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Abstract—Automated fault detection is an important part of 

a quality control system. It has the potential to increase the 

overall quality of monitored products and processes. The fault 

detection of automotive instrument cluster systems in computer-

based manufacturing assembly lines is currently limited to 

simple boundary checking. The analysis of more complex non-

linear signals is performed manually by trained operators, 

whose knowledge is used to supervise quality checking and 

manual detection of faults. We present a novel approach for 

automated Fault Detection and Isolation (FDI) based on deep 

learning. The approach was tested on data generated by 

computer-based manufacturing systems equipped with local and 

remote sensing devices. The results show that the approach 

models the different spatial/temporal patterns found in the data. 

The approach can successfully diagnose and locate multiple 

classes of faults under real-time working conditions. The 

proposed method is shown to outperform other established FDI 

methods.  

 
Index Terms- Deep learning, Artificial Neural Networks 

(ANNs), Computer aided manufacturing, Fault detection, 

Machine learning, Manufacturing automation. 

I.   INTRODUCTION 

The development of fault detection systems for complex 

real-world industrial processes is difficult and poses many 

challenges [1]. Modern computer-based manufacturing 

systems consist of many manufacturing cells performing a 

range of assembly operations and functional tests. The cells 

are controlled by computer software supervising a given 

production process many of which are custom built [2].  
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For computers assigned to the supervision of 

manufacturing plants, one of the most important tasks is to 

detect and diagnose product faults. The first step in this task 

is to acquire the data necessary for process analysis. The 

earliest inspection systems utilised a small number of data 

generating processes and sensing elements. This resulted in 

only a limited amount of data which could be analysed by 

engineers for the fault identification process, a more 

methodical approach supported by structured data analysis 

was lacking. 

To this day, the only forms of fault detection used in many 

manufacturing plants are those based on limit checking [3]. In 

such a case minimal and maximal values, called thresholds, 

are specified for a given characteristic in the manufacturing 

process for a product. A normal operational state is when the 

value of a feature is within these specified limits. Although 

simple, robust and reliable, this method is slow to react to 

changes of a given characteristic of the data and fails to 

identify complex failures, which can only be identified by 

looking at the correlations between features. Another problem 

with this approach is the challenge of specifying the threshold 

values for a given characteristic [4].  

To resolve the above problem, most manufacturing 

companies have historically adopted a technique called 

Statistical Process Control (SPC) that was developed in 1920s 

by Walter Shewhart. SPC is a set of different methods to 

understand, monitor and improve process performance over 

time [5]. The most apparent limitation of SPC methods is the 

fact that they are concerned mainly with one input at a certain 

point in time [6] and ignore the spatial/temporal correlation 

which could otherwise help to detect and isolate potential 

faults. It is therefore crucial to investigate and propose new 

fault detection and isolation techniques based on more 

sophisticated modelling capabilities of methods, such as 

advanced intelligent data analysis and machine learning 

approaches. 

Modern computer-based manufacturing systems produce a 

large volume of data generated by sensor and control signals 
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during the manufacturing process. The data contains valuable 

information about the state of the system and its potential 

faults. In such systems, the available automated solutions to 

assist engineers with fault detection are limited and only 

consider one measured characteristic of a manufacturing 

process at a time. This creates a simplified static image of a 

complex dynamic system. State of the art tools can consider 

multiple characteristics but disregard the temporal aspect of 

the signal, creating a static model of the system. More 

significantly, these tools ignore various correlations between 

multiple characteristics, which dynamically change over time 

and provide additional information about a fault occurrence. 

Another problem is the limited automation of the fault 

classification and inference, making it necessary to train staff 

/ engineers to use the tools effectively. This results in 

additional cost and places constraints on the flexible use of 

human resources. Likewise, these methods cannot detect 

faults at an early stage, respond to constantly changing fault 

sources or learn new fault types from multi-type spatial-

temporal production data. Ignoring the above problems leads 

to extensive production down-time and waste of resources, 

unsafe machinery, poor production yield and suboptimal 

human resource allocation. 

The rest of the paper is organised as follows. Section II 

provides an overview of existing FDI methods used in 

manufacturing environment. Section III discusses the 

proposed approach. Section IV discusses the implementation 

and Section V describes the evaluation of the proposed 

approach in a real-world setting. Finally, in Section VI 

conclusions and future work are discussed. 

II.   EXISTING FAULT DETECTION METHODS  

The importance of using FDI has been first recognised in 

safety critical areas such as flight control, railways, medicine, 

nuclear-plants and many more. The need for fault detection is 

also more relevant nowadays due to the new application of 

computational intelligence for data analysis performed by 

real-time systems. This is especially true in real-time energy 

efficient management of distributed resources [7], real-time 

control and mobile crowdsensing [8] (both a vital part of 

smart and connected communities) and the protection of 

sensitive information collected by wearable sensors [9].     

A conventional method for ensuring the fault free 

operation of manufacturing production lines is to periodically 

check the process variables, which include software 

configuration validation, sensor validation, measurement 

device calibration and preventive maintenance [10]. This 

method is widely popularised in industry and used for 

preventing and detecting abrupt failures. However, it is not 

able to detect failures that can only be detected by continuous 

assessment of variables, such as incipient process faults, 

which are especially relevant in the manufacture of 

microelectronic components. Owing to an increase in the 

process complexity and sophistication of production 

equipment, this method is no longer cost effective and 

impractical to implement on large scale computer-based 

production lines [11].  

Fault detection methods can be mostly categorised into two 

main groups: hardware redundancy and analytical 

redundancy [12]. The main idea behind redundancy-based 

methods is to generate a residual signal which represents a 

difference between the normal behaviour of a system and its 

actual measured behaviour. By considering this comparison, 

a fault occurrence can be detected. Hardware redundancy is 

based on creating the residual signal by using hardware [13]. 

The general idea behind this approach is to measure a given 

process variable with more than one sensor and detect a fault 

by performing consistency checks on the different sensors.  

Analytical redundancy is based on creating the residual 

signal from a mathematical model which can be developed by 

analysing either the actual measurements, or the underlying 

physics of the process. There are three main approaches to 

analytical redundancy: model-based methods, data driven 

methods, and knowledge based expert systems [14]. They are 

all categorised based on a priori knowledge, which is 

required for the model. Model based methods require a good 

mathematical model of the monitored system which can be 

acquired using parameter estimators, parity relations or state 

observers such as Luenberger observers and Kalman Filters 

[12]. Data driven methods, instead of creating a mathematical 

model, use historical data recorded by sensors to monitor a 

given system. The data is used to describe and model the 

normal behaviour of that system, which is subsequently used 

to generate a residual signal. The data driven methods can be 

used only if the given system can generate enough data from 

the sensors [15]. Finally, a knowledge based expert system 

uses domain knowledge which is very often described as a set 

of rules [16].  

A different approach for the classification of fault detection 

methods is to consider the different methods from the 

perspective of the variables that are used to detect a fault 

[17]. In this context, methods based on analysing single 

signals or multiple signals and models can be considered. The 

single signal methods consider one process variable in 

isolation from other variables. They include methods based 

on limit and trend checking such as fixed threshold, adaptive 

threshold or change detection methods [17]. Thresholds are 

set to detect whether a given characteristic of the system falls 

outside the acceptable minimal and maximal values. This 

method, whilst simple and reliable is slow to react to changes 

in the value of a characteristic over time and is incapable of 

identifying complex failures. To overcome this problem a set 

of methods used to analyse multiple signals have been used. 

Those are: principle component analysis (PCA), parameter 

estimators, artificial neural networks, state observers, parity 

equations and state estimators [15]. These methods identify 
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faults by analysing the correlations between multiple system 

variables. Finally, a set of temporal methods for both single 

and multiple signal variables have been used, which have 

provided the tools necessary to identify faults in high 

frequency signals. These methods are necessary for dynamic 

systems where a fault can only be identified by looking at the 

way signals change over time. Examples of these methods 

are: spectrum analysis, wavelet analysis and analysis of 

correlations [18].  

 Many fault detection systems used in computer-based 

manufacturing environments are rule based expert systems. 

An expert system is a specialised system that solves problems 

in a domain of expertise. Such systems simulate human 

reasoning for a problem domain; perform reasoning over a set 

of previously defined logical statements and then solve the 

problem using heuristic knowledge [19]. An expert system is 

a computer program consisting of a large database of if-then-

else rules which mimics the cognitive behaviour and 

knowledge of human experts [33]. The main advantages of 

developing such systems include: ease of implementation and 

development, ease of fault interpretation, transparent logical 

reasoning, and the ability to deal with noise and uncertainty 

in the data. Because of the large variety of processes to which 

expert systems are applied, there is a significant number of 

papers and scientific literature devoted to their 

implementation [20] [21] [22].  Expert systems require 

significant human effort and experience to precisely describe 

the heuristic knowledge of a monitored process. Another 

limitation in using this method is that the database of 

symptoms should be modified each time a new rule is added. 

Finally, another problem is their rigid structure as they lack 

the ability to fully express the real-world understanding of the 

underlying process [23]. This is the reason why they fail to 

generalise and adapt when a new condition is encountered 

that is not explicitly defined in the knowledge base. This kind 

of knowledge is called ‘shallow’ since it lacks the deep 

understanding of the underlying physics of the system [23]. 

That is why expert systems are very often impractical for 

systems that have many variables, or systems with significant 

variability.  

Each manufacturing process is subject to uncertainty and 

random disturbances. This uncertainty comes from many 

sources, including measurement uncertainty, human 

performance or part variation. That is why sometimes a 

problem of fault detection needs to be formulated in the 

context of stochastic systems. These systems are defined 

using a probability distribution, which corresponds to the 

state of the system under normal working conditions. Any 

change in that probability distribution can be an indicator of a 

fault occurrence in the monitored system. In real-time 

systems, observations are analysed sequentially, and fault 

occurrence is identified based on the observations over a 

particular time period [20]. By monitoring the variable and 

considering it as a function of time a fault occurrence could 

be identified and a corrective action introduced. This action 

would return the system to its normal operation by resetting 

the variable to its desired value. Although statistical process 

control (SPC) charts are still widely used in manufacturing 

process control the charting methods have not kept up with 

the progress in data acquisition. Another problem with SPC 

analysis is the fact that it is slow to respond to subtle changes 

in monitored variables. Finally, SPC charts are generally 

concerned with the input of one variable in isolation, 

therefore if a given variable is dependent on other variables 

the charts can be misleading. 

III.   PROPOSED APPROACH   

To address the problem of FDI, we have proposed a novel 

universal biologically-inspired generative-modelling 

approach as shown in Fig. 1. The approach is designed to 

mimic the natural fault detection functions that have evolved 

and developed in the mammalian brain and is inspired by a 

theory proposed by Jeff Hawkins [24].  

The proposed approach is capable of modelling complex 

correlations between input values and the temporal 

consequences between different input states of the system 

(phrased in this paper as spatial-temporal correlations) in high 

volumes of data. Consequently, the approach predicts the 

future states of a system based on its previous behaviour 

while taking into account significant noise in the data. The 

approach can automatically learn complex real-world patterns 

to identify abnormal conditions. This gives it a competitive 

advantage over rival methods where substantive human 

supervision is required. Due to its unique capability for 

handling data invariances, the approach is able to process a 

broad range of data types to discover patterns, which are too 

complex for humans or standard machine learning techniques 

to identify.  

The main elements of the proposed approach are as 

follows, see Fig 1. Initially data produced from several 

hardware / software sources (data layer) is transformed into 

individual signals. Those signals (input layer) comprise of 

various data types and represent a measured physical 

characteristic of a monitored process. Depending on the type 

of signal they are encoded in one of the following ways. This 

encoding is performed in the data transformation layer as 

follows: for signals representing a categorical entity the 

values are encoded using one-hot-encoding i.e., the input 

space Mi = ℤk is mapped to k binary features encoding that 

input. Where a signal is continuous, a range of that signal is 

considered and divided into a fixed number of bins depending 

on the mean and standard deviation of the signal. The input 

space is then mapped to k-binary features encoding the bin 

that the value falls into. Finally, binary signals are copied 

without the need to use a dedicated encoder. During an 

operation of the manufacturing system, at each time t the 
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measured physical characteristics  { 𝑝0 , 𝑝1 , . . . , 𝑝𝑛 } ∈ 𝑃 

(where P is a set of all measured physical characteristics for a 

given manufacturing system) are encoded and concatenated 

to create a sparse binary input vector. The input vectors 𝑥𝑖 ∈
𝛽  (where 𝛽  is a set of all possible input vectors and 𝑥𝑖 ∈

[0,1]𝑑 ) are generated during that operation change 

dynamically over time and creates a sequence of input 

vectors S = (𝑥𝑡)𝑡=0
𝑛  . Here d denotes the elements in an input 

vector 𝑥𝑖 and the number of measured physical characteristics 

are n. For typical complex manufacturing systems, the 

following is true n > 150 and depending on the type of the 

physical characteristic, the number of elements d > 1000. A 

problem with the current representation of 𝑥𝑖 is that although 

the individual elements of that vector are correlated there is 

no mechanism which would capture those correlations. To 

solve the above problem the method uses  a set of Deep Auto-

Encoders (DAEs) [25] to learn a vector space embedding 

𝑣𝑖 ∈ 𝐴, where A ∈ ℝ𝑙.  By using an auto-encoder, a mapping 

𝑒: 𝛽 ⟼ 𝐴 is achieved which represents 𝑥𝑖  in a continuous 

vector space where correlated input vectors are mapped to 

nearby points.  

The discovery of correlations between individual inputs is 

determined by the spatial transformation of input space into a 

transformed vector-space embedding, by using the feature 

encoder. The continuous space of vector embedding cannot 

be directly used to infer a current state of a monitored system, 

instead, hierarchical clustering is performed on the 

transformed features derived from the DAE, to extract the 

possible states for the modelled system. The process of 

mapping input space into vector-space embedding and 

performing hierarchical clustering using the distance between 

individual input vectors is referred to as spatial pooling. The 

main purpose of this operation is to reduce the input space to 

a fixed number of the most probable states of the underlying 

system being modelled. Temporal sequence learning is used 

to train the model on the different temporal-consequential 

relations between probable states of the system. This is used 

to infer the next predicted state of the inputs as compared to 

the actual behaviour of the system, which is termed as 

temporal inference. The spatial pooling and temporal-

inference elements of the approach combine to produce a 

spatial-temporal model of the operational behaviour of the 

system being modelled. The model can then be used in 

combination with prediction and classification approaches 

such as standard Artificial Neural Networks (ANNs), to 

predict future behaviour of the system under different 

operational conditions and detect deviations and changes in 

behaviour that might signify an underlying unknown effect or 

problem. The prediction model can further provide inputs to 

the optimisation framework or an interpretable fuzzy decision 

model that is able to optimise processes based on quantitative 

and qualitative inputs from various sources. This approach 

can therefore be used to determine behaviour changes and 

deviations of complex systems. The output of the model is 

transferred for further control of the manufacturing 

production system see application layer part of Fig. 1.   

IV.   IMPLEMENTATION  

The approach has been implemented using the Python 

programming language. The implementation of the proposed 

approach makes use of the Theano library which benefits 

from dynamic C code generation, stable and fast optimisation 

algorithms, as well as integration with the mathematical 

NumPy [29] library.  

The implementation is divided into a learning module and 

a real-time module. The learning module performs 

continuous learning of the parameters for both spatial pooling 

and temporal inference and uploads them into a database, 

which is shared with the real-time module. The real-time 

module performs real-time FDI with the use of parameters 

stored in the shared database. The module does not perform 

any learning and is concerned only with the execution of the 

Fig. 1. Proposed approach 
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model with previously learned parameters. This operation of 

splitting the learning process from the actual execution 

process is necessary to ensure real-time operation which 

would otherwise be unattainable. The execution of the 

learning module is performed on a dedicated server, with the 

deployed module running as a service. Initially the module 

acquires several data samples from an SPC database. The 

database contains a log of all signals generated by the 

execution of the manufacturing process as they unfold in 

time. This data is stored in a database as textual information 

and loaded by the learning module to computer memory as a 

list of string objects. Each element of this list represents the 

current values for all manufacturing signals for a given time 

frame
i

f . The elements in that list are first fragmented into 

separate signals and based on their type individually encoded 

into sparsely distributed representations (SDR). The SDR 

encodings for each signal at time t  are combined into a 

binary array to create an input vector. This process is 

repeated for the remaining elements of that list and results in 

a new list of binary input vectors being created and 

subsequently used as an input to the DAE. An optimisation 

algorithm is executed to adjust parameters of the DAE model 

thus minimising the error on the input reconstructions. The 

learned parameters of the model are saved and reused during 

the next iteration of the algorithm.  

The data generated by the DAE is subsequently processed 

by the hierarchical-clustering module, which extracts 

meaningful information about the data structure of the feature 

space. The dendrogram created by the hierarchical-clustering 

process is cut at a certain height to partition the feature space 

into multiple regions. For each region, a centroid is assigned 

and saved to a dictionary. This dictionary is used to map 

signals for each time frame 
i

f  into a state 
i

s where 𝑠 ∈  ℕ. 

The output of this operation creates a list of temporal 

transitions between the different states. The list can therefore 

be considered to describe state representations of an 

underlying Markov process. The transition probabilities 

between the different states
i

s  are discovered and used to 

populate the transition matrix of an n-order Markov model. 

To reduce the memory requirements necessary to store the 

transition matrix it is implemented as a dictionary. The 

entries of the dictionary are saved in the database and used by 

the real-time module to predict future states of the monitored 

system. This operation concludes the first iteration of the 

algorithm. The entire process is repeated and reinitialised 

with an acquisition of a new set of data samples from the SPC 

database. This process is presented in Fig. 2. 

 
Fig. 2 Learning module execution diagram. 

 The real-time module is integrated with custom-built 

Industrial Test, Control and Calibration (ITCC) software. It 

starts its execution by downloading the DAE, centroid 

dictionary and transition dictionary parameters from the 

shared database. The real-time operation of the 

manufacturing process, generating spatial-temporal signals is 

logged and based on the data type of the signal, transformed 

into the correct SDR representation. The encoded data is 

subsequently forward-propagated through the DAE structure 

(initialised with the parameters acquired from the shared 

database). There is no learning performed in the real-time 

module. The signals are processed by the DEA and as a 

consequence transformed into a feature space used as input to 

the centroid dictionary from where state information is 

acquired. The inference of the state value is based on the 

shortest distance between the feature vector and a given 

centroid. The last  n  states are saved at any given time and 

used with the transition dictionary of the n  - order Markov 

chain to infer the future state of the system. The predicted 

state is transformed back to a feature space and saved to the 

computer memory. During the next iteration, the predicted 

feature vector is compared with an actual feature vector 

generated by the manufacturing process. The residual vector 

generated by this process is used as an input to a previously 

trained MLP classifier, which indicates a fault occurrence in 

the system. This process is described in algorithm 1. 
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Algorithm 1 Real-time module operation  

 
1: Load model parameters from database. 
2: Initialise i = 1, MinSmp = 5, LS = []  
3: while(true) do 
4:  j = Acquire input signals  
5:  v = Encode signals j into SDR 
6:  f = Map v into feature space 
7:  s = Extract state identifier for f 
8:  LS[i] = s    LS = list of previous states 
9:  if(i< MinSmp) then  MinSmp = min. samples for inference 
10:   continue 
11:  else    
12   p = Get state prediction based on LS[1:i-1]  
13:   g = Get centroid for the state p 
14:   res = g – f   res = residual vector 
15:   good_noGood = Classify res 
16:   if(good_noGood == True) then 
17:    return NoFault 
18:   else 
19:    return Fault 
20:   end if 
21:  end if 
22: end while 

V.   EVALUATION 

An evaluation of the approach has been performed on a 

real-world computer-based production line used to 

manufacture car instrument clusters (ICs). In this instance, 

the real-time module has been integrated with ITCC software 

running on an auto calibration station. The learning module 

was executed on a dedicated server with direct access to the 

production SPC database. A Microsoft SQL server database 

was used to store and retrieve the learned parameters of the 

model. The following inputs were used: 327 test ids and 

corresponding test values (each measuring a different 

physical characteristic) and their test execution, together with 

6 analogue and 91 digital signals.  

The data used to train the learning module was composed 

of 15,000 samples, divided between training (70%), 

validation (15%) and test (15%) datasets.  The dataset is 

composed of the readings from multiple control and 

inspection devices that are a part of the manufacturing 

system. The sensory information is saved as a sequence of 

activities and measurements that are performed on each 

individual product. Each entry in this sequence is composed 

of readings from multiple sensors measuring a value of a 

given characteristic of either the product or manufacturing 

equipment at a particular moment in time. The number of 

measured characteristics can vary between the products, 

depending on the product type. 

The division ratios had been chosen based on the 

experience gained by working on similar problems. The 

training dataset was used to determine the weights and biases 

of the proposed generative model. To measure and optimise 

the performance of the model with out-of-sample data the 

parameters were adjusted and tested on a validation dataset.  

Fig.3. Error on input reconstructions in sample vs out of sample as a function 

of epochs trained  
 

TABLE I: Parameters of the model and their influence on input 

reconstructions. 

 

Initially an error on input reconstructions as a function of 

several training epochs for the DAE was analysed (Fig. 3).  

Fig. 3 clearly shows that there exists a point based on the 

number of epochs for which the model is trained, after which 

the reconstruction error for training samples goes down, but 

the reconstruction error on the validation set increases. This is 

due to the problem of model over fitting [30] where a model 

fits the input data too closely and does not generalise well on 

the out of sample data.  

An effective solution to the overfitting problem is the use 

of a technique called Dropout where the method of setting a 

random output of a given layer to 0, based on a given 

probability, was implemented [31]. Extensive experiments 

have proven the usefulness of such a technique [32]. This 

technique was applied for this work and was shown to 

improve the input reconstruction results as presented in Table 

I. Additionally, an application of a different technique based 

on learning-rate adaptation called momentum was also 

considered, where its influence on the error of input 

reconstruction is measured and presented in Table I.   

This study shows a positive influence of the momentum 

technique on the reduction of error in input reconstruction. 

Another study was performed to analyse the influence of 

different optimisation methods on the input reconstruction. 

The results presented in Table II show that the application of 

the RMSprop achieves the least error rate on input 

reconstruction.  

 

Network type 
Error rate on input 

reconstructions 

With dropout 
Without momentum 0.0069 
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TABLE II: Selected optimisation methods and their performance. 
 

Optimisation algorithm used 
Error rate on input 

reconstructions 

SGD 0.0047 

Adam  0.0042 

RMSprop 0.0039 

Adadelta 0.0121 

 

 
 

 
An important aspect of training Deep Neural Networks 

(DNNs) is the choice of the network architecture. From this 

perspective, a number of questions arise. Firstly, how many 

layers of hidden activation should be considered and secondly 

the number of hidden units for each of the network layers. 

Table III presents the different error rates for input 

reconstructions for a different number of layers used both 

with Restricted Boltzmann Machine (RBM) pre-training and 

with Random Weight Initializations (RWI). This study was 

performed with the use of a validation dataset.  

Considering the above, another examination concerning 

the total number of hidden units in the DNN was performed 

to test the influence of the number of hidden units used when 

training the two models with three hidden layers. The 

maximum execution time and error rates on input 

reconstructions for real-time operation of the method have 

been measured and presented in Table IV. 

 

 

TABLE V: The fault detection performance of the proposed methods 
compared with rival FDI techniques. 

 

  Proposed 

method 

HTM+RBM Template 

based 

method 

Rule-

based 

method 

Bayesian 

based 

method 

Faults in 

product 

84% 81% 61% 48% 72% 

Faults in 

equipment 

72% 68% 59% 51% 57% 

Configuration 

fault 

59% 46% N/A 36% N/A 

 

Based on the results from Table IV an observation can be 

made that networks consisting of the total of 350 hidden units 

(across the two layers of DNN 275-75) produced the smallest 

error on reconstructions. Worth noticing is the fact that as in 

the previous study as shown in Table III, the same value of 

parameter works best for both types of the network with pre-

training and RWI. In both cases, the best results are achieved 

with model pre-training.  

Once the best parameters and the architecture of the model 

were selected, a test dataset was used with an MLP classifier 

to identify the fault detection accuracy in a real-time setting. 

The limited number of samples containing a fault and the 

small variety of different fault types in the dataset required 

bootstrapping of the acquired production data, with an 

additional 40 % of samples based on simulated fault 

conditions. To perform more sophisticated fault isolation and 

identification, the MLP classifier was trained with four-unit 

SoftMax output layers each of them corresponding to one of 

the following classes: no fault, faults in a product, faults in 

inspection equipment and configuration faults. The 

performance of the proposed method was analysed and 

compared with rival methods previously applied to FDI, 

namely, template based, rule based and Bayesian based 

methods, as shown in Table V. We additionally compared our 

approach to another state-of-the-art spatial-temporal 

modelling approach that is a combination of hierarchical 

temporal memory (HTM) and Restricted Boltzmann 

Machines (RBMs). Table V presents the percentage of 

correctly classified faults in each of the three fault categories, 

where a performance comparison of the proposed hybrid 

model with the other applied methods has been shown to 

assess its effectiveness. 

The results confirm that the proposed method is able to 

achieve a significant increase in fault detection accuracy for 

all fault types when compared with other FDI methods. 

VI.   CONCLUSION 

While the impact of quality assurance and fault detection 

on modern industrial processes is widely acknowledged, Big 

data and machine learning research for industrial automation 

is not widely popularized. This paper presented a deep 

TABLE III: Error rate on input reconstruction for different number of 

hidden layers. 

 
Network Error rate on 

input 
reconstructions Type 

Depth 
(Architecture) 

Deep Auto-encoder + RBM pre-
training 

1 0.1436 

3 0.0081 

5 0.0523 

Deep Auto-encoder + RWI  1 0.2877 

3 0.1157 

5 0.0691 

 

TABLE IV: Error rate on input reconstruction for different number of 

hidden units. 

 

Network  Error rate on 
input 
reconstructions 

Type 

Total 

number of 

hidden units 

in the DNN 

Maximum 

execution 

time (ms) 

Deep Auto-encoder + RBM 
pre-training 

250 164 0.0126 

350 271 0.0074 

450 343 0.0089 

550 527 0.0096 

Deep Auto-encoder +RWI 250 164 0.2658 

350 271 0.1043 

450 343 0.3674 

550 527 0.4673 
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learning-based approach for FDI that is capable of processing 

the richness and high volumes of manufacturing data. The 

proposed method is capable of modelling multi-type spatial-

temporal production data with high accuracy. Consequently, 

the method is characterised with early fault detection, good 

adaptation to frequent changes in fault sources and automatic 

identification of new fault types. The proposed algorithm 

benefits from minimal human process-supervision 

requirements due to its generative nature. Results prove the 

method is able to outperform rival FDI schemes both in 

accuracy and the range of faults it can detect. The data 

processing and analytical mechanisms of the proposed 

method are generic and not limited to fault detection. They 

can be used in other contexts - for example to improve 

analytical capabilities of important enterprise applications 

[34].  

  Future areas of research could include the application of 

parameter-optimisation techniques such as genetic algorithm 

(GA) and particle-swarm optimisation (PSO) to improve the 

modelling capability of the proposed method. Further 

improvements to the encoder and classifier of the method will 

benefit the overall performance of the model. An interesting 

alternative for future research work would be the 

investigation into the use of recurrent neural-networks (RNN) 

to improve temporal predictions of the proposed model, 

especially through the use of long/short term memory units. 

While the focus of this research is a development of robust 

FDI systems for industrial automation, the researchers also 

plan to test the proposed system under a usability prism and 

apply a user-centred design [33] in order to deliver a user-

friendly fault detection system that meets industry 

requirements and user needs. 
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