The boron particle burning rate refers to the literature [7].

The computational domain and grid were generated using the commercial software ICEM[8]. The boundary 

conditions are shown in the table 2.

Table 2 boundary conditions

Boundary 
name

Boundary
 type

Mass flow 
rate

(kg/s)

Gauge 
pressure
(MPa)

Total 
temperature

 (K)
Species

Discrete
 phase

air inlet mass flow rate 4 0.5 573 22% O2, 78% N2 reflect

Primary 
combustion 

inlet
mass flow rate 0.26 0.4 1800

45% CO, 20% H2, 10% 
CO2, 50% H2O, 20% N2

reflect

powder inlet mass flow rate 0.02 0.1 300 N2 reflect

outlet presure outlet — — 0.06 255 — — escape

wall no slip wall — — — — — — — — reflect

Boron particles
Surface 
injection

0.1 — — 300 B — —

Figure 3 shows that the oxide layer of boron particles changes with particle trajectory. The ignition distance of 

case A, B, C, D, E and F are the 185mm, 132mm, 131mm, 163mm, 188mm and 195mm respectively. Figure 4 

shows the vorticity distribution within the combustion chamber cross section every 150mm along the axial 



direction of the combustion chamber under various cases. Figure 5 shows the mean vorticity of the cross-

section of combustion chamber at all cases. Figure 6 shows the temperature distributions of various sections 

and walls of the combustion chamber. Figure 7 shows the mean temperature of section of the combustion 

chamber for all the test cases.

Case A Case D

 
Case B Case E

Case C Case F

Figure 3 oxide layer of boron particles change with particle trajectory

Figure 4 Vorticity distribution in the cross-section of combustion chamber at all cases



Figure 5 Mean vorticity of the cross-section of combustion chamber at all cases

Figure 6  Section and wall temperature distribution of the combustion chamber in all cases

Figure 8 shows the change of combustion efficiency of CO and H2 along the axial section in combustion 

chamber under different cases. Figure 9 shows the variation of the combustion efficiency of boron particles 

along the axial section in the combustion chamber for the different cases examined. Table 3 shows the 

statistical result of the combustion efficiency in different cases.



Figure 7  Mean temperature of section of the combustion chamber in all cases

Figure 8 The variation law of CO and H2 combustion efficiency along the axial section

Figure 9 the variation of the combustion efficiency of boron particles along the axial section

Table 3 the combustion efficiency under different cases
Case CO(%) H2(%) Boron Particle�%� total�%�

A (0o) 99.99 99.94 88.34 92.84

B (5o) 99.84 98.15 92.13 94.57

C (10o) 99.98 99.29 94.76 96.52

D (15o) 99.88 98.08 93.35 95.29



E (20o) 94.80 80.55 89.80 87.06

F (25o) 94.21 80.88 82.51 82.67
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