
Computing with CodeRunner at
Coventry University: Automated
summative assessment of Python and
C++ code

Croft, D. & England, M.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Croft, D & England, M 2020, Computing with CodeRunner at Coventry University:
Automated summative assessment of Python and C++ code in CEP 2020: Proceedings of
the 4th Conference on Computing Education Practice 2020, 1, ACM, pp. 1-4, Computing
Education Practice 2020, Durham, United Kingdom, 9/01/20.
https://dx.doi.org/10.1145/3372356.3372357

DOI 10.1145/3372356.3372357
ISBN 978-1-4503-7729-4

Publisher: Association for Computing Machinery

© ACM, 2020. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
CEP 2020: Proceedings of the 4th Conference on Computing Education Practice 2020
http://doi.acm.org/10.1145/3372356.3372357

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without prior permission
or charge. This item cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder(s). The content must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright
holders.

This document is the author’s post-print version, incorporating any revisions agreed during the
peer-review process. Some differences between the published version and this version may
remain and you are advised to consult the published version if you wish to cite from it.

Computing with CodeRunner at Coventry University
Automated summative assessment of Python and C++ code

David Croft
Coventry University

Coventry, U.K.
David.Croft@coventry.ac.uk

Matthew England
Coventry University

Coventry, U.K.
Matthew.England@coventry.ac.uk

ABSTRACT
CodeRunner is a free open-source Moodle plugin for automatically
marking student code. We describe our experience using CodeRun-
ner for summative assessment in our first year undergraduate pro-
gramming curriculum at Coventry University. We use it to assess
both Python3 and C++14 code (CodeRunner supports other lan-
guages also). We give examples of our questions and report on how
key metrics have changed following its use at Coventry.

CCS CONCEPTS
• Social andprofessional topics→Computing education; Stu-
dent assessment; •Applied computing→ E-learning; Learning
management systems.

KEYWORDS
Programming Education; Automated Assessment; CodeRunner
ACM Reference Format:
David Croft and Matthew England. 2020. Computing with CodeRunner
at Coventry University: Automated summative assessment of Python and
C++ code. In Computing Education Practice 2020 (CEP 2020), January 9,
2020, Durham, United Kingdom. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3372356.3372357

1 INTRODUCTION
CodeRunner is a tool developed at the University of Canterbury,
New Zealand, for automatically assessing student code [5]. We use
it for summative assessment of programming of first year Computer
Science students at Coventry University.

The use of automated assessment for coding is of course not a
new topic − see for example the survey [1]. However, it seems his-
torically there are a wide range of independent tools with few used
very widely beyond the institutions which created them. In contrast,
CodeRunner was developed as a plugin for the very widely used
learning management system Moodle1. Further, it is fully approved
by Moodle which means installation is easy, both technically and in
1According to the following 2017 report Moodle is used by an absolute majority of HE
institutions in Europe, Latin America and Oceania; and a quarter in North America:
http://eliterate.us/academic-lms-market-share-view-across-four-global-regions/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CEP 2020, January 9, 2020, Durham, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7729-4/20/01. . . $15.00
https://doi.org/10.1145/3372356.3372357

terms of administration2. CodeRunner has the potential to become
the standard automated code assessment tool of choice, but to the
best of our knowledge the only publication on CodeRunner is the
2016 introduction by the developers in ACM Inroads [5]. We hence
think there is value in sharing our experiences.

2 OUR CONTEXT AND MOTIVATION
The authors design and lead the first year programming curriculum
for the Computer Science (CS) degree at Coventry University. This
is based around two key modules3:

4000CEM Programming and Algorithms First semester.
Introduces basic control structures in Python 3 and ideas
around different algorithms to solve the same problem.

4003CEM Object Oriented Programming Second semester.
Translates from Python to C++14; then introduces the ideas
of objects, classes, and inheritance.

Our intake is diverse: we do not require A-level Mathematics, prior
CS study, or programming experience (although many students will
have some or all of these). The 2018/19 cohort had ∼280 students.

2.1 Additional Project Modules
Thesemodules focus on core programming ideas and theory, demon-
strated by fairly traditional programming exercises and tasks (albeit
delivered in a modern cloud-based environment as described be-
low). However, in each semester students also take an additional
group project module where they apply all the concepts they are
learning in their degree to a real world problem via an activity-led
learning approach. These projects, and their unique administration
and assessment, are described in [2].

2.2 Other Recent Innovations at Coventry
The authors described in CEP 2019 how they have introduced the
learning environment Codio to their modules [3]. Codio provides
students with online virtual Linux boxes, which staff equip with
guides. In [3] we described how the adoption of Codio was, in
main, a response to a low-level of formative feedback provision
and uptake (being made harder still by rapidly increasing student
numbers). Our Codio units contain numerous formative tasks that
feedback on student code automatically by running test scripts
written by the authors. Additional benefits from Codio described
in [3] include a standardised development environment on diverse
student hardware, cloud storage for student code, and a detailed
source of additional student data on engagement and progress.
2The approved plugin status meant our IT team team would add it to our Moodle
installation without any major review.
3These modules ran for the first time in 2018/19. Later references to what happened in
prior years refer to two very similar modules which these replaced.

https://doi.org/10.1145/3372356.3372357
https://doi.org/10.1145/3372356.3372357
http://eliterate.us/academic-lms-market-share-view-across-four-global-regions/
https://doi.org/10.1145/3372356.3372357

CEP 2020, January 9, 2020, Durham, United Kingdom D. Croft and M. England

2.3 Assessment Prior to CodeRunner
As part of the project modules, students give group reports, pre-
sentations, and individual vivas on their programming. Modules
4000CEM and 4003CEM are then assessed using tests: each has one
in the middle of the term and one at the end. It is the mid-term tests
where we have made a change to employ CodeRunner.

Given the mid-semester time, tight feedback deadlines, and large
quantity of students, an auto-marked mid-term was essential (espe-
cially with the human feedback committed to the projects). We use
Moodle quizzes, but prior to 2018/19 these employed only the stan-
dard Moodle question types like multiple choice. Such questions
can assess knowledge of programming concepts and theory, but not
the ability to formulate an algorithm and code to solve a problem.
4000CEM has also a written exam which does assess these abilities,
however, this is an inauthentic environment; different to both the
one in which students learnt the material and any professional
environment in which they would later apply it. E.g. no syntax
checker, no access to language documentation, no ability to edit
the code without writing it all out again. The additional verbosity
required for C++ code meant that 4003CEM has no written exam.
Our positive results with automated formative feedback [3] led us
to consider the same approach for summative assessment.

2.4 Codio for Summative Assessment?
The software that administers Codio tasks is stored on the virtual
machine to which students have sudo rights. Hence they could ac-
cess and edit the task code if they knew how. There is no motivation
for this with formative assessment, but it would be an unacceptable
risk for summative. Further, our university regulations forbid the
use of a third-party in summative assessment, which also precluded
the use of any alternative providers with more locked down envi-
ronments. We thus looked for another method of automated code
testing for summative assessment and found CodeRunner.

3 CODERUNNER
CodeRunner is a free tool for testing student code4. It is an approved
plug-in for the widely used learning management system Moodle
and is also available open source for those who wish to customise5.

We use CodeRunner with Python3 and C++14, but the standard
installation also has question types for C, Java, Javascript (NodeJS)
PhP, Matlab, and Octave; and the system essentially allows for use
with any language that can be executed on the Linux server.

3.1 Main Functionality
CodeRunner provides an additional Moodle quiz question type6
where the student answer is code, sent to a separate (university)
server where it is executed against unit tests. The tests can simply
check for desired standard output, or perform something more
involved which the teacher codes up. Some of our favourite features:

• Students type code into a box with basic IDE functionality,
e.g. syntax highlighting and automated indentation.

• Students can see the results of a syntax checker on the code
before submitting it to the full set of unit tests.

4http://coderunner.org.nz
5https://github.com/trampgeek/moodle-qtype_coderunner
6Thus CodeRunner questions can be combined in a test with those of other types.

• If student code creates error messages they are shown.
• After seeing the results of the unit tests students can edit
their code and try again. The number of attempts, and penalty
regime (if any) is fully customisable.

• Students can be given links to resources such as the standard
documentation for a language.

Thus a CodeRunner test an authentic examination of programming
ability, and we can still maintain test integrity. Students take tests
under exam conditions with the usual Moodle quiz security tools:
passwords, required IP, use of the Safe Exam Browser, etc.

3.2 Options for Individual Unit Tests
The number of marks for each unit test can be varied. Individual
tests can also be flagged as one of the following special cases:

• Examples: meaning the expected input and output is dis-
played prior to the student attempt. These can aid student’s
understanding of what is being asked of them.

• Pre-check:meaning these tests are run for free (i.e. without
penalty). We use these to check the student has spelt the
function name correctly, and to inform them of syntax errors.

• Hidden: meaning students do not see the input and output
even after the tests. Essential to avoid a student hard-coding
a large if-statement with all the known test inputs!

3.3 Other Useful Features
There is an option to pre-populate the answer box with partially
complete / buggy code which you can then ask the student to extend
/ fix. This is particularly useful for assessing object oriented pro-
gramming: e.g. asking students to implement an additional method
which interacts with the other methods and attributes in specified
ways. Students can reset the answer box to its original state.

A teacher can opt to store their own model answer to a question.
This can then be revealed to students after the test. It can also be
evaluated against the unit tests after each change − a very useful
error check during the development of quizzes and their tests.

4 EXAMPLES
4.1 Python
Figure 1 shows a typical question from the assessment of our Python
module. Students must write a function to calculate the average
string length for a given list of strings by iterating with a for loop.
The expected correct answer would be similar to the one shown
passing all tests in Figure 2. Our tests mark this question out of 10
marks as follows (in the order of Figure 2):

0.5 for defining a function with the correct name. Checked
with the Python code "avgWordLength" in globals()

0.5 for the function have the correct number of parameters.
Checked using the signature function of the inspectmod-
ule of the Python Standard Library.

0.5 for the function returning data of the correct type (float).
0.5 × 3 for three test cases for which the student can observe

the input and output. The first of these is flagged as an
Example and so was included with the question in Figure 1.

2.0 × 2 for two further test cases which are flagged as hidden
(they appear opaque when a teacher views as in Figure 2).

http://coderunner.org.nz
https://github.com/trampgeek/moodle-qtype_coderunner

Computing with CodeRunner at Coventry University CEP 2020, January 9, 2020, Durham, United Kingdom

Figure 1: Example of a CodeRunner question

1.0 × 3 for checks that the requested control structure was
used. The student code is stored as a string so we just check
for substrings " for ", " while " & " map "7 and check
recursion by counting occurrences of the function name.

An initial attempt at a solution to the problemmay be the following:

Computing with CodeRunner at Coventry University CEP 2020, January 9, 2020, Durham, United Kingdom

Figure 1: Example of a CodeRunner question

1.0 × 3 for checks that the requested control structure was
used. The student code is stored as a string so we just check
for substrings " for ", " while " & " map "7 and check
recursion by counting occurrences of the function name.

An initial attempt at a solution to the problem may be the following:
def avgWordLength(listOfWords):

for word in listOfWords
totalLetters = totalLetters + len(word)

average = totalLetters/len(listOfWords)

This code contains 3 errors: (1) missing colon at the end of line 2;
(2) no initialisation of the variable totalLetters; (3) not returning
the final answer. (1) is a syntax error: the Precheck button would
display the Python interpreter message pointing to the end of line
2. Once we add the colon the PreCheck would return no further
information − students should then use Check to get the test results
in Figure 3. The testing stops after one triggers a runtime error with
students shown the usual message. Initialising totalLetters and
checking again gives the results in Figure 4. This time there are no
runtime errors so all unit tests are evaluated. Students do not see
the opaque hidden test details but are informed of their failure.

If students then added in the return statement and pressed Check
again they would pass all tests as in Figure 2. They would have only
used Check twice and thus receive no penalty, getting full marks
for the question. This reflects our view that errors (1)-(3) are not
critical gaps in student knowledge, so long as they are able to read
the error messages and unit test feedback to correct them quickly.

Gaming the system? A function that simply returned 4.0 (the ex-
ample result) would get 20%, while one with an if-statement for
the three visible test answers with any float otherwise could obtain
30%. Similarly, students could randomly guess the right answer on
a multiple choice question. We could follow that if-statement with
a syntactically correct but meaningless for-loop to pass all but the
hidden tests and score 60%. However, in that case the student has
actually demonstrated knowledge of Python for-loops: it is unlikely
they would posses this knowledge but still need to game the system.
7The spaces around the words are deliberate as we care only for these Python keywords
and their appearance within longer words. Python’s required indentation for function
body means they cannot occur at the start of a line.

Figure 2: Example of a student answer to the question in Fig-
ure 1 that would pass all of tests (the opaque rows are hidden
tests which would not be seen by the student)

4.2 C++
Utilising CodeRunner in the assessment of C++ code poses addi-
tional challenges when compared to Python. It is likely that these
issues will also manifest in the assessment of other statically typed
and compiled languages (e.g. Java). Essentially, a range of student
mistakes which would cause runtime errors in Python cause com-
piler errors in C++. Then, as compilation is unsuccessful, it is im-
possible to run the unit tests and so students receive no marks for
what may have been correct code with just minor errors.

In the code below the student was meant to declare a function
that doubled its argument but misunderstood and wrote a function
to simple return 10 (probably this was the example case).
/** correct solution **/
int double_it(int arg) { return arg*2; }
/** student submission **/
int double_it() { return 10; }
/** unit testing **/
std::cout << double_it(5) << std::endl;

Of course, the student does not deserve many marks but they have
shown they can create a C++ function and so if marked by hand it
would get some partial credit. However, a unit test like that shown
on the final line would cause a compilation error. It is a trivial
example but the issue applies generally: e.g. if a student declared
a class with correct inheritance properties then awarding zero on
the basis on a minor error in one method is extremely undesirable.
To address this we utilise a combination of Substitution Failure

Is Not An Error (SFINAE) [6, § 8.3.1] and preprocessor macros
to perform code introspection during compilation. A simplified

This code contains 3 errors: (1) missing colon at the end of line 2;
(2) no initialisation of the variable totalLetters; (3) not returning
the final answer. (1) is a syntax error: the Precheck button would
display the Python interpreter message pointing to the end of line
2. Once we add the colon the PreCheck would return no further
information − students should then use Check to get the test results
in Figure 3. The testing stops after one triggers a runtime error with
students shown the usual message. Initialising totalLetters and
checking again gives the results in Figure 4. This time there are no
runtime errors so all unit tests are evaluated. Students do not see
the opaque hidden test details but are informed of their failure.

If students then added in the return statement and pressed Check
again they would pass all tests as in Figure 2. They would have only
used Check twice and thus receive no penalty, getting full marks
for the question. This reflects our view that errors (1)-(3) are not
critical gaps in student knowledge, so long as they are able to read
the error messages and unit test feedback to correct them quickly.

Gaming the system? A function that simply returned 4.0 (the ex-
ample result) would get 20%, while one with an if-statement for
the three visible test answers with any float otherwise could obtain
30%. Similarly, students could randomly guess the right answer on
a multiple choice question. We could follow that if-statement with
a syntactically correct but meaningless for-loop to pass all but the
hidden tests and score 60%. However, in that case the student has
actually demonstrated knowledge of Python for-loops: it is unlikely
they would posses this knowledge but still need to game the system.
7The spaces around the words are deliberate as we care only for these Python keywords
and their appearance within longer words. Python’s required indentation for function
body means they cannot occur at the start of a line.

Figure 2: Example of a student answer to the question in Fig-
ure 1 that would pass all of tests (the opaque rows are hidden
tests which would not be seen by the student)

4.2 C++
Utilising CodeRunner in the assessment of C++ code poses addi-
tional challenges when compared to Python. It is likely that these
issues will also manifest in the assessment of other statically typed
and compiled languages (e.g. Java). Essentially, a range of student
mistakes which would cause runtime errors in Python cause com-
piler errors in C++. Then, as compilation is unsuccessful, it is im-
possible to run the unit tests and so students receive no marks for
what may have been correct code with just minor errors.

In the code below the student was meant to declare a function
that doubled its argument but misunderstood and wrote a function
to simple return 10 (probably this was the example case).

Computing with CodeRunner at Coventry University CEP 2020, January 9, 2020, Durham, United Kingdom

Figure 1: Example of a CodeRunner question

1.0 × 3 for checks that the requested control structure was
used. The student code is stored as a string so we just check
for substrings " for ", " while " & " map "7 and check
recursion by counting occurrences of the function name.

An initial attempt at a solution to the problem may be the following:
def avgWordLength(listOfWords):

for word in listOfWords
totalLetters = totalLetters + len(word)

average = totalLetters/len(listOfWords)

This code contains 3 errors: (1) missing colon at the end of line 2;
(2) no initialisation of the variable totalLetters; (3) not returning
the final answer. (1) is a syntax error: the Precheck button would
display the Python interpreter message pointing to the end of line
2. Once we add the colon the PreCheck would return no further
information − students should then use Check to get the test results
in Figure 3. The testing stops after one triggers a runtime error with
students shown the usual message. Initialising totalLetters and
checking again gives the results in Figure 4. This time there are no
runtime errors so all unit tests are evaluated. Students do not see
the opaque hidden test details but are informed of their failure.

If students then added in the return statement and pressed Check
again they would pass all tests as in Figure 2. They would have only
used Check twice and thus receive no penalty, getting full marks
for the question. This reflects our view that errors (1)-(3) are not
critical gaps in student knowledge, so long as they are able to read
the error messages and unit test feedback to correct them quickly.

Gaming the system? A function that simply returned 4.0 (the ex-
ample result) would get 20%, while one with an if-statement for
the three visible test answers with any float otherwise could obtain
30%. Similarly, students could randomly guess the right answer on
a multiple choice question. We could follow that if-statement with
a syntactically correct but meaningless for-loop to pass all but the
hidden tests and score 60%. However, in that case the student has
actually demonstrated knowledge of Python for-loops: it is unlikely
they would posses this knowledge but still need to game the system.
7The spaces around the words are deliberate as we care only for these Python keywords
and their appearance within longer words. Python’s required indentation for function
body means they cannot occur at the start of a line.

Figure 2: Example of a student answer to the question in Fig-
ure 1 that would pass all of tests (the opaque rows are hidden
tests which would not be seen by the student)

4.2 C++
Utilising CodeRunner in the assessment of C++ code poses addi-
tional challenges when compared to Python. It is likely that these
issues will also manifest in the assessment of other statically typed
and compiled languages (e.g. Java). Essentially, a range of student
mistakes which would cause runtime errors in Python cause com-
piler errors in C++. Then, as compilation is unsuccessful, it is im-
possible to run the unit tests and so students receive no marks for
what may have been correct code with just minor errors.

In the code below the student was meant to declare a function
that doubled its argument but misunderstood and wrote a function
to simple return 10 (probably this was the example case).
/** correct solution **/
int double_it(int arg) { return arg*2; }
/** student submission **/
int double_it() { return 10; }
/** unit testing **/
std::cout << double_it(5) << std::endl;

Of course, the student does not deserve many marks but they have
shown they can create a C++ function and so if marked by hand it
would get some partial credit. However, a unit test like that shown
on the final line would cause a compilation error. It is a trivial
example but the issue applies generally: e.g. if a student declared
a class with correct inheritance properties then awarding zero on
the basis on a minor error in one method is extremely undesirable.
To address this we utilise a combination of Substitution Failure

Is Not An Error (SFINAE) [6, § 8.3.1] and preprocessor macros
to perform code introspection during compilation. A simplified

Of course, the student does not deserve many marks but they have
shown they can create a C++ function and so if marked by hand it
would get some partial credit. However, a unit test like that shown
on the final line would cause a compilation error. It is a trivial ex-
ample but the issue applies generally: e.g. if a student declared a
class with correct inheritance properties then awarding zero on the
basis on a minor error in one method is extremely undesirable.

To address this we utilise a combination of Substitution Fail-
ure Is Not An Error (SFINAE) [6, § 8.3.1] and preprocessor macros
to perform code introspection during compilation. A simplified

CEP 2020, January 9, 2020, Durham, United Kingdom D. Croft and M. England

Figure 3: Test results for a student answer that caused a runtime error

Figure 4: Failed unit tests without raising errors

demonstration of SFINAE is shown in the code below where we
define a series of increasingly more specific templates to test the
existence of the required function with a signature increasingly
closer to the correct one. This approach allows for partial credit,
and also more intuitive error messages than a C++ complier.

CEP 2020, January 9, 2020, Durham, United Kingdom D. Croft and M. England

Figure 3: Test results for a student answer that caused a runtime error

Figure 4: Failed unit tests without raising errors

demonstration of SFINAE is shown in the code below where we
define a series of increasingly more specific templates to test the
existence of the required function with a signature increasingly
closer to the correct one. This approach allows for partial credit,
and also more intuitive error messages than a C++ complier.
template<typename T>
std::string func_test(T *f, int arg)
{ return "Not a function"; }
template<typename R, typename A>
std::string test_function(R (*f)(A), int arg)
{ return "Incorrect parameter type"; }
template<typename R, typename ...Args>
std::string func_test(R (*f)(Args...), int arg)
{ return "Incorrect number of parameters"; }
int func_test(int (*f)(int), int arg)
{ return (*f)(arg); };
std::cout << func_test(&double_it, 5) << std::endl;

We have developed C++ introspection code to determine: the
existence of functions, parameter number/types, return types, class
inheritance/attributes/methods, and more. It was a significant time
investment but mostly a one-off payment8. Student code may still
cause error messages: but these errors are from within the student’s
code (rather than the test code) and so the error message should be
enough to correct them.
8Contact the first author for access to the C++ Library of introspection code.

5 RESULTS AT COVENTRY
In both modules our CodeRunner assessments had lower average
marks and pass rates that the multiple choice tests they replaced.
In our opinion this is because the multiple choice tests overrated
student’s programming ability. The final written exam for 4000CEM
has been of a similar format and difficulty for several years - the co-
hort who were assessed in the mid term using CodeRunner actually
had average exam mark 7% higher and pass rate 10% higher!
We measure student satisfaction with an online questionnaire

that mimics the UK National Student Survey. In 4000CEM over-
all satisfaction increased 4% to 93% following the introduction of
CodeRunner for the mid term assessment. More importantly, stu-
dents satisfaction with assessment and feedback increased 7% to
90%. Assessment and feedback is often the area where students are
most dissatisfied so this result is particularly promising. More gen-
erally, the literature suggests that the relative correctness of work
implies by unit tests is accepted by the student body [4].
In 4003CEM the fall in initial student marks was more pro-

nounced and there was a corresponding fall in student satisfaction.
This prompted the development of the introspection code to better
reward partial credit described above9. With this in place we antic-
ipate a smoother experience assessing C++ next year. One topic for
our future work with CodeRunner is an investigation on the most
appropriate penalty regime to apply for checking the unit tests.

ACKNOWLEDGMENTS
We are grateful to the developers of CodeRunner; and the organisers
of the 2017 CodeRunner workshop at the University of Edinburgh.

REFERENCES
[1] K.M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education 15, 2 (2005), 83–102.
https://doi.org/10.1080/08993400500150747

[2] S. Billings and M. England. 2020. First Year Computer Science Projects at Coventry
University: Activity-led integrative team projects with continuous assessment. In
Proc. CEP ’20. ACM, In Press. https://doi.org/10.1145/3372356.3372358

[3] D. Croft and M. England. 2019. Computing with Codio at Coventry University:
Online Virtual Linux Boxes and Automated Formative Feedback. In Proc. CEP ’19.
ACM, Article 16, 4 pages. https://doi.org/10.1145/3294016.3294018

[4] Y.B.D. Kolikant. 2005. Students’ Alternative Standards for Correctness. In Proc.
ICER ’05. ACM, 37–43. http://doi.org/10.1145/1089786.1089790

[5] R. Lobb and J. Harlow. 2016. CodeRunner: A Tool for Assessing Computer Program-
ming Skills. ACM Inroads 7, 1 (2016), 47–51. https://doi.org/10.1145/2810041

[6] D. Vandevoorde and N.M. Josuttis. 2002. C++ Templates: The Complete Guide.
Addison-Wesley Professional.

9Approved and applied retrospectively by the exam board for 2018/19.

We have developed C++ introspection code to determine: the
existence of functions, parameter number/types, return types, class
inheritance/attributes/methods, and more. It was a significant time
investment but mostly a one-off payment8. Student code may still
cause error messages: but these errors are from within the student’s
code (rather than the test code) and so the error message should be
enough to correct them.
8Contact the first author for access to the C++ Library of introspection code.

5 RESULTS AT COVENTRY
In both modules our CodeRunner assessments had lower average
marks and pass rates that the multiple choice tests they replaced.
In our opinion this is because the multiple choice tests overrated
student’s programming ability. The final written exam for 4000CEM
has been of a similar format and difficulty for several years - the co-
hort who were assessed in the mid term using CodeRunner actually
had average exam mark 7% higher and pass rate 10% higher!

We measure student satisfaction with an online questionnaire
that mimics the UK National Student Survey. In 4000CEM over-
all satisfaction increased 4% to 93% following the introduction of
CodeRunner for the mid term assessment. More importantly, stu-
dents satisfaction with assessment and feedback increased 7% to
90%. Assessment and feedback is often the area where students are
most dissatisfied so this result is particularly promising. More gen-
erally, the literature suggests that the relative correctness of work
implies by unit tests is accepted by the student body [4].

In 4003CEM the fall in initial student marks was more pro-
nounced and there was a corresponding fall in student satisfaction.
This prompted the development of the introspection code to better
reward partial credit described above9. With this in place we antic-
ipate a smoother experience assessing C++ next year. One topic for
our future work with CodeRunner is an investigation on the most
appropriate penalty regime to apply for checking the unit tests.

ACKNOWLEDGMENTS
We are grateful to the developers of CodeRunner; and the organisers
of the 2017 CodeRunner workshop at the University of Edinburgh.

REFERENCES
[1] K.M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education 15, 2 (2005), 83–102.
https://doi.org/10.1080/08993400500150747

[2] S. Billings and M. England. 2020. First Year Computer Science Projects at Coventry
University: Activity-led integrative team projects with continuous assessment. In
Proc. CEP ’20. ACM, In Press. https://doi.org/10.1145/3372356.3372358

[3] D. Croft and M. England. 2019. Computing with Codio at Coventry University:
Online Virtual Linux Boxes and Automated Formative Feedback. In Proc. CEP ’19.
ACM, Article 16, 4 pages. https://doi.org/10.1145/3294016.3294018

[4] Y.B.D. Kolikant. 2005. Students’ Alternative Standards for Correctness. In Proc.
ICER ’05. ACM, 37–43. http://doi.org/10.1145/1089786.1089790

[5] R. Lobb and J. Harlow. 2016. CodeRunner: A Tool for Assessing Computer Program-
ming Skills. ACM Inroads 7, 1 (2016), 47–51. https://doi.org/10.1145/2810041

[6] D. Vandevoorde and N.M. Josuttis. 2002. C++ Templates: The Complete Guide.
Addison-Wesley Professional.

9Approved and applied retrospectively by the exam board for 2018/19.

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3372356.3372358
https://doi.org/10.1145/3294016.3294018
http://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/2810041

	Computing with cs
	Computing with pdf
	Abstract
	1 Introduction
	2 Our Context and Motivation
	2.1 Additional Project Modules
	2.2 Other Recent Innovations at Coventry
	2.3 Assessment Prior to CodeRunner
	2.4 Codio for Summative Assessment?

	3 CodeRunner
	3.1 Main Functionality
	3.2 Options for Individual Unit Tests
	3.3 Other Useful Features

	4 Examples
	4.1 Python
	4.2 C++

	5 Results at Coventry
	Acknowledgments
	References

