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Decision-Theoretic Behavioral Analytics: Risk Management and Terrorist Intensity  

Abstract  

The focus of terrorist events on urban centers and mass gathering sites and the intensity in which 

they have occurred in recent times has greatly enhanced the need to ensure that terrorism risk is 

managed effectively. Recent attacks have resulted in significant societal harm, particularly in the 

context of loss of life and injury, economic losses, property damage and the breaking down of 

societal relations. In light of the terrorist threat, significant challenges exist for counter terrorism 

practitioners and policy makers with many of these attacks occurring spontaneously, without 

warning, and with limited intelligence (McIlhatton et al., 2018a; McIlhatton et al., 2018b). As a 

consequence, those tasked with managing terrorism risk require innovative and effective tools that 

can work towards a reduction in impact of these events, as well as a better understanding of terrorist 

decision objectives, behavioral characteristics, and potential loss exposures under uncertainty. 

This paper proposes a highly innovative methodological approach to understanding the potential 

impacts of terrorist actions, thus allowing practitioners and policymakers to manage terrorism risk 

more effectively and efficiently. 

Introduction 

The focus of terrorist events on urban centers and mass gathering sites and the intensity in which 

they have occurred in recent times has greatly enhanced the need to ensure that terrorism risk is 

managed effectively. Recent attacks have resulted in significant societal harm, particularly in the 

context of loss of life and injury, economic losses, property damage and the breaking down of 

societal relations. In light of the terrorist threat, significant challenges exist for counter terrorism 

practitioners and policy makers with many of these attacks occurring spontaneously, without 

warning, and with limited intelligence (McIlhatton et al., 2018a; McIlhatton et al., 2018b). As has 

been the case,  it is unlikely that all terrorist actions in the future will be prevented, and we therefore 

need to to better protect society from the threat, risk and harm that terrorism presents. As a 

consequence, those tasked with managing terrorism risk require innovative and effective tools that 

can work towards a reduction in impact of these events, as well as a better understanding of terrorist 

decision objectives, behavioural characteristics, and potential loss exposures under uncertainty.  

 

The purpose of this paper is to propose a highly novel approach for understanding the potentiality 

of terrorist actions through first, developing a methodological approach that measures impacts of 

events, and secondly, positioning this approach in the context of terrorism risk management 

practice and policy. As a consequence of its originality, This paper contributes significantly to the 

current risk management and terrorism  knowledge base in several ways. First, from an operational 

perspective, it provides direct assistance to those involved in terrorism risk management by 

proposing an interactive analytical agent tool, (αi(t)), that seeks to address the ambiguous and 

diverse perspectives of terrorists (αi(t)) in their behavior and activities. Secondly, the framing of 

this interactive process reflects the way that such practitioners operate and has been carefully 

aligned to be independent of and in response to the divergent skills and capacities present in 

societies. As a result, security and stable management is offered even when exposed to an array of 
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losses associated with differing objectives and levels of intensity driving terrorist agents. The 

structure of the proposed approach focuses on the spread in the intensity of operational goals and 

objectives of terrorists (αi(t)) relative to their probable skills, computational capacity, and choice 

paths employed by security/risk managers (αi(t)) (Chambers and Yenmez,2017).  In achieving 

this, a computational comparative experiment model is developed that allows a structured 

consideration and frames the diverse perspectives of terrorism as they might nudge and divert anti-

terrorist analysis to confuse strategic operations, thus restricting security efforts to tactical ad hoc 

responses. When this happens, we argue that  the security responses ignore or minimize a priori 

strategic analysis.  This in turn can limit risk management to a focus on a posterior event 

consequence. These situational constraints limit the predictive planning, conjectured 

experiments/actions and a fortiori possibilities that are employed as measures and influences 

(direct and latent) in states of uncertainty of control (at variant levels of security), information 

availability and accessibility (Shmaya and Yariv, 2016). 

 

In delivering this innovative model for understanding the potential impact of terrorist actions, the 

paper develops the concept and approach using the following structure. Sections Two and Three 

explore the complexity involved in understanding terrorism, as well as establishing the problem 

context. Section Four develops the methodology, with the remaining sections presenting the model 

frames and discussions. 

 

Terrorism as a complex concept 

The need for an organized process/model considering the diverse behavioral intensity driving 

terrorist agents (αj(t)) and the ambiguity experienced in understanding the behavior and probable 

space of terrorism (it) shows a convoluted history in the array of characteristics identified and 

definitions developed. Turion (2000) states that terrorism as a strategy, a tool of political/social 

control, and as an operational weapon has evolved from the actions of the state (as defined by the 

will of a sovereign or pretender, or national/cultural collective) to a group or tribal political 

agitation and to the acts of individual violence against society or perceived “others” that may be 

driven by conflicting philosophies/beliefs.  Historically, Smelser and Mitchell (2002) identified 

212 definitions of terrorism, the notice of which contributes to and is reflective of the ad hoc 

perception of terrorism and the tactical and responsive perception of security and risk modeling. 

Indeed, many more definitions are evident in the more recent literature base adding further to the 

complexity involved in the framing of a solution. 

A comprehensive review of terrorism definitions shows the use of violence across agents, classes 

and psychological perceptions (intensities) to achieve a goal or objective.  A common attribute of 

these diverse goals and objectives is disruption, a potential loss, or annoyance to society or some 

other agency operating alternatively to and perceived in conflict with the terrorist agent. This focus 

enables a specification of terrorist operational path as a loss function (to others or society in 

general: Lit) operating in a rational choice model - see Victoroff (2005) and Elliot and 

Timmerman (2016). This supports a probabilistic conflict framing of decision outcomes 
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conditionally subject to fuzzy choice specification and uncertainty of the actions of others. This 

further supports a decision –theoretic/game-theoretic construct.   

The definitional range of terrorism noted by Hoffman (1998), Tucker (2016), Victoroff (2005) and 

Smelser and Mitchell (2002) is consistent with a decision-theoretic probability space (Richardson 

1938 and1988; Coombs, et al 1970; and Hunt, 2007). This frame allows a conditional consideration 

of diversity in the intensity level characterizing terrorist behavior as it can include and fits a 

Kolmogorov probability space (triple) as discussed in the methodology -See Kolmogorov  (1950).   

The initial motivation of this research was to develop a terrorist index based on impacts associated 

with possible causal factors. The problem encountered is the lack of agreement by authorities or 

scholars as to a definition, concept or measure of terrorism and even a concise designation of 

terrorist activity. There is no universally accepted definition of terrorism as a basic behavior 

measure or offering a mathematical psychology/behavior frame and as indicated earlier in our 

work, many definitions of terrorism or perceptions of terrorism have been identified and this list 

is not exhaustive. Investigations suggest that many of these specifications are redundant or simple 

inconsistencies in sematic/jargon issues and terms, see Hunt (2007) and Coombs et al (1970). The 

literature and research of security agencies note some organising themes as key elements for the 

specification and analysis of terrorism. They are: 

1. the use of violence (illegal and unjustified) and the creation of fear (terror, psychic fear)  

for a) political, b) religious, and/or c) ideological reasons. Further clarification is obtained 

in the latter category, where ideologies are identified as belief systems derived from 

worldviews that frame human social and political conditions. This is the state-space (s(t)) 

variable and probability space (-algebra) in our model that enables links between 

behavioral prediction and measure-theoretic anchors to systems as well as with individuals 

decisions (), see Heiner (1983) and Wilde, LeBaron and Israelsen (1985).  

2. Events or actions (),taken directly against random or indiscriminate targets, which allows 

sample space sets (, ), with subsets or event frames (F). The direct action is against an 

indirect target, unlike assassination, where there is a directed victim. 

3. The objective is publicity or acknowledgment of situations that are not considered by the 

majority of those in control. This in effect seeks to produce a motivation response that is 

awareness, knowledge, and/or cognition (specified as a loss (L(), function) to others, or 

the creation of confusion, political agitation or general chaos). 

As these organising themes are specified, analytics framing terrorism can be structured based on 

psychological and social elements of causation in a state of uncertainty, potentially involving 

uncountable, but measureable random variables. The three central themes characterizing the base 

nature of terrorism, are also elements of the six steps in the risk management process. The analytics 

of risk management are concerned with identifying possible occurrences and events ((), E()), 

the frequency and magnitude/severity of occurrences ((,), (,)), techniques and valuation 

of measurements that fit events identified (F), management efforts and strategies to address, 

resolve and control the issues (Richardson k,l, and other methods to be discussed, See Richardson 

(1950, 1988). These analytical techniques are then used in the operational steps of application with 
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continued monitoring and follow up on these processes and techniques. These themes and 

management processes set the analytic frame of this research. This frame, in turn, supports the 

operation of an a priori strategic modelling of possible predictive issues that can then be compared 

to measures of a posteriori consequences of asymmetric positions. The frame varies from tactical 

management responses based on descriptive statistics of terrorist occurrences/reasons listed below. 

The list is derived from the literature, experiences and public notice.    

The descriptive/tactical response literature previously noted has identified 15 causes of terrorism, 

though the reasons are complex and plentiful. The general motivations can be political, religious, 

economic, social, psychological, retaliatory effects often framed by local and temporal situations 

of asymmetric relationships (structures).    

The 15 reasons identified are: 

1. Religion: this is a behavioral perspective characterized by an extreme sense of ideological 

zeal complemented by a set of activities that express high dedication of one or more people 

to their own belief systems. This cause can create an infinite supply of terrorists agents 

(αj(t)|), if the value system identifies with martyrdom.  

2. Oppression: this class of terrorism is characterized by the betrayal of government, the elite 

or the controlling segments of society as being oppressive. This form of terrorism can be 

more specific and overlap with assassination. See Turchin and Nefedov (2009) and Turchin 

(2016), and Taylor and Qualye (1994).  

3. Historical grievance: a function of experienced are perceived historical injustice. See 

Tucker (2016), Turchin and Nefedov (2009) and Turchin (2016), and Taylor and Qualye 

(1994).  

4. Violations of international law: terrorists action is a function of a right being infringed. 

5. Relative deprivation: response from poverty and/or a sensor perception of inequality. 

6. Hatred of the global economic hegemony and potential shifts in hegemonic powers.  

7. More individual or tribal singular or unitary issues or factors, such as: financial gain 

8. racism 

9. guilt by association (the level and degree of agency associations). 

10. Empathetic support of sympathizers: deprivation as a mutual factor (enemies of my 

enemies). 

11. mortality salience: anxiety over one's own death in association with a value system or factor 

(national, class or tribal decline) 

12. narcissism: more prone to terrorist acts as a function of blaming personal inadequacies on 

external causes; Baader-Meinhof group, malcontents and lone wolves.  

13. sensation seeking: risk prone adrenaline 

14. failure of conventional channels of expression: limits on civil liberties or our perception of 

lost rights 

15. communication and publicity 

Schweitzer and Sharber  (2006), 2002 

Information, data and observation derived from the list assist in data development used in this 

study to assist in frequency and severity/intensity measures used.  Western politicians, economists, 
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and knowledgeable security workers have focused on the unacceptable levels of death and 

destruction as a definition and measure of terrorism. This perspective supports tactical responses 

focusing on physical losses, static attributes (it) and descriptive statistical measures (it) as they 

are employed as static attributes. This perspective specifies terrorism as a function of 

magnitude/severity of a loss function (L()|it, it) - see Chen (2015). This static 

attribute/descriptive statistical anchor and measurement position is uncoupled from the initial 

behavioral/agency cause (αj(t)). The essential description from an economic perspective is 

terrorists’ production of “bads,” (pain, loss to others) as opposed to goods (benefits, real/perceived 

to society). This can be modelled as a social loss function as used to calculate measurements of 

pollution or contagious diseases. 

This construct allows a profiling of differences in a  terrorist agent (it) behavioral intensity it 

using terrorist self-identification in time as a functional range from reducing injustice or correcting 

policy to retaliate or compensate for perceived past and current injustice to extreme genocide 

regardless of their own selective self –description (such as self-identification as freedom fighters, 

jihadist, patriots, revolutionaries, etc). This fits in the continuum suggested by Taylor and Quayle 

(1994) who developed a profiling ranking continuum from their interviews with Irish and 

European terrorist groups. Many of those interviewed stated that they joined a terrorist group as a 

result of their own creation of a new identity linking to a singular design of a general perception. 

This infers a conditional probabilistic occurrence, where the outcomes are deterministic, ie. the 

H,T outcomes (it measures) of a coin toss is conditioned on the randomness of the toss, the event 

frame or -field, decision set of skills or rules of the game/situation (s(t)) conditioning the “flip” 

or actions taken or expected (whether unobserved or uncountable factors) that may influence the 

event field. This is the Kolmogorov formulation or praxeology process that offers a frame for 

delineating decision processes in phase spaces. In specific, it links the systematic specification of 

terrorist expected utility, objectives and goals to an individual decision process as occurrences 

formed by intensity levels matching choices and chances to inflict a loss function (Lit(it)|αj(t)) 

that impacts  the entire social system (it), which can vary as stability levels and risk management 

capacity (see figures 2 and 3) and the surprise these positions my generate. See Kahneman and 

Tversky (1982a) and Tversky and Kahneman (1981).  

The focus of the terrorist as an individual optimization loss function decision, in probability 

outcome space allows it to be structured in an ideal operator decision-theoretic model. This model 

allows a comparative computational experiment (game-theoretic) between agents who are creating 

social goods and agents who are creating societal bads, loss function -algebra constructs (see 

Figure 4).  This construct allows the analytics for comparative computations of inverse expected 

utility and expected value measures to reflect the asymmetry defining terrorist behavior as 

developed in the cited literature to variant risk management capacity profiles (see Figure 5 and 

Kahneman and Tversky (1982b), Richardson (1948, 1950)). 

Problem context 

Given there is no universal definition of terrorism, yet the general operating notion is an inverse 

probabilistic phenomenological relationship with a vested and stable social order, a  psychometric 
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decision frame has been developed. This model allows a direct computational difference and risk 

measure between normative/positive economic agents (αi(t)), who seek to produce a ‘good” or 

useful services directed towards meeting individual and social needs. This process is assumed or 

promulgated via axiom to operate in a secure or stabilized society. However, the state of 

uncertainty in choice and chance experienced by all agents (αi(t)) requires consideration of 

alternate phase states of risk management subsets (-algebra), of the universal probability space 

in the effort to seek solutions, given an array of terrorists agents (it|αi(t)) whose actions, goals 

and endeavors (from an economic, social or political perspective) are to deliver an operating loss 

function (L(it)) to society in general. These actions can be modeled and compared as segmented 

event frames (F), see Figures 3, 4, and 5.  

The dichotomy between goals/expectations and/or objectives between these two general agents 

(terrorist and risk managers) is defined by the diverse intensity of terrorist agents (it) and 

heterogeneity of security or risk management agents (it) based on variant capacities and skills. 

This comparative operational will be developed in progressive phase spaces of a decision-game 

theoretic computational experiment. This is achieved as agents operate in a general probability 

frame (P) completing the Kolmogorov triple (/,F, P). The base analytic frame (P) is illustrated 

with two decision systems. See Figures 1a and 1b.    

In order to develop the analytics of conflicting agent positions [(i(t)|i) ≠ (j(t)| j)] verses 

[(j(t)|j) ≠  (k(t)|k)], with in groups (risk management skill classes and terrorist intensities or 

between the agencies (i(t) vs i(t)), it is essential to construct a framework to represent a 

probabilistic phase-spaces defined with - algebra constructs of  decision-theoretic state-space 

probabilities (P = f (s(t))) to anchor, compare, compute and predict the path patterns and 

conflicting objectives of adverse competing agents (i(t)).  As a probabilistic state-space (space-

time) decision frame, the base phase-space is illustrated in Figure 1a.  As employed in the literature 

of decision-theoretic analysis, mathematics of behavior and economics and other social sciences, 

the phase space extents from pure uncertainty at the origin (0,0) to the complete accessible 

aggregation of information () depicted on the abscissa (x axis) as perfect and full knowledge 

(KN(O) or position 0,1). See Hunt (2007), Coombs, Dawes and Tversky (1970), Perloff (2008) 

and Dean and Carrol (1977) to address the history of decision-theoretic frames.  The acquisition 

of knowledge/information at variant states (s(t)) is necessary in an uncertain world to achieve 

solutions offering stability and/or reducing risk. See Weisberg (2014), Kahneman and Tversky 

(1982a and 1982b).  Stability and risk reduction is matched with and achieved by the acquisition 

and development of control of, and influence over, operation, event situations and outcomes and 

consequences. Levels and increments of control are achieved with the rational use of information 

and knowledge. This allows for the development of skills, via learning and experience to gain in 

wisdom and influence to enhance one’s level of control. See Chambers and Yenmez (2017), 

Shmaya and Yariv (2016), Heiner (1983), Wilde, LeBaron, and Israelsen (1985) and Hirshleifer 

and Riley (1999).    

Choice and matching theory supports the measurement of control and agent influence on the 

ordinate of Figure 1a, The probability field of control rises from the origin of pure uncertainty at 
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(0,0) in probability increments of control () to total probability of situation control represented 

by the point at (0,1) symbolized by K(W) =1 at the upper left corner of Figure 1a.  Extending this 

measure of total control parallel to the abscissa to the intersection of the vertical extension of 

KN(O) at (0,1) forms the corner position of (1,1), where K(W)= KN(O) =1.  This maximal identity 

point represents, the theoretical and highly improbably unobtainable point of omnificence and 

omnipotence control and certainty in an uncertain universe.  With limited knowledge and capacity 

to specify the nature, quality and quantity of the levels and incremental flows of information () 

and obtainment and incremental gains in control () that a given agent (i(t)) can achieve in 

variant states of uncertainty (s(t)), a Laplace (equilibrium can be assumed, such that any accessed 

information () and any level control has an equal and even probability of occurrence and 

opportunity (l =1/n). As such the LaPlace (l ) expected value in a probabilistic space based on 

time/probability is: (E(V)|1/t,P) = 0.5). This sets the vertical equilibrium threshold assisting 

potential acceptance or rejection decisions. This can be matched with a vertical LaPlace 

equilibrium based on levels of control in probability space where: (E(V)|,,P) = 0.5). Both of these 

LaPlace equilibrium thresholds are illustrated in Figures 1a and 1b.  If a LaPlace equilibrium is 

the operating standard employed, then any information access with a value/rank of less than 0.5 

(due to uncertainty) is rejected or considered a weak signal and indication in assisting a choice or 

decision. Agents ((i(t)) operating in this segment of the probable phase space are either ignorant 

of the general state of uncertainty or are risk/uncertainty tolerant or willfully ignorant. If the 

information level is greater than the Laplace equilibrium of 0.5 in this scenario or phase space, a 

level of strong signaling information is reflected. This level where  > 0.50 offers insight to 

support actions and operational decisions. This is a desirable phase space if stability and increased 

certainty (reduced uncertainty) is desired or required for operational decisions.  A similar decision 

break point is used if a Laplace equilibrium is used to specify or delineate a desirable or operational 

level of control.  As such E(V)|,P) > 0.5, represents a positive potential to achieve control of 

operations. Any levels of control below 0.5 infers a level of negative or decay in operational 

control.  Another concern for consideration in the use of Laplace equilibrium decision criterion, is 

that as specified, LaPlace model assumes independence between the operational levels of control 

and information, despite the axiom of their positive or negative relationships.  

Despite the inherent state of uncertainty perceived and experienced in most decisions, an 

alternative structure can be used that fits the axiom that information contributes to power (control). 

This is achieved with the use of a Boolean equilibrium construct, based on a simple identity 

function using a unitary (one-to-one) relationship of expectations between information and the 

change in levels of control( = ). This association is depicted as the diagonals (+/-) in Figure 

1b. The inverse or decay rate in the relationship is illustrated with a unitary assumption of change, 

where an increase in the flow of information is reflected in a unitary (linear) decline in an agent’s 

level of control ( = 1/). In aggregate, this illustrates the loss function (L()|, αi(t)) 

contingent on the level of intensity to harm of a terrorist agent. The asymptotic frame of intensity 

also depicts an αi(t) positional loss in control as information/intelligence and knowledge is gained 

by others.  This can occur in the general society when a controlling or competitive agent (αi(t)) 

loses control as other agents (αk(t)) gain information/knowledge (Kn() position.  
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The constructs presented in Figures 1a and 1b, framed by both the LaPlace and Boolean 

equilibriums, assist in developing the sample space (,) and P, probability constructs of 

Kolmogorov’s probability space triple required to develop a complete decision-theoretic frame to 

set up a strategic analysis of the behavior of interrelated operators. As adaptive agents, their 

specific positions in an uncertain frame must address their separate and distinct decision paths. 

This is set up with the development of their -algebra (F) as it supports the specification of their 

actions and decisions in a probability phase state (s(t)). The basic frame and anchor of the F is 

depicted in Figure 2 as it employs the unit circle to delineate the thresholds of bounded rationality 

subject to potential decisions competitively defined by choices contingent on LaPlace and Boolean 

equilibriums.  

The dynamics occurring with a shift from a Laplace to a Boolean identified function, operates like 

an augmented orthogonal shift (not limited to right angles only) in specifying  the options occurring 

in a probabilistic phase state. This supports a dynamic construct that allows consideration of 

directional changes of the information/control matching positions as they alter possibilities. This 

suggests positive or negative (optimistic/pessimistic) changes in expectations, the consideration of 

elasticity in variable responses and relationships, and the consideration of matching measures of 

variables as decision functionals. This occurs in that possible outcomes of choice or chance are 

expanded. As an example, in an orthogonal shift the choices of a coin flip transitions from the 

probability of observing a (H,T), to the potential of generating a H, T, H or T or an empty set ({}) 

as potential out comes. In a finite phase space, a Borel field/set of operational choices (and 

restrictions) can assist in specifying stationary and explosive effects in relation to rational bounds 

on strategic capacity (1, Sk|1: See Figures 2 , 3 and 5 for specifications and supportive tables). 

This is achieved with the introduction of functional analytics and the calculus of variation into the 

decision matrix and options open to and impacting conflicting agents as developed in the 

methodology section.  This rotation and expansion of the probabilistic decision field assists in the 

choice and matching positions defining the operating paths ( algebra) open to heterogeneous risk 

managers and the diverse levels of terrorist intensities they need to consider.    

The understanding of behavioral variance at the core of psychometric analysis, is conditioned by 

probabilistic variation in difference agents’ knowledge, αi(t)| KN()t, which is situational being 

delineated by its initial position as a function of its first variance (d/KN(W)) and temporally (s(t)) 

sensitive and thus contingent upon not only their access to information in time (t), but also the 

skill and capacity of the agent to influence and control decisions and associations αi (t)| SKn()t.  

The access to, accumulation of and the completeness of the information, if considered at its full 

and complete level is the notion of a full, all-knowing level of certainty and strong-form efficiency 

hypothesis. This is an expectation narrative or state condition (s(t)), where everything is known by 

everyone, conditional on the skills of all agents αi(t)| SKN(O)t involved. In this situation (s(t)), the 

optimal decision choice(s) has been or is expected to be achieved.  Any additional information or 

knowledge cannot be exploited or expected to change the situation to a better position. This point 

illustrates a Lasso corner solution operating with (KN(O))=1, KN(W) =1, and KN (W) = KN(O). At 

this position KN(O)- KN (W) = 0. This is the 100 percent level as operates in the efficient market 

hypothesis (EMH) corner solution. This corner extremum of the unit circle sets the first variation 
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position (d/KN(W) that anchors and characterizes the risk management skill level. These first 

variation differences and spreads in phase space between management skill sets (Ski()|t, d) 

supports evaluation of relative frequency of computed outcomes. See Kahneman and Tversky 

(1979, 1982) and Tversky and Kahneman (1981)  

This conceptual measure is illustrated in Figures 1a and b, 2,3,4, and5 as the right vertical axis 

beginning at point (KN(O))=1 on the abscissa and depicted in upper right hand corner of all 

probability phase space figures where it meets with point KN (W) =1.  (KN(O))=1 represents a 

level of knowing beyond time or it is at least at the edge of operational time. For this supratemporal 

condition to exist/operate requires that individual and interacting agents α(t)| SKN()t` would have 

to achieve the fully informed expected outcome, (KN(O))=1. Therefore, α(t)| SKN()t = KN (W) =1.  

This zone of the phase space would be the fully rational and reasonable decision-makers assumed 

in the concept of Homo economicus in economics and/or the fully reasonable and knowledgeable 

man used to anchor decisions and findings in jurisprudence.  See Lo (2017) and Chen (2015).  The 

capacity of agents to achieve the standards of rational expectations, where the agent has the 

capacity to fully control and predict events/situations as they are undertaken and achieve the 

outcomes and positions characterized by a fully efficient standard of expectations.  This sets the 

upper point of the decision matrix or probability state-space, where information and knowledge is 

achieved and paired with full cognitive ability, capacity and skill to achieve rational expectations 

of wealth, well-being and certainty.  

As illustrated in Figures 1a and 1b, the probability state defined by the optimal point specified by 

KN(O) = KN (W) =1 enables additional insights and performance that cannot be feasibly obtained 

given boundaries on skills and capacities potentially lying outside the valid universe/sample 

decision set. This is concept represents the notion of perfect informational completeness and 

certainty. This is reflected as the complementary components of the Borel set bounds effectively 

lying outside the satisficing level of bounded rationality schedule labeled as SK1. in Figures 2 

and 3, which is calculated as 1- SK1.  This construct is developed with Equation 1 and arises 

because the orthogonal shift alters the probability space from the frame of P = 1 to a phase space 

dimension of P = 2=0.5.  This construct sets the frame for the Kolmogorov probability space (/, 

F,P) used in the behavioral model developed and illustrated with Figures 2-5. The unit/point 

measuring the decision frames are presented in Tables 1-9b.  

Probabilities as illustrated in Figures 1a and 1b are viewed as objective or subjective. This division 

is specifically premised on theoretical positions that direct methods of measurement and modelling 

constructs. The objective perspective of probability is effectively a frequency measure with a 

descriptive origin expressed as the ratio of specified observation of concern, interest, focus or 

desire to the measure of all possible occurrences (outcome). This requires or restricts 

analytics/measures to finite data sets and observations. This creates complexities with 

measurement difficulties and definitional constructs in infinite frames supporting an empirical 

inductive analytic contingent on and biased towards discrete observations.  The subjective 

perspective of probabilistic measure considers elements and levels and/or degrees of belief or 

expectations in relation to events, experiences, actions and/or observations. The issue is not just 

that things happen or attributes exist, but what is the response to, decision required or value of the 
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observed situation. This context expands the frame of analysis from one of assigning a measure or 

specifically a frequency probability of an outcome as a point in space and time (ie. a 50-50 chance 

of a head/H or tail/T in a single coin flip, as per Cox’s Theorem, where a probability is taken as a 

primitive and not further analyzed) to a stochastic framework of a space-time dynamic considering 

the interaction between physical and fundamental attributes with diverse agency capacities and 

situational phenomena that can significantly alter the measures and axioms promulgated by 

frequentist measures alone. The analysis considers the information, knowledge and experience 

involved in a decision or action. In effect the enquiry is not just limited to investigating the static 

attributes and their statistic relations as in the coin toss example, nor does it not focus on the 

analysis of the randomness of the flip (or general action; praxeology), it seeks to investigate the 

relationship of physical attributes, situational observations and occurrences and associate or frame 

them within the context of the conditional expectations of stochastics process. See Mikosch (1998).  

Anchoring on the stochastic nature of the actions (flip) taken or observed as an indication of 

expectations, expands the required analysis of the frequency measures beyond the observable static 

and physical attributes (it) and resulting descriptive/static statistics (|it) that allows the use of 

assumptions and axioms like “a fair coin,” “full knowledge,” “parity in power/negotiation,” 

“equilibrium,” “rationality contingent on maximization behavior,” allowing the deductive decision 

analytic considering alternative agents (αi(t)) operating on alternative and diverse responses, thus 

generating dynamic attributes (Zit|it)  associated with observations and asset/issue attributes. For 

details see the definition of Arrow goods, Lucas (1976)  and discussions of dynamic attributes by 

Ratcliff (1965), Graaskamp (1971), DeLisle (1985), Grissom (1986), which all infer a need for 

analytical development of dynamic attributes and in turn a formulation of the -algebra, F event 

sets of probability space.   

Research Methodology: Risk Management Skill Capacity Frames 

The decision-theoretic methodology developed in this study is contingent on the event function 

(F) -field that maps the decision choice path of conflicting agency groups of risk managers (i 

(t)) and terrorist (i (t)) and their variant subsets (1,2,3,4,5,6 and 1, 2,3,4). Borel 

measure allows the continuous probability space of infinite options to be developed as finite 

probability state-space sets (s(t)) and it and it subsets, as they are specified as -algebra of the 

form: Ski(,)|t for risk manager skill levels or Li(,)|t, measuring the loss functions created 

at differenced terrorist intensity levels. These operator paths are comprised as pairs/match points 

jointly considering units/levels of information () and control () that produce risk management 

functional, decision measures (,) and (,) that can operate in the same integrated 

probability phase-space, but can be specified, defined and measured as the operations and 

objectives of differentiated and distinct agent perspectives and disposition functionals.  

Risk management operators (i (t)) can be framed as path-independent choice rules of the form 

Ski(,)|t employing positions matching/pairing trade-offs between levels of control/influence 

() with levels of access to information (), knowledge (Kn()|t) and experience (K()|t  

Kn()|t).  See Dean and Carrol’s (1977) development of an uncertainty decision continuum with 

trade-offs and matchings of information and control as it is linked to specific statistical and 

decision choice techniques across state-space (s(t)).  By building on the literature and operational 
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experiences presented earlier, choice rules and matching positions can then be modified to account 

for specific terrorist subclasses (j) and productive economic security agent classes (i) as they 

operate in common phase space (s(t)) situations (i.e. in situ: state-space regimes). This allows the 

conflicting positions of diverse and heterogeneous agents (i(t)|i) ≠ (j(t)| j) seeking 

differentiated goals and objectives for specifics of economic endeavors, activities and assets. See 

Elliott and Timmermann (2016).  

An objective of this study is to seek an awareness of the action of agents (αi(t), αi(t)), decisions 

under uncertainty if not a full understanding as knowledge (Kn()) is developed across states of 

uncertainty (s(t)). For society in general and specifically those agents seeking security and stability 

through risk management, the essentials are to optimize controls of stability and security given the 

functional possibility of skills to access and employ relevant information () as knowledge 

accrues (Kn(). The ability to identify signals in information contributes to decision and 

management skills to develop through leaning or experience, the capacity to match information to 

desired or attainable level of control. The association of information with the dynamics of control 

(first and higher variations) allows development of decision data point functionals ((,)).  

Diaz (1993), Diaz and Hansz (1997, 2000) and Gallimore (1994) conducting laboratory 

experiments and situational test on level of expert decision makers identified the impact and 

benefits of stepwise and selective introduction of information () on agent decisions (values).  

Across the studies they also found the both decisions and the process of developing those decisions 

(process/procedures) was influenced by skills, knowledge and experience levels. These 

empirically exogenously developed behavioral findings, matching skill levels and decision 

capacity (control and choice -algebra: (Ski()) as a direct function of  accessible information 

() and initial skill capacity contribute to computational measures (tested).  

Wofford, et al, (2011) supports the structural frame of this investigation, linking decision processes 

(valuation) using translation of learning procedures (changes in knowledge) with consideration 

and understanding of risk understanding (cognitive risk). This construct ties to the (Ski()) 

subject to differenced -algebra, noted in the prior literature.  

Seiler (2016 ) offers an more endogenous perspective on behavioral decision processes linking 

neurological findings and performance to static attributes (it) to allow differentiated 

psychophysical (Zit|it) responses.  This psycho-neurological measures when associated with 

exogenous comparisons between information cascades supports a specification of information 

based decisions in a probability phase space with segmented decision capacity.   

The societal objective function of the decision-agents (αi(t)) operating as risk managers seeking 

stability and wellbeing is conditioned and constrained by the strategic resource capacity and 

operating skills available/possible in a community or nation (and the subsets that comprise and 

operate in all societies) to optimize access to information, separate signals from noise so as to 

achieve societal stability and operational control. See Silver (2012), Seiler (2012). The issues of 

alternative positions and objectives long have been analyzed in decision-theoretic spaces with the 

employed of Lorenze curves and wellbeing assumptions of Pareto Optimality. The objective 
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function in a decision-theoretic frame effectively operates and can be specified as an agent’s 

(αi(t)) strategic resource possibility frontier/indifference curves (SK(,)|t)). This forms the 

adaptive strategic capacity curve and integral value based on the path-independent choices rules 

and matching decision functionals () developed by pairing (point) levels of control () with 

available/accessible information (), of the form (,). See Chambers and Yenmez (2017). The 

risk managers’ strategic capacity is modelled with Equation 1: 

              it =  SK(i) =   ((,),d),d/dt                                                       Eq: 1 

Where:     SK(i) =   reflects the skill level and capacity of risk management agent (αi(t)) 

(,) =  the decision element of the choice rule, matching measures of information  

Conditional with functional levels of control in specific states (s(t), P) 

anchored to first variation measures d.  

Equation 1, specifies that the skill level of the risk manager is dynamic given the differential of 

decision skills (d) and control (d) change as time (dt) within the phase space (s(t)) transpires. 

The change in the skill level SK(i)|d/dt  magnitude (or value ) is subject to learning with 

improving knowledge based on increased control, operating as a change in functional relations 

((,) as these positions are conditioned changes in the matching of accessed information with 

ability to offer security (control) as it is anchored to the first variance measure (d) for each it  

level. See Kot (2014) 

Using Equation 1, the risk management skill levels accumulated probability spaces can be 

developed with initial differences a function of the first variance in control (d) as it operates 

convergence to zero (0) in phase space. The initial Kn(W) probability illustrated in Figures 2 and 

3, anchor the  SK(i) calculation derived from Equation 1. The developed data per it is presented 

in Table 1. The first variance frames shown in the table can represent the differences in cultures, 

societal structures, organizations, economies or individual investment/development utilities as 

functions of capacity base or resources. This base anchors the skill sets (SK(i)|d/dt) estimated 

with Equation 1 and presented in Table 1, to complete the probability space triple (, F,P) 

allowing a standardized comparison across management skill levels. The ordered situation with 

this psychometric can then be applied to compare the heterogeneous data and measures attributes 

to localized events. See Kot(2014) and Kolmogorov (1950).  

Figure 2, illustrates the fundamental construct of the skill capacity functional operating at the 

maximal bounded rationality frontier, 1 = SK(1), with the mapped data displayed in Column 3 

of Table 1. This maximal decision capacity level illustrated Figure 2 with its maximal tangent and 

chord, is then compared with other cascading skill capacity subsets in Figure 3. The curves in 

Figure 3 are illustrated in uncertainty space with the data presented in Table 1. Figures 2 and 3 

combine the probability space frame of (, P) developed in Figures 1a and 1b with the F event 

field developed with Equation 1. This allows the relative positioning of an array of skill capacity 

sets in decision-theoretic phase space presenting the probability triple for the unit circle bounded 
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rationality -field illustrated in Figure 2 and this optimal/satisficing possibility set to be compared 

in stationary left-side unit root skill capacity frame being presented in Figure 3. The computational 

experiences and developed data used for the competitive skill levels are in Table 1 is then used for 

construct Table 2a. Table 2a uses the spread between the skill level calculations based on the first 

variance functional pairings per -algebra sample space and considers their differences.  This is 

presented in the column headings of Table 2A as (Sk|I -Sk|j)|t where i= 1,2,3,4,5,6 and j= 

2,3,4,5,6. Table 2A represents the exogenous effects defining skill differences. See Kahneman and 

Tversky (1982a and 1982b) and Tversky and Kahneman (1981) and Tversky (1967, 1969) 

Figure 3, offers a structural frame addressing the endogenous psychometric responses and 

operations of diverse agents or operators subject to conditional decision constraints and options, 

using the calculation of Table 1 and illustrates the statistical probabilities of the spread in Table 

2A. The figure is a depiction of a psychometric experiment to identify the underlying dimensions 

of variant behavior within the rigor of a mathematical decision model. The model frame combines 

axiomatic reasoning with probability calculus (specifically a calculus of variation). See Kot (2014) 

and Mikosch (1998).  This modeling construct allows a comparative thought experiment of 

strategic resource possibility frontiers developed from the pairing of control positions in 

association with access to information presented in a decision-theoretic frame.  This construct 

allows the specification and delineation of levels of control as functions of the skills, learning and 

analytic-decision capacity (SKi(t)) with is the vector (path) of decision pairings of information 

and control ((,).  The ((,) points can be specified for diverse agents (αi(t),αj(t), ..αm(t), 

αn(t))|(αi(t), (αi1(t), (αi2(t), (αi3(t)…(αj1(t), (αj2(t)… (αm1(t), (αm3(t), (αn(t),(αn+1(t)) 

within the probabilistic phase space functioning within bounded space in the left-tail of the unit 

root. This allows an analytic continuum across the probability state-space comprising a component 

of Boral set of social preferences/positions. The Boral complement calculations are illustrated in 

the last row of Tables 1 through 9B.   

The incremental spreads that can be observed in Figure 3 and reflected in the prior table 

discussions, can also support the development of the data presented in Tables 2B1 and 2B2. These 

tables produce the spreads as permutations between each skill level functional point it(, )|it-

it(, )|jt and their integral (|it) as estimated using Equation 2. 

 

it = T it(, )|it-it(, )|jt , d),/dt, d/dt  Eq 2.  

it = is the difference area/value measure of the spread between risk  

management skill levels across probability space and temporal phase space 

as determined by functional points.  

                 it(, ) = are the functional points per it set and subject to the first variance d,  

developed with Equation 1 
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This approach supports a general (Bayesian) association of possible behavioral variations framed 

by general expectations using the finding of Equation 1 and compared to Equation 2 as Framed 

and anchored with adaptive or independent equilibrium paths presented in probability sample 

spaces depicted with Figures 1a and 1b. These frames and anchors model the possible knowledge 

and learning positions (Kn <  KN(O)) defined, conditioned and measured by access to information 

(). This allows the specification of variant levels of cognition (Kn()) that accumulate through 

wisdom and experience to register as full knowledge (omnificence, KN(O)) discussed previously. 

See Wofford et al (2011). As noted, this is an improbable if not impossible potential level of 

achievement and learning given the limited capacity of the skills, experience and learning of 

operating agents (Sk(|,)); specifically identified as αi(t)| SK(i|) for diverse risk 

managers (or the terrorist agents, αi(t)|L(j|) to be discussed). Though this capacity is limited 

and specified at prescribed states of informational access, the accessed information can be 

accumulated as levels of human capacity or wealth, further specified as wisdom, experience and/or 

skill aggregation on the  ordinate to a maximum level of (KN(W). As previously discussed this 

construct and aggregation represents positions of power and influence enabling 

control/management of strategic resource potential and skill endowment available to achieve 

diverse levels and conditions of stability and wellbeing at alternative states (s(t)) of risk and 

uncertainty across the probability phase space illustrated in Figure 3 and measured in Tables 2B1 

and 2B2. The attainment of progressive levels of (Kn(W) and incremental achievement of 

operational skills, SK(|) assist the differentiation of risk management skill capacity frontiers, 

that will be exposed to alternative levels and ranges of terrorism.   

Terrorist Differenced Intensity Methodology and Frame   

This section develops the -algebra and event probabilities F mode needed to construct the terrorist 

loss functions (L (,) as they vary in levels of intensities across probability space. As note in 

the problem statement, terrorism is and can have a negative impact on society, social relations and 

the economy. A generalized socio-economic perspective of terrorism, frames terrorism as a 

downside cognitive risk or direct loss. The variances/loss can be measured with the probability 

triple as required in risk management process. Unlike the frequency distribution arising from 

external forces directly impacting the first variance estimation, terrorism is a behavioral and 

subjective phenomena. Terrorist behavior in probability space is a subjective measure of 

phenomenological probability constructs contingent on the perception, dispositions and 

expectation conditionals of the specified terrorist agencies (αi(t)) being profiled. See Kahneman 

and Tversky (1982a) and Mosch (1998). Terrorism as a contra-positive strategy conditionally 

positioned to an established order of social welfare (well-being) is ranked or ordered as a range of 

objectives effectively seeking to alter or destroy a specified culture, nation, society, institution, 

government or enterprise.  The range of possible positions, motivations and objectives specifying 

purpose and agent perspectives can range (as defined) from the use of violence to change policy 

or receive recognition or material gain to a goal of total chaos and destruction. These potential loss 

intensity functions in phase space are identified as loss function paths of Li, with i=1,2,3,4 

denoting the levels of loss intensity tracked in this study. The most intensity terrorist profile 

seeking maximum loss in any society of skill capacity is L1. Those seeking to advance a power 
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increase in the current society or to generate variant levels of political agitation with the use of 

violence is modeled as L4, in the calculations, tables and illustrations to follow. An example of 

an L4 profile might be representative of the IRA’s evolution from a militant group to a political 

party (Sein Finn). L4 might also track the path-pattern of functional points depicting violence 

actions of war between nation-states with goals of expanded territory, resources acquisition or 

trade rights from another. This is noted by Turchin and Nefedov (2009) discussion of conflicts 

between Burgundy and Tudor England. These conflicts entailed levels of controlled violence and 

aggravation in hopes and expectations of gains/profit and control of existing assets and resource 

(avoidance of total or massive destruction). At the other extreme of violence as a tool or action is 

the objective to inflict total destruction on opponents. This was voiced by the former Hezbollah 

leader. He stated, “we are not fighting so that the enemy recognizes us or offers us something. We 

are fighting to wipe out the enemy.” See Hoffman (1998).  This is the intensity loss function of 

L1. These levels of agency intensity Li are shown in Table 3 and depicted in Figure 4.  As 

illustrated, the extreme L1 path pattern, fits the construct of the predictive market in pricing a 

non-gain (0), but requires a decay path contingent of the initial position or beginning with 

optimistic expectations of gain or achievement at KN(W) =1. This sets the frame for a 

phenomenological probability field operating as variant degrees of uncertainty defining alternative 

situations or outcomes. See Kahneman and Tversky (1982a and 1982b). This suggested format is 

consistent with Richardson’s (1948, 1950, 1988) mathematic constructs for threat responses 

between conflicting agents. See Equation 3:  

                 it = Lit (,,|(i)  =    it(,) d/dt, d/dt                           Eq: 3 

Where:     Lit (,,|(i)   =   the loss function of terrorist actions as a function of αi(t)  

behavior and object/goal intensity seeking loss infliction on or    

chaos to others  

it(,)     =   functional (matching point) measure contingent of terrorist  - 

 algebra as a function of phenomenological intensity.                           

Equation 3, produces information path-pattern in probability space that is inversely related to 

levels of control (1/) in specific states (s(t)). This characterizes behavior path comprising a 

decline in social control relating to diminishing benefits to units of accessible information (|s(t)). 

This relationship and its measurement is contingent on matching changes in intensity with changes 

over time in phase space (d/dt, d/dt). This disposition allow behavioral propensity accounting 

for decreasing intensity of hurting others as inflicted loss aggregates and time passes. 1 

  

While the risk management levels are sensitive to exogenous uncertainty impacts on the initial 

position, the phenomenological implications of terrorist intensity spreads is characterized by the 

rate of directional decline and the spread between alternative loss scenarios, (Li |αi (t)), where 

i= (L1 L2 L3 L4). The dynamics of chance or choices that form the perceptions and 
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decisions are functions of beliefs of inflicting loss and intensity of actions i (,) to create fear 

and chaos to increase uncertainty.   As such, the Li are structured and designed to decrease the 

degrees of freedom associated with information, skills and knowledge.  The general formulation 

is achieve decay in potential control as information and time (for learning) expand.  The asymptotic 

patterns of the (Li |αi (t)) functions are shown in Figure 4, using data presented in Table 3.  As 

illustrated the initial point at KN(W) =1 is the corner denoting perfect control without useful 

information. The functional points composing the terrorist -algebra mode reduces the benefits of 

information associated with states of control. In effect the chaos creates and acceleration of noise 

relative to the benefits of signals gained with knowledge levels and directional potential of 

learning.   Table 3 shows the intensity spreads as well as the range of Li considered. As illustrated 

by the spread in intensities of terrorist loss functions and patterns in Figure 4, shows that as loss 

intensity accelerates, the probability space of uncertainty contained in the Borel measurement 

compliment (1- Li ) regardless of control/information functionals (i (,)) operating (see last 

row, Table 3).   

Given the endogeneity of the terrorist loss functions as conditional on agent intensity levels 

requires attribution consideration of terrorist (αi (t)) characteristics and terrorist actions related to 

the event ((), E() they create as functions of attributes and conditions: it|it, it|s(t), and eit|it 

(idiosyncratic differences experienced). These case-specific measures and static attributes can be 

associated and regressed with the intensity-spreads presented in the three right columns of Table 

3. An evaluation of causal links to the potential endogenous and subject probability spreads 

illustrated in Figure 4 and presented in Table 3, allows a decision valuation matrix events in of 

societal states-regimes (s(t)). This process is consistent with the differences noted by Turchin 

(2016) and Turchin and Nefedov (2009) between ruling elites or other controlling agents ((αit() 

|(αit(), s(t)| αit()). Also, this attribution construct supports function specification of terrorist 

strategic function that may be operating when a government is at war with its “people” or a 

revolution is nature of conflict. See Tucker (2016).  It can also support the calculation across the 

states of uncertainty and control that form terrorist and objectives of nihilistic, anarchist, cults and 

religious fanatics or other agents of an ‘extrasocietal’ element or outsider psychological frame 

seeking mass and total destruction (as voiced by the prior Hezbollah strategy).   

 

Decision Theoretic Analysis of Risk Management, Terrorist Loss Functions and Threat 

Effects  

With the development of the probability space triples for both risk management skills (, F,P) 

and alternative intensities in levels of  of terrorist loss functions (, F,P), it is possible to analyze 

these conflicts between distinct but simultaneous operating agents (αi(t) αi(t))|s(t)) subject to 

heterogeneous behavioral  perspectives and decision preferences. The uncertainty of interaction 

arises given differences in preferences and intuitive perspectives, as noted in the profiles of 

agent/actors noted. The diversity in preferences, influences the decisions made (as well as the 

process employed: F). The decision made and its process of action chosen results in the outcome 

or occurrence observed. It is often these observations and their descriptors (it, |it) that become 
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the focus of the tactical responses, measures undertaken and policies enacted.  A focus on 

outcomes of specific events may limit the learning and cognitive risk concerns needed to benefit 

society and develop of risk management skills. As noted it is the understanding of relationships 

linking of preferences (/  F   P) that offers benefits to investigation (gathering information, 

) and intelligence (analytics and solutions, , dKn(W)it) that may offer the peace and 

stability axiom fundamental to social order.   

The development of the probability triples for both risk managers and terrorist (/, F,P), offer 

and potential interactive understanding (learning/ behavioral cognition), with certain measurement 

adjustments and augmentations.  The decision theoretic frame allowing a comparative computation 

experiment between alterative risk management skill levels and terrorist intensity loss function is 

illustrated in Figure 5.  This is effectively a composite of Figures 3 and 4 and reflects the functional 

data points developed and presented in Tables 1-3.   

Figure 5 illustrated the six risk management skill capacity modes (Skit) and the four terrorist loss 

functions (Lit) developed and identified as the function in probability phase space.  Despite the 

potential of this analytic to offer solutions via risk measurement, potential mis-measurement and 

hence decisions and outcomes may be mis-specified.   

As noted in the attribution analytics developed to quantify skills and intensity functional measures 

(F|fields), the risk management probabilities where anchored to objective/frequentist probability 

measures (P) that are exogenous in origin, focused on first variance positions with the subsequent 

incremental points conditional to Skit modal. Alternatively, the loss functions conditioned by 

terrorist intensity diversions are based on phenomenological, subjective probabilities (like 

Bayesian a priori measures) that are functions of agent beliefs or intensities, in reducing control 

relative to knowledge in and uncertain world (s(t)). As such a terrorist 0.20  to a risk managers 

0.20 measures.  See Kahneman and Tversky (1982a, 1982b), Weisberg (2014), and Wofford et al 

(2011) for details of these cognitive measurement issues.   

A two-phase process is developed and presented in Tables 4a-9b address these issues. Though the 

origins of the probability are not altered their process and orientations are standardized for 

comparative purposes.  This is achieved by developing both probability triples as endogenous 

measures of the forms using the Equations 4a and 4b as follow: 

   P (it)  =  dSktdt   Eq 4a 

   P (it)  =  d Li/dt   Eq 4b 

These measures are incrementally developed across time using and standard unit time measure 

linked to a unit probability frame. These measures are presented in Column 6, as P (it) based on 

Equation 4a and in Columns 4 and 10, for the less and more intense loss function per table.  These 

endogenous calculations are depicted in Columns 4, 6 and 10, for Tables 4a-9b.  Tables 4a-9b also 

show the Skt and Lit vectors shown in Tables 1-4.   

Tables 4a-9b also consider an exogenous probability calculation for each terrorist and risk manager 

profile. This relative frequency probability measure standardizing terrorist loss functions with risk 
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management skill capacity if developed using an augmented threat measure conceived by 

Richardson (1948, 1950 and 1988). Using pre-WWI armament statistics and data available through 

the inter-war period, violence potential threat proxy using a posteriori probability evert set with a 

fortiori framing of a mathematical psychology construct for possibility of war or peace as a 

function changes in armament tonnage production/procurement across nations. He developed a k 

statistic denoting the change in nation’s arm development to the current armament level of a 

potentially adversarial nation. He then calculated an l factor that reverse the national ratio of 

change to fund level.  

For the purpose of this behavioral analytic, k statistic as per Equation 5a is the ratio of the change 

in a given terrorist loss-intensity function in relation to the specified risk skill level.  As a 

computational complement, an l factor is developed as a ratio of the rate of change in aggregated 

management skills in relation to the magnitude to the loss function possible for an identified 

terrorist intensity profile. See Equation 5b: 

  k   =    dLi/Skt  = d it/ it   Equation 5a 

  l    =   dSkt Li  =  d it/ it   Equation 5b 

The application of Equations 5a and 5b, show that the k , l, Augmented Richardson threat response 

factors, developed as objective/exogenous probabilities are presented in Columns 7, 8 and 11,12 

in Tables 4a-9b.  These construct expand the decision-theoretic frame to a more complex game-

theoretic frame, reflecting the impact of terrorist loss positions and intensity changes on risk 

management responses, and risk management strategy changes and skill levels on terrorist loss 

and belief expectations. A key implication is that as indicated in incremental time/space units and 

in the moment and distribution measures, uncertainty implicit with the action of others increases 

uncertainty potential and risk exposures.  This finding across terrorist profiles and risk skill 

positions, exogenous risks exposure reflecting a game-theoretic probability space, indicates higher 

levels and incremental impacts of risk and uncertainty. This is consistent with the variants in 

uncertainty and intuitive statistical findings noted by Kahneman and Tversky (1982a, 1982b) and 

Tversky and Kahneman (1981).  

 

Conclusions and Future Research 

The components of the analysis used to develop the variables and relationships include the 

behavior of decision agents (α(t)) as shown in Figure 2,3, 4 and 5. The analytic is contingent on , 

and a function of, a number of variables; the function of divergent agents’ variant ability and 

capacity to access and utilize information; the differences in their skills and capacity to influence 

and control situations they undertake, inflict or are exposed to; and the risks and probabilities 

measures contingent on these exposures. The skills and abilities required given the issues that arise 

and the exposures to be experienced are functions of their access to information (t) in and over 

time and the agents’ ((t)) ability (SKn()) to learn, develop and grow in knowledge (Kn()t). 

Knowledge (Kn()t) as to be measured and defined is a capitalization of information into skills 

paired with variations in the capacity to control or influence decision processes. Over time this 
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capacity is a function of experience assisting in the development of operational skills conditioned 

by ability and cognition. This power to control (KN(W)) is reflective of conditioning the capacity 

of knowledge and skills to influence and control decision-making, thus allowing, managing 

risk/uncertainty, (α(t)|skn()t )) or exploiting and creating these states of risk and uncertainty to 

maximize loss and damage (Lit   (it)| L(Zit|it)) as desired by terrorist (αi(t)| Lit )).  

The information and capacity of influence/control pairings, sets the probability structure illustrated 

in Figure 1a ad1b which will be further developed in the methodology section and the other figures.  

The structural probabilistic framed in Kolomgorov’s (1959) probability space fitting Lo’s (2017) 

prediction market and the decision-theoretic frame of Von Neumann and Morgenstern (1947) and 

Luce and Raiffa (1957). This decision frame sets up behavioral associations/relationships that 

consider and can be extended to respond to physical/real (static) attributes (it) operating as 

decision stimuli as it can link to case specific measures.  

The decision-theoretic probabilistic state space frame can operate as an alternative to data 

measures generated with Monte Carlo simulation. The reason for an alternative to this well- 

established procedure is that the multiple variables simulated via Monte Carlo and similar 

procedures develop distributions that are independent of one another and to not recognize the 

interaction and adaptive interdependence that is operating in many of the social and economic 

relationships operating across and between decision agencies and their expectations, especially as 

relates to political, social and economic state-space and space-time delineated regimes. The 

implication of these errors in estimation are made evident by the augmented k and l relative to the 

endogenous phenomenological probabilities observed in many behavioral measures. 

Behavioral specification of terrorist typology, allows a frame for further research in psycho-

physical coefficient measurement relative to security costs/premiums that are missing from the 

measures of loss (human and property) that deal only with the local descriptive statistics and 

attribute measures of specific occurrences.  This is much like defining proposed development risk, 

by looking at the current success and/or failure of past production, not looking at proposed products 

relative to future needs and preferences, and risks associated with the development process as it 

seeks to meet and achieve planned and proposed expectations.  

This basic frame and analytic will be used in future research on terrorist and risk management 

conflicts.  The path-independent choice rules develop allow a general specification of -algebra 

and Borel sets that can frame and define the decision options and loss function intensities possible 

in uncertain phase space. The complex base space frame developed can be compared to specific 

interactive/response measures as suggested by Richardson (1948, 1950 and 1988) and DeLisle 

(1986).  The constructs can be used to support the forecast and a fortiori constructs to test an array 

of choice and chance situations in addition to the terrorist dynamics and risk management 

strategies characterized in this paper.  The structure developed in this paper can be extended to a 

psycho-physical measurement problem in future research. The psycho-physical association 

formulated in case specific scenarios will then be applied to a long term large data sets such as of 

terrorist events, testing Graham and Timmermann (2017) conjecture of a direct association 

between decision-theoretic probabilistic phase space and forecasting terrorist activities and 

behavioral profiles. Indeed, the technique(s) developed assist a more complete application of risk 
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management process.  Terrorist violence is indiscriminately supplied but a risk exposure (loss to 

general society). The descriptive information and statistics developed are insufficient to assist the 

needed strategic risk analysis of the risk management process, needed to develop more complete 

intelligence capacity.  The process sets up the psychometric scaling component of a 

psychophysical (Fechner model) that can be linked to the descriptive data and 

observations/outcome of a given terrorist event allowing a structured analysis of individual cases 

study – allowing a comparison of heterogeneous occurrences. The behavioral component of this 

study for psychophysical analysis can extend beyond the case issue  and be used to test issues 

framed by attribution theory (causal relations across events).  The Terrorist behavior and decisions 

and risk management analysis and decisions presented in the event functions/-algebra 

(probability measure models per agent can be used as functional decisions/action inputs and 

anchors for testing terrorist or risk exposures in the structure or frame of threshold signal detection 

(TSD), Sensitivity threshold (terror intensity) and receiver operating characteristics (ROC) and 

ROC curves as these tools are used to relate information to risk exposures. Reactions to solutions. 

Strategic capacity to exposures. TSD, ROC and Sensitivity threshold where models initially used 

by RAF  to analysis and strategically respond with use of radar info/signals to Axis moves. Our F 

equate to ROC curves and inverse to terrorist intensities – this allows extension to any 

physical/descriptive statistical construct (it, |it) components in our model.  In an aggregated 

construct (macro-level) the behavioral measures developed per event and phase space with our 

model can be used as weights, adjustment and modifiers across the many heterogeneous terror 

events to adjust as any data to be considered in an index or data base to formulate a HPM (hedonic 

pricing model) – improving a standardized comparison between events like the Military-Math 

Complex at U of Wisconsin to the first WTC attack or 9-11.    

 

 

Endnote 

1 The asymptotic pattern produced with Equation 3 was suggested in practice by Mikey Day, a 

British military and intelligence veteran and current news correspondent, who in discussing 

interrogation and the use of torture, inferred that the signal value of information declines 

asymptotically with time. The most relevant data is gained in the short term as opposed to 

information gained other time as personal relations are developed.   
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Figure 4: Terrorist Agent Intensity and Loss Function
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  Table 1: Probability Space, Events F Considering Frontiers of Risk Management Skill Capacity  

Time(t) Percentage 

(%) 

Sk  Sk  Sk  Sk  Sk  Sk  

0 0 1.00000 0.79000 0.50000 0.40000 0.30000 0.20000 

1 0.1 0.94728 0.74000 0.45000 0.33000 0.25500 0.12000 

2 0.2 0.88928 0.69000 0.37750 0.24500 0.20000 0.00000 

3 0.3 0.82500 0.63500 0.30000 0.14000 0.00000  

4 0.4 0.76000 0.58000 0.15500 0.00000   

5 0.5 0.68500 0.50000 0.00000    

6 0.6 0.59700 0.31500     

7 0.7 0.46845 0.00000     

8 0.8 0.32924      

9 0.9 0.18800      

10 1.0 0.00000      

Average  0.60811 0.53125 0.29708 0.22300 0.18875 0.10667 

Sum  6.68926 4.25000 1.78250 1.11500 0.75500 0.32000 

Fair Average  0.66893 0.60714 0.17825 0.11150 0.18875 0.10667 

Standardized  

Percentage 

(%/T) 

 

0.66893 0.53125 0.29708 0.22300 0.18875 0.10667 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Borel 

Complement 
1- Sk  

0.33107 0.46875 0.70292 0.77700 0.81125 0.89333 
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Table 2B1 Risk Management Frontier F Incremental Differences Per Skill Capacity Level From - Algebra Boundary Anchor 

 

Time(t) % (Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

(Sk   

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 
(Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 
(Sk  

Sk t 

0 0 0.210000 0.500000 0.600000 0.700000 0.800000 0.290000 0.390000 0.490000 0.590000 0.100000 0.200000 0.300000 

1 0.1 0.207278 0.497278 0.617278 0.692278 0.827278 0.290000 0.410000 0.485000 0.620000 0.120000 0.195000 0.330000 

2 0.2 0.199284 0.511784 0.644284 0.689284 0.889284 0.312500 0.445000 0.490000 0.690000 0.132500 0.177500 0.377500 

3 0.3 0.190000 0.525000 0.685000 0.825000  0.335000 0.495000 0.635000  0.160000 0.300000  

4 0.4 0.180000 0.605000 0.760000   0.425000 0.580000   0.155000   

5 0.5 0.185000     0.500000       

6 0.6 0.282000            

7 0.7             

8 0.8             

9 0.9             

10 1.0             

Ave  0.207652 0.527812 0.661312 0.726640 0.838854 0.358750 0.464000 0.525000 0.633333 0.133500 0.218125 0.335833 

Sum  1.453562 2.639062 3.306562 2.906562 2.516562 2.152500 2.320000 2.100000 1.900000 0.667500 0.872500 1.007500 

Fair 

Ave 

 

0.207652 0.527812 0.661312 0.726640 0.838854 0.307500 0.464000 0.525000 0.633333 0.133500 0.218125 0.335833 

%/T  0.145356 0.263906 0.330656 0.290656 0.251656 0.215250 0.232000 0.210000 0.190000 0.066750 0.087250 0.100750 

Borel 

Comp 

1-Sk 
0.854644 0.736094 0.669344 0.709344 0.748344 0.784750 0.768000 0.790000 0.810000 0.933250 0.912750 0.899250 
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 Table 2B2 Risk Management Frontier F Incremental Differences Per Skill Capacity Level  

 From - Algebra Boundary Anchor, Continued          

              

         

     

 

 

 

 

 

 

 

 

 

 

  

Time(t) % (Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

0 0 0.100000 0.200000 0.100000 

1 0.1 0.145000 0.210000 0.135000 

2 0.2 0.045000 0.245000 0.200000 

3 0.3 0.140000   

4 0.4    

5 0.5    

6 0.6    

7 0.7    

8 0.8    

9 0.9    

10 1.0    

Ave  0.107500 0.218333 0.145000 

Sum  0.430000 0.655000 0.435000 

Fair Ave  0.107500 0.218333 0.145000 

%/T  0.043000 0.065500 0.043500 

Borel 

Comp 

1-Sk 
0.957000 0.934500 0.956500 
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       Table 2A: Risk Management Frontier F Per Skill Capacity Level Thresholds Differences 

                                                (-Algebra, F Path Sample Space Spreads)  

 

 

 

 

 

 

 

 

 

 

 

  

Time(t) % (Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

(Sk  

Sk t 

0 0 0.21000 0.29000 0.10000 0.10000 0.10000 

1 0.1 0.20728 0.29000 0.12000 0.07500 0.13500 

2 0.2 0.19928 0.31250 0.13250 0.04500 0.20000 

3 0.3 0.19000 0.33500 0.16000 0.14000  

4 0.4 0.18000 0.42500 0.15500   

5 0.5 0.18500 0.50000     

6 0.6 0.28200       

7 0.7       

8 0.8       

9 0.9       

10 1.0       

Ave  0.20765 0.35875 0.13350 0.09000 0.14500 

Sum  1.45356 2.15250 0.66750 0.36000 0.43500 

Fair Ave  0.20765 0.35875 0.13350 0.09000 0.14500 

%/T  0.14536 0.21525 0.06675 0.03600 0.04350 

Borel 

Comp 

1-Sk 
0.85464 0.78475 0.93325 0.96400 0.95650 
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Time(t) Percentage 

(%) 
L1 L2 L3 L4 L2- L1 L3 - L2   L4 - L3 

0 0 1.00000 1.00000 1.00000 1.00000 0.00000 0.00000 0.00000 

1 0.1 0.25000 0.32787 0.50000 0.80000 0.07787 0.17213 0.30000 

2 0.2 0.11111 0.16667 0.33333 0.60000 0.05556 0.16667 0.26667 

3 0.3 0.06250 0.12500 0.25000 0.50000 0.06250 0.12500 0.25000 

4 0.4 0.04000 0.10000 0.20000 0.40000 0.06000 0.10000 0.20000 

5 0.5 0.02778 0.08333 0.16667 0.33333 0.05556 0.08333 0.16667 

6 0.6 0.02041 0.07143 0.14286 0.28571 0.05102 0.07143 0.14286 

7 0.7 0.01563 0.06250 0.12500 0.25000 0.04688 0.06250 0.12500 

8 0.8 0.035 0.05556 0.11111 0.22222 0.04321 0.05556 0.11111 

9 0.9 0.01000 0.05000 0.10000 0.20000 0.04000 0.05000 0.10000 

10 1.0 0.00826 0.04545 0.09091 0.18182 0.03719 0.04545 0.09091 

Average  0.15498 0.20424 0.29290 0.43392 0.04816 0.08473 0.15938 

Sum  1.54977 2.04235 2.92897 4.77309 0.52978 0.93207 1.75321 

Fair  

Average 

 

0.15498 0.20424 0.29290 0.47731 0.05298 0.09321 0.17532 

Standardized  

Percentage  

(%/T) 

 

0.15498 0.20424 0.29290 0.47731 0.05298 0.09321 0.17532 
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Table 3: Terror 

Intensity F Frontier 

and Difference 

Spreads Between Loss Function -Algebras 

 

 

 

 

 

 

 

 

 

 

  

Borel 

Complement 
1-  Li 

0.84502 0.79576 0.70710 0.52269 0.94702 0.90679 0.82468 
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Table 4A:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 1.00000 0 0 0 1 0 0 0 

1 0.1 0.80000 -0.200 0.94728 -0.05272 -0.21113 -0.06590 0.500 -0.50000 2.00000 -0.105444 

2 0.2 0.60000 -0.200 0.88928 -0.05799 -0.22490 -0.09666 0.333 -0.16667 0.50000 -0.173983 

3 0.3 0.50000 -0.100 0.82500 -0.05928 -0.12048 -0.11857 0.250 -0.08333 0.41667 -0.237135 

4 0.4 0.40000 -0.100 0.76000 -0.06200 -0.13021 -0.15500 0.200 -0.05000 0.20000 -0.310000 

5 0.5 0.33333 -0.067 0.68500 -0.08300 -0.09732 -0.24900 0.167 -0.03333 0.16667 -0.408000 

6 0.6 0.28571 -0.048 0.59700 -0.08800 -0.07976 -0.30800 0.143 -0.02381 0.14286 -0.630000 

7 0.7 0.25000 -0.036 0.46845 -0.12855 -0.07624 -0.51419 0.125 -0.01786 0.12500 -1.132370 

8 0.8 0.22222 -0.028 0.32924 -0.13921 -0.08437 -0.62645 0.111 -0.01389 0.11111 -1.252893 

9 0.9 0.20000 -0.022 0.18800 -0.14124 -0.11820 -0.70622 0.100 -0.01111 0.10000 -1.412434 

10 1.0 0.18182 -0.018 0.00000 -0.18800 -0.01818 -1.03400 0.091 -0.00909 -0.00909 -2.068000 

Average  0.43392 -0.074 0.60811 -0.09091 -0.10553 -0.35218 0.275 -0.08264 0.34120 -0.702751 

Sum  4.77309 -0.818 6.68926 -1.00000 -1.16080 -3.87398 3.020 -0.90909 3.75321 -7.730259 

Standardized  

Percentage  

 

0.47731 -0.082 2.22975 -0.10000 -0.11608 -0.38740 0.302 -0.09091 0.37532 -0.773026 
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(%/T) 
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Table 4B  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions 

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSkt 

L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L1 

0 0 1 0 1 0 0 0 1 0 0 0 

1 0.1 0.32787 -0.67213 0.94728 -0.05272 -0.70954 -0.16080 0.25000 -0.75000 -0.79174 -0.21089 

2 0.2 0.16667 -0.16120 0.88928 -0.05799 -0.18127 -0.34797 0.11111 -0.13889 -0.15618 -0.52195 

3 0.3 0.12500 -0.04167 0.83000 -0.05928 -0.05020 -0.47427 0.06250 -0.04861 -0.05857 -0.94854 

4 0.4 0.10000 -0.02500 0.76800 -0.06200 -0.03255 -0.62000 0.04000 -0.02250 -0.02930 -1.55000 

5 0.5 0.08333 -0.01667 0.68500 -0.08300 -0.02433 -0.81600 0.02778 -0.01222 -0.01784 -2.44800 

6 0.6 0.07143 -0.01190 0.59700 -0.08800 -0.01994 -1.26000 0.02041 -0.00737 -0.01234 -4.41000 

7 0.7 0.06250 -0.00893 0.46845 -0.12855 -0.01906 -2.26474 0.01563 -0.00478 -0.01021 -9.05896 

8 0.8 0.05556 -0.00694 0.32924 -0.13921 -0.02109 -2.50579 0.01235 -0.00328 -0.00996 -11.27604 

9 0.9 0.05000 -0.00556 0.18800 -0.14124 -0.02955 -2.82487 0.01000 -0.00235 0.00000 -14.12434 

10 1.0 0.04545 -0.00455 0.00000 -0.18800 0.00000 -4.13600 0.00826 -0.00174 0.00000 -22.74800 

Average  0.18980 -0.08678 0.60930 -0.09091 -0.09887 -1.54104 0.14164 -0.09016 -0.09874 -6.11788 

Sum  2.08781 -0.95455 6.70226 -1.00000 -1.08754 -15.41043 1.55803 -0.99174 -1.08615 -67.29672 

Standardized  

Percentage  

 

0.20878 -0.09545 0.67023 -0.10000 -0.10875 -1.54104 0.15580 -0.09917 -0.10861 -6.72967 
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(%/T) 

  



40 

 

Table 5a:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 0.79000 0 0 0 1 0 0 0 

1 0.1 0.80000 -0.200 0.74000 -0.05000 -0.27027 -0.06250 0.500 -0.50000 -0.67568 -0.10000 

2 0.2 0.60000 -0.200 0.69000 -0.05000 -0.28986 -0.08333 0.333 -0.16667 -0.24155 -0.15000 

3 0.3 0.50000 -0.100 0.63500 -0.05500 -0.15748 -0.11000 0.250 -0.08333 -0.13123 -0.22000 

4 0.4 0.40000 -0.100 0.58000 -0.05500 -0.17241 -0.13750 0.200 -0.05000 -0.08621 -0.27500 

5 0.5 0.33333 -0.067 0.50000 -0.08000 -0.13333 -0.24000 0.167 -0.03333 -0.06667 -0.48000 

6 0.6 0.28571 -0.048 0.31500 -0.18500 -0.15117 -0.64750 0.143 -0.02381 -0.07559 -1.29500 

7 0.7 0.25000 -0.036 0.00000 -0.31500 0.00000   0.125 -0.01786    

8 0.8 0.22222 -0.028     0.111 -0.01389   

9 0.9 0.20000 -0.022     0.100 -0.01111   

10 1.0 0.18182 -0.018     0.091 -0.00909   

Average  0.43392 -0.074 0.53125 -0.09875 -0.14682 -0.18298 0.275 -0.08264 -0.18242 -0.06786 

Sum  4.77309 -0.818 4.25000 -0.79000 -1.17452 -0.79000 3.020 -0.90909 -1.27691 -0.47500 

Standardized   0.47731 -0.082 0.53125 -0.09875 -0.11745 -0.09875 0.302 -0.09091 -0.18242 -0.06786 
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Percentage  

(%/T) 
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Table 5B:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions 

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSkt 

L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L2 

0 0 1 0 0.79000 0 0 0.00000 1 0 0 0.00000 

1 0.1 0.32787 -0.67213 0.74000 -0.05000 -0.90829 -0.15250 0.25000 -0.75000 -1.01351 -0.05000 

2 0.2 0.16667 -0.16120 0.69000 -0.05000 -0.23363 -0.30000 0.11111 -0.13889 -0.20129 -0.05000 

3 0.3 0.12500 -0.04167 0.63500 -0.05500 -0.06562 -0.44000 0.06250 -0.04861 -0.07655 -0.05500 

4 0.4 0.10000 -0.02500 0.58000 -0.05500 -0.04310 -0.55000 0.04000 -0.02250 -0.03879 -0.05500 

5 0.5 0.08333 -0.01667 0.50000 -0.08000 -0.03333 -0.96000 0.02778 -0.01222 -0.02444 -0.08000 

6 0.6 0.07143 -0.01190 0.31500 -0.18500 -0.03779 -2.59000 0.02041 -0.00737 -0.02340 -0.18500 

7 0.7 0.06250 -0.00893 0.00000 -0.31500 0.00000 -5.04000 0.01563 -0.00478    

8 0.8 0.05556 -0.00694     0.01235 -0.00328   

9 0.9 0.05000 -0.00556     0.01000 -0.00235   

10 1.0 0.04545 -0.00455     0.00826 -0.00174   

Average  0.18980 -0.08678 0.53125 -0.06786 -0.16522 -0.71321 0.14164 -0.09016 -0.22577 -0.06786 

Sum  2.08781 -0.95455 4.25000 -0.47500 -1.32176 -4.99250 1.55803 -0.99174 -1.35459 -0.47500 

Standardized  

Percentage  

 

0.20878 -0.09545 0.53125 -0.04750 -0.13218 -0.49925 0.15580 -0.09917 -0.13546 -0.04750 
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(%/T) 
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Table 6a:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 0.50000 0 0 0 1 0 0 0 

1 0.1 0.80000 -0.200 0.48297 -0.01704 -0.41411 -0.02129 0.500 -0.50000 -1.03527 -0.03407 

2 0.2 0.60000 -0.200 0.45500 -0.02797 -0.43956 -0.04661 0.333 -0.16667 -0.36630 -0.08390 

3 0.3 0.50000 -0.100 0.42500 -0.03000 -0.23529 -0.06000 0.250 -0.08333 -0.19608 -0.12000 

4 0.4 0.40000 -0.100 0.38500 -0.04000 -0.25974 -0.10000 0.200 -0.05000 -0.12987 -0.20000 

5 0.5 0.33333 -0.067 0.00000 -0.38500 0.00000 -1.15500 0.167 -0.03333 0.00000 -2.31000 

6 0.6 0.28571 -0.048      0.143 -0.02381   

7 0.7 0.25000 -0.036      0.125 -0.01786   

8 0.8 0.22222 -0.028     0.111 -0.01389   

9 0.9 0.20000 -0.022     0.100 -0.01111   

10 1.0 0.18182 -0.018     0.091 -0.00909   

Average  0.43392 -0.074 0.37466 -0.08333 -0.22478 -0.23048 0.275 -0.08264 -0.28792 -0.45799 

Sum  4.77309 -0.818 2.24797 -0.50000 -1.34870 -1.38290 3.020 -0.90909 -1.72752 -2.74796 

Standardized   0.47731 -0.082 0.22480 -0.05000 -0.13487 -0.13829 0.302 -0.09091 -0.17275 -0.27480 
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Percentage  

(%/T) 
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Table 6B:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions 

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSk

t L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L2 

0 0 1 0 0.50000 0 0 0 1 0 0 0 

1 0.1 0.32787 -0.67213 0.48297 -0.01704 -1.39168 -0.05196 0.25000 -0.75000 -1.55291 -0.06814 

2 0.2 0.16667 -0.16120 0.45500 -0.02797 -0.35429 -0.16779 0.11111 -0.13889 -0.30525 -0.25169 

3 0.3 0.12500 -0.04167 0.42500 -0.03000 -0.09804 -0.24000 0.06250 -0.04861 -0.11438 -0.48000 

4 0.4 0.10000 -0.02500 0.38500 -0.04000 -0.06494 -0.40000 0.04000 -0.02250 -0.05844 -1.00000 

5 0.5 0.08333 -0.01667 0.00000 -0.38500 0.00000 -4.62000 0.02778 -0.01222 0.00000 -13.86000 

6 0.6 0.07143 -0.01190      0.02041 -0.00737   

7 0.7 0.06250 -0.00893       0.01563 -0.00478   

8 0.8 0.05556 -0.00694     0.01235 -0.00328   

9 0.9 0.05000 -0.00556     0.01000 -0.00235   

10 1.0 0.04545 -0.00455     0.00826 -0.00174   

Average  0.18980 -0.08678 0.37466 -0.08333 -0.38179 -0.17195 0.14164 -0.09016 -0.40620 -2.60997 

Sum  2.08781 -0.95455 2.24797 -0.50000 -1.90894 -0.85975 1.55803 -0.99174 -2.03098 -15.65982 

Standardized  

Percentage  

 

0.20878 -0.09545 0.22480 -0.05000 -0.19089 -0.08597 0.15580 -0.09917 -0.20310 -1.56598 
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(%/T) 
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Table 7A:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 0.40000 0 0 0 1 0 0 0 

1 0.1 0.80000 -0.200 0.33000 -0.07000 -0.60606 -0.08750 0.500 -0.50000 -1.51515 -0.14000 

2 0.2 0.60000 -0.200 0.24500 -0.08500 -0.81633 -0.14167 0.333 -0.16667 -0.68027 -0.25500 

3 0.3 0.50000 -0.100 0.14000 -0.10500 -0.71429 -0.21000 0.250 -0.08333 -0.59524 -0.42000 

4 0.4 0.40000 -0.100 0.00000 -0.14000 0.00000 -0.35000 0.200 -0.05000 0.00000 -0.70000 

5 0.5 0.33333 -0.067      0.167 -0.03333   

6 0.6 0.28571 -0.048      0.143 -0.02381   

7 0.7 0.25000 -0.036      0.125 -0.01786   

8 0.8 0.22222 -0.028     0.111 -0.01389   

9 0.9 0.20000 -0.022     0.100 -0.01111   

10 1.0 0.18182 -0.018     0.091 -0.00909   

Average  0.43392 -0.074 0.22300 -0.08000 -0.42733 -0.15783 0.275 -0.08264 -0.55813 -0.30300 

Sum  4.77309 -0.818 1.11500 -0.40000 -2.13667 -0.78917 3.020 -0.90909 -2.79066 -1.51500 

Standardized   0.47731 -0.082 0.22300 -0.04000 -0.42733 -0.07892 0.302 -0.09091 -0.27907 -0.15150 
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Table 7B:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions 

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSkt 

L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L2 

0 0 1 0 0.40000 0 0.00000 0.00000 1 0 0.00000 0.00000 

1 0.1 0.32787 -0.67213 0.33000 -0.07000 -2.03676 -0.21350 0.25000 -0.75000 -2.27273 -0.28000 

2 0.2 0.16667 -0.16120 0.24500 -0.08500 -0.65797 -0.51000 0.11111 -0.13889 -0.56689 -0.76500 

3 0.3 0.12500 -0.04167 0.14000 -0.10500 -0.29762 -0.84000 0.06250 -0.04861 -0.34722 -1.68000 

4 0.4 0.10000 -0.02500 0.00000 -0.14000 0.00000 -1.40000 0.04000 -0.02250 0.00000 -3.50000 

5 0.5 0.08333 -0.01667      0.02778 -0.01222   

6 0.6 0.07143 -0.01190      0.02041 -0.00737   

7 0.7 0.06250 -0.00893       0.01563 -0.00478   

8 0.8 0.05556 -0.00694     0.01235 -0.00328   

9 0.9 0.05000 -0.00556     0.01000 -0.00235   

10 1.0 0.04545 -0.00455     0.00826 -0.00174   

Average  0.18980 -0.08678 0.22300 -0.08000 -0.59847 -0.59270 0.14164 -0.09016 -0.79671 -0.68125 

Sum  2.08781 -0.95455 1.11500 -0.40000 -2.99235 -2.96350 1.55803 -0.99174 -3.18684 -2.72500 

Standardized  

Percentage  

 

0.20878 -0.09545 0.22300 -0.04000 -0.02850 -0.02822 0.15580 -0.09917 -0.31868 -0.27250 
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Table 8A:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 0.30000 0.00000 0.00000 0.00000 1 0 0.00000 0.00000 

1 0.1 0.80000 -0.200 0.25500 -0.04500 -0.78431 -0.05625 0.500 -0.50000 -1.96078 -0.09000 

2 0.2 0.60000 -0.200 0.20000 -0.05500 -1.00000 -0.09167 0.333 -0.16667 -0.83333 -0.16500 

3 0.3 0.50000 -0.100 0.00000 -0.20000 0.00000 -0.40000 0.250 -0.08333 0.00000 -0.80000 

4 0.4 0.40000 -0.100      0.200 -0.05000   

5 0.5 0.33333 -0.067      0.167 -0.03333   

6 0.6 0.28571 -0.048      0.143 -0.02381   

7 0.7 0.25000 -0.036      0.125 -0.01786   

8 0.8 0.22222 -0.028     0.111 -0.01389   

9 0.9 0.20000 -0.022     0.100 -0.01111   

10 1.0 0.18182 -0.018     0.091 -0.00909   

Average  0.43392 -0.074 0.18875 -0.07500 -0.44608 -0.13698 0.275 -0.08264 -0.69853 -0.26375 

Sum  4.77309 -0.818 0.75500 -0.30000 -1.78431 -0.54792 3.020 -0.90909 -2.79412 -1.05500 

Standardized   0.47731 -0.082 0.18875 -0.03000 -0.17843 -0.05479 0.302 -0.09091 -0.27941 -0.10550 
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Table 8B:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions 

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSkt 

L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L2 

0 0 1 0 0.30000 0.00000 0.00000 0.00000 1 0 0.00000 0.00000 

1 0.1 0.32787 -0.67213 0.25500 -0.04500 -2.63581 -0.13725 0.25000 -0.75000 -2.94118 -0.18000 

2 0.2 0.16667 -0.16120 0.20000 -0.05500 -0.80601 -0.33000 0.11111 -0.13889 -0.69444 -0.49500 

3 0.3 0.12500 -0.04167 0.00000 -0.20000 0.00000 -1.60000 0.06250 -0.04861 0.00000 -3.20000 

4 0.4 0.10000 -0.02500      0.04000 -0.02250   

5 0.5 0.08333 -0.01667      0.02778 -0.01222   

6 0.6 0.07143 -0.01190      0.02041 -0.00737   

7 0.7 0.06250 -0.00893      0.01563 -0.00478   

8 0.8 0.05556 -0.00694     0.01235 -0.00328   

9 0.9 0.05000 -0.00556     0.01000 -0.00235   

10 1.0 0.04545 -0.00455     0.00826 -0.00174   

Average  0.18980 -0.08678 0.18875 -0.07500 -0.86045 -0.51681 0.14164 -0.09016 -0.90891 -0.96875 

Sum  2.08781 -0.95455 0.75500 -0.30000 -3.44182 -2.06725 1.55803 -0.99174 -3.63562 -3.87500 

Standardized  

Percentage  

 

0.20878 -0.09545 0.18875 -0.06000 -0.86045 -0.51681 0.15580 -0.09917 -0.36356 -0.38750 
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Table 9A:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Lesser Intensity Loss Functions 

Time(t) (%) L4 d L4/ 

dt 

Skt dSkt

dt 

k = 

 d L4/ 

Skt 

l = 

dSkt 

L4 

L3 d L3/ 

dt 

k = 

 d L3/ 

Skt 

l = 

dSkt 

L3 

0 0 1.00000 0 0.20000 0.00000 0.00000 0.00000 1 0 0.00000 0.00000 

1 0.1 0.80000 -0.200 0.12000 -0.08000 -1.66667 -0.10000 0.500 -0.50000 -4.16667 -0.16000 

2 0.2 0.60000 -0.200 0.00000 -0.12000 0.00000 -0.20000 0.333 -0.16667 0.00000 -0.36000 

3 0.3 0.50000 -0.100      0.250 -0.08333   

4 0.4 0.40000 -0.100      0.200 -0.05000   

5 0.5 0.33333 -0.067      0.167 -0.03333   

6 0.6 0.28571 -0.048      0.143 -0.02381   

7 0.7 0.25000 -0.036      0.125 -0.01786   

8 0.8 0.22222 -0.028     0.111 -0.01389   

9 0.9 0.20000 -0.022     0.100 -0.01111   

10 1.0 0.18182 -0.018     0.091 -0.00909   

Average  0.43392 -0.074 0.10667 -0.06667 -0.55556 -0.10000 0.275 -0.08264 -1.38889 -0.17333 

Sum  4.77309 -0.818 0.32000 -0.20000 -1.66667 -0.30000 3.020 -0.90909 -4.16667 -0.52000 

Standardized   0.47731 -0.082 0.10667 -0.02000 -0.16667 -0.03000 0.302 -0.09091 -1.38889 -0.17333 
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Table 9B:  

Augmented Richardson Conflict Model Adaptive k, l Response Measures for the t Skill Level at Higher Intensity Loss Functions  

Time(t) (%) L2 d L2/ 

dt 

Skt dSkt

dt 

k = 

 d L2/ 

Skt 

l = 

dSkt 

L2 

L1 d L1/ 

dt 

k = 

 d L1/ 

Skt 

l = 

dSkt 

L2 

0 0 1 0 0.20000 0.00000 0.00000 0.00000 1 0 0.00000 0.00000 

1 0.1 0.32787 -0.67213 0.12000 -0.08000 -5.60109 -0.24400 0.25000 -0.75000 -6.25000 -0.32000 

2 0.2 0.16667 -0.16120 0.00000 -0.12000 0.00000 -0.72000 0.11111 -0.13889 0.00000 -1.08000 

3 0.3 0.12500 -0.04167      0.06250 -0.04861   

4 0.4 0.10000 -0.02500      0.04000 -0.02250   

5 0.5 0.08333 -0.01667      0.02778 -0.01222   

6 0.6 0.07143 -0.01190      0.02041 -0.00737   

7 0.7 0.06250 -0.00893      0.01563 -0.00478   

8 0.8 0.05556 -0.00694     0.01235 -0.00328   

9 0.9 0.05000 -0.00556     0.01000 -0.00235   

10 1.0 0.04545 -0.00455     0.00826 -0.00174   

Average  0.18980 -0.08678 0.10667 -0.06667 -1.86703 -0.32133 0.14164 -0.09016 -2.08333 -0.46667 

Sum  2.08781 -0.95455 0.32000 -0.20000 -5.60109 -0.96400 1.55803 -0.99174 -6.25000 -1.40000 

Standardized  

Percentage  

 

0.20878 -0.09545 0.10667 -0.02000 -0.56011 -0.09640 0.15580 -0.09917 -0.62500 -0.14000 
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