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Abstract 

Selection of suppliers is very important for a strategic supply network (SN) design. 

This paper presents a novel multi-objective optimisation model for supplier selection 

and order allocation. In addition to a standard objective of total SN cost minimisation, 

two new objectives are considered: minimisation of suppliers’ risk and maximisation of 

achievement of a manufacturer business strategy. Uncertainty in supply lead times and 

non-conformance rates of delivered components causes uncertainty in the SN cost 

objective. These parameters are described using imprecise linguistic terms and modelled 

using fuzzy numbers. Risk classification of suppliers is carried out using imprecise 

knowledge which is modelled using fuzzy If-Then rules and embedded in the risk 

objective. Various experiments are carried out to analyse the trade-off between the 

considered objectives and the impact of SN network parameters on the suppliers’ 

selection and order allocation. The size of the problem that the model can handle is 

analysed also. 
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Introduction 

Supplier selection has an important impact on costs incurred in SNs. The influence of 

the supplier selection increases with complexity of SNs and their operations. SNs 

suppliers bring different risks to SNs operations; they can deliver components earlier or 

later than required, quality of supply can be different than required, etc. An 

unanticipated increase in the SN cost is often caused by inadequately managed risk. In 

the circumstances of an expanding market and globalisation of SNs, a selection of the 

right suppliers has to be in line with a manufacturer’s business strategies, regarding, for 

example, the number of suppliers, criteria used for selection, relationship with suppliers, 

etc (De Boer et al., 2001). 

Initial approaches to supplier selection were typically formulated as a single-

objective optimisation problem, which took into account the incurred cost only 

(Soukup, 1987, Weber et al., 1991). However, it has become obvious that different 

criteria for supplier selection have been relevant to SNs in different industries or lines of 

business. Some of the illustrative examples were given in (Shyur and Shih, 2006), but 

without an intention to provide an extensive list of industries and corresponding 

relevant criteria. A more formal approach was taken by Supply Chain Council who 

proposed a generic framework to be used to evaluate supplier performance considering 

four categories, including: (1) delivery reliability, (2) flexibility and responsiveness, (3) 

cost and (4) assets (Wang et al., 2004). Ho et al., (2010) reviewed multi-criteria 

optimisation models developed to enable simultaneous consideration of different 

quantitative and qualitative criteria for supplier selection. Since risk management has 

become an important part of a successful SN management (Choi et al., 2016, Heckmann 

et al., 2015, Zsidisin and Ritchie, 2008), considering risks in supplier selection has 

become important as well (Chan and Kumar, 2007). 

This paper considers a complex real-world SN with one manufacturer, 19 first tier 

suppliers and 12 different produced commodities. The main characteristic of the SN are 

low volume production, long lead times, no inventory keeping principle and relatively 

high quality non-conformance of supplied components. In order to minimise the risk of 

supply shortages and supply delays, the safety stock and safety time are introduced. The 

former are kept for critical components which are susceptible to high non-conformance, 

while the latter are preventive measures for suppliers with consistent delivery problems. 

The model focusses on selecting suppliers and satisfying demand for one commodity 

only, that should be produced by the manufacturer on the requested due date.  



 

Two main sources of uncertainty considered are lead time of supplied component and 

rate of non-conformance of supply with respect to the required quality. Historical data 

exist for some of the supplies only, and, even more, all the required data cannot be 

provided accurately. In such cases, it is advantageous to express these uncertainties 

using imprecise natural language terms, exploiting managerial experience and 

subjective judgement (Zimmermann, 2001). For example, lead time of a component can 

be about certain number of weeks or non-conformance of supply from a certain supplier 

can be about certain percentage of supply. It has been shown in a large body of 

literature that fuzzy sets theory provides a suitable framework for representing 

uncertainties in such decision-making problems (e.g., Petrovic and Akoz, 2008, Wulan 

and Petrovic, 2012).  

The paper is proposing a new multi-objective approach to supplier selection and 

calculation of orders’ quantities and times of ordering. Three objectives of different 

types, including minimisation of the total SN cost incurred with selected suppliers, 

minimisation of risk of the selected suppliers and maximisation of achievement of a 

manufacturer’s business strategy are considered. The model includes the most often 

used objective of cost minimisation. However, some parameters including suppliers’ 

lead times and non-conformance rates are uncertain and modelled using fuzzy numbers. 

Consequently, the total SN cost incurred becomes fuzzy too. It is calculated using fuzzy 

arithmetics. In order to consider it with other objectives simultaneously it is defuzzified 

into a corresponding scalar using a defuzzification method. As the second objective, the 

model considers a risk of selecting certain suppliers for supplying required components. 

This objective of risk minimisation is based on a supplier classification carried out by 

the manufacturer in practise. It includes a subjective judgement of the manufacturer 

expert on the component risk and supplier risk and is modelled using fuzzy If-Then 

rules. The rules are handled and transformed into a corresponding scalar using a fuzzy 

logic method, and then embedded in the objective. The manufacturer’s business strategy 

classifies suppliers based on their statuses. It is included in the model as the objective of 

maximising achievement of the business strategy. This achievement depends on he 

selected suppliers and is modelled as a crisp number. All three objectives are normalised 

and combined into a single objective function. Various experiments are carried out to 

provide an insight into the objectives of supplier selection proposed and to analyse their 

impact on SN performance. The impact of the size of the problem on the computation 

time is analysed also. 



 

The novelties of the proposed model are as follows. (1) The objectives considered are 

of different types consisting of uncertain parameters and uncertain knowledge on risk 

classification of suppliers and are handled using different methodologies including 

fuzzy arithmetics and fuzzy logic, respectively. (2) The model combines different 

sources of uncertainty including uncertainty in SN parameters such as lead times of 

suppliers and non-conformance rates of supplied components, and uncertainty in 

knowledge of component and suppliers’ risk. (3) The model development is motivated 

by a real-world SN problem. (4) A new insight into impact of uncertainty in SN 

parameters, such as supplied components, suppliers’ risks and the manufacturer’s 

business strategy on SN performance is given. 

The paper is organised as follows. Literature review is focused on multi-objective 

methods used in supplier selection problems and in particular on those which consider 

uncertainty in SN parameters, risk and a manufacturer’s business strategy. The 

following sections introduce a problem statement and the description of the 

implemented model. Results analyses are described afterwards. The final section 

contains conclusions and outlines future research. 

 

Literature review 

Different multi-objective models to supplier selection have been introduced in the 

literature. We identified some models which considered uncertainty in criteria and, in 

particular, those that considered risk and business strategy as selection criteria (see 

Table 1). 

One of the most often used methodologies is Data Envelopment Analysis (DEA), 

often referred to as the balanced benchmarking which measures the effectiveness of 

suppliers by calculating a performance measure ratio. DEA was applied in Forker and 

Mendez (2001) to identification of suppliers with lower cost and shorter delivery times, 

which were the two most often used criteria for supplier selection. In addition, the 

authors considered a criterion of selecting suppliers who could benefit from the Total 

Quality Management (TQM) development. A Monte Carlo based method combined 

with stochastic cross-efficiency DEA was presented in (Dotoli et al., 2015), who 

considered supplier selection in the presence of uncertainty in input, including quality of 

supplied components and suppliers’ delivery reliability with respect to the scheduled 

times. Although DEA methodology has been successfully implemented for suppliers 

ranking, it is based on evaluation and comparison of suppliers’ efficiency. However, it is 



 

only one of the criteria that can be used for supplier selection, while the practice faces 

many other issues. 

A successful application of Analytic Hierarchy Process (AHP) to a supplier selection 

was presented in (Liu and Hai, 2005). This method was based on a decomposition of an 

initial decision problem and was focused on providing a comprehensive framework to 

analyse smaller and easier sub-problems of the supplier selection. They focused on 

objectively and subjectively defined criteria obtained by 60 employees of a real-world 

company. AHP models have commonly included fuzzy numbers, where fuzzy numbers 

have been used for modelling of the decision maker perception of criteria values. In 

Chen et al., (2006), linguistic values were used to describe profitability, relationship 

closeness, technological capability, conformance quality and conflict resolution of a 

given set of suppliers. A fuzzy AHP model was developed to rank the suppliers based on 

a difference between two fuzzy values. 

Bottani and Rizzi (2008) extended multi-criteria decision making methodology by 

exploiting clusterization of suppliers and components in order to reduce a number of 

supplier alternatives which had to be assessed. Criteria values were modelled using 

fuzzy numbers. Sahu et al., (2016) developed a fuzzy VIKOR method to select suppliers 

considering resilience of suppliers as a selection criterion. A DEA non-parametric 

approach was adopted by Ng (2008), who developed a multiple criteria decision model 

for supplier selection. The weighted integer linear model (ILP) maximised suppliers’ 

score which included quality of delivered products, distance, price, on-time delivery and 

supply variety. It was solvable by a spread sheet package, which made it easily applied 

by real-world companies. Cebi and Otay (2016) considered supplier selection and 

allocation problem using a fuzzy programming method. They were assigning different 

weights to fuzzy objectives. 

In successful SNs management, consideration of risk factors has had a growing 

importance. However, most of the research carried out in the area of supplier selection 

treated risk as a criterion with a crisp value. Amorim et al. (2016) considered 

operational risk as a selection criterion which was focussed on lead time, inventory 

management of the suppliers and risk of low quality of service in food SNs. Ruhrmann 

et al., (2014) focused on an increasing companies outsourcing need. They proposed 

two-step approach to risk assessment in supplier selection process in low-wage 

countries. First step determined requirements for potential suppliers and second was 

used for identification and modelling of risks. A selection model proposed in (Paul, 



 

2015), considered 18 selection criteria, where 14 were qualitative and 4 were 

quantitative in nature. Risk factors were incorporated in the criteria. The selection 

process was treated as a complex optimization problem, with different uncertainties 

defined in the supplier node. Chan and Kumar (2007) introduced a fuzzy extended AHP 

methodology for a global supplier selection problem. They considered criteria such as 

cost, quality service performance and risk. The risk factor was subjectively determined 

and included political stability, geographical location, economic condition and effect of 

terrorism. Sen et al., (2014) formulated problem as a scenario-based multi-stage 

stochastic optimization that considered uncertainties in a sudden drop in price, a price 

change or a new discount offer. Hamdi et al., 2016, presented two mixed integer linear 

programs to maximize profit and minimize the operational loss for a supplier selection 

problem in a make-to-order environment. Risk was modelled as stochastic scenario-

based disruptions in supply. Two proposed models represented different decision-maker 

attitude towards risk, namely risk neutral and risk averse. Sawik (2017) proposed a 

mixed integer linear programming model (MILP) for a supplier selection in different 

scenarios depending on the appearance of disruptions. Govindan and Jepsen (2016) 

were using ELECTRE method to assign suppliers to risk categories considering 

probabilities of risks and their impacts. 

Araz and Ozkarahan (2007) considered a business strategy in selecting suppliers. 

They used PROMETHEE method for ranking suppliers with respect to strategic 

partnerships into 4 categories: (1) to be selected as best strategic partners, (2) to be 

supported by development programs in order to increase cooperation, (3) to be selected 

to supply some products only and (4) not to be selected. 

Described methods typically considered the risk of selecting a supplier as a criterion 

with a deterministic value. They do not explicitly consider uncertainty in knowledge of 

the subject expert which can be applied to supplier’s risk evaluation. Furthermore, the 

business strategies are not taken into account when selecting suppliers. Finally, the 

optimisation models for supplier selection considered standard objectives such as 

minimisation of cost, supply time and/or risk involved. This paper is proposing a new 

supplier selection model which considers both uncertainty in risk and a business 

strategy of the manufacturer. 

 

 

 



 

Table 1. Review of selected supplier selection models 

Paper (year) Methodology 
Uncertainty 

in criteria 

Deterministic 

risk 

Uncertainty 

in risk 

Business 

strategy 

Forker and 

Mendez (2001) 
DEA     

Dotoli et al. (2015) 
DEA and Monte 

Carlo simulation 
    

Liu and Hai (2005) AHP     

Chen et al. (2006) Fuzzy TOPSIS     

Bottani and Rizzi 

(2008) 

MCDM and 

Clustering 
    

Sahu et al. (2016) Fuzzy VIKOR     

Ng (2008) ILP     

Cebi and Otay 

(2016) 

Fuzzy 

Programming 
    

Amorim et al. 

(2016) 
MIP     

Ruhrmann et al. 

(2014) 

Differential 

equations 
    

Paul (2015) Fuzzy logic     

Chan and Kumar 

(2007) 
Fuzzy AHP     

Sen et al. (2014) MILP     

Hamdy et al. 

(2016) 
MILP     

Sawik (2016) MILP     

Govindan and 

Jepsen (2016) 
ELECTRE     

Araz and 

Ozkarahan (2006) 
PROMETHEE     

 

Problem statement 

The model developed is motivated by a real-world SN problem of Bergen Engines (BE) 

introduced and discussed by Mr Aswathanarayana Nandakishore. BE produces medium 

speed engines for both the land and marine sectors. The manufacturer provides different 

types of engines, such as gas and diesel with various powers, number and configurations 

of cylinders. The manufacturer categorised components into four commodities handled 

by separate departments. The model presented in the paper, focuses on the Machining 

and Fabrication commodity, which has the highest visibility in their supply network. 

Supply lead times are relatively long, requiring 6-8 months for supply. The SN relevant 

to this department has relatively higher non-conformance rates, measured as the ratio of 

all non-conformed supplied components to all ordered components. Non-conformed 



 

components cannot be used and cause delays in the manufacturing processes. Safety 

stocks are kept for critical components supplied by suppliers with a high non-

conformance rate. 

The manufacturer developed a scorecard procedure for classifying suppliers with 

respect to risk into four categories: A, B, C and Z, as shown in Figure 1. The scorecard 

considers both component risk and supplier risk. Three factors influence a component 

risk value, including delegation of authority, component classification and component 

complexity. The delegation of authority considers who designs the component and who 

owns the intellectual right for this component. The component classification considers 

availability of this component from other manufacturers, while component complexity 

is determined by expert knowledge and can be low, medium, high or super high. These 

values are mapped into real values, 5, 10, 15 and 20, respectively. The sum of the scores 

from all three factors generates the component risk value in interval [0, 100]. The 

supplier risk is calculated using four factors: quality performance indicators which 

includes non-conformance rate and major issues found in the supplier audit, delivery 

performance indicators with respect to delivery time, ISO 9001 status and business 

dependence. The supplier risk is also presented as a scalar in interval [0, 100]. 

 

Figure 1 Supplier scorecard used by the manufacturer 

 

The score card results also impact the manufacturer SN strategy which determines 

suppliers’ statuses as G-growth, E-exit, M-maintain or N-new. G status is given to 

suppliers with increasing importance and with very good scorecards, E status to 

suppliers with a poor scorecard with whom the collaboration should finish, M status to 



 

suppliers with good scorecards with whom the collaboration should be continued and N 

status to potential future suppliers 

By analysing the problem, the following objectives are identified: minimisation of 

cost incurred with selected suppliers, minimisation of risk of the selected suppliers and 

maximisation of the manufacturer’s strategy achievement. They have to be considered 

simultaneously, but they are conflicting in nature. Cheaper suppliers can lead to the 

lower SN cost, while selecting them might cause an increase in risk. Also, a trade-off 

has to be made between the cost and achievement of the business strategy. For example, 

cheaper suppliers can be in the Exit sector, leading to the reduced SN cost, but a lower 

strategy achievement, while more expensive suppliers can be in Maintain, New or Grow 

sectors, which is in line with the manufacturer business strategy, but can increase the 

SN cost. Furthermore, suppliers in the four sectors can have different risks which bring 

into a conflict the objectives of risk minimisation and maximisation of strategy 

achievement. 

 

Fuzzy multi-objective optimisation 

The following notation is used: 

Indices: 

 𝑖 = 1,… , 𝐼  – Supplier 

 𝑐 =  1, … , 𝐶 – Component 

Input parameters: 

 𝐵̅ = [𝐵1, … , 𝐵𝐶] – Vector of bill of material (BOM) which consists of the numbers 

of components 1, …, C required to build the engine 

 𝛽𝑐
𝑖 = {

1
0
  𝑖𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 – Component availability  

 𝑓𝑡𝑐
𝑖  - Unit fine for early/late delivery of component c by supplier i 

 𝑓𝑞𝑐
𝑖  - Unit fine for quality non-conformance of component c delivered by 

supplier i 

 𝑓  - Fine paid by the manufacturer for each week of delay of delivering the 

engine 

 𝑚𝑐
𝑖   - Unit purchase cost of component c from supplier i 

 ℎ𝑐 - Unit holding cost of component c for one week 

 𝑏𝑐
𝑖  - Minimum order quantity of component c from supplier i 

 𝑎 - Assembly time of the engine (in weeks) 



 

 𝑇 - Due date of delivery of the engine (in weeks) 

 𝑟𝑝𝑐 - Risk of component c determined by the manufacturer 

 𝑟𝑠𝑖 - Risk of supplier i determined by the manufacturer 

 status of supplier i 𝜖 {𝐸,𝑀, 𝑁, 𝐺} where:  

o E – Exit supplier  

o M – Maintain supplier  

o N – New supplier  

o G – Grow supplier 

 𝐿 ̃𝑐
𝑖 = (𝑙1, 𝑙2, 𝑙3, 𝑙4) – Trapezoidal fuzzy lead time of component c from supplier i  

 𝑄̃𝑐
𝑖 = (𝑞1, 𝑞2, 𝑔3, 𝑞4) - Trapezoidal fuzzy non-conformance rate of component c 

from supplier i 

Decision variables: 

 𝑥𝑐
𝑖  – Quantity of component c to order from supplier i; 𝑥𝑐

𝑖  > 0 means that supplier 

i is selected to supply component c 

 𝑦𝑐
𝑖 ∈ {1,… , (𝑇 − a − 1)} – Time of ordering component c from supplier i 

Auxiliary variables: 

 𝜀𝑐̃
𝑖  - Expected delivery time of component c from supplier i (in weeks) 

 𝑑̃𝑐
𝑖  - Delay of supply of component c from supplier i (in weeks) 

 𝑒̃𝑐
𝑖 - Earlier delivery of component c from supplier i (in weeks) 

 Δ̃ - Delay of delivering the engine (in weeks) 

 Xc - Safety stock for component c  

 G̃𝑐
𝑖  - Quantity of good quality component c from supplier i 

 𝑤̃ - Total cost incurred for manufacturing the engine 

 𝑤̃𝑐 - Total cost of handling component c 

 𝐻̃𝑐 - Total holding cost of component c 

 𝐹𝑐̃ - Penalty cost for component c for late delivery or non-conformance 

 𝛿 - Delay cost paid by the manufacturer for delay in engine delivery  

 𝑟 - Total risk 

 𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒𝑐
𝑖  - Risk score for component c delivered by supplier i 

 Φ - Business strategy achievement  

 𝑔(𝑖)- Penalty of supplier i with respect to business strategy achievement. 

 

Treating uncertainty using fuzzy numbers  

Two input parameters are uncertain including lead time of component c from supplier i, 

𝐿̃𝑐
𝑖 , and non-conformance rate of component c supplied by supplier i, 𝑄̃𝑐

𝑖 . They are often 



 

specified in practice using imprecise natural language terms. They are modelled by 

trapezoidal membership functions, defined by 4-touples 𝐿̃𝑐
𝑖 = (𝑙1, 𝑙2, 𝑙3, 𝑙4)  and 𝑄̃𝑐

𝑖 =

(𝑞1, 𝑞2, 𝑞3, 𝑞4), which can be interpreted as follows, lead time is around 𝑙2 and 𝑙3, but 

definitely not earlier than 𝑙1, and not later than 𝑙4, or non-conformance rate is around 𝑞2 

and 𝑞3 but definitely not smaller that 𝑞1 and not larger that 𝑞4. These fuzzy quantities 

Figure 2 represents fuzzy lead time 𝐿̃𝑐
𝑖  and fuzzy non-conformance rate 𝑄̃𝑐

𝑖 . Membership 

function of 𝐿̃𝑐
𝑖  is defined as: 

 

𝜇(𝐿𝑐
𝑖 ) =

{
  
 

  
 
𝐿𝑐
𝑖 − 𝑙1
𝑙2 − 𝑙1

    where 𝑙1 ≤ 𝐿𝑐
𝑖 < 𝑙2 

    1           where 𝑙2 ≤ 𝐿𝑐
𝑖 ≤ 𝑙3

𝑙4 − 𝐿𝑐
𝑖

𝑙4 − 𝑙3
     where 𝑙3 < 𝐿𝑐

𝑖 ≤ 𝑙4

0            otherwise           

 

 

Membership function 𝜇(𝑄̃𝑐
𝑖) is defined in the same way. 

 

Figure 2 Graphical representation of fuzzy numbers 𝐿̃𝑐
𝑖  and 𝑄̃𝑐

𝑖  

 

Objectives 

The following three objectives are defined. 

Objective 1: Minimisation of cost 

Different types of incurred costs are calculated as follows: 

 Total holding cost 𝐻̃𝑐  of delivered component c includes the holding cost of 

keeping the component c delivered too early and kept in stock, and the cost of 

keeping the component c delivered on time in the case when other components 

are delayed. 

𝐻𝑐̃ = ℎ𝑐∑(

𝐼

𝑖=1

𝑒̃𝑐
𝑖 +max(𝛥̃ − 𝑑̃𝑐

𝑖 , 0))xc
i  



 

 Penalty cost 𝐹𝑐̃  paid for component c is the sum of penalties paid by all the 

suppliers who did not supply component c on time or for non-conformance of 

supplied component c. 

𝐹𝑐̃ = ∑[ (𝑒̃𝑐
𝑖 + 𝑑̃𝑐

𝑖 )xc
i

𝐼

𝑖=1

𝑓𝑡𝑐
𝑖 + (𝑥𝑐

𝑖 − 𝐺𝑐
𝑖)𝑓𝑞𝑐

𝑖  ] 

 Total cost 𝑤̃𝑐 of handling supplied component c is the sum of purchasing cost of 

and holding cost of the component c, decreased by the penalty cost paid for 

component c. 

𝑤̃𝑐 = ∑𝑥𝑐
𝑖𝑚𝑐

𝑖

𝐼

𝑖=1

+ 𝐻̃𝑐 − 𝐹̃𝑐 

 Delay cost 𝛿 is the fine paid by the manufacturer to the customer for delays in 

delivery of the ordered engine. It is calculated by multiplying the total delay in 

weeks and the fine charged per week of delay. 

𝛿 =  𝛥̃𝑓 

Expected delivery time 𝜀𝑐̃
𝑖  of component c supplied by supplier i is the time at which 

component c should be supplied by supplier i, calculated as the sum of order time and 

lead time. 

𝜀𝑐̃
𝑖 = 𝑦𝑐

𝑖 + 𝐿̃𝑐
𝑖  

Delay and earlier delivery of component c supplied by supplier i, 𝑑̃𝑐
𝑖  and 𝑒̃𝑐

𝑖 , 

respectively, are calculated as the difference between the expected and the required time 

of delivery, 𝜀𝑐̃
𝑖  and (𝑇 − 𝑎), respectively. 

𝑑̃𝑐
𝑖 = max(𝜀𝑐̃

𝑖 − (𝑇 − 𝑎), 0)×  min(𝑥𝑐
𝑖 , 1) 

𝑒̃𝑐
𝑖 = max ((𝑇 − 𝑎) − 𝜀𝑐̃

𝑖 , 0) ×min(𝑥𝑐
𝑖 , 1) 

Total delay 𝛥̃ presents a delay of the engine delivery and is equal to the maximum of 

all delays in supplies.  

𝛥̃ = max
𝑖,𝑐

𝑑̃𝑐
𝑖  

Good component’s quantity,  𝐺̃𝑐
𝑖
, presents a quantity of component c supplied by 

supplier i that is suitable for use, and it is directly proportional to the supplied 

components and to the non-conformance rate. 



 

𝐺̃𝑐
𝑖 = 𝑥𝑐

𝑖 𝑄̃𝑐
𝑖  

Constraints 

The following constraints are included in the model: 

 Only supplier i which provides required component c can be taken into 

consideration. 

𝑥𝑐
𝑖𝛽𝑐

𝑖 = 𝑥𝑐
𝑖 ,         𝑐 = 1,… , 𝐶, 𝑖 = 1,… , 𝐼 

 Only components specified in the BOM are ordered 

min(𝑥𝑐
𝑖 , 1) ≤ min(Bc, 1) ,         𝑐 = 1,… , 𝐶, 𝑖 = 1,… , 𝐼 

 An order quantity of component c from supplier i must not be smaller than 

minimum order quantity 𝑏𝑐
𝑖 . 

𝑥𝑐
𝑖 ≥ 𝑏𝑐

𝑖 ×min(𝑥𝑐
𝑖 , 1) ,         𝑐 = 1,… , 𝐶, 𝑖 = 1,… , 𝐼 

 Customer demand must be satisfied, and, therefore, the exact or higher numbers 

of components required in the BOM should be ordered. 

𝐵̅𝑐 ≤ 𝛤𝑐̃  ,         𝑐 = 1,… , 𝐶 

where 𝛤𝑐̃ = ∑ 𝐺̃𝑐
𝑖𝐼

𝑖=1  

 

Total cost 𝑤̃  is calculated as the sum of handling cost of all the components delivered 

by suppliers and the delay penalty paid by the manufacturer for the delay in engine 

delivery. 

𝑤̃ =  ∑𝑤̃𝑐

𝐶

𝑐=1

+ 𝛿 

Due to the fuzzy parameters, the total cost becomes fuzzy too. The fuzzy arithmetic 

operations and defuzzification of the fuzzy total cost into a scalar used in this objective 

are defined in Appendix. In this way, the objective of minimisation of fuzzy cost is 

mapped into the objective of minimisation of the corresponding crisp cost. 

 

Objective 2: Minimisation of risk 

In practice, the manufacturer carries out the categorisation of suppliers as presented in 

Figure 1. It is included in the model as objective 2. We developed novel fuzzy rules to 

categorise suppliers into four risk categories A, B, C and Z, considering both component 

risk, 𝑟𝑝𝑐 , and supplier risk, 𝑟𝑠𝑖, as follows: 

 



 

Rule 1. If  𝑟𝑝𝑐 is Low and  𝑟𝑠𝑖 is Low 

Then risk_score = 25 (category B) 

Rule 2. If  𝑟𝑝𝑐is High and  𝑟𝑠𝑖 is Low 

Then risk_score = 50 (category A) 

Rule 3. If 𝑟𝑝𝑐is Low and 𝑟𝑠𝑖 is High 

Then risk_ score = 75 (category C) 

Rule 4. If 𝑟𝑝𝑐is High and 𝑟𝑠𝑖is High 

Then risk_ score =  100 (category Z) 

 

Fuzzy terms Low and High risks are defined as fuzzy numbers presented in Figure 3, 

where the manufacturer’s experts estimate boundaries of Low and High risks. 

Supplier/component risk 0 is definitely Low with the degree of belief 1, up to the risk 

equal to 65, with decreasing belief that the risk is Low. Similarly, supplier/component 

risk equal to 35 is High with degree of belief 0, with increasing degrees of belief, up to 

the risk of 100 that has the degree of belief equal to 1. 

 

Figure 3 Component and supplier risks representation as fuzzy numbers 

 

We allocated 4 different weights to the categories in the Then parts of the rules, with 

the lowest weight 25 for category B which includes low risk suppliers who supply low 

risk components, weight 50 for category A which includes low risk suppliers who 

supply high risk components, weight 75 for category C with high risk suppliers and low 

risk components and weight 100 to category Z with high risk suppliers and high 

components’ risks. 

Reasoning on these fuzzy rules is based on modified Takagi and Sugeno method 

(Takagi and Sugeno, 1985). In the first step, crisp inputs of component’s and supplier’s 

risk, 𝑟𝑝𝑐 and 𝑟𝑠𝑖, respectively, are fuzzified, i.e. degrees of belief of their membership 

to fuzzy numbers Low and High in the If part of each  rule are determined. For example, 

0 20 40 60 80 100 

0 

0.2 

0.4 

0.6 

0.8 

1 

Supplier/Component risk 

M
em

b
er

sh
ip

 d
eg

re
e 

Low 

High 



 

the corresponding degrees of belief in Rule 1 are 𝜇𝐿𝑜𝑤(𝑟𝑠
𝑖) and  𝜇𝐿𝑜𝑤(𝑟𝑝𝑐) . In the 

second step, the firing strength of the rule is calculated as 𝜇𝐿𝑜𝑤(𝑟𝑠
𝑖) × 𝜇𝐿𝑜𝑤(𝑟𝑝𝑐). In 

the third step, the risk_score is calculated as the product of the category weight in the 

Then part of the rule and the rule firing strength. For example, the risk_score after firing 

Rule 1 is 25 × 𝜇𝐿𝑜𝑤(𝑟𝑠
𝑖) × 𝜇𝐿𝑜𝑤(𝑟𝑝𝑐) . These steps are repeated for each rule. Finally, 

the total 𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒𝑐
𝑖  is determined as the sum of risk_scores obtained in all fuzzy rules: 

𝑟𝑖𝑠𝑘𝑠𝑐𝑜𝑟𝑒𝑐𝑖 = 25 × 𝜇𝐿𝑜𝑤(𝑟𝑠
𝑖) × 𝜇𝐿𝑜𝑤(𝑟𝑝𝑐) + 50 × 𝜇𝐻𝑖𝑔ℎ(𝑟𝑠

𝑖) × 𝜇𝐿𝑜𝑤(𝑟𝑝𝑐)

+ 75 × 𝜇𝐿𝑜𝑤(𝑟𝑠
𝑖) × 𝜇𝐻𝑖𝑔ℎ(𝑟𝑝𝑐) + 100 × 𝜇𝐻𝑖𝑔ℎ(𝑟𝑠

𝑖) × 𝜇𝐻𝑖𝑔ℎ(𝑟𝑝𝑐) 

The total risk scores for all possible component risk 𝑟𝑝𝑐  ∈ [0, 100] and supplier risk  

𝑟𝑠𝑖 ∈ [0, 100] are presented in Figure 4. 

 

 

Figure 4 Total risk scores for all component and supplier risks in interval [0,100] 

 

Objective 2 is defined to minimise risk as follows 

𝑟 =∑
∑ 𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒c

i𝐼
𝑖=1 × 𝑥𝑐

𝑖

max(∑ 𝑥𝑐
𝑖𝐼

𝑖=1 , 1)

𝐶

𝑐=1

 

Risk associated with ordering a single component c is expressed as weighted average 

of risk scores of all suppliers selected to supply component c, where weights are equal 

to the ordered quantities. In this way, introducing another supplier for the same 

component will decrease the final risk, if the introduced supplier has a lower risk than 

already selected supplier. The fuzzy logic method used to determine risk_score for each 

component and supplier is incorporated and mapped into the crisp Objective 2. 



 

Objectives 3: Maximisation of business strategy achievement 

Objective 3 is introduced to maximise business strategy achievement. It is carried out 

by minimising penalty 𝛷 of all suppliers with respect to the four suppliers’ statuses, G-

Grow, E-Exit, M-Maintain, N-New, described previously, as follows: 

𝛷 = ∑∑𝑔(𝑖)  ×  min(𝑥𝑐
𝑖 , 1)

𝐶

𝑐=1

𝐼

𝑖=1

 

Function 𝑔(𝑖) penalises supplier i with status E, M, N or G, as follows: 

𝑔(𝑖) = {

10
   2
   1
   0

           

supplier 𝑖 has 𝐸 status
 supplier 𝑖 has 𝑀 status
supplier 𝑖 has 𝑁 status
supplier 𝑖 has 𝐺 status

 

Objective 3 is a crisp objective. 

 

 The three objectives are incommensurable and have different scales. Therefore, we 

normalised all three objectives into interval [0, 1] using the formula: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
 

 

We determined the minimum and the maximum values of all three objectives as follows. 

Minimum value of Objective 1 is the minimum cost incurred when only the one 

supplier with the lowest unit purchase cost is used for each required component. The 

perfect supplied quality is assumed, i.e., only the exact amount from 𝐵̅ is ordered from 

the cheapest supplier. Delays and penalties are not considered. Maximum value of 

Objective 1 is the maximum cost incurred when only the supplier with the highest unit 

purchase cost is selected for each required component. The highest non-conformance 

rate of each supplier for the required component is assumed. The maximum penalty to 

be paid by the manufacturer is calculated assuming the longest possible lead times of all 

the considered suppliers. Also, it is assumed that the maximum holding costs of all the 

ordered components are incurred. Minimum value of Objective 2 is the minimum risk 

incurred when the supplier with the lowest risk of 25 is used for each required 

component only, and risk_score is 0. The maximum value of Objective 2 is obtained 

when only the supplier with the highest risk of 100 is used and risk_score is 1. 

Minimum value of Objective 3 is achieved when the minimum business strategy 



 

achievement is reached. In this case, it is assumed that for each required component, the 

selected supplier has the E status and has the maximum penalty 10. Maximum value of 

Objective 3 is achieved when the maximum business strategy achievement is reached. 

In this case, it is assumed that for each required component the selected supplier has the 

G status and has the minimum penalty 0. 

 The multiple objectives are combined in a single objective function, which is defined 

as the sum of the weighted normalised objective functions. It has to be minimised. This 

multi-objective decision making methods is referred to as Single Additive Weighting 

method (Hwang and Yoon, 1981). In this model, quantities of each component to be 

ordered from suppliers and times of ordering are found in such a way as to minimise the 

sum of the weighted normalised values of the three objectives. 

A pseudo code of the proposed method is as follows. 

Step 1. Find the minimum and the maximum values of all three objectives. 

Repeat Steps 2 to 6 for each possible set of suppliers until the minimum sum of the 

weighted normalised values of the three objectives is found. 

Step 2. Calculate the fuzzy cost incurred with a set of suppliers under consideration. 

Step 3. Defuzzify the fuzzy cost into a crisp scalar to obtain a crisp value of Objective 1. 

Step 4. Calculate the crisp risk of the considered set of suppliers, using the fuzzy If-

Then rules to obtain the crisp value of Objective 2. 

Step 5. Calculate the penalty of business strategy achievement for the considered set of 

suppliers to obtain the crisp Objective 3 value. 

Step 6. Calculate the sum of the three weighted normalised objective values achieved 

with the considered set of suppliers. 

 

Implementation 

The single objective optimisation model is input into AIMMS (Advanced Interactive 

Multidimensional Modelling System). It handled it as a nonlinear optimisation model 

with integer decision variables, 𝑥𝑐
𝑖  and 𝑦𝑐

𝑖. The model is implements using a lap-top with 

Intel(R) Core(TM) i7-5500U CPU 2.40 GHz processor and 16 GB RAM. Furthermore, 

a fuzzy logic toolbox of Matlab is used for the implementation of Objective 2, i.e., the 

fuzzy If-Then rules. The generated risk scores of all the suppliers are stored in a look up 

table and used by the AIMMS model for Objective 2.  

 



 

Analysis of results  

Sample real world data required in the model are collected from the manufacturer. Due 

to confidentiality issues and absence of some data, we generated hypothetical data in 

line with the real data. We used them to better understand the impact of selected 

suppliers on the three objectives’ values and the trade-off between them, and to analyse 

the impact of parameters such as holding cost and penalty cost, supplier risks and the 

business strategy on the supplier selection and recommended order quantities and times 

of ordering. We assumed that all three objectives have the same weights, 1/3. In all the 

experiments reported below, AIMMS found optimal solutions. Data used in the 

experiments include 6 suppliers and 10 components. They are given in Tables 2 to 4. 

Fuzzy lead times and fuzzy non-conformance rates were generated based on the 

available historical data and in consultation with the company expert. 

 

 

 

Table 2 Trapezoidal fuzzy numbers representing lead times and 

non-conformance rates of suppliers 

Supplier Component Fuzzy lead time Fuzzy non-conformance rate 

I c 𝑙1 𝑙2 𝑙3 𝑙4 𝑞1 𝑞2 𝑞3 𝑞4 

1 

1 10 11 13 14 0 0.05 0.15 0.20 

3 6 7 9 10 0 0.05 0.15 0.20 

5 16 17 19 20 0 0.05 0.15 0.20 

7 14 16 18 19 0.05 0.15 0.20 0.25 

9 6 7 9 10 0 0.05 0.15 0.20 

2 

2 17 19 21 22 0.05 0.15 0.20 0.25 

4 12 13 15 16 0 0.05 0.15 0.20 

6 14 15 17 18 0 0.05 0.15 0.20 

8 16 17 19 20 0 0.05 0.15 0.20 

10 14 16 18 19 0.05 0.15 0.20 0.25 

 

 

3 

 

1 10 11 13 14 0 0.05 0.15 0.20 

3 8 9 11 12 0 0.05 0.15 0.20 

5 16 17 19 20 0 0.05 0.15 0.20 

7 13 15 17 18 0.05 0.15 0.20 0.25 

 9 6 7 9 10 0 0.05 0.15 0.20 

4 

1 10 13 16 18 0.15 0.25 0.30 0.35 

5 16 19 22 24 0.15 0.25 0.30 0.35 

6 13 16 19 21 0.15 0.25 0.30 0.35 



 

5 

2 15 18 21 23 0.15 0.25 0.30 0.35 

3 7 9 11 12 0.05 0.15 0.20 0.25 

9 5 7 9 10 0.05 0.15 0.20 0.25 

10 13 16 19 21 0.15 0.25 0.30 0.35 

6 

2 13 15 17 18 0.05 0.15 0.20 0.25 

5 16 17 19 20 0 0.05 0.15 0.20 

8 16 17 19 20 0 0.05 0.15 0.20 

9 6 8 10 11 0.05 0.15 0.20 0.25 

 

Table 3 Input data for components included in the BOM 

Supplier Component 
Component 

availability 

Unit 

purchase 

cost 

Fine for 

early/late 

delivery 

Fine for 

non-

conformance 

I C 𝛽𝑐
𝑖 𝑚𝑐

𝑖  𝑓𝑡𝑐
𝑖  𝑓𝑞𝑐

𝑖  

1 

1 1 4.0 0.10 4.0 

3 1 1.2 0.03 1.2 

5 1 16.0 0.40 16.0 

7 1 2.2 0.06 2.2 

9 1 30.0 0.75 30.0 

2 

2 1 100.0 2.50 100.0 

4 1 20.0 0.50 20.0 

8 1 20.0 0.50 20.0 

10 1 54.0 1.35 54.0 

3 

1 1 4.5 0.11 4.5 

3 1 2.0 0.05 2.0 

5 1 18.0 0.45 18.0 

7 1 2.8 0.07 2.8 

9 1 34.0 0.85 34.0 

4 

1 1 4.4 0.11 4.4 

5 1 17.0 0.43 17.0 

6 1 68.0 1.70 68.0 

5 

2 1 130.0 3.25 130.0 

3 1 1.5 0.04 1.5 

9 1 32.0 0.80 32.0 

10 1 56.0 1.40 56.0 

6 

2 1 200.0 5.00 200.0 

5 1 20.0 0.50 20.0 

8 1 22.0 0.55 22.0 

9 1 31.0 0.78 31.0 



 

 

 

Table 4 BOM and holding cost of all components 

Component  C 1 2 3 4 5 6 7 8 9 10 

BOM  𝐵𝑐 50 6 0 100 33 0 15 24 0 8 

Unit holding cost  ℎ𝑐 0.4 5 1.5 2 1.8 4.6 0.3 0.2 0.4 0.6 

 

Finally, 

 status of supplier 1 is E, supplier 2 is G, supplier 3 is G, supplier 4 is M, supplier 

5 is N, supplier 6 is M. 

 𝑟𝑠1 = 14, 𝑟𝑠2 = 38, 𝑟𝑠3 = 25, 𝑟𝑠4 = 70, 𝑟𝑠5 = 50, 𝑟𝑠6 = 45. 

 𝑟𝑝1 =  18,  𝑟𝑝2 =  76, 𝑟𝑝3 =  50, 𝑟𝑝4 =  35, 𝑟𝑝5 =  20, 𝑟𝑝6 =  31, 𝑟𝑝7 =  80, 

 𝑟𝑝8 = 11, 𝑟𝑝9 = 44, 𝑟𝑝10 = 60. 

 𝑏𝑐
𝑖 = 1, 𝑖 = 1,… ,6, 𝑐 = 1,… ,10. 

 𝑓 = 5000 

 𝑇 = 24 

 𝑎 = 4. 

 

Trade-off between objective functions’ values  

In order to analyse a trade-off to be made between objective functions’ values, we first 

found the optimal set of suppliers for the required components, the optimal quantity to 

be ordered for each component and the optimal time of ordering using the data given in 

the previous section (Table 5). Then, we randomly selected another 14 alternative sets of 

suppliers and sorted them in the ascending order with respect to the cost incurred, as 

given in Table 6. Please note that the optimal set of suppliers is alternative 2. In each 

alternative, we assume that each component is supplied by one supplier only, i.e., the 

order is not split among different suppliers, and the quantities and the times of ordering 

are the same as in the optimal solution. 

 

 

 

 

 

 



 

Table 5 Optimal set of suppliers, quantities to be ordered and times of ordering 

Component Supplier Quantity 
Time of ordering 

(in weeks)  

1 3 63 6 

2 6 8 0 

4 2 125 4 

5 3 42 0 

7 3 20 2 

8 2 30 0 

10 2 11 0 

 

Table 6 Alternative sets of suppliers 

 

Supplier 

Component 

1 

Component 

2 

Component 

4 

Component 

5 

Component 

7 

Component 

8 

Component 

10 

A
lt

er
n
at

iv
e 

1 3 6 2 1 3 2 2 

2 3 6 2 3 3 2 2 

3 1 6 2 1 1 6 5 

4 1 6 2 6 3 6 5 

5 1 6 2 6 3 6 5 

6 3 2 2 6 1 2 2 

7 3 2 2 6 3 2 2 

8 3 2 2 6 1 6 5 

9 3 2 2 6 1 6 2 

10 1 5 2 1 1 6 5 

11 3 5 2 6 3 2 5 

12 3 5 2 3 3 2 2 

13 4 2 2 4 1 6 2 

14 4 6 2 3 3 2 2 

15 4 2 2 4 1 2 5 

 

 The normalised objective functions’ values achieved for the 15 alternatives of 

suppliers’ selection are presented in Figure 5. One can notice that the three objectives 

are not correlated and the trade-off between them has to be found. For example, the 

normalised cost value (Objective 1) incurred in alternative 4 (Objective 2) is smaller 

than in alternative 5 (0.199 and 0.295, respectively), while the normalised risk value for 

alternative 4 is higher than for alternative 5 (0.295 and 0.143, respectively). This means 

that while alternative 4 is better cost-wise compared to alternative 5, the selected 

suppliers in alternative 4 are more risky than in alternative 5. Similarly, while the 

normalised cost values in alternatives 4 and 5 are increased (from 0.199 to 0.295, 

respectively), achievement of the business strategy (Objective 3) is better in alternative 



 

5 than in alternative 4, i.e., the normalised achievement penalty is decreased from 0.100 

in alternative 4 to 0.000 in alternative 5, when all the selected suppliers have G status 

and the business strategy is fully achieved. Also, for example, suppliers in alternative 12 

have a higher normalised risk compared to suppliers in alternative 13, (0.190 and 0.167, 

respectively), but are better with respect to achieving business strategy (normalised 

penalties are 0.006 and 0.094, respectively). 

 

 

Figure 5 Normalised objective functions’ values for 15 alternative sets of suppliers 

 

 One can conclude that the three objectives which are used to evaluate suppliers from 

different aspects can be in conflict. For example, selecting certain suppliers can be more 

expensive, but less risky and vice versa. Also, while certain suppliers can be more 

expensive, their selection can lead to a higher business strategy achievement. Finally, 

there are suppliers that are less risky, but less in line with the business strategy. 

Therefore, the problem is considered as a multi-objective problem, with the aim to find 

a trade-off between these objectives. 

 

Analysis of the impact of fuzzy non-conformance rate 

Fuzzy non-conformance rate of each supplier is varied, from the values given in 

Table 2, to increases of 10%, 25% and 50%, where all values (𝑞1, 𝑞2, 𝑔3, 𝑞4) which 

define the fuzzy non-conformance rates are increased by 10%, 25% and 50%, 

respectively, as presented in Table 7. 
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Table 7 Varied fuzzy non-conformance rates 
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Non-conformance rate 

c i  Initial  Increased by 10%  Increased by 25%  Increased by 50%  

1 

1 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

3 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

4 (0.15,0,25,0.30,0.35) (0.136,0.227,0.333,0.389) (0.120,0.2,0.4,0.467) (0.100,0.167,0.6,0.7) 

2 

2 (0.05,0.15,0.20,0,25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

5 (0.05,0.15,0.20,0,25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

6 (0.05,0.15,0.20,0.25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

3 

1 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

3 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

5 (0.05,0.15,0.20,0.25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

4 2 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

5 

1 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

3 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

4 (0.15,0,25,0.30,0.35) (0.136,0.227,0.333,0.389) (0.120,0.2,0.4,0.467) (0.1,0.167,0.6,0.7) 

6 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4, ) 

6 4 (0.15,0,25,0.30,0.35) (0.14,0.227,0.333,0.389) (0.120,0.2,0.4,0.467) (0.1,0.167,0.6,0.7) 

7 
1 (0.05,0.15,0.20,0,25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

3 (0.05,0.15,0.20,0,25) (0.05,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

8 
2 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

6 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

9 

1 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

3 (0,0.05,0.15,0.20) (0,0.045,0.167,0.222) (0,0.04,0.2,0.267) (0,0.033,0.3,0.4) 

5 (0.05,0.15,0.20,0.25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

6 (0.05,0.15,0.20,0.25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

10 
2 (0.05,0.15,0.20,0,25) (0.045,0.136,0.222,0.278) (0.040,0.12,0.267,0.333) (0.033,0.1,0.4,0.5) 

5 (0.15,0.25,0.30,0.35) (0.136,0.227,0.333,0.389) (0.120,0.2,0.4,0.467) (0.1,0.167,0.6,0.7) 

 

To mitigate the risk of receiving non-conformed components, more components are 

ordered than required by the BOM, i.e., the required number of each component c. The 

higher the non-conformance rate, the higher the order. Increases in the orders are given 

in the brackets, in Table 8. However, this relation is not linear and depends on many 

other parameters as discussed below.  

 



 

Table 8 Order quantities when the non-conformance rates are increased 

Component 
Bill of 

Material 
Supplier Non-conformance rate 

c 𝐵𝑐 i  Initial 𝑄̃𝑐
𝑖  

Increased 

by 10% 
Increased 

by 25%  
Increased 

by 50% 

1 50 

1 0 0 0 0 

3 63 
82 

(+30%) 

82 

(+30%) 

83 

(+32%) 

4 0 0 0 0 

2 6 

2 0 0 0 0 

5 0 0 0 0 

6 8 
9 

(+13%) 

11 

(+38%) 

12 

(+50%) 

4 100 2 125 
129 

(+3%) 

137 

(+10%) 

167 

(+34%) 

5 33 

1 0 0 0 0 

3 42 
43 

(+2%) 

50 

(+19%) 

55 

(+31%) 

4 0 0 0 0 

6 0 0 0 
10 

(+0.24%) 

7 15 

1 0 0 0 0 

3 20 
21 

(+5%) 

25 

(+25%) 

30 

(+50%) 

8 24 
2 30 

31 

(+3%) 

33 

(+10%) 

40 

(+33%) 

6 0 0 0 0 

10 8 
2 11 

12 

(+9%) 

15 

(+36%) 

16 

(+45%) 

5 0 0 0 0 

 

It is interesting to notice that the same suppliers are selected for all 4 different non-

conformance rates for all 7 components; for example, supplier 3 is selected to supply 

component 1 for all different non-conformance rates. This is expected as all non-

conformance rates of all suppliers are increased by the same percentage. However, it is 

recommended to use a dual sourcing for component 5 when non-conformance is 

increased by 50%, i.e., to use suppliers 3 and 6. Both suppliers have better delivery 

performance with respect to non-conformance rate and lead time, and have to pay 

higher fines for non-conformance compared to other eligible suppliers, namely suppliers 

1 and 4. In addition, both suppliers are selected as they have similar characteristics; still 

more quantity is recommended to be ordered from supplier 3 which has slightly lower 

unit purchase cost and pays slightly lower fine to the manufacturer compared to supplier 

6. Furthermore, it has the G status, while supplier 6 has the M status.  



 

However, if non-conformance rate of only one supplier is increased, it can have an 

impact on the supplier selection. For example, if only the non-conformance rate of 

supplier 3 for component 1 is increased by 50%, supplier 1 is selected instead of 

supplier 3 (see Table 9). Although supplier 1 has the E status which does not contribute 

to business strategy achievement, while supplier 3 has the preferred G status, supplier 1 

has a cheaper unit purchase cost than supplier 3 (4 compared to 4.5) and a lower risk (14 

compared to 25). Furthermore, in this case, the order quantity from supplier 1 is 

decreased from 83 to 75, because supplier 1 has the smaller non-conformance rate than 

the increased non-conformance rate of supplier 3; (0, 0.05., 0.15, 0.20) compared to (0, 

0.033, 0.3, 0.4). One can notice that supplier 4 is not selected instead of supplier 3, 

because it has a longer lead time, and higher risk_score than supplier 3 and non-

conformance rate similar to the increased non-conformance rate of supplier 3. This 

demonstrates that the model makes a trade-off between all three objectives.  

 

Table 9 Increase of non-conformance rate of supplier 3 only 

Component 
Bill of 

Material 
Supplier Non-conformance rate 

c 𝐵𝑐 i  Initial 𝑄̃𝑐
𝑖  

Increased 

by 50%  

1 50 

1 0 
75 

(+19%) 

3 63 0 

4 0 0 

 

Analysis of the impact of unit holding cost  

In order to analyse the impact of unit holding cost on both order quantity and time of 

ordering, the unit holding is changed from the initial value (100%), which the 

manufacturer currently takes into account, to a reduction of unit holding cost of 50%, 

and increases to 200% and 400%. It is observed that the ordering quantities 𝑥𝑐
𝑖 , 𝑐 =

1, … ,10, 𝑖 = 1, … , 6, remain the same (Table 10). The model recommends the minimum 

quantities to be ordered, otherwise, ordering higher quantities, would increase the total 

cost, due to the higher holding costs. However, varying the unit holding costs, ℎ𝑐
𝑖 , has an 

impact on the time of ordering, as illustrated in Figure 6.  

 
 
 



 

Table 10 Ordering quantity and supplier selection for different values of ℎ𝑐 

  
Component c 

  
1 2 4 5 7 8 10 

hc 

  50% 63 8 125 42 20 30 11 

100% 63 8 125 42 20 30 11 

200% 63 8 125 42 20  30  11 

400% 63 8 125 42 20  30 11  

Ordered 

from supplier 
3 6 2 3 3 2 2 

 

 
Figure 6 Time of ordering of components with different unit holding costs 

 

One can see when the unit holding cost is increasing, the ordering is recommended 

later; for example, when the unit holding costs of both components 1 and 4 are 

increased to 400% of the initial unit holding cost values, the ordering is recommended 6 

weeks later (in week 11 and 9, respectively) compared to the case when unit holding 

cost is 50% of the initial holding cost (in week 5 and 3, respectively). However, late 

ordering does not necessarily incur the lower total cost. The holding cost is balanced 

with other costs, such as the fine that the manufacturer must pay in the case of late 

delivery, number of components needed and the lead times. For example, the unit 

holding cost of component 8 is much smaller than the unit holding cost of component 4, 

(0.2 and 2, respectively) and more component 4 is required than component 8, (100 and 

24, respectively) as given in Table 4. Therefore, it is recommended to order component 

8 earlier than component 4, for all 4 cases of the unit holding costs. On the other hand, 

the unit holding cost of component 5 is smaller compared to component 2 (1.8 and 5, 
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respectively) that suggests that component 5 could be ordered earlier. However, when 

holding cost is increased to 200%, the model recommends ordering of component 5 

later than component 2, even though its lead time is higher, (16, 17, 19, 20) and (13, 15, 

17, 18), respectively. Once the holding cost is increased to 400%, it is recommended to 

order component 5 earlier than component 2, as the holding cost of component 2 

becomes too high and the longer lead time of component 5 has a dominant role. This 

analysis demonstrates that increasing the unit holding cost leads to later ordering. 

However, it can generate either an increased or decreased cost of handling a component 

depending on other parameters, as mentioned above. 

 

Analysis of the impact of supplier’s risks 

In this experiment, a trade-off between the cost and the risk is analysed, while it is 

assumed that all suppliers of each component have the same statuses, i.e., contribute 

equally to the business strategy achievement. Table 11 presents data of 4 different 

components considered in this experiment, where each component is supplied by 

suppliers with the same statuses, but have different risks. Their risk_scores are varied in 

Case 1, Case 2 and Case 3. The remaining data are the same as given previously. Table 

12 shows selected suppliers, quantities and times of orders in the three cases. 

 

Table 11 Statuses and risk_scores of suppliers 

Component Supplier 
Supplier 

     status 
𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒𝑐

𝑖  

c i  𝜑𝑖 Case 1 Case 2 Case 3 

1 

1 N 25 25 50 

3 N 25 50 50 

4 N 25 25 25 

2 

2 M 30 50 50 

5 M 30 29 50 

6 M 30 30 25 

5 

1 G 25 40 50 

3 G 25 30 70 

4 G 25 50 25 

6 G 25 25 26 

8 
2 E 70 70 50 

6 E 70 50 70 

 



 

Table 12 Selected suppliers, order quantities and times of orders 

c 

Case 1 Case 2 Case 3 

Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 
Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 
Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 

1 3 63 6 1 63 2 4 63 10 

2 2 8 3 6 8 0 6 8 0 

5 
1 21 0 6 42 0 4 21 0 

3 21 0 - - - 6 21 0 

8 2 30 0 6 30 0 2 30 0 

 

 As it can be seen in Table 12, suppliers’ risks influence the supplier selection, but a 

trade-off with the cost has to be made. Furthermore, quantities of orders remain the 

same regardless to the suppliers’ risk_scores. Three suppliers can supply component 1, 

namely suppliers 1, 3 and 4. However, supplier 4 has a longer lead time and higher non-

conformance compared to suppliers 1 and 3. Therefore, in Case 1, when all the three 

suppliers of component 1 have the same risk_score, the model recommends supplier 3. 

However, when risk_score of supplier 3 is increased in Case 2 and Case 3, to 50, the 

model changes the recommendations to suppliers with the smaller risk_scores, namely 1 

and 4, respectively. It might be interesting to notice that in Case 3, supplier 4 is selected 

because of its lowest risk, although it has worse lead time and non-conformance rate 

compared to suppliers 1 and 3. Also, the ordering times changes depending on suppliers 

selected. Three suppliers, 2, 5 and 6 are considered to supply component 2. Supplier 2 

has the highest lead time, and supplier 6 has the highest non-conformance rate. All three 

suppliers generate similar costs, and, therefore, in each case, the supplier risk has the 

dominant role in selecting the supplier. Therefore, the supplier with the smallest risk, 

i.e., supplier 2, supplier 5 and supplier 6 in Case 1, Case 2 and Case 3, respectively, are 

selected. The selection of suppliers for component 5, changes in each of the three cases. 

Supplier 4 has the highest lead time, while suppliers 1, 3 and 6 have the same lead times 

and supplier 4 has the highest non-conformance rate, while suppliers 1, 3 and 6 have the 

same non-conformance rate. Dual sourcing is recommended in Case 1 and in Case 3. 

However, the two suppliers with the lowest risk_scores are always recommended, i.e, 

suppliers 1 and 3 and 4 and 6 in Case 1 and Case 3, respectively. As previously, 

although supplier 4 has the longest lead time and the highest non-conformance rate 

which generate high cost, it is selected in Case 3, because it has the lowest risk_score. 

Two suppliers of component 8, namely supplier 2 and 6, have the same lead times and 

non-conformance rates, and similar fines to pay in the case of early/late delivery and 



 

non-conformance. That is why in Cases 2 and 3, when suppliers 2 and 6 have different 

risk_scores, the model selects the supplier with the lower risk, i.e., supplier 6 and 

supplier 2 in Case 2 and Case 3, respectively. 

 

Analysis of the impact of the business strategy achievement and suppliers’ statuses 

In this experiment, we are focused on component 5 only and the corresponding 

suppliers, 1, 3, 4, and 6, with different statuses and different risks. The input data for the 

three cases are given in Tables 2, 3 and 13, while the results are given in Table 14. 

Supplier 4 has the worst lead time and non-conformance rate. In Case 1 and Case 2, the 

model selects dual-sourcing from the two suppliers, 1 and 3, with the same G status and 

the same risk_scores. It is ordering more than it is required in the BOM; 33 components 

are required, while 42 components are ordered in total from suppliers 1 and 3 

(42=21+21). In Case 2, the model still recommends dual-sourcing from these suppliers, 

although supplier 3 has higher risk_score than in Case 1. However, in Case 3, where 

risk of supplier 3 is very high, the model does not recommend dual-sourcing anymore. 

When the risk of supplier 3 increases to 80, the model selects to order 42 components 

from supplier 1 only, which has the best category G and the lowest risk_score 25.   

 

Table 13 Input data for suppliers with different statuses and with different 𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 

Component Supplier 
Supplier 

     status 
𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒𝑐

𝑖  

c i  𝜑𝑖 Case 1 Case 2 Case 3 

5 

1 G 25 25 25 

3 G 25 50 80 

4 M 50 25 25 

6 M 60 50 50 

 

Table 14 Selected suppliers, order quantities and times of orders 

c 

Case 1 Case 2 Case 3 

Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 
Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 
Selected 

supplier i 
𝑥𝑐
𝑖  𝑦𝑐

𝑖 

5 
1 21 0 1 21 0 1 42 0 

3 21 0 3 21 0 - - - 

 

 

 



 

Analysis of the impact of problem size on the computation time 

In this experiment, the size of the problem is increasing by increasing the number of 

suppliers i and the number of components c. The computational time is presented in 

Table 15. The computation time is increasing in a non-linear manner. The optimum 

solutions are found for problems up to 30 suppliers and 80 components. 

 

Table 15 Computation time 

Size of the problem i = 6 c = 10 i = 15 c = 40 i = 40 c = 60 i = 30 c = 80 

Computation time 22min 35s 1h 29min 7h 12min 11h 51min 

 

Conclusions and directions for further research  

A multi-objective optimisation model is developed to select suppliers and to determine 

how much and when to order in a real-world supply network, considering three 

objectives: minimisation of cost, minimisation of risk and maximisation of business 

strategy achievement. Different types of uncertainties are considered. First, uncertain 

data about lead times and non-conformance rates of delivered components are specified 

using imprecise terms and are modelled using fuzzy numbers. Vague knowledge of 

categorising suppliers based on components and suppliers’ risks is modelled using fuzzy 

If-Then rules. They are handled using a modified Takagi and Sugeno method of fuzzy 

logic and incorporated in the multi-objective model. The model is subsequently 

transformed into a crisp, single objective optimisation model which is implemented in 

AIMMS.  

Various experiments are carried out to gain better understanding of SN performance 

in the presence of uncertainty and three objectives under consideration. It is shown that 

the three objectives behave differently, i.e., certain suppliers can lead to lower cost, but 

can be more risky and less in line with the business strategy, and vice versa. Also, 

suppliers can have lower risk, but can contribute less to the business strategy 

achievement, and vice versa. It is confirmed than increases in uncertain non-

conformance rate cause increases in quantities to be ordered in a non-linear manner. 

Furthermore, an increase in a unit holding cost of a component has to be balanced with 

other costs. It leads to later ordering, but can generate either higher or lower cost of 

handling a component depending on other parameters including the fine the 

manufacturer has to pay in case of the late delivery, number of components needed and 



 

lead times. Suppliers’ risks and statuses, including G-Grow, E-Exit, M-Maintain, N-

New, have an impact of the supplier selection and have to be in balance with the SN 

cost. 

Finally, it is concluded that the model proposed can be applied to a large SN. The 

optimal solution can be found for SNs with up to 30 suppliers and 80 components.  

Further research will be carried out to extend the model to include annual demand for 

multiple engines and to compare the performance of the SN optimised using the 

proposed model with the performance achieved in practise. 

 

Appendix. Fuzzy arithmetics 

Fuzzy arithmetic operations are used in calculating the total cost in Objective 1 as given 

in Table 16. 

Table 16 Fuzzy operators where 𝐿̃ and 𝑄̃ are trapezoidal fuzzy numbers 

𝐿̃ = (𝑙1, 𝑙2, 𝑙3, 𝑙4) and 𝑄̃ = (𝑞1, 𝑞2, 𝑞3, 𝑞4) 

Operator Syntax Formula 

Addition 𝐿̃ + 𝑄̃ (𝑙1 + 𝑞1,      𝑙2 + 𝑞2,      𝑙3 + 𝑞3,     𝑙4 + 𝑞4)  

Subtraction 𝐿̃ −  𝑄̃ (𝑙1 − 𝑞4,      𝑙2 − 𝑞3,      𝑙3 − 𝑞2,     𝑙4 − 𝑞1)   

Multiplication 𝐿̃  ×  𝑄̃  (𝑙1  ×  𝑞1,      𝑙2  ×  𝑞2,      𝑙3  ×  𝑞3,     𝑙4  ×  𝑞4)   

Multiplication with 

scalar r 
𝑟 ×  𝐿̃ (𝑙1  ×  𝑟,      𝑙2  ×  𝑟,      𝑙3  ×  𝑟,     𝑙4  ×  𝑟)   

Division 𝐿̃ ÷  𝑄̃  (𝑙1 ÷ 𝑞4,      𝑙2 ÷ 𝑞3,      𝑙3 ÷ 𝑞2,     𝑙4 ÷ 𝑞1)  

Maximum between 

fuzzy value and 

scalar r 

max (𝐿̃, r) (max(𝑙1, 𝑟),max(𝑙2, 𝑟),max(𝑙3, 𝑟),max(𝑙4, 𝑟)) 

Maximum between 

two fuzzy values 
max (𝐿̃, 𝑄̃) (max(𝑙1, 𝑞1),max(𝑙2, 𝑞2),max(𝑙3, 𝑞3),max(𝑙4, 𝑞4)) 

Relation ≤ 

between scalar r 

and fuzzy value 
r ≤ 𝐿̃ 𝑟 ≤  𝑙1 

Defuzzification 𝐷𝑒𝑓𝑢𝑧𝑧(𝐿̃𝑐
𝑖 ) 

𝑙1 + 2 × 𝑙2 + 2 ×  𝑙3 + 𝑙4
6

 

 

Once the fuzzy total cost is calculated in Objective 1, it is defuzzified using the 

defuzzified method given in Table 16. The defuzzification operation determines a scalar 

value that represents most appropriately the fuzzy number under consideration.  
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