
 

 

Physical and biological controls on fine 
sediment transport and storage in 
rivers 
 
Wilkes, Martin A., Joshua R. Gittins, Kate L. Mathers, 

Richard Mason, Roser Casas‐Mulet, Davide Vanzo, 
Morwenna McKenzie 
 
Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  
Wilkes, Martin A., et al. "Physical and biological controls on fine sediment transport and 
storage in rivers." Wiley Interdisciplinary Reviews: Water 6.2 (2019): e1331. 

https://dx.doi.org/10.1002/wat2.1331   
 

ISSN 2049-1948 
 
Publisher: Wiley 
 
This is the peer reviewed version of the following article: Wilkes, Martin A., et al. 

"Physical and biological controls on fine sediment transport and storage in 

rivers." Wiley Interdisciplinary Reviews: Water 6.2 (2019): e1331., which has been 

published in final form at: https://dx.doi.org/10.1002/wat2.1331.   
This article may be used for non-commercial purposes in accordance with Wiley 
Terms and Conditions for Self-Archiving. 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 

https://dx.doi.org/10.1002/wat2.1331
https://dx.doi.org/10.1002/wat2.1331


   
 

 
  

 
 

   
 

 
     

 

 
 

 
 

 
 

 
    

 
 

 
 

   
 

 
  
 

 
 

  
 

 

Physical and biological controls on fine sediment transport and storage in 
rivers 
Martin A. Wilkes* 
orcid.org/0000-0002-2377-3124 
martin.wilkes@coventry.ac.uk 
Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom 
Joshua Gittins 
orcid.org/ 0000-0002-6098-8917 
j.gittins1@lancaster.ac.uk 
Lancaster Environment Centre, Lancaster University, United Kingdom 
Kate L. Mathers 
orcid.org/0000-0003-3741-1439 
kate.mathers@eawag.ch 
Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 
Switzerland 
Richard Mason 
R.J.Mason@lboro.ac.uk 
Department of Geography, Loughborough University, United Kingdom 

Roser Casas-Mulet 
orcid.org/0000-0002-7139-8859 
roser.casas-mulet@tum.de 
Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, 
Technical University of Munich, Bavaria, Germany; Water Research Institute, Cardiff 
University, Wales, UK; Department of Infrastructure Engineering, The University of 
Melbourne, Victoria, Australia 
Davide Vanzo 
orcid.org/0000-0002-2033-9197 
davide.vanzo@eawag.ch 
Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 
Switzerland 
Morwenna Mckenzie 
orcid.org/0000-0001-8906-4286 
mckenz36@uni.coventry.ac.uk 
Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom 
John Murray-Bligh 
john.murray-bligh@environment-agency.gov.uk 
Environment Agency, Exeter, United Kingdom 
Judy England 
orcid.org/0000-0001-5247-4812 
judy.england@environment-agency.gov.uk 
Environment Agency, Exeter, United Kingdom 
Angela Gurnell 
orcid.org/0000-0002-7249-8202 
a.m.gurnell@qmul.ac.uk 
School of Geography, Queen Mary University of London, United Kingdom 
J. Iwan Jones 
orcid.org/0000-0002-7238-2509 
j.i.jones@qmul.ac.uk 
School of Biological and Chemical Sciences, Queen Mary University of London, United 
Kingdom 

mailto:compmolsci@wiley.com
mailto:j.i.jones@qmul.ac.uk
mailto:a.m.gurnell@qmul.ac.uk
mailto:mckenz36@uni.coventry.ac.uk
mailto:davide.vanzo@eawag.ch
mailto:roser.casas-mulet@tum.de
mailto:R.J.Mason@lboro.ac.uk
mailto:kate.mathers@eawag.ch
mailto:j.gittins1@lancaster.ac.uk
http:orcid.org
mailto:martin.wilkes@coventry.ac.uk


 
 

 
  

 
 

 

 

 
 

Abstract 

Excess fine sediment, comprising particles <2 mm in diameter, is a major cause of ecological 
degradation in rivers. The erosion of fine sediment from terrestrial or aquatic sources, its delivery to 
the river, and its storage and transport in the fluvial environment are controlled by a complex 
interplay of physical, biological and anthropogenic factors. Whilst the physical controls exerted on 
fine sediment dynamics are relatively well-documented, the role of biological processes and their 
interactions with hydraulic and physico-chemical phenomena has been largely overlooked. The 
activities of biota, from primary producers to predators, exert strong controls on fine sediment 
deposition, infiltration and resuspension. For example, extracellular polymeric substances (EPS) 
associated with biofilms increase deposition and decrease resuspension. In lower energy rivers, 
aquatic macrophyte growth and senescence are intimately linked to sediment retention and loss, 
whereas riparian trees are dominant ecosystem engineers in high energy systems. Fish and 
invertebrates also have profound effects on fine sediment dynamics through activities that drive 
both particle deposition and erosion depending on species composition and abiotic conditions. The 
functional traits of species present will determine not only these biotic effects but also the responses 
of river ecosystems to excess fine sediment. We discuss which traits are involved and put them into 
context with spatial processes that occur throughout the river network. Whilst strides towards 
better understanding of the impacts of excess fine sediment have been made, further progress to 
identify the most effective management approaches is urgently required through close 
communication between authorities and scientists. 



    
   

  

 

 

 
       

 
  

 
 

    

  
  

        
 

   
 

 
  

   
  

 

Graphical/Visual Abstract and Caption 

Controls on the delivery, transport and storage of fine sediment and the resulting ecological 
responses in river networks. From the sediment sources in the landscape to the ecological impact in 

the river, the transport of particles and the responses of biota are subject to potential lags and 
delays as sediment is temporarily stored and time is taken for local populations to reach critical life-

stages where fine sediment limits survival. 

Introduction 

Excess fine sediment (‘fines’), typically defined as organic and inorganic particles <2 mm in diameter, 
is one of the principal reasons for the failure of waterbodies to achieve good ecological status (GES) 
under the EU Water Framework Directive (WFD)1,2. In light of this, the recent finding that most 
lowland rivers in the UK are transport-limited, leading to saturation of streambeds with fine 
sediment3, is of critical importance. We may safely assume that this result can be generalised to 
other similar environments worldwide. It implies that in-channel transport and storage processes are 
primary controls on the volume of fines stored on or within the streambed, whereas both exogenous 
(i.e. sediment supply) and endogenous processes (e.g. bioturbation) primarily influence the 
concentration of fine sediments carried in suspension and their flux through the river network. 
Greater understanding of these processes is urgently required. To facilitate progress in the primary 
research areas involved, we provide a synthesis of current knowledge on the physical and biological 
factors controlling the transport, storage and ecological impacts of fine sediment in river channels to 
complement recent reviews on catchment-scale, terrestrial processes (e.g.4). 

In reviewing the factors that control fine sediment transport and storage in river channels, we 
emphasise biological controls as these have received far less attention than physical controls (e.g.5). 
Bottom-up, biologically-driven forces are increasingly recognised as important elements for 
understanding fluvial geomorphic processes6. We build upon this knowledge in the specific context 
of fines. Ecological impacts at organism- and community- levels, driven by top-down abiotic forces, 
have been reviewed in detail elsewhere7–10 but how the ecological response to fine sediment is 
mediated by the structure and function of ecosystems across multiple levels of organisation is less 



   
    

 
 

 
 

  

     
   
  

  
 

 
 

 
   

  

    
  

  
 

  

well-understood. We therefore also include information on ecological resistance (ability to 
withstand perturbation) and resilience (ability to recover from disturbance) to fine sediment stress 
at the level of individual organisms to regional biogeographies. We mostly limit the discussion to 
processes occurring after the sediment has been delivered to the river channel but also present 
some exogenous processes insofar as they influence in-channel controls. Our discussion is structured 
according to the conceptual model in Figure 1, going beyond a recent review on infiltration 
(‘colmation’)11 to provide a more holistic perspective on the fine sediment ‘problem’. 

Figure 1 – Controls on the delivery, transport and storage of fine sediment and the resulting 
ecological responses in river networks. Natural and anthropogenic factors control the quantity and 

quality of sediment potentially available for delivery to the river channel. Whether or not this 
potential is realised, and the quantity and composition of sediment conserved during the pluvial 
phase, depends on delivery pathways that connect the source to the river channel. Once delivered 
to the river channel, particles may be transported through suspension or saltation, temporarily 

stored as surface-deposited material, or become infiltrated in the streambed and stored on a longer-
term basis. Which compartment particles are transported or stored in depends on a number of 

controls, including the inherent properties of the particles, hydraulics, and the activities of biota. The 
latter is in turn influenced by physico-chemical factors (e.g. oxygen, nutrients) that work to limit or 
enhance biological processes. The hydraulic and biological controls determine the compartments 

within which particles are transported or stored, structuring the physical habitat, modifying available 
resources and potentially filtering out unsuitable species from the species pool on the basis of their 
traits. Such environmental filtering effects may be interfered with by biogeographical processes 

related to dispersal. The fate of fine sediment, and the extent and nature of the impact it causes is 
subject to potential lags as sediment is temporarily stored within the landscape. Ecological impacts 
may also be delayed as time is taken for local populations to reach critical life-stages where fine 

sediment limits survival. 



   

  
   

    
 

  
   

   
  

 
  

 
 

 
  

  
 

 
  

 
 

   
      

   

 

   

  

 
 

  
  

   
 

 
 

    
  

CONTROLS ON SEDIMENT YIELD AND DELIVERY TO THE RIVER CHANNEL 

The yield of fine sediment to the river channel from the catchment (expressed as specific yield, t km-

2 yr-1) is a consequence of the mobilisation of sediment from a variety of sources, the transport of 
that sediment through the landscape and any storage, either temporary or longer-term, within the 
landscape. Hence, many factors influence the quantity and composition (including inter alia grain 
size, organic content, and associated contaminants and nutrients) of fine sediment delivered to the 
channel. Whilst soil type, climate and geology have a major influence on the mobilisation of fine 
sediment, their effects are modified by local factors, including topography, land-use, vegetation and 
management. As the mobilised fine sediment is transported through the landscape from the source 
to the river, there is further potential for sorting and retention to influence the quantity and 
composition of the sediment ultimately delivered to the river channel. For this reason, well-
connected sources tend to contribute most to the fine sediment yield. 

As the characteristics of sediment from different locations and sources vary (e.g. arable land, road 
verges), methods have been developed to identify and apportion the contributions from the various 
potential sources of both the inorganic (e.g.12,13) and organic (e.g.14) components of fine sediment 
sampled from rivers. Such source apportionment studies indicate that some sources contribute 
disproportionately relative to their area in the catchment, particularly those that are well-
connected, either arising close to the river or involving pathways over impervious surfaces, or both 
(e.g. direct inputs from sewage treatment works, damaged road verges)14–16. Part of the yield is 
derived from natural processes such as unenhanced background erosion of soils and river banks. 
However, the dominance of human influences on the landscape has affected fine sediment dynamics 
since early agriculture17–19. More recently, the total yield of fine sediment has increased from 
historical levels, particularly in the post-war years with the intensification of agriculture and 
expansion of urban areas20, such that agricultural, industrial and urban sources now contribute a 
substantial proportion, if not the majority of the yield of fine sediment to rivers2. As such, both the 
quantity and composition of fine (inorganic and organic) sediment delivered to rivers far exceeds 
modern background levels; the estimated total loss of sediment in England and Wales was 1,389,818 
t yr-1 in excess of target modern background delivery rates21, defined as the early twentieth century 
up to ~194020. 

ABIOTIC CONTROLS ON FINE SEDIMENT TRANSPORT AND STORAGE 

Controls on fine sediment: Hydraulics and geomorphology 

Transport and storage of fines in streambeds plays a key role in the natural development of the 
sediment matrix22–24, contributing to habitat quality and quantity by influencing the hydrological and 
geomorphological behaviour of a river25. Fine sediments are composed of organic and inorganic 
components that are transported in rivers as solid load or may precipitate from the dissolved load 
(<0.45 μm). The majority of fines move through river systems as solid suspended load26 in the form 
of flocculated or aggregated particles due to their cohesive nature27. The load of fine sediments in a 
river will be determined by the relationship between flow conditions and the structure, density and 
size of the sediment particles. 

The magnitude and timing of events exhibiting high suspended sediment loads are closely related to 
the hydrological regime. In rivers with a near-natural flow regime, sediment transport is positively 



  
  

 
  

 

 
  

 

 
 

 
  

   

   
     

 

   

  

      
           

     
     

correlated with flow intensity28. Human alterations, such as dams and channelisation, that modify or 
disrupt the flow and sediment longitudinal continuity, have multiple effects on sediment dynamics 
and the morphology of downstream reaches29. Moreover, sediment flushing operations adopted for 
the maintenance of reservoirs can lead to extreme events characterised by high suspended 
sediment loads and the potential for widespread deposition downstream30. 

Most accumulation of fines in the streambed occurs as a result of gravitational deposition from the 
suspended load5,22,23,31–33. Hydraulic conditions in the water column determine whether such 
deposited fines are stored on the bed surface, resuspended34, or infiltrated into the bed11. Pressure 
gradients at the bed sediment-water interface35,36 may promote suspended sediment advection into 
the porous matrix via downwelling and upwelling mechanisms23,33,37,38. Such pressure gradients are 
induced by bedforms35,39, local heterogeneity or roughness and permeability changes in the 
streambed40, including those created by biotic activity. Fines infiltrating into the streambed may 
settle within the pore spaces of the sediment matrix41, or be transported laterally and longitudinally 
through the streambed42. In the upper bed layers, such horizontal transport (‘Brinkman load’ in 

Figure 2) may result from turbulent mixing promoted by shear instability above the bed5,43,44. In the 
lower layers, subsurface (Darcian) flow driven by hydraulic gradients45 may transport fines through 
the interstitial spaces of the sediment matrix44 (‘interstitial load’ in Figure 2). 

Figure 2 - Fine sediment transport (black arrows) and deposition (grey arrows) processes in gravel 
beds. These processes occur in three key load regions (suspended and dissolved load, Brinkman load 
and interstitial load) within the water and sediment columns in which such processes occur (left). 
The model proposes distinct modes of sediment transport in these three regions identified by 

transitions in the velocity profile V(y) (right). Modified from44. 

Controls on fine sediment: Physico-chemistry 

The physico-chemical properties of fines are typically considered to be secondary in importance to 
their physical characteristics in terms of generating ecological impacts, yet there are clear feedbacks 
between the sediment, its chemical constituents and those of the water-column, and biotic activity. 
Indeed, the chemical composition of fine sediment may be more influential on invertebrate 



    
        

    
 

        
      

      
      

        
    

    
        

            
 

         
        

        
        

      
       

        
      

       
   

          
        
        

 
        

        
    

          
       

  
    

 

    

  

  
  

assemblage structure3,46,47 and the survival of fish eggs48,49 than the volume of fines deposited on the 
benthos50. However, it is generally acknowledged that combined multiple stressor effects are complex 
and poorly understood51,52. Some of the better understood feedbacks between the physico-chemical 
properties of fines and their dynamics are related to biological processes. For example, the scattering 
and prevention of solar radiation by turbid conditions caused by excess suspended sediment is known 
to be detrimental to benthic ecology by reducing rates of photosynthesis53,54. Similarly, high 
suspended sediment concentrations (SSC) drive temperature gradients with depth in the water 
column55, with consequences for biotic activity. Another well-studied impact on the benthic 
community is a reduction in hyporheic exchange flow due to the deposition of excess fine 
sediment11,56. Within the interstices, the breakdown of fine particulate organic matter (FPOM) 
increases sediment oxygen demand, exacerbating the hypoxia initiated by physical clogging49,57–60. 
Under such conditions, methanogenic microbial communities develop at the oxic-anoxic interface, 
resulting in the precipitation of ocherous masses of iron hydroxides61 and further saturating the bed 
matrix with fine particulate matter. 

Many of the direct physico-chemical impacts of fines on stream biota are ecotoxicological in nature, 
driving feedbacks by increasing or decreasing the biological controls exerted on fine sediment 
dynamics (Figure 1). Nutrients, heavy metals and organic pollutants can adsorb to and desorb from 
fine particles due to their high affinity as carriers25,62,63. Their sorption potential depends upon the 
properties of the sediment, i.e. grain size, mineralogical composition, organic matter content and 
cation exchange capacity64. The physico-chemical weathering of sediments during their ‘life-cycle’ is 
driven by water column concentrations of major ions and trace chemical constituents65, in addition to 
biological and hydrodynamic processing and sorting. However, additional physico-chemical factors, 
such as dissolved oxygen, pH and temperature have also been implicated in controlling the sorption 
dynamics of potentially harmful substances, including heavy metals66 and nutrients67. 

The desorption of these substances may increase bioavailability, allowing contaminants to enter the 
food web along with those contaminants adsorbed to fines that are ingested by biota. For example, 
the exchange of various phosphorus (P) forms between the particulate (bound) and dissolved (free) 
pools within freshwaters is now well-documented to be influenced by pH, temperature and dissolved 
oxygen68. These interactions can either promote or inhibit growth depending on the stoichiometric 
abundance of nutrients or the toxicity of contaminants69–71. Other physico-chemical factors affecting 
fines may disrupt their transport and deposition mechanics. An increase in the deposition of fines due 
to flocculation and precipitation has been seen due to modification of pH and ionic salt concentrations 
in freshwaters72–74. The most widely known examples are changes in redox potential leading to the 
deposition of calcium salts (tufa) and ocherous masses. Temperature regulated water viscosity is also 
known to increase particulate deposition75. These physico-chemical feedbacks between fines, the 
water-column and biotic activity have complex, cascading effects on geomorphic processes. 

BIOTIC CONTROLS ON FINE SEDIMENT TRANSPORT AND STORAGE 

The two-way interactions between biota and the environment have long been of interest to both 
physical and biological scientists. However, it was not until recent decades that they were more 
intensively investigated under a multitude of frameworks, including zoogeomorphology, 
ecogeomorphology, biogeomorphology and ecosystem engineering76–78. Below we briefly review the 
body of research that has emerged from application of these frameworks to biofilms, aquatic 



  
  

   

         
       

     
            

       
     
       

     
       

           
     
       

            
       

 

   
 

macrophytes and riparian vegetation, invertebrates and fish. In doing so, we highlight the key effect 
traits79 that determine the potential of biota to influence fine sediment dynamics (Table 1). 

Controls on fine sediment: Biofilms 

Biofilms, referred to as ‘cities of microbes’80,81 comprising bacteria, fungi and algae82, are known to 
affect and be affected by fine sediment dynamics83–86. Although the important function biofilms fulfil 
in wastewater processing has long been known, it was not until more recently that research began to 
focus on their role in the processing and fate of fine sediment-bound contaminants in freshwater 
ecosystems87–91. The matrix of the biofilm microenvironment is comprised mostly of extracellular 
polymeric substances (EPS)92,93, which are synthesised by the biofilm microbial community. The 
properties of these EPS are influential on the sediments upon which they establish, altering their 
physico-chemical characteristics and, therefore, their dynamics through bioflocculation94. An 
experimental study95 found that the erodibility and resulting resuspension of settled cohesive 
sediments was reduced with weak biofilm EPS growth when exposed to low shear stress (<0.1 Pa). 
Longer periods (up to 12 days) of undisturbed growth under low shear stresses (<0.1 Pa) allowed the 
establishment of a biofilm-EPS structure that could reduce erosion under increased shear stresses of 
up to 0.4 Pa. These results, along with other studies in agreement85,96,97, demonstrate that biofilm 
growth and the corresponding EPS synthesis allows for increased cohesion between fine sediment 
grains (Figure 3). This potentially increases the deposition of fines and reduces their resuspension98. 

Figure 3 - Controls on fine sediment deposition and resuspension exerted through bioflocculation by 
extracellular polymeric substances (EPS) in biofilms. 



       
   

       
        

       
        

            
          

     
       
       

        
      

   
      

 
 

    

  

  
    

     
    

    

 
 

 
      

 
   

   
  

    
 

  
  

Fine sediments also interact with sediment-water exchanges of nutrients associated with biofilm 
communities27, typically increasing community growth and EPS synthesis. During a flume study87, 
concentrations of soluble reactive phosphorus (SRP) were reduced through the trapping of fine 
particulates in biofilms. Bed sediments with larger surface areas for biofilm and filamentous algal 
growth resulted in a greater flux of SRP than fine sediments alone, which are unable to support 
filamentous growth. Furthermore, evidence that nutrient stoichiometry is influenced by fine sediment 
dynamics has been linked to changes in biofilm growth and species composition99,100; although it is 
acknowledged that physico-chemical factors also play a role101–103. The growth of biofilms has also 
been found to influence fine sediment transport and bed morphology85,104. Modelling following 
experimental observations has demonstrated that biofilm-coated fines have a greater saltation 
length-height ratio, suggesting that particle deposition and settling is more likely than in uncoated 
fines, depending on water velocity105. More recently, a microbiological-physical model (BFLOC2) of 
suspended sediment aggregation and settling velocity was established106. The model shows that 
microbial biomass, cell motility and aggregate-attached food web interactions are significant controls 
on fine sediment dynamics. In summary, the interactions between biofilms and fine sediments are 
driven by a balance between physico-chemical and biotic influences on the processing, transport and 
fate of particles. 

Controls on fine sediment: Macrophytes and riparian vegetation 

Awareness of the intimate links been vegetation and river landforms and processes emerged during 
the last century 107–109. However, recognition of the complex interactions between riparian 
vegetation and fluvial processes that result in sediment retention and landform building has only 
emerged strongly in the last two decades110–112. It is now recognised that particular plant types, 
materials and species are key to these interactions, driving meso- to macro- scale sediment 
retention and building landforms. Examples of the broad types of plants and plant-derived material 
include emergent113,114 and submerged115 aquatic macrophytes; dead116 and living deposited 
trees117,118, tree fragments119 and accumulations of fragments120. 

Interactions between plants and any fine sediment transported by rivers are particularly important 
because small sediment particles are easily mobilised, even at low flow velocities, and so their 
storage relies on them being retained in sheltered locations. The above-ground biomass of plants 
offers such shelter to exert control on fine sediment retention. The extent to which plants drive such 
retention is dependent on their ability to affect local hydraulic conditions, and hence their 
morphology and the stiffness and density of their stems9. The greater the resistance the plant 
presents to flow, the greater the retention of sediment121,122. Once a critical flow resistance (frontal 
area drag coefficient) has been achieved, plants will tend to retain sediment123. Aquatic plants have 
the ability to grow through the retained sediment, reinforcing it with their stems, roots, rhizomes 
and other below-ground organs and driving the further accumulation of fine sediment into erosion-
resistant, aggrading landforms such as bars, benches, river banks, islands and floodplains124. In lower 
energy river systems, aquatic macrophytes may be more important as ecosystem engineers than 
riparian plants 9,121,125. For example, the emergent macrophyte Sparganium erectum is a very 
effective river ecosystem engineer in British lowland rivers126. A beneficial effect of sediment 
retention by plants can be that, as the fine sediment landforms emerge from the streambed, they 



 
 

    
  

   
 

  

 
 

 

 
 

  
   
 

 
  

  
 

 

   

  
  

 
     

  
  

 
 

  

   
 

    

narrow the width of river channel available for water, leading to increased flow velocities in the area 
occupied by water and thus increased transport and (re)mobilisation of fine sediment from any 
coarser bed material. The result is a more heterogeneous streambed supporting patches of 
contrasting particle size. Conversely, extreme macrophyte growth in dense stands may reduce flow 
velocities throughout the river channel, causing more sediment retention and homogenisation of the 
physical habitat127. This process could eventually lead to infilling of the channel. Indeed, it could be 
argued that such circumstances often arise as a response to the artificial creation or enlargement of 
stream channels, flow regulation and/or excessive inputs of fine sediment. Whatever the cause, 
available stream power is insufficient to control macrophyte growth and flush fine sediments114,128. 
In any case, the fine sediments retained by macrophytes frequently display a high organic content129, 
illustrating that this interaction between plants, fluvial processes and river morphology may have a 
notable role in organic matter retention. Such effects are likely to be more pronounced in nutrient-
enriched waters. 

As river energy increases, macrophytes are unable to resist the increasing shear stresses imposed by 
river flows, and their engineering role is taken up by riparian plants, particularly trees. All tree 
species growing along river margins interact with fluvial forms and processes through a ‘large wood 
cycle’. Tree or branch fall introduces large pieces of wood into rivers, where they can snag and 

accumulate into wood jams or dams, providing retention structures for other organic material, 
sediments and seeds116. In unmanaged situations, these processes drive a cycle of sediment and 
seed retention, germination and growth, and incorporation of the aggrading vegetated landforms 
into islands and floodplains where they support the growth of trees and thus the delivery of more 
large wood to the river130. Across the temperate zone of the Northern Hemisphere, the Salicaceae 
(willows and poplars) are particularly important river ecosystem engineers131. Riparian species of 
willow and poplar not only drive a ‘dead’ wood cycle, as described above, but the ability of wood 
from these species to sprout and grow remarkably rapidly, makes them particularly effective river 
ecosystem engineers. Furthermore, these species can produce roots from buried stems and shoots 
from roots allowing them to strongly reinforce sediments to depths of several metres132–134. 

Recent reviews124,135 conceptualise the crucial interactions between plants and fluvial processes that 
influence sediment retention and reinforcement, the building of landforms such as scroll bars136, 
islands, river banks and floodplains that are the result of these interactions, and the ways in which 
these processes and forms vary through time and across space. During the storage period in these 
landforms, the properties of fine sediments may change under the influence of biogeochemical 
processes and the activities other biota that colonise the new landforms. This could include invasive 
species, such as the tall growing annual Himalayan balsam (Impatiens glandulifera) which may 
increase the risk of bank erosion during the winter period137,138. The controls on fine sediment 
transport and storage exerted by plants, therefore, may be shifting as invasive species become 
established. 

Controls on fine sediment: Invertebrates 

Lotic invertebrates are key ecosystem engineers, being ubiquitous in rivers and often present at 
considerable densities. For this reason, despite their typically small body sizes (e.g. <50 mm), 
invertebrates can have substantial cumulative impacts on the storage and transport of fines139. 
Crustaceans are perhaps the most widely studied geomorphic agents in rivers and can influence all 



  
  

 
 

 
 

   
  

    
  

 

 
    

 
 

  
 

   
  

 
 

  
 

 
 

  
 

   
 

 

  
  

 
  

 

aspects of fine sediment dynamics140. Crayfish can destabilise streambeds during activities such as 
foraging and fighting, and a number of studies have documented an increase in turbidity attributed 
to bioturbation by crayfish140,141. High densities of invasive crayfish can result in a 50-75% reduction 
in the shear stress required to entrain sand, leading to increases in sediment fluxes of as much as 
32%142. Invasive signal crayfish (Pacifastacus leniusculus) can also enhance the delivery of fine 
sediment to rivers through increasing bank erosion with high densities of burrows (up to 14 burrows 
m-1)142,143. 

Aquatic insects can increase the suspension of fine sediment by winnowing it from interstitial spaces 
during foraging activity144,145. The stonefly Dinocras cephalotes has the potential to erode 200-400 kg 
m-2 yr-1 of sand, with reduced prey availability increasing rates of sand erosion146. The mayfly species 
Pseudiron centralismanipulates near-bed hydraulics to disturb sand and facilitate capture of its 
prey147. This latter example demonstrates that some invertebrates are actively seeking to control 
sediment dynamics, an instance of extended phenotype engineering, whereby organisms create 
structures that directly influence their fitness and survival78. Invertebrate bioturbation has also been 
documented to influence sediment structure. Upward conveyors (Oligochaeta) and gallery-diffusers 
(Chironomidae) can reduce the clogging of streambeds, helping to restore hyporheic exchange flow 
and physiochemical conditions at the surface-subsurface interface148–153. Molluscs have been 
reported to both disturb sediment during movement and consolidate it whilst stationary154. Flow 
resistance generated by the shells of bivalve molluscs can also promote localised scour155. Different 
modes of bioturbation (sediment reworking, biogenic structure building, burrowing depth, 
bioirrigation) can also determine the impact of benthic invertebrates on microbial activities and 
biogeochemical processes in the sediment156. 

Hydropsychidae is one of the most abundant families of lotic insects worldwide, often accounting for 
as much as 80% of invertebrate biomass in some streams and, consequently, exerting substantial 
controls on geomorphic processes157–159. Hydropsychids construct nets to filter FPOM from the water 
column, increasing the force required to entrain bed sediments by 10-30%142,160. This effect increases 
with the density of individuals and the local richness of species exhibiting similar behaviours161. 
Through net-spinning, hydropsychid caddisflies increase the force required to erode armour layers 
and therefore reduce exposure of underlying fine sediments to entraining flows162. Many other 
species of caddisfly are also known for their construction of cases from mineral and organic 
sediment. These cases utilise a wide range of particle sizes and may be responsible for the 
temporary storage of fine sediment163,164. Blackflies (Simuliidae), bivalve molluscs and other filter 
feeding invertebrates are also involved in driving storage of fine sediment by consolidating 
suspended particles from the water into faeces or pseudofaeces, thus increasing the rate of 
sedimentation and altering the composition of suspended solids165,166. 

The sheer diversity of aquatic invertebrate species (85% of global freshwater animal diversity167), 
and the densities in which they are often present, complicate understanding of their role in the 
transport of fines. In particular, interactions between coexisting species probably play an important 
role in mediating the impacts of excess fine sediment, yet these interactions are rarely considered161. 
It should also be noted that the effect of biota on fine sediment dynamics will vary spatially and 
temporally. Despite management advances made in recent decades, especially in relation to organic 
pollution, freshwater biota face increasing challenges for survival, including habitat degradation, 
species invasions, pollution, climate change, and increasing urbanisation168,169. Invertebrates are one 



  
  

   

 
 

  
  

 
  

    
 

 

 
 

 
   

   

   

 
  

  
  

 

 
 

 
    

  
 

    

 
 

   

of the most affected taxonomic groups170,171 and this could have consequences, not just for 
biodiversity, but also fine sediment dynamics in the future. 

Controls on fine sediment: Fish 

Fish can exert controls on fine sediment dynamics through a number of activities. Relative to other 
taxonomic groups, the controls exerted by fish are well-documented140. We therefore provide only a 
brief summary here. To date, salmonid spawning has attracted the most attention. During spawning, 
female salmon create redds (nests) by disturbing the bed with strong undulations of their tails172. 
This activity leads to the suspension of fines and modifies bed stability by vertically mixing gravels 
and fine sediments and disturbing existing armour layers173–175. Tail slips (material excavated from 
redds) are particularly vulnerable to scour175,176. Spawning salmon substantially modify topography 
across large areas of the bed177. This effect persists until the next high flow event of sufficient 
magnitude178, exerting a strong, temporary control on the hydraulic processes driving fine sediment 
dynamics. 

Put into perspective, the spawning activities of salmon and other lithophilous fish can have 
considerable geomorphic impacts at large spatial scales. The vertical mixing of material by salmon 
may be at a comparable magnitude to that driven by floods, resulting in lower critical shear stresses 
required to initiate bed movement179. In some cases, salmon can be responsible for a substantial 
proportion of annual sediment transport. A study in British Columbia estimated that salmon account 
for one third to one half of total annual sediment flux in gravel bed streams178. So strong is this 
effect that the evolution of freshwater fish may profoundly influence channel erosion processes and 
stream profiles over geological timescales, as suggested by a coupled biological-landscape evolution 
model focusing on the descent of Pacific salmon species from a common ancestor180. 

Benthivorous fish also have significant impacts on fine sediment suspension while foraging. Cyprinid 
species can substantially alter sediment dynamics, increasing mixing depth and SSC181,182. Foraging 
barbel, for example, can increase total sediment yields by as much as 82%183. The geomorphic 
impacts of benthivorous foraging increase with fish density184–187, with the body size and mass of 
individuals188, and with the presence of specific feeding behaviours. European barbel (Barbus 
barbus), for example, feed in both gravel and sand sized substrates, while gudgeon (Gobio gobio) 
feed largely in sand habitats and, therefore, their geomorphic impacts are spatially limited189. Fish 
can also exert controls on fine sediment dynamics indirectly through their influence on other 
biogeomorphic agents. For example, bed disturbance and predation by fish may reduce the controls 
exerted by net-spinning caddisflies, macrophytes and algae189. Moreover, fish can have considerable 
impacts on the biogeochemical processes in rivers. For example, spawning migrations of 
anadromous fish (e.g. Oncorhynchus spp.) can be an important source of marine-derived nitrogen 
and phosphorus to nutrient-poor habitats190,191, profoundly influencing the structure and function of 
aquatic and terrestrial ecosystems185. 

CONTROLS ON ECOLOGICAL RESPONSES TO FINE SEDIMENT 

Whilst the impacts of excess fines on biota can be pervasive7–10 not all communities will be equally 
sensitive. In particular, the functional traits of the local biotic community, as well as those of the 
species comprising the regional species pool, will constrain the ecological response. Response traits 
determine an individual’s ability to survive in different environmental conditions through 



 
 

 

 

 

  
 

 
 

  

    

    
  

  
  

  
  
  
   
  

   
  
   
 

  
   
  
  
  
  
  

    
  
  

 
  

  
  
  
  
 

 
  
  

   
  
  

  
  
 

  
 

 
  
  

 

characteristics that promote resistance and resilience to disturbances. Typically, such traits include 
information on morphology, phenology, behaviour and resource use192,193. Below we identify some 
of the major traits that are commonly associated with responses to fines (Table 1) and put them into 
context with biogeographic processes. 

Table 1 - Traits involved in the effect of biota on fine sediment dynamics and the response of biota 
to excess fine sediment. 

Taxonomic 
group 

Effect traits Response traits 

All biota - Dispersal capacity 

Biofilms - Extracellular polymeric 
substance (EPS) production 
- Colony structure 
- Growth rate 

- Colony structure 
- Motility 
- Size and shape 
- Cell wall structure (rigidity) 
- Photosynthetic capacity 

Plants - Shoot density 
- Shoot and root structure 
- Shoot flexibility 

- Fecundity 
- Asexual (vegetative) reproduction 
- Dispersal mode (hydrochory, anemochory) 
- Reproductive timing 
- Growth rate 
- Shoot flexibility in high-flow periods 
- Root structure and binding capacity 

Invertebrates - Feeding behaviour 
- Burrowing activity 
- Construction of feeding and 
protective structures (e.g. 
nets, cases) 
- Body size 

- Feeding mode and diet 
- Body size and shape 
- Respiration mode 
- Locomotion (e.g. burrowing, crawling) 
- Reproduction mode (e.g. parental care, 
oviviparity) 
- Reproductive timing 
- Voltinism (number of generations per year) 

Fish - Foraging behaviour 
- Diet 
- Spawning behaviour 

- Trophic guild 
- Foraging behaviour 
- Gill morphology and physiology (e.g. increased 
mucus secretion, gill epithelium thickness) 
- Mechanosensory system development (e.g. 
vision, lateral line) 
- Reproductive timing 
- Spawning behaviour 



  

 
  

   
 

 
 

  
   

  
   

 
 
 

  
   

   
     

   
  

 

 

     
 

 

 
  

   
   

   
 

 

  
 

   

 
 

  
 

Controls on ecological responses: Biogeography 

In rivers, the spatial distribution of organisms is highly dependent on the dendritic network 
structure194. Thus, at a broad level, ecological responses to fine sediment depend on the location of 
the site under consideration, as well as the topology and connectivity of the whole network195. The 
responses will also depend on the spatial structure of populations present within the network; if a 
population can be divided into subpopulations connected via dispersal, we may call it a 
‘metapopulation’196. ‘Metacommunity’ theory extends this idea to the community level by 
incorporating the effects of species sorting (‘environmental filtering’197) and biotic interactions198. 
The theory, as applied to river networks, predicts systematic variation in the forces driving 
community assembly with stream order (Figure 4). All else being equal, the impacts of stressors such 
as fine sediment are predicted to reduce alpha diversity in headwaters, where colonisation of 
species and phenotypes adapted to stress caused by excess fine sediment is limited. Mid-basin 
locations, on the other hand, are expected to exhibit high rates of turnover in species composition, 
as efficient species sorting leads to rapid selection of adapted taxa from the species pool. Further 
downstream, the effects of the stressor are predicted to be dampened by the influx of organisms 
from upstream, to some extent regardless of the environment. Superimposed onto this trend is a 
natural tendency for the importance of fine particulate matter as a basal resource to increase 
downstream through the river network199. Fine sediment storage dynamics in high order river-
floodplain systems are also tightly linked to flood pulses that are relatively predictable compared to 
events in low order streams200. These spatial patterns are further complicated by the discontinuities 
in fluxes of matter and energy caused by riverine barriers such as dams201. 

Dominant community 
assembly processes 

Patch 
dynamics 

Species 
sorting 

Mass 
effects 

In
flu
en
ce
 

Stream order 
Demographic stochasticity 
Dispersal (mass effects) 
Species sorting 

(a) (b) 

Figure 4 - Metacommunity theory predicts patterns in dominant community assembly processes in 
river networks (a) due to variation in spatial, environmental and demographic influences with 

stream order (b), with implications for ecosystem responses to stressors. Headwater communities 
are likely to follow the patch dynamics paradigm, whereby local species diversity is limited by 
dispersal and community structure becomes a function of stochastic demographic processes 
involving local extinction and colonisation198. The structure of lower mainstem communities is 

predicted to more closely resemble the regional species pool since high dispersal rates drown out 
the influence of the local environment through ‘mass effects’198. In mid-basin locations, species 

sorting or ‘environmental filtering’197 is made possible as the influence of dispersal is at an optimal 
level to allow for efficient niche-based processes202. 



   
 
 

 
  

  
 

  
 

 
   

 

  

 
  

 
 

  
 

 

 
  

 

 
  

    

      

  
 

 
  

Whilst metacommunity theory provides a useful lens with which to study ecological responses to 
stressors, there are other regional-scale factors involved. Among these are biogeographical factors 
linked to the size of the species pool203. Relative to the number of taxa found at a given site, larger 
species pools are likely to contain species better adapted to a given stressor. Sites that are more 
saturated with respect to the species pool, on the other hand, will have less potential for adaptation. 
In the former case, high rates of turnover would be expected, whereas in the saturated case greater 
reductions in alpha (local) diversity are likely to ensue. These tendencies are further dependent on 
the traits expressed by taxa in the local assemblage and the wider species pool. In particular, the 
dispersal capacities of the regional fauna will, to a large extent, influence the relationship between 
the species pool, the local assemblage and stressor-driven changes204. In general, a weaker 
dispersing taxon will be less likely to colonise a newly suitable habitat patch after some 
environmental change, the likelihood also being contingent on the distance of established 
populations of that taxon from the impacted site205. Species pools are thus best represented as 
species- and site- specific probabilistic functions206. We consider other important traits controlling 
ecological responses below. 

Controls on ecological responses: Biofilm traits 

Biofilms comprise a mixture of heterotrophic (e.g. fungi, bacteria, protozoa) and autotrophic (e.g. 
cyanobacteria, algae, chemosynthetic bacteria) organisms, with many of the latter highly dependent 
on light. As such, the attenuation of light caused by increased sediment loads (either suspended or 
deposited) adversely affects the photosynthetic component of biofilms207, shifting the balance of 
these two traits, and thus the net primary production of affected biofilms208–211. For the sessile 
photosynthetic components, the absence of light caused by burial beneath depositing sediment can 
be catastrophic and the only option can be to produce resting stages to endure the period until 
erosion brings them to the surface once more. However, for motile taxa (e.g. raphid diatoms, 
ciliates, flagellates) shading from deposited fine sediment may not present a substantial problem, as 
they can move to higher light intensities at the streambed surface212,213. Hence, diatom assemblages 
tend to become dominated by motile taxa where rates of deposition of fine sediments are high214– 

216, although this trait (motility) may offer benefits under other conditions (e.g. nutrient rich 
conditions) such that the relationship with fine sediment is not straightforward217. 

The fact that deposited fine sediments are relatively unstable (compared with larger particles) 
renders them unsuitable for the attachment of long-lived sedentary species, particularly slow-
growing and chain-forming taxa, pushing assemblages towards rapidly growing, single celled taxa. 
Whilst the lack of stability tends to result in reduced diatom taxon richness and biomass compared 
with more stable sediments218,219, patch disturbance history has a large influence on the 
development of biofilm communities220. In turn, those taxa that exude mucilage are favoured, at 
least initially, as they tend to stabilise sediments (see discussion on EPS above). 

The risk of being dislodged221 or undergoing physical damage222 from suspended and particularly 
saltating sediment particles further selects against tall taxa (chain forming, filamentous, stalked and 
upright forms), and pushes communities towards adpressed forms and those that strongly adhere to 
the substrate (e.g. with mucilage pads), influencing traits associated with both growth form and 
attachment. More robust cell walls (e.g. thick walls, heavy silicification, costae) enable taxa to 
withstand physical damage. As such, species with thicker, more rigid cells walls are selected for 



       
  

  
 

  

  
     

 

  
  

  
  

   
 

 
 

   
  

    
    

   
  

  
 

   
 

   
 

   
  

  

 
    

  
       

 
    

 

where the suspended and saltating loads of inorganic sediment are high223. However, even these 
species are lost if disturbance is frequent224. Under more benign conditions, rapid growth rates may 
compensate for losses, with associated traits such as nutrient affinity being more apparent where 
deposited fine sediments are abundant217. 

Controls on ecological responses: Plant traits 

River engineer plants possess important traits that allow them to establish and persist in riverine and 
riparian environments9,225. These traits include: (i) an ability to reproduce vegetatively, both to 
colonise new patches and to extend and consolidate patches once established; (ii) an ability to grow 
rapidly in order to maximise their chances of becoming established, and to cope with burial by 
deposited material; (iii) above-ground biomass with sufficient rigidity (either as individual shoots or 
collectively as stands) and stand density to present a resistance to flow and, thus, retain sediment, 
but avoids breakage under higher flows; and (iv) below-ground biomass with sufficient strength and 
appropriate architecture to anchor plants and resist uprooting (e.g. stolons, rhizomes). 

Reproduction and dispersal traits allow plant propagules to reach appropriate sites for germination 
and establishment. Both aquatic macrophyte and riparian tree species take advantage of sexual and 
asexual means to ensure reproductive success, with different reproductive strategies allowing 
successful annual recruitment at different locations. However, riparian and aquatic engineer species 
generally devote considerable resources to asexual reproduction, in particular through the 
production of adventitious roots from stem fragments, allowing them to expand their cover locally 
as well as colonising new areas226. Asexual reproduction by riparian tree species largely depends on 
the ability of uprooted trees and wood fragments to sprout both roots and shoots once deposited. 
Some aquatic macrophyte species, particularly those with emergent growth forms (e.g. Sparganium 
erectum, Glyceria maxima), produce dense networks of rhizomes or stolons that support the spread 
of patches, as well as dispersal if the plant is fragmented, whilst others regenerate freely from stem 
fragments227. The development of adventitious roots, stolons and rhizomes allows plants to cope 
with burial and to consolidate the deposited material (e.g. 126). Many aquatic plants and riparian 
shrubs (e.g. Salicaceae) develop such structures, which enter and reinforce aggrading sediments 
while maintaining reinforcement and erosion resistance in buried substrates (e.g. 132). Furthermore, 
plants can exploit the nutrients available from deposited material by rooting into it: much of the 
organic material deposited in stands of Ranunculus penicillatus is remineralised and used for growth 
of the plant, further accentuating deposition228, a characteristic likely to be true of other species. 

Once deposited, propagules of engineer plants germinate or sprout and typically grow rapidly to 
anchor themselves and support their survival in disturbed river environments. Rapid shoot and root 
growth is particularly important for species both to exploit opportunities for growth before 
disturbance removes them and to cope with burial. For example, field observations along the 
Tagliamento River, Italy, have recorded main shoot growth in Populus nigra, Salix alba and Salix 
eleagnos seedlings, cuttings and from uprooted, deposited trees of up to 3 mm day-1, 10 mm day-1 

and 15 mm day-1, respectively229,230. Furthermore, greenhouse experiments on cuttings of Salix 
eleagnos and Populus nigra have revealed vertical root penetration of 27 and 15 mm day-1 

respectively for sand substrates, and 20 and 10 mm day-1, respectively for gravel substrates under a 
water table falling at 30 mm day-1 231. Many aquatic plants avoid disturbance during winter and 
spring high flows by producing dense networks of rhizomes that persist through the winter, 



      
   

   
   

  

 
    

 
 

  
 

  

  
 

 
 

 

 
  

 
 

    
 

   

 

  
   

    

anchoring the plants and reinforcing penetrated sediments, whilst following an annual above-ground 
growth cycle whereby shoots emerge in the spring. Peak biomass is reached in mid to late summer 
and then senesce during autumn, leaving little (if any) above-ground biomass exposed during winter 
high flow events (e.g.126,232,233). During the growth period, species succession in aquatic plant stands 
is closely related to the ability to outpace the rate of deposition, favouring species with fast growth 
rates (including the ability to exploit nutrients from deposited material) and the capacity to adopt an 
emergent strategy234,235. 

As stated above, the extent to which plants retain sediment is related to the resistance they present 
to the flow of water. However, this resistance coupled with the instability of deposited sediment 
increases the likelihood of plants being uprooted, particularly during flood conditions. The 
prevalence of traits associated with rapid growth, either to cope with burial, patch instability or to 
exploit nutrients from deposited material, together with a high dependency on vegetative growth, 
leads to a plant trait syndrome similar to that seen in highly competitive taxa typical of nutrient rich 
conditions236. Hence, it is not surprising that taxa indicative of high nutrient conditions thrive in 
rivers with large amounts of deposited sediment9,237. 

Controls on ecological responses: Invertebrate traits 

Excess fine sediment is widely acknowledged to have deleterious effects on the structure and 
function of invertebrate communities8,54,60,238. Substrates with a high volume of fines typically 
support homogenous communities that are dominated by relatively few taxa47,239–241. The 
composition of invertebrate taxa present in different environmental settings is strongly constrained 
by the functional traits they possess242, resulting in variable tolerance or sensitivity to excess 
fines243,244. 

High sediment loads reduce the quality and availability of trophic resources which may reduce 
feeding efficiency, most notably for shredders244–247. Other feeding modes, including algal scrapers 
and filter feeders, also demonstrate some sensitivity to fine sediment248–250 but the effect lacks 
consistency, suggesting that other factors interact with these traits to determine the response. 
Increasing infiltration of fines fills interstitial pore spaces and reduces dissolved oxygen 
concentrations, limiting the ability of many taxa to persist due to their body size, shape and 
respiratory requirements251,252. As such, streambeds subjected to high levels of deposition and 
infiltration are frequently characterised by taxa with small body sizes and lower densities of 
interstitial dwellers60,246,253,254. 

Locomotion traits may also be implicated in the impacts of fine sediment deposition on invertebrate 
communities. Burrowing taxa associated with depositional habitats are well adapted to fine 
sediment, whilst crawlers may be adversely affected during deposition events due to their reduced 
locomotive capacity251,255–257. Species with certain respiration modes can also be highly sensitive to 
fine sediment transported in the suspended or saltating load. Delicate gill structures, for example, 
may become physically abraded or clogged by fine sediment, limiting the exchange of oxygen258,259. 
Reproduction mode may also exert a strong control over which taxa are able to persist in substrates 
with high fine sediment content. Unattended eggs deposited onto the stream bed, for instance, may 
become smothered or abraded by fine sediment260. As a result, the prevalence of ovoviviparity, as 
found in diverse taxa (e.g. Sphaerium spp., Asellus aquaticus, Cloëon spp.), may increase in streams 
subjected to high sediment loads246,261,262. Voltinism also influences a taxon’s ability to recover from 



 
     

 

  
   

  
 

 
  

 

  

 
  

   
  

    
 

 

 
  

 
 

 
 

  
  

 

 

 
 
 

 
 

 

   
 

disturbances such as those wrought by excess fine sediment, with mutivolitine taxa recovering more 
rapidly compared to univoltine taxa257,263. This resilience to disturbance is associated with a trait 
syndrome that includes small body sizes and short life cycle lengths. 

Despite trait-based ecology gaining increasing recognition for its ability to predict tolerance and 
sensitivity to a range of stressors, further research is required to strengthen the mechanistic basis 
behind the use of invertebrate traits in fine sediment-specific biomonitoring applications244. The 
consideration of traits should be evaluated with caution as a number of recent studies have reported 
inconsistent responses of invertebrates to fine sediment deposition47,246,254,257. Traits are unlikely to 
act in isolation but rather as combinations of traits describing life-history strategies of varying 
resistance and resilience to stressors such as fine sediment47,264. Furthermore, the timing of fine 
sediment events relative to a taxon’s life-cycle will play an important role254 as will a taxon’s 
preferred habitat and substrate composition244. 

Controls on ecological responses: Fish traits 

A range of fish traits have been implicated in community responses to fine sediment carried in 
suspension, in the saltating load, surface deposited or infiltrated7. Well-documented, direct negative 
impacts include the clogging and abrasion of soft tissues, especially gills265,266. Fish adaptations to 
enhance resistance to this include increased mucus secretion and a thickening of the gill 
epithelium267. However, under high SSC, mucus secretions can result in increased susceptibility to 
clogging of the gill surface and ultimately suffocation of the fish268. Further adaptations to living in 
turbid conditions are associated with the mechanosensory system, including development of the 
lateral line system and inner ear used to sense hydrodynamic cues, specialised reflective structures 
in the eye, and tactile and olfactory senses269–271. 

By far the most well-known impact of deposited and infiltrated fine sediment is the smothering of 
salmon redds49. However, the majority of freshwater fish species are not lithophilous. Phytophilous 
species are also likely to be indirectly impacted due to reductions in submerged vegetation under 
high fine sediment loadings, whereas reproduction in psammophilous taxa may be favoured if 
deposition is associated mainly with the sand fraction. Some species avoid the potential impacts of 
fine sediment on eggs by ovipositing on riparian vegetation at high flows, with eggs developing out 
of the water until the next high flow (e.g. Galaxias argentus272). The timing of life-history events 
relative to periods of high fine sediment loadings can play an important role in fish responses to 
fines. In many temperate systems, for example, fine sediment accumulation in spawning gravels will 
likely be highest during the summer baseflow period54. Spawning outside of this period is therefore 
one way to avoid the most deleterious impacts on eggs and embryos7. 

Herbivorous fish are indirectly impacted by reductions in submerged macrophyte abundance and 
changes in plant species composition due to light attenuation and abrasive forces of suspended and 
saltating sediment, as well as the deposition of fine material on plant surfaces, which reduces plant 
growth and nutritional quality9,273. This generates further impacts on other species by reducing or 
changing the nature of available cover. Zooplankton feeders may benefit from enhanced foraging 
efficiency under high SSC as their prey congregate near the water surface274, although the reduced 
visibility associated with such conditions is likely to result in net-negative impacts on feeding275. 
Similarly, high turbidity events may enhance prey availability due to increased invertebrate drift 
rates. However, foraging efficiency for drift-feeding fish decline under even mildly turbid 



   
 

 

 

       
 

   
  

 
 

   
 
     

     
  

 
 

 
  

    

 
 

 
  

  
     

   
    

   
  

   
 

 

   
 

    

    

conditions276 and, in the long-term, invertebrate drift events in response to high SSC are likely to 
contribute to a change in invertebrate community composition which would negatively impact 
invertivorous fish277. 

Conclusion 

The presence of excess fine sediment in rivers is a major reason for failure of EU member states to 
achieve Good Ecological Status under the Water Framework Directive. In this context, we have 
presented a broad synthesis of current understanding in the belief that this can help to drive the 
production of new scientific knowledge and inspire management innovation. In particular, we have 
highlighted biogeomorphic processes that control the transport and storage of fine sediment, and 
the mechanisms by which this elicits ecological responses and feedbacks. The fine sediment 
‘problem’11 represents a major challenge for applied environmental science worldwide but progress 
is being made towards a more complete understanding of the physical and biological processes 
involved. This progress should be maintained and accelerated by continuing the open dialogue 
between management agencies and scientists working within the broad disciplines of ecology, 
hydraulic engineering, fluvial geomorphology and hydrochemistry. In Sidebar 1, we briefly describe 
the outcomes of a workshop intended to address this need. Based on the experiences of 
environmental managers present, the workshop participants identified the most urgent knowledge 
gaps. These ranged from the collation of existing data and case studies to the investigation of 
responses to fine sediment at the population and whole ecosystem levels. Through initiatives such 
as this, key management challenges, scientific research priorities, and the production of new 
knowledge can all inform and shape one another. 

SIDEBAR 1 - SUPPORTING GOOD ECOLOGICAL STATUS THROUGH RESEARCH 

A British Ecological Society-funded workshop in July 2017 brought together early career researchers 
working on fine sediment internationally along with UK-based environmental managers and senior 
scientists in the field to discuss how to support the achievement of GES through research. The 
discussions indicated that fine sediment-related failures to achieve GES in England and Wales are 
largely due to agricultural and rural land management, followed by urbanisation and transport. 
Measures to address the problem for point and diffuse sources exist but there are gaps in the 
evidence, including information on the risk of further deterioration, impacts on protected areas, and 
the interaction of fine sediment with other pressures. More catchment-scale data is needed to 
inform management, along with greater collation of existing case studies. Evidence is required for 
the effectiveness of alternative measures under future climate change and socio-economic 
scenarios. Further development and testing of pressure-specific biomonitoring metrics will help to 
link ecological changes to causal factors. 

Specifically, environmental managers needed answers to the following questions: 

• What are sediment yields and dynamics in rivers under different land use and management 
scenarios? 

• How do we define 'natural' sediment conditions in aquatic ecosystems? 

• How much do we need to reduce the sediment input by to see an ecological benefit? 

http:hydrochemistry.In


  

    
  

    
 

     
  

  

  

    

 

 

   
 

     
  

 
 

 

 

 

   
 

  

  
  

 
 

 
 

  
 

 
 

• How can we evaluate the benefits of reducing excess fine sediment in rivers? 

• What are the impacts of invasive species on sediment regimes? – especially plants such as 
Himalayan balsam and burrowing animals such as crayfish. 

• Are there thresholds of fine sediment loadings beyond which ecological impacts are more 
severe? 

• How can the risks of fine sediment impacts on sensitive species, such as the pearl mussel 
(Margaritifera margaritifera), be assessed most effectively? 

• Which management measures are most cost-effective? 

• What are the risks of dispersive dredging from contaminated sediments? 

• What is the role of fine sediment dynamics in the transport of microplastics? 
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