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�is review gives an overview of the impact of novel nonthermal food technologies on food safety, on quality, and on the
environment. It con�rms that research in this �eld is mainly focused on analyzing microbial and/or chemical aspects of food
safety. However, recent research shows that in spite of various food safety bene�ts, some negative (quality oriented) features occur.
Finally, this paper shows the necessity of analyzing the environmental dimension of using these technologies.

1. Introduction

Nonthermal technologies are used in interdisciplinary sci-
ences, in biotechnology, and in many other research and
applied areas. In food processing, they are used mainly for
preservation in treating of food and wastewaters. Consumer
demands for minimally processed foods in addition to the
negative e�ect of heat on nutritional properties of foods are
making nonthermal processing popular in the food industry.
�e main task of nonthermal processing is to assure food
safety [1], and research e�ort is focused on microbial in-
activation, food safety, and preservation while retaining the
quality of obtained products. �is advantage gives non-
thermal processing the potential to replace classical thermal
processing. Besides the food safety and quality dimensions,
these processing technologies have the possibility to shorten
treatment time, lower energy consumption, and lower
carbon footprint [2].

Nonthermal technologies have di�erent types of action,
depending on the source of energy transfer. �ey are used in
inactivation of microorganisms in radical formation (plasma,

ultrasound, ozonation, UV light, etc.); mechanical action
through hydrodynamic e�ects, shock waves (ultrasound and
plasma), electric and magnetic �elds (pulsed electric �elds,
cold plasma, radiofrequency and oscillating magnetic �elds,
electrohydrodynamic processing, and electron beam pro-
cessing); or extremely high pressures that are causing
rupturing and bursting of microorganisms [3–6]. �ese
treatments may be used alone or in combination, within the
so-called “hurdle” concept [7–9]. �e most researched
techniques with proven scienti�c results in the food industry
are high-pressure processing (HPP), supercritical £uid ex-
traction (scCO2), and pulsed electric �elds (PEFs).

�ere are many research projects dealing with microbial
inactivation [10–12], enzyme inactivation [11, 13], and
nutritional improvements [14–16] when using nonthermal
technologies. All of these techniques have been successfully
applied in assuring food safety [17–20]. However, besides
assuring food safety, more attention is needed to maintain or
improve food quality. Quality of food after nonthermal
processing has shown both positive [21, 22] and negative
[23–25] e�ects depending on the technique and processing
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parameters. +is raises the first challenge in succeeding
inactivation of microorganisms while impairing quality and
sensory parameters of treated samples and opens a research
gap of unresearched areas like negative aspects of application
of novel nonthermal processing on food quality, stability of
food during shelf life after nonthermal processing, negative
sensory properties of food treated by novel nonthermal
techniques, life cycle assessment, and sustainability of
nonthermal processing techniques. Advantages of novel
nonthermal processing in terms of energy consumption can
be considered as “green” techniques for “green” extraction.
In order to gain better output products using nonthermal
processing, it is important to overview processing in terms of
safety, quality, and environmental aspects.

+e objective of this review paper was to present the three
main pillars related to the use of novel food tech-
nologies—food safety, quality, and environmental impacts on
the one side stressing advantages and constraints and on the
other side revealing future synergic research perspectives.

2. Materials and Methods

Online literature on the use of nonthermal technologies in
the food industry is dispersed in a heterogeneous way in the
form of scientific manuscripts, book chapters, conference
proceedings as well as patents, legislation, and even com-
pany reports. According to our goal, we carried out a search
in scientific literature spanning the research for the period
2000–2018. +e authors mainly focused the attention on the
international journals to assure a more scientific content
mainly caused by a rigorous revision process. +erefore, the
selection of scientific manuscripts was based on the journals
impact factor, matching to the scope of the journal and
preferring those indexed by international repositories such
as the Scopus index and publishers (Elsevier, Springer,
Wiley, Taylor and Francis, and EBSCO). +is research
identified relevant articles, both review and research papers,
published in the domains of nonthermal technologies split

into two subsections: specific nonthermal technologies
(HPP, scCO2, PEF, etc.) and its application on the specific
type of food (beverages, fruit, vegetables, etc.).+ere were no
geographical restrictions applied.

+is type of literature review identified that there are
over 300,000 publications related to the application of
nonthermal technology in the food industry. In this mil-
lennium, the number is increasing as presented in Figure
1(a) where the period before 2010 was divided into two five-
year periods: 2000–2004 and 2005–2009. +e period starting
from 2010 was analysed in three-year periods. Although
there are papers published in journals that are not strictly in
the “food science and technology” scope, the top five
journals that have at least 500 publications are Food
Chemistry, LWT Food Science and Technology, Journal of
Food Engineering, Innovative Food Science and Emerging
Technologies, and Food Research International. +e journal
covering the environmental impact of these technologies is
published in the Journal of Cleaner Production and Bio-
resource Technology. Depending on the type of technology,
the share of publications and patents was analysed and is
presented in Figures 1(b) and 1(c). It is important to note
that high-pressure processing and homogenization are the
most analysed technologies in around 75% of all
research/review publications. +e same applies to publica-
tion of patents.

Deeper analysis of patents reveals that the majority of
patents were published in journals up to 2010 and covered
patents of new nonthermal technologies, food substitution
with novel food derived from new technologies, and aspects
of food preservation using these technologies. Majority of
patents came from the developed countries (EU, USA,
China, Japan, Australia, etc.), and no other patterns were
observed.

A literature review revealed that these technologies were
evaluated separately either from a food technology/food
safety perspective or from an environmental perspective.
Combination of two types of criteria—environmental and
quality/food safety—has not been a focus of research, and
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Figure 1: Presentation of publications related to the application of nonthermal technologies in the food industry: (a) number of pub-
lications; (b) share of publications; (c) share of patents. Wave: ultraviolet, ultrasound, and plasma; field: electric and magnetic fields’
technologies; pressure: high-pressure processing/homogenization.
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this has been identified as a research gap by the authors of
this paper.

3. Safety of Food Processed with
Nonthermal Technologies

Nonthermally processed food presents some kind of a risk
due to incomplete preservation of food. At the beginning of
an extensive research and application of nonthermal food
technologies, the US Food and Drug Administration (FDA)
requested the Institute of Food Technologists (IFT) to give
a report on the effectiveness of microbial inactivation of
alternative food-processing technologies. Back in 2000, the
IFT reported general guidance for future research on novel
techniques based on microbiological demands like the
evaluation of the adequate linear first-order survivor curve
model and launching experimental protocol, identifying
inactivation action/mechanism(s) among alternative tech-
nologies, and determining the synergism or antagonism of
one alternative processes [26]. +e IFT also emphasized the
importance to determine potential formation of indigestible
and toxic by-products of processing as well to develop
methods for measuring and monitoring physical-chemical
changes during treatments [26].

As a result, from the year 2004, the definition of pas-
teurization changed and now, according to the National
Advisory Committee on Microbiological Criteria for Foods
(NACMCF) of the USDA, includes any process, treatment,
or combination, which is applied to food to assure microbial
safety [27]. In order to evaluate alternative pasteurization
methods, there are several steps to pay attention on, like the
properties and composition of the treated food product,
microbial effects, and commercial, economic, and envi-
ronmental aspects [28]. Each of these technologies has
specific critical process parameters that must be monitored
and controlled (critical control points).

+e Novel Food Regulation by the EU lacks a joint
classification of new technologies across all member states
which slows down their widespread commercialization in
Europe. In order to proceed with the technology readiness
levels of novel food technologies, one of the necessary
prerequisites is to validate them in relevant environment
[29]. Novel food technologies may be used for different
purposes in the food industry [30], such as (1) preservation/
decontamination and shelf life extension, (2) food modifi-
cation (i.e., gelatinization), (3) stress induction (i.e., increase
in biosynthetic activities), (4) mass transfer modification
(i.e., extraction), and so on.

In parallel with developing nonthermal technologies, it is
of vital importance that equipment is hygienically designed
[31]. Hygienic design is defined as “design and engineering
of equipment and premises assuring that food is safe and
suitable for human consumption” [32]. It is not widely
understood, and there is still little awareness of possible
consequences of equipment that is not hygienically designed
[33]. Public health and economic aspects of microbial
contamination in foods may cause financial and public
concerns, particularly if these result in product recalls. +e
hygienic design of equipment plays an important role not

only in controlling the microbiological safety and quality of
the products made but also in prevention of residues of
chemicals used for cleaning and disinfection. Also, the
hygienic design should prevent food from being contami-
nated with other contaminants. +is becomes more im-
portant with novel food-processing technologies where new
designs may result in new (re)contamination pathways,
while minimized food processing may not achieve heat-
standard inactivation [9].

Legislation covering the hygienic design of food-
processing equipment is vague [34]. In the EU, some leg-
islation mentions the importance of the hygienic design such
as the regulation of hygiene of foodstuffs [35]. On the
contrary, there are a number of different types of standards
related to the hygienic design with different approaches in
highlighting similar hygiene issues [33]. Most used stan-
dards that outline requirements related to the hygienic
design are industry-tailored guidelines or sanitary standards
[36–39].

3.1. Microbial Food Safety. All aspects of microbial food
safety need to be monitored, and this includes assuring FDA
regulative for 5 log reduction using preservation processes.
High-pressure processing (HPP) and pulsed electric fields
(PEFs) have been greatly researched and proved to be
successful in assuring food safety, and by that, they were
successfully commercialized [4, 40, 41] dealing with non-
thermal inactivation of microorganisms. PEF provides
minimal changes in food attributes while assuring optimum
safety. Pulsed light is used in decontamination of various
(transparent) liquids. However, limitation of this technology
leads to undesirable results, such as decomposition of nu-
trients and changes in sensory quality. Food safety is one of
the important components that force the development of
novel technologies to reduce, control, or eliminate food-
borne pathogens from food products and contact surfaces.
State of the art of assuring and demonstrating 5 log re-
duction was described in terms of applying optimized
nonthermal treatment [1, 20, 42]. Nonthermal techniques
can be combined [10, 13, 43–46] or be used with antimi-
crobial agents [47–49] or in combination with mild heating
[1, 22, 50]. It is necessary to follow critical control processes
of nonthermal processing [51–53] in order to have no re-
covery or revitalization of microorganisms after processing
[54, 55]. +ere are laboratories in the United States that
validate food process for all nonthermal techniques, and
processing needs to be evaluated and overviewed for mi-
crobial stability, toxicology, interactions between the
product and packaging, chemistry, and so on. Foods derived
from these technologies are also subject to this kind of
validation.

High pressures result in extreme mixing and high-
intensity shear forces moving throughout the medium.
+is release can result in examples of aggregate disruption,
polymer chain fractures, and chain length degradation
causing permanent changes in molecules [56]. +is mech-
anism works particularly well at low frequencies such as
20 and 40 kHz. Although ultrasound has shown some
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benefits to processing of foods, for example, in extraction,
crystallization, and microbial inactivation, there are also
some concerns as expressed by Pingret et al. [25] who
presented a review on the possible degradative effects of
sonication on food with high lipid contents and indicated
the possible degradation of some compounds and changes to
physiochemical qualities of some food products.

+e extent of microbial inactivation by HPP in foods
depends on multiple factors related to the processing con-
ditions and the food matrix. Additionally, it was broadly
observed that different microorganisms express a wide range
of sensitivity to HPP [57, 58].

In particular, prokaryotic cells are observed to be more
pressure resistant than eukaryotes [57], yeasts and moulds
are relatively more HPP sensitive than bacteria, and Gram-
positive bacteria are more resistant to pressure than Gram-
negative bacteria, likely because the higher complexity of the
cell or of the cell membrane might increase HPP suscep-
tibility [59]. Additionally, cocci are more resistant than rod-
shaped bacteria [59].

However, the most resistant species are the endospores,
which are capable of withstanding pressures >1,000MPa
[59]. HPP is reported to induce the germination of bacterial
spores, at an extent depending on the food matrix and the
microorganism [59, 60].

In general, the efficiency of high-pressure homogeni-
zation (HPH) for microbial inactivation depends on the
properties of the process fluid (viscosity, temperature,
suspended solids, or fats), the specific resistance of the
microbial strains, and the operating conditions, such as the
operating pressure, the number of HPH passes, the oper-
ating temperature, and the homogenizing valve geometry
[61]. +e pressure limit separating HPH (high-pressure
homogenization) from UHPH (ultrahigh-pressure homog-
enization) is not clearly defined, whereas pressures above
200MPa are often named UHPH [62, 63].

+e inactivation kinetics for most microorganisms ap-
pear to be first order with respect to the applied pressure, in
the range of HPH and UHPH pressure levels (100–350MPa)
[64]. In contrast, for repeated HPH passes, an asymptotic
behavior is generally observed, which can be attributed to
the natural distribution of individual cell resistance to
pressure [65]. Moreover, the homogenizing valve geometry
also appears to be determining factors for microbial in-
activation. In fact, the microbial inactivation is a direct
consequence of the physical cell disruption due to the fluid-
mechanical stresses generated in the valve, such as shear and
elongational stresses, turbulence, cavitation, and impact on
the valve surfaces, which depend on the specific valve design
[66, 67].

Due to the temperature rise in the homogenization valve
and due to the frictional heating associated with the pressure
energy dissipation, the thermal inactivation of the micro-
organisms is likely to occur during HPH treatments, if the
inlet and outlet temperatures are not carefully controlled.

If a purely nonthermal treatment is desired, to preserve
the thermosensitive food components, the inlet temperature
should be adjusted as a function of the operating pressure,
taking into account the inherent heating of the system

(generally comprised between 0.15 and 0.22°C/MPa) [68].
Moreover, also a heat exchanger should be placed imme-
diately downstream of the homogenizing valve, which is
desirable to minimize thermal damage to the product.

Both HPH and UHPH treatments primarily kill the
vegetative bacteria, through the mechanical destruction of
the cell integrity [61, 67]. Gram-positive bacteria are re-
ported to be more resistant than Gram-negative bacteria,
which have thinner cell walls, formed by 1–5 layers of
peptidoglycan chains, in comparison with the 40 layers of
peptidoglycan chains of the Gram-positive bacteria [69, 70].

Yeasts and fungi exhibit an HPH resistance, which is
intermediate between Gram-negative and Gram-positive
bacteria, because of their wall structure, which is thicker
than that in Gram-positive bacteria, but more complex than
that in Gram-positive bacteria due to the larger size and
a different cell wall structure, with glucans, mannans, and
proteins as basic structural components [71].

+ere are different actions of nonthermal processing, but
in some use of one technology per se is not enough to assure
inactivation of microorganisms in a significant way. Efficiency
in inactivation of microorganisms by those treatments differs
depending on treatment parameters like treatment time,
power, strength, dosage, frequency, and so on. On the other
hand, by working at lower temperatures, there are possibilities
that applied treatment is not enough in prolonging the shelf
life of the product and there are significant hazards like re-
vitalization and recovery of microorganisms (sublethal in-
juries, stress, viable but nonculturable state, etc.). When
nonthermal treatments achieve food safety, there is possible
deterioration of food quality. One example is treated wine
which was treated by ultrasound. Ultrasound caused the
formation of negative oxidative smell and the formation of
aromas which are described by panellists as burns or smoke
[72]. It is explained by the formation of oxidized aroma
(acetaldehyde) in young red wines, that is, the reaction of wine
polyphenols (initiated by the ultrasound treatment) to form
peroxide which oxidizes ethanol to acetaldehyde.+is is often
observed in high oxidative techniques (plasma, ultrasound,
etc.). +rough formation of free radical and high reactive
oxygen or nitrogen species, the nonthermal processing can be
efficiently introduced in wastewater treatments and recovery
of agro and food waste.

Another area of safety concerns within food processing is
sterilization and reduction of contamination by bacteria and
other microbes. Ultrasound has been shown to be very ef-
fective in treating the rate of bacterial growth and increasing
the kill rate of microbes at a range of frequencies, the most
effective being 850 kHz due to the short life span of the
cavities at this frequency. It is thought to affect microbial
inactivation via the weakening or disruption of bacterial cells
through a number of different processes which include
mechanical and chemical effects. Mechanical effects are
induced by sonication at lower frequencies of 20 kHz, as
a result of increased pressure gradients formed during the
collapse of cavitation bubbles within or near the bacteria,
which result in enhanced shear forces, microstreaming, and
high levels of mixing resulting in disruption of the bacteria.
Evidence continues to grow for the use of ultrasound in the
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deactivation and sterilization of many different bacterial
strains. +is can be achieved within short treatment times
with higher frequencies of sonication, thus resulting in
minimal disruption to the food material itself. An overview
of ultrasound effects on microbial safety is presented in
Table 1.

Liu et al. [89] investigated the inactivation of Saccha-
romyces cerevisiae under varying conditions such as bac-
terial load concentration, pH, and treatment temperature
and determined that ultrasound had the most significant
role in the inactivation of the bacteria. Kang et al. [90]
examined the effects of ultrasound on the number of
Escherichia coli O157:H7 and vegetative cells of Bacillus
cereus in brining and beef during the curing processing.
After 30min of treatment, E. coli appeared to be more
affected by sonication than the B cereus. +is was thought to
be due to the formation of hydrogen peroxide acting as
a sterilization agent as a result of recombination reactions
of OH radicals during the sonication process. Sienkiewicz
et al. [91] examined the growth of the strain of Salmonella
enterica subsp. typhimurium during sonication. Total in-
activation of Salmonella spp. occurred with low bacterial
populations after sonication at 20 and 40 kHz for 30min
and with high bacterial population at 20 kHz for 30min
with reductions observed after only 15min of treatment.
Bacterial inactivation, after sonication, lasted for up to 48 h
in storage at 21°C.

+e levels of Campylobacter jejuni and spoilage organ-
isms in raw chicken were examined by Kassem et al. [87]
who employed sonication alone or in combination with
different solutions containing either lactic acid, sodium
decanoate, or trisodium phosphate at a range of tempera-
tures and treatment times. While all the solutions exhibited
some reduced bacteria levels as compared to the control,
combination treatments fared far better with only sonication
in conjunction with 3% sodium decanoate solution showing
any significant improvements and much reduced total viable
counts.

Khandpur and Gogate [48] investigated microbial
growth in a range of fruit and vegetable juices via the ap-
plication of sonication in the presence and absence of crude
orange oil and compared these to thermal controls alongside
other quality parameters such as pH, acidity, Brix, and yeast
content. +e optimized ultrasound parameters for juice
sterilization were ultrasound frequency and power of 20 kHz
and 100W with a 15min treatment time, and more than
5 log reduction was achieved with lower microbial growth
and improved quality characteristics as compared to the
thermally processed juice.

3.2. Chemical Food Safety. Milne et al. [92] examined OH∗
radical formation employing ultrasonic frequencies.
Comeskey et al. [93] also employed a range of ultrasonic
frequencies to determine levels of hydrogen peroxide
formed in sonicated aqueous systems. Using a range of
ultrasonic frequencies, they determined that the highest
levels of hydrogen peroxide occurred at 850 kHz with

380 and 512 kHz also exhibiting some oxidative effects
however not to the same extent.

Kang et al. [94] investigated treatment time versus ul-
trasonic power in an attempt to examine the oxidation of
beef proteins. +ey determined that sonicating beef under
varying treatment conditions greatly increased the amount
of lipid oxidation compared to static brining. Protein oxi-
dation was determined by examination of carbonyl levels
and levels of disulphide cross-linking, which indicated
a decrease in total sulfhydryl, as a result of free radicals
contributing to protein oxidation. Continuing their work,
Kang et al. [90, 95] sonicated beef at 150 and 300W for 30
and 120min and found that this increased the water holding
capacity and tenderness of the beef as compared to salt
brining.+is was in this case attributed to induced oxidation
of myosin causing polymerization of the muscle fibres, thus
increasing the water holding capacity of the meat.

Sun et al. [96] examined the link between anthocyanin
degradation and ultrasonically formed hydroxyl radicals.
+ey discovered that the absorbance of the antioxidant
cyanidin-3-glucosylrutinoside at 282 and 518 nm decreased
significantly on increased sonication which was confirmed
by 1,1-diphenyl-2-picrylhydrazyl and ferric-reducing anti-
oxidant assays, thus indicating a negative effect on antiox-
idant levels as a direct result of extended sonication. Yao
et al. [97] also observed a similar effect when examining the
effect of sonication on antioxidant levels in blueberries and
discovered that sonication significantly increases the deg-
radation of cyanidin-3-glucoside as compared to thermal
treatments.

+e inactivation of horseradish peroxidase was in-
vestigated by Tsikrika et al. [98] who determined that
sonication for 60min using 20, 378, 583, 862, 995, 1144, and
1175Hz ultrasound at power levels (acoustic energy) be-
tween 2.1 and 64W was very effective at inactivating the
enzymes with little effect observed at the 20 kHz lower
frequency. +e fact that the greatest levels of inactivation
were observed at 378 and 583 nm suggests that some radical
effect may be the cause. +ere is much evidence presented to
suggest that it is the higher frequencies of sonication, above
370 kHz to 850 kHz, which result in high levels of oxidative
radical formation. It is therefore suggested that, in order to
avoid radical interference with food materials, lower fre-
quencies for treatment should be employed with shorter
sonication times to limit any oxidative effects.

Food allergies have posed a severe risk in the last decade.
According to [99], allergic reactions are caused mainly due
to “epitopes,” a small linear stretch of amino acids or
a specific three-dimensional structure which is a part of
a much larger protein. During food processing (both con-
ventional and novel), the epitopes that are present within the
food matrix may be destroyed or new epitopes may be
formed. Also, these technologies can result in producing
conformational changes in the protein structure and for-
mation of epitope centres, but also few of them can be used
for the future development of the hypoallergenic foods by
reduction or by mitigation of the reactivity on processing.
Scientists are still trying to explain and understand the
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conformational changes in the protein which can affect the
allergenicity.

4. Quality of Food Processed with
Nonthermal Technologies

Stakeholders, such as legislators, retailers, and manufac-
turers, care about consumers’ opinion regarding food
processed with novel technologies [100]. Giving the possi-
bility to evaluate and to taste, a novel product seems to
influence consumer acceptance for new technologies. +is is
still largely an unexplored area, but it has been suggested that
including consumers in the process of evaluation, that is, by
pairing the new technology with a positive sensory expe-
rience of the product, can lead to the positive consumers’
reaction [101].

High-pressure processing (HPP) might significantly
impact the quality and functionality of food, affecting the
color, flavor, and texture, with a relevant impact on sensory
perception and consumer acceptance [61]. Generally, HPP,
by slowing down some biological reactions, such as Mail-
lard’s reactions, contributes also indirectly to a better
preservation of the quality attributes and nutritional value
over their shelf life [102]. In addition, HPP is reported to
have only a limited effect on the covalent bonds of low-
molecular-mass compounds, such as those responsible for
color, flavor, and health-beneficial attributes. For example,
HPP at low and moderate temperatures did not cause any
significant alterations of the pigments, such as chlorophyll,
carotenoids, and anthocyanins, responsible for the color of
fruit juices [103]. +e color compounds can, however,
change during the storage of HPP-treated products more
rapidly than in thermally treated ones, due to the incomplete
inactivation of enzymes and microorganisms by high
pressure [61].

Several studies clearly showed that the flavor of fruit
juices is not affected by HPP because the structure of small
molecular flavor compounds is only marginally affected by
high pressure [104–107]. However, similar to pigments, the
flavor of fruits and vegetables subjected to HPP might be
indirectly altered, through enhancing or delaying of some
enzymatic reactions, which might alter the balance of flavor
composition [105, 108, 109]. HPP is also reported to affect
the rheological behavior of the juices and their cloud sta-
bility, as both these parameters are controlled by the
composition of the soluble pectins. Pectin breakdown or
retention, induced by HPP also through enzymatic re-
actions, enables the control of the rheological behavior of the
juice. For example, the residual activity of pectin methyl-
esterase, not completely inactivated by HPP, caused a de-
crease in orange juice viscosity during its shelf life [109]. In
contrast, the viscosity of tomato juice was observed to in-
crease linearly with pressure, in the high pressure range
(200–500MPa), whereas at low pressures (100–200MPa),
a decrease in viscosity was observed because of enzymatic
degradation of pectins [110].

One of the main quality indicators upon food processing
is the preservation of the content of bioactive molecules,
which might contribute to the health-beneficial properties of

the food products. Remarkably, nonthermal technologies
not only are reported to better preserve bioactives than
thermal treatments but also in some cases can stimulate their
release from the intact cells contained in the product, which
translates in the increase of instrumentally detectable bio-
active concentration and, often, of their bioaccessibility. In
fact, HPP of vegetable cells at 250MPa for 10min was re-
ported to induce 99% of the pigment to be released [111].

Figure 2(a) summarizes the effect of HPP on different
bioactive compounds, in comparison with the corre-
sponding values in untreated products.

Vitamin A was reported to increase slightly in orange
juice, treated between 100 and 400MPa for 1–5min at
temperatures between 30 and 60°C [112], and significantly in
apple juice treated for 5min at 400 and 500MPa and 25 and
45°C [61].

In contrast, different authors reported that vitamin C
decreased upon high-pressure homogenization (HPH) and
ultrahigh-pressure homogenization (UHPH) treatment, as
observed in orange juice [112], in blueberry juice treated at
HPP pressures between 200 and 600MPa and at tempera-
tures of 42°C for 5–15min [113], and in melon pieces treated
for 10min at HPP 600MPa and ambient temperature [114].
In the case of vitamin E, a slight decrease was observed in
rosehip puree, HPP treated at 200–600MPa and 20°C for 5
or 10min [115], whereas a measurable increase was reported
by the same authors for spinach leaves [115] and in sliced
ham, HPP treated at 400–900MPa and 12°C for 10min
[116].

In the case of total carotenoids and of their main
components, such as β-carotene, lutein, and zeaxanthin, it is
generally reported that they are well preserved during HPP.
In rosehip puree, similar to what reported for vitamin E,
a decrease in total carotenoids, and in particular in lutein
and zeaxanthin, was observed, while in spinach leaves, the
total carotenoids were reported to increase [115].

In melon pieces treated by HPP, β-carotene was ob-
served to increase, differently from what was observed for
vitamin C [114]. In orange juice treated between 100 and
400MPa for 1–5min at temperatures between 30 and 60°C,
β-carotene, lutein, and zeaxanthin significantly increased
[112]. Remarkably, in bee pollen paste treated at 200–
400MPa and 20°C for 5–15min, a substantial increase in
total carotenoids was observed [117].

+e anthocyanins slightly decreased in blood orange
juice treated at 400–600MPa and 20°C for 15min [118],
while significantly increased in must obtained from grapes
treated at 400–550MPa and 20°C for 10min [119].

HPP at 400–600MPa and 25–50°C for 5 or 10min
caused a decrease of the total polyphenols in pomegranate
juice [106], whereas in blueberry juice [113] and in bee
pollen paste [117], total polyphenols significantly increased.
In the preservation of anthocyanins and polyphenols,
a significant role is also played by the inactivation by HPP of
the enzymes responsible for their degradation [120].

HPH and UHPH treatments are reported to better
preserve the natural functional compounds of the juices,
such as vitamins C and A, flavonoids, and polyphenols, while
reducing the microbial load to the desired value [121–123].
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In the dairy industry, homogenization has been extensively
used for the stabilization of food emulsions and the dis-
ruption of fat globules. +e higher operating pressures of
HPH/UHPH treatments enable also the direct microbial
inactivation, the disruption of smaller particles, and the
modification of proteins or other food constituents [124].
Figure 2(b) depicts the effects of HPH/UHPH treatment of
different liquid food products on the concentration of dif-
ferent bioactive compounds.

For example, both HPH and UHPH treatments reported
to induce a significant reduction of the suspended particle
size distribution in juices [121, 125, 126] and the juice
viscosity [125, 127, 128]. Additionally, the color attributes of
HPH-treated juices are not significantly altered, in com-
parison with the untreated product [121, 122, 125], whereas
the cloudiness and opalescence stability are significantly
improved [123, 126].

However, during pressure homogenization treatments,
due to the significant temperature rise occurring in the
homogenization valve, most of thermosensitive compounds,
such as vitamins, carotenoids, and anthocyanins, are de-
graded to a higher extent than that by HPP. For example,
when almond milk was treated at 200 or 300MPa and very
high inlet temperature (55–75°C), in order to obtain a mi-
crobiologically stable product, vitamin A was almost com-
pletely degraded [129]. However, in cloudy apple juice,
a treatment, carried out at 100–175MPa for 3–5 passes and
an inlet temperature of 10–35°C, caused a significant in-
crease in the content of vitamin A in the juice, with respect to
the untreated product, due to the disruption effect on
suspended vegetable cells.

Vitamins B1 and B2 were slightly reduced in almond
milk treated for a single UHPH pass at 350MPa and an inlet
temperature of 40°C [130]. UHPH treatment caused a slight
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Figure 2: Effect of various treatments of different food products on the concentration of different bioactive compounds, with respect to
a generic compound in an untreated product. (a) High-pressure processing; (b) high-pressure homogenization; (c) pulsed electric fields. Size
of each bubble is related to the concentration of the bioactive compounds after the nonthermal treatment, with respect to the initial
concentration.
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reduction in vitamin C in strawberry juice treated at higher
pressure (205MPa) for 3 passes at an inlet temperature of
20°C [131]. +e vitamin E content in soya milk was sig-
nificantly affected by an UHPH treatment carried out at 200
or 300MPa and very high inlet temperature (55–75°C),
required to obtain a microbiologically stable product [132].

+e total carotenoid content also exhibited a significant
decrease upon HPH/UHPH processing, independently on the
foodmatrix. In apple juice, treated for a single pass at pressures
between 100 and 300MPa and inlet temperatures of 10–20°C,
a reduction in carotenoids of 30% was observed [133]. In
orange juice, treated at the same conditions, the carotenoids
decreased about 20% [134]. In tomato pulp, processed, because
of its higher viscosity, at lower HPH pressures (20–100MPa)
for 1 pass and an inlet temperature of 4°C, a decrease in the
total carotenoids of about 30% was observed [135].

In contrast, the total polyphenols were well preserved by
pressure homogenization treatments, independently on the
food matrix. For example, in apple juice, treated for a single
pass between 100 and 300MPa and an inlet temperature of
10–20°C, the total polyphenols slightly increased [133]. In
orange juice, treated under the same conditions, the total
polyphenols remained constant [134]. In orange juice and
grape juice, treated at 250MPa and room temperature, the
total polyphenols slightly increased, with respect to un-
treated juices [136]. Similarly, mulberry juice, treated by
UHPH at 200MPa for 3 passes and an inlet temperature of
4°C, the total polyphenols remained constant [137]. Con-
versely, the same treatment had a detrimental effect on the
anthocyanins of mulberry juice, with an observed reduction
of almost 50% [137].

Remarkably, the content of flavonoids exhibited a sig-
nificant increase upon UHPH processing. For example, in
soya milk, despite the treatment at high inlet temperatures
(55–75°C, with a single pass at 200 or 300MPa), the fla-
vonoids increased of about 20% [132]. In orange juice,
treated in the pressure range (100–300MPa) but at signif-
icantly lower inlet temperatures (10–20°C), an even more
significant increase in the content of flavonoids was ob-
served, in comparison with untreated juice [134].

Pulsed electric field (PEF) technology is recognized to be
a technique able to cause a significant microbial inactivation in
beverages, while causing only a minimal impact both on the
quality properties and on the content of health-beneficial
compounds. +is is mainly due to the low treatment tem-
perature: although the intensity of PEF treatments might reach
electric fields intensities up to 40 kV/cm and a total energy
delivered to the product of 40–100 kJ/L [61], the product
temperature can be maintained below 40°C [138, 139].

Figure 2(c) clearly shows that, in different fruit and
vegetable juices, no significant decreases are observed
among the main health-beneficial compounds, including
vitamins, carotenoids, and phenolic compounds. In contrast,
in some cases, a significant increase is observed, which can
be attributed to the enhanced extraction of bioactives from
the vegetable cells [140].

In particular, vitamin A is observed to only slightly
decrease of less than 10% in orange juice [141], but to
significantly increase in apple [61] and in tomato juice [138].

Similarly, the vitamin C retention was always very high,
comprised between 90 and 100%, independently on the food
matrix [139, 142–145]. In the case of carotenoids, the PEF
treatments did not cause any significant decrease in con-
centration in orange juice [141, 146], tomato juice [138], and
watermelon juice [144] and a measurable increase (+25%) in
carrot juice [147].

In addition, no significant variation was observed for
flavonols in orange [148] or watermelon juice [144], for
flavanones in orange juice [146, 148] or watermelon juice
[144], for anthocyanins in strawberry juice [139], for total
polyphenols in apple [145], or in orange [148], in grape
[145], in blueberry [142], in tomato [139], and in carrot
juices [147].

Ultrasound is thought to enhance the destabilization of
casein micelles in milk [149]. +is can be used to advantage
in the coagulation of various milk sources, for example,
goats’ milk and reconstituted milk. Goats’ milk is known for
its weaker coagulation abilities as compared to cows’ milk.
+e use of ultrasound treatment prior to addition of rennet
resulted in smaller and more uniform particle sizes in the
coagulant formed [150, 151]. Ultrasonically treated milk and
yogurt samples also showed an increase in the gel firmness,
coagulum strength, final storage modulus, cohesiveness, and
water holding capacity [152]. +ese factors were stated to be
due to a decrease in the soluble proteins and an increase in
insoluble high-molecular-weight coaggregates formed as
a result of protein denaturization on sonication [153, 154].

Monteiro et al. [155] noticed that ultrasound energy
affects the physical properties of chocolate milk and the
subsequent size distribution of fat globules and resultant
rheological behavior of the treated sample; however, the
bioactive compounds present and the nutritional quality of
the product were still maintained. Changes to food materials
is dependent in the first case on the frequency employed for
sonication whether physical or mechanical changes are
required, thus employing lower frequencies, or whether
chemical changes are required where higher frequencies
would be of more benefit.

Supercritical drying with the use of supercritical fluids
(CO2) is used as an alternative process to conventional
drying techniques [156]. Carbon dioxide (CO2) at high
pressures (7.0 to 30.0MPa) or in supercritical phase (above
31°C, 7.3MPa) is considered as a novel nonthermal tech-
nology [157]. +is preservation technology achieves in-
activation of microorganisms and also meets consumers’
demands for a product with high nutritional and sensory
qualities [158]. Its main advantage is operation at relatively
low temperature that avoids the thermal effects of traditional
heat preservation, retaining the food freshness [159].

In food application field, nonthermal plasma (NTP)
comes in various ways, from food surface application to
direct in liquid food application. NTP is effective and causes
minor harm to the exposed materials, such as biological
samples or processed foods or packaging materials [160].
Researches have been mostly exploring plasma effect on
inactivation of microorganisms [161, 162], but lately, plasma
effect on food ingredients becomes focus topic due to
combined physicochemical effects and complexed food
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structure. Plasma application in/on food brings another
perspective of possible negative effects on phenolic com-
pounds due to production of oxidative species.

Grzegorzewski et al. [163] have noted a degradation of
phenolic compounds in lamb’s lettuce after NTP treatment,
but Misra et al. [164] have reported that cold plasma
treatments had no significant effect on anthocyanins in
strawberries and that, at the same time, phenolic acids have
remained unchanged. Regarding liquid food, like fruit juices,
an increase in total phenolic content [165] and anthocyanin
content [166] in pomegranate juice after plasma treatment
has been observed, as well as an increase in anthocyanin and
phenolic acid contents in sour cherryMarasca juice [167] has
been observed. Lukić et al. [168] report effects of plasma
treatment on wines (red wine Cabernet Sauvignon and white
wine Graševina) which have resulted in slight changes of
chromatic characteristics and in reduction of phenolic
compounds in both red and white wines, including total
phenolics, total anthocyanins, total tannins, and certain free
anthocyanins, while the concentrations of the most indi-
vidual phenolic acids and flavan-3-ols slightly increased.
+ese results led to new opening field of plasma treatment as
a new extraction method due to improvement in the ex-
traction of phenolic and other compounds.

5. Importance of Analyzing Environmental
Impacts of Nonthermal Food Technologies

Besides obtaining safe products with high quality with
nonthermal technologies, food processors are increasing
their interest in reducing the environmental footprint of the

products and the processing cost [169]. However, analysis
and comparison of environmental impacts of nonthermal
technologies pose a challenge mainly because of the dif-
ferences in the scale of the facilities and food processed
(meat, egg, fruit, vegetables, liquid food, etc.). In most of the
cases, these techniques are not implemented in large-scale
industrial facilities and are often studied on lab scale or pilot
level without deep analysis of the complete process [170].

Technologies, such as pulsed electric field treatment or
high-pressure treatment, not only achieve microbial in-
activation under mild conditions or inactivate certain enzymes
and prevent undesired changes in food but also decrease
processing time and decrease energy consuming [6, 171].

In analyzing nonthermal technologies, it is common to
use the life cycle assessment (LCA) approach. It is a scientific
method that includes mapping the process, setting the scope
and boundaries, collecting data, calculating, evaluating, and
interpreting the results with the aim to propose environ-
mental improvements [172]. Hospido et al. [170] stress the
difficulties in evaluating environmental impact of these
technologies in terms of (i) the lack of real data for the in-
ventory phase, which is often based on lab-scale information
or theoretical data; (ii) the definition of the functional unit for
comparative studies since new products or processes might
have unique properties; and (iii) that manufacture of products
or processes can be expected to start several years ahead and
assumptions on surrounding systems will be required. Once
the technologies are transferred from labs to real production
plants, novel processing technologies can be compared with
existing commercial alternatives and environmental hotspots
can be identified [173].

Input Processing Output 

Air and greenhouse gas 
emission: NOx, SOx (g)

Nonthermal
technology

Sample: (g/mL)

Energy: 
Electric energy (kWh)

Fossil fuels (kg/L)

Natural resources: 
Water (L)

Other materials: 
(g/mL/units) Wastewater discharge (mL)

Treated sample 

Inorganic waste (g/mL):
Consumables (paper, 

plastics, metal)

Other materials for the 
experiment: (g/mL)

Organic waste (g/mL)

Cleaning agents (acid/ 
alkaline) (g/mL)

Figure 3: Generic model of using nonthermal technologies. Rounded rectangles outlined in solid lines present direct inputs and outputs;
rounded rectangles outlined in dashed lines present inputs/outputs not directly related to nonthermal technologies.
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Evaluation of environmental impact of novel technol-
ogies is usually performed using a partial life cycle assess-
ment (LCA) approach. It included mapping the process of
novel food treatments, setting scope and boundaries as lab
scale, collecting and calculating data, and evaluating the
results [172]. Functional unit (FU) as an output reference
may be set as 1 kg/1 L of treated food product. Figure 3
depicts the generic system boundaries.

+ere are some comparative LCA studies of conven-
tional and novel technologies. Pardo and Zuf́ıa [174] eval-
uated the environmental impacts of some traditional and
novel food preservation technologies with the aim to con-
tribute to the development of more sustainable food
products. Some general improvements were identified, and
environmental criteria were provided in order to select the
more adequate preservation method when designing new
food products. Valsasina et al. [175] compared ultrahigh-
pressure homogenization with common thermal treatment
for milk. +e upscaling showed a decrease in carbon foot-
print up to 88% achievable with improvements in efficiency.

Aganovic et al. [176] studied the energy balance and LCA
of pulsed electric fields and high-pressure processing tech-
nologies in comparison with conventional thermal processing
applied to the preservation of tomato and watermelon juices.
However, at a pilot scale, both pulsed electric field and high-
pressure processing technologies presented higher energy
consumption expressed per liter of juice, indicating the ne-
cessity for further optimization of the process.

6. Future Challenges of Novel Nonthermal
Technologies and Conclusion

Legislation on hygienic design of food-processing equip-
ment is rather vague [34]. Considering that there are a large
number of different types of standards and regulations re-
lated to hygienic design and due to the redundancy of many
requirements, a compact tool for evaluating novel tech-
nologies is more than needed [33].

In the future, studies related to comparison of envi-
ronmental impacts of novel and conventional techniques
will need to go in two directions: (i) improving the envi-
ronmental performance of nonthermal technologies per se,
and (ii) comparing environmental aspects of nonthermal
and conventional technologies, along with weighting other
factors such as quality of the final product or investment
costs [2].
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[88] G. Özcan and N. N. Demirel Zorba, “Combined effect of
ultrasound and essential oils to reduce Listeria mono-
cytogenes on fresh produce,” Food Science and Technology
International, vol. 22, no. 4, pp. 353–362, 2016.

[89] J. Liu, L. Li, L. Zhou, B. Li, and Z. Xu, “Effect of ultrasound
treatment conditions on Saccharomyces cerevisiae by re-
sponse surface methodology,” Microbial Pathogenesis,
vol. 111, pp. 497–502, 2017.

[90] D. Kang, Y. Jiang, L. Xing, G. Zhou, and W. Zhang, “In-
activation of Escherichia coli O157:H7 and Bacillus cereus by
power ultrasound during the curing processing in brining
liquid and beef,” Food Research International, vol. 102,
pp. 717–727, 2017.

[91] J. J. Sienkiewicz, A. Wesołowski, W. Stankiewicz, and
R. Kotowski, “+e influence of ultrasonic treatment on the
growth of the strains of Salmonella enterica subs.

typhimurium,” Journal of Food Science and Technology,
vol. 54, no. 8, pp. 2214–2223, 2017.

[92] L. Milne, I. Stewart, and D. H. Bremner, “Comparison of
hydroxyl radical formation in aqueous solutions at different
ultrasound frequencies and powers using the salicylic acid
dosimeter,” Ultrasonics Sonochemistry, vol. 20, no. 3,
pp. 984–989, 2013.

[93] D. Comeskey, O. A. Larparadsudthi, T. J. Mason, and
L. Paniwnyk, “+e use of a range of ultrasound frequencies to
reduce colouration caused by dyes,” Water Science and
Technology, vol. 66, no. 10, pp. 2251–2257, 2012.

[94] D.-c. Kang, Y.-h. Zou, Y.-p. Cheng, L.-j. Xing, G.-h. Zhou,
and W.-g. Zhang, “Effects of power ultrasound on oxidation
and structure of beef proteins during curing processing,”
Ultrasonics Sonochemistry, vol. 33, pp. 47–53, 2016.

[95] D.-c. Kang, X.-q. Gao, Q.-f. Ge, G.-h. Zhou, and
W.-g. Zhang, “Effects of ultrasound on the beef structure and
water distribution during curing through protein degrada-
tion and modification,” Ultrasonics Sonochemistry, vol. 38,
pp. 317–325, 2017.

[96] J. Sun, X. Li, X. Lin et al., “Sonodegradation of cyanidin-3-
glucosylrutinoside: degradation kinetic analysis and its im-
pact on antioxidant capacity in vitro,” Journal of the Science
of Food and Agriculture, vol. 97, no. 5, pp. 1475–1481, 2017.

[97] G.-L. Yao, X.-H. Ma, X.-Y. Cao, and J. Chen, “Effects of
power ultrasound on stability of cyanidin-3-glucoside ob-
tained from blueberry,” Molecules, vol. 21, no. 11, p. 1564,
2016.

[98] K. Tsikrika, B.-S. Chu, D. H. Bremner, and M. Adı́lia Lemos,
“+e effect of different frequencies of ultrasound on the
activity of horseradish peroxidase,” LWT-Food Science and
Technology, vol. 89, pp. 591–595, 2018.

[99] S. K. Vanga, A. Singh, and V. Raghavan, “Review of con-
ventional and novel food processing methods on food al-
lergens,” Critical Reviews in Food Science and Nutrition,
vol. 57, no. 10, pp. 2077–2094, 2017.

[100] N. V. Olsen, K. G. Grunert, and A.-M. Sonne, “Consumer
acceptance of high-pressure processing and pulsed-electric
field: a review,” Trends in Food Science and Technology,
vol. 21, no. 9, pp. 464–472, 2010.

[101] E. Walther, B. Nagengast, and C. Trasselli, “Evaluative
conditioning in social psychology: facts and speculations,”
Cognition and Emotion, vol. 19, no. 2, pp. 175–196, 2005.

[102] B. De Ancos, S. Sgroppo, L. Plaza, and M. P. Cano, “Possible
nutritional and health-related value promotion in orange
juice preserved by high-pressure treatment,” Journal of the
Science of Food and Agriculture, vol. 82, no. 8, pp. 790–796,
2002.

[103] P. Butz, A. Fernández Garcı́a, R. Lindauer, S. Dieterich,
A. Bognár, and B. Tauscher, “Influence of ultra high pressure
processing on fruit and vegetable products,” Journal of Food
Engineering, vol. 56, no. 2-3, pp. 233–236, 2003.

[104] L. Daoudi, J. M. Quevedo, A. J. Trujillo et al., “Effects of high-
pressure treatment on the sensory quality of white grape
juice,” International Journal of High Pressure Research,
vol. 22, no. 3-4, pp. 705–709, 2002.

[105] A. F. Garcı́a, P. Butz, A. Bognàr, and B. Tauscher, “Anti-
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K. Kovačević Ganić, “+e impact of high voltage electrical
discharge plasma on the chromatic characteristics and
phenolic composition of red and white wines,” Innovative
Food Science and Emerging Technologies, In press.

[169] R. Pereira and A. Vicente, “Environmental impact of novel
thermal and non-thermal technologies in food processing,”
Food Research International, vol. 43, no. 7, pp. 1936–1943,
2010.

[170] A. Hospido, J. Davis, J. Berlin, and U. Sonesson, “A review of
methodological issues affecting LCA of novel food products,”
International Journal of Life Cycle Assessment, vol. 15, no. 1,
pp. 44–52, 2010.

[171] S. Toepfl, A. Mathys, V. Heinz, and D. Knorr, “Review:
potential of high hydrostatic pressure and pulsed electric
fields for energy efficient and environmentally friendly food
processing,” Food Reviews International, vol. 22, no. 4,
pp. 405–423, 2006.

[172] ISO, ISO 14040:2006 Environmental Management—Life
Cycle Assessment—Principles and Framework, International
Organization for Standardization, Geneva, Switzerland,
2006.

[173] A. C. Hetherington, A. Li Borrion, O. Glyn Griffiths, and
M. C. McManus, “Use of LCA as a development tool within
early research: challenges and issues across different sectors,”
International Journal of Life Cycle Assessment, vol. 19, no. 1,
pp. 130–143, 2014.

[174] G. Pardo and J. Zuf́ıa, “Life cycle assessment of food-
preservation technologies,” Journal of Cleaner Production,
vol. 28, pp. 198–207, 2012.

[175] L. Valsasina, M. Pizzol, S. Smetana, E. Georget, A. Mathys,
and V. Heinz, “Life cycle assessment of emerging technol-
ogies: the case of milk ultra-high pressure homogenisation,”
Journal of Cleaner Production, vol. 142, pp. 2209–2217, 2017.

[176] K. Aganovic, S. Smetana, T. Grauwet et al., “Pilot scale
thermal and alternative pasteurization of tomato and

watermelon juice: an energy comparison and life cycle as-
sessment,” Journal of Cleaner Production, vol. 141, pp. 514–
525, 2017.

18 Journal of Food Quality



Hindawi
www.hindawi.com

 International Journal of

Volume 2018

Zoology

Hindawi
www.hindawi.com Volume 2018

 Anatomy 
Research International

Peptides
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Journal of 
Parasitology Research

Genomics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Neuroscience 
Journal

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International

Cell Biology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Biochemistry 
Research International

Archaea
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Genetics 
Research International

Hindawi
www.hindawi.com Volume 2018

Advances in

Virolog y Stem Cells 
International

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Enzyme 
Research

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology
Hindawi
www.hindawi.com

Nucleic Acids
Journal of

Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijz/
https://www.hindawi.com/journals/ari/
https://www.hindawi.com/journals/ijpep/
https://www.hindawi.com/journals/jpr/
https://www.hindawi.com/journals/ijg/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/abi/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/neuroscience/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/ijcb/
https://www.hindawi.com/journals/bri/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/gri/
https://www.hindawi.com/journals/av/
https://www.hindawi.com/journals/sci/
https://www.hindawi.com/journals/er/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/jna/
https://www.hindawi.com/
https://www.hindawi.com/

	Pillars cs
	Three pillars pdf

