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Abstract 

A hybrid method is presented combining linear elastic fracture mechanics with nonlinear 

damage mechanics that can predict the fatigue crack growth rate in z-fibre pinned composites 

under mode I loading. The strain energy release rate is evaluated using the virtual crack closure 

technique via finite element analysis. Cohesive elements are used in the pinned region to 

represent the crack bridging force generated by the pins. The reduction of the pins’ bridging 

force under the fatigue loading is accommodated by applying a degradation law, based on 

damage mechanics with empirical fitting parameters. A modified degradation law is proposed 

which is capable of accumulating fatigue damage under varying crack opening displacement 

ranges experienced by the pins during fatigue loading. Fatigue testing was performed with a z-

pinned double cantilever beam at two different values of applied displacement amplitude. The 

predictions show reasonably good agreement with the test results in terms of the fatigue crack 

propagation rate and fatigue life. 

Keywords: Carbon fibre composites; through-thickness reinforcement; z-fibre; fatigue life 

prediction; finite element analysis 

Introduction  

The use of z-fibres (z-pins) is an effective method for improving the interlaminar fracture 

toughness of composite laminates. Experimental studies have been carried out to understand 

the bridging effect of z-pins under static and impact loading conditions [1-4]. The traction forces 

generated by z-pins are affected by many factors, including the mechanical and physical 

properties of the pins themselves, the manufacturing conditions (e.g. curing temperature, incline 

angle of the z-pins), and the interfacial conditions between z-pins and the composite material.  

Many constitutive models have been presented in published literature, which describe the 

traction load vs. crack opening displacement relation for single pins. These include analytical 

models [5-7] and empirical models [8, 9]. Due to the complexity of the z-pin bridging nature, 

numerical models have also been established as an alternative solution [10-12]. Those 

constitutive models have been implemented in the finite element (FE) analysis to simulate z-

pinned structures under static loading [6, 8-11, 13-15]. Early approaches applied nonlinear 

spring elements on the delamination surfaces to model the bridging behaviour of z-pins [6, 8, 
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9, 13]. Recently, cohesive zone elements at discrete pin locations have been used to model z-

pinned laminates of the double cantilever beam (DCB) geometry under mode I loading, by 

deriving the cohesive parameters from a mesomechanical model of the pin pull-out process [10]. 

This approach was then extended to the mode II [11] and mixed mode [14,15] loading 

conditions. 

 

Nomenclature 

a debond crack length Pd , Pd0 current, initial (static) peak debond force 

Apin cross-sectional area of z-pin Pf , Pf0 current, initial (static) peak frictional force 

𝑐, 𝑑 fitting parameter of pin’s degradation 

law, eq.4 

𝑞 ratio of cyclic displacement amplitude to 

static pull-out displacement, eq. 5  

C, m 

da/dN 

Paris law constants 

fatigue crack growth rate 

𝑟 ratio of cyclic mean displacement to static 

pull-out displacement, eq. 6  

dPmax displacement of DCB at peak static 

load  

Td, Tf debond, frictional traction strength of 

cohesive element at pin location  

D, Dacc reduction, accumulated reduction of 

pin’s bridging force 

𝛼, 𝛽 fitting parameter of pin’s degradation law, 

eq. 4 

Dd, Df 

 

 

accumulated reduction factor of pin’s 

bridging force by debonding or 

frictional degradation law 

𝛿 

𝛿𝑎,𝛿𝑚 

current displacement on a pin row 

amplitude, mean displacement on a pin row  

 

G strain energy release rate 𝛿𝑑, 𝛿𝑑0 current (fatigue), initial (static) debond 

displacement on a pin row  

GIC 

i 

laminate mode I fracture toughness 

iteration number (i=1, 2,…, k) 

 

𝛿𝑓, 𝛿𝑓0 

current (fatigue), initial (static) displacement 

at peak frictional force 

neff, nnom effective, nominal pin number in a pin 

row 

 

𝛿𝑝𝑢𝑙𝑙 

 

current fatigue pull-out displacement on a 

pin row 

N,ΔN 

Nf 

current, increment number of cycles  

number of cycles to final failure 

𝛿𝑝𝑢𝑙𝑙_0 initial pull-out displacement (static) on a pin 

row 

The benefits of z-pins are not limited to the static load cases. When z-pinned laminates are 

subjected to cyclic loading, z-pins also form a large-scale crack bridging zone to retard fatigue 

crack growth. The effect has been experimentally studied for cyclic loading under the mode I 

[16-19], mode II [19-22] and mixed mode [23] conditions. Work in [19] shows that z-pinning 

is more effective in resisting the mode I fatigue cracking, due to differences in the bridging 

mechanism and failure modes (e.g. pin debonding followed by frictional pull-out for mode I, 

compared to shear-induced pin rupture for mode II). A study of mixed mode cyclic loading 

revealed that reducing the mode I and increasing the mode II load component led to a change 

in the fatigue failure mechanism from pin pull-out to shear deformation and fracture of the pins 

[23]; hence the reduction of the beneficial effect of pinning with increased mode II. 

Zhang et al. [16] proposed a micromechanical model for calculating the reduction of bridging 
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tractions (debonding and friction pull-out forces) under a mode I fatigue loading, based on the 

fatigue data and experimental observations. The degradation law was then applied to a fracture 

energy based analytical model to predict the fatigue life of a z-pinned double cantilever beam 

(DCB). However, experimental validation of the predictive model was not performed, and the 

proposed degradation law did not account for the variable displacement amplitude that the pins 

had experienced when they were in the wake of the propagating crack. The effect of an applied 

displacement amplitude was investigated experimentally in [26] using a phenomenological 

model to describe the degradation of energy dissipation, considering both amplitude and mean 

pull-out displacement of a pin. However, the pin’s debonding phase was not considered in the 

model, which is an important mechanism for the z-pinned laminate subjected to relatively small 

load amplitudes in fatigue. Furthermore, the crack opening displacement applied on those pins 

in the crack wake is variable during the fatigue crack growth process; hence a method for 

accumulating pins’ fatigue degradation under variable amplitude loading is desirable. 

Few papers can be found that address the prediction of the response of z-pinned structures under 

fatigue loading. It requires a thorough understanding of single pin bridging behaviour under 

cyclic loading. Recent investigations [16, 26] show that the pin’s surface and surrounding resin 

are gradually worn under the fatigue loading. Therefore, the pin bridging force is degraded with 

increasing load cycles. This degradation of the pin bridging force must be modelled and 

included in the analysis for predicting the fatigue life of a z-pinned laminate. 

In this work a degradation law is proposed to describe the debonding and frictional degradation 

of the z-pin bridging force under a mode I fatigue load based on a damage mechanics approach 

with empirical fitting parameters. The proposed degradation law also considers the effect of the 

changing amplitude of the crack opening displacement when the crack bridging pins are in the 

crack wake. The fatigue degradation law of a single pin is then implemented in a fracture 

mechanics model to predict the fatigue life of a z-pinned DCB. In the model, the strain energy 

release rate is calculated by the virtual crack closure technique (VCCT) by finite element 

analysis, and the pin bridging force and its fatigue degradation is modelled by cohesive failure 

elements. 

2 Prediction strategy and approach 

2.1 Procedure  

Finite element analysis (FEA) was used for crack extension modelling and stain energy release 

rate calculation. Fatigue crack growth was predicted using the FEA result in conjunction with 

measured crack growth rate in unreinforced laminates (no z-pins). The procedure is illustrated 

in Fig. 1 and key steps are as follows:  
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Fig. 1 Procedure for predicting fatigue crack growth life of z-pinned laminate under mode I load. 

 

 Experimental testing of unreinforced DCB specimens to generate the material’s mode I 

fatigue crack growth rate data. 

 Calculating the strain energy release rate as function of the crack length under quasi-static 

load and a prescribed crack extension path.   

 Modelling z-pin bridging force by cohesive elements at pin locations; cohesive model 

parameters are degraded with cyclic load. Since the bridging force degradation is also 

affected by the crack opening displacement, pins in different locations in the bridging 

zone can experience different levels of degradation, even though they have been 

subjected to the same fatigue load history.  

 Calculating fatigue crack growth life by integrating the material’s Paris law between the 

initial and final crack lengths.   

2.2 Model description 

A z-pinned double cantilever beam (DCB) was modelled (Fig. 2) under quasi-static load to 

calculate the strain energy release rate vs. crack extension, using the ABAQUS software 

package. The Virtual Crack Closure Technique (VCCT) is used to calculate the strain energy 

release rate (SERR) originating from the failure of the adhesive bond, and the Cohesive Zone 
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Method (CZM) is used to model the pin’s stetching, debonding and pullout phases. Due to the 

geometric symmetry, only half of the DCB is modelled with appropriate boundary conditions. 

 

Fig. 2 FE model for half of DCB specimen; inserts show the bond interface and pins, and a 

tri-linear response of pin traction force vs. displacement relation to be used in the FE model   

Fracture of the adhesive bond is governed by the fracture toughness (GIC) of the laminate 

material (matrix). The pinned locations have enhanced toughness, which can be described by 

the pin’s traction force vs. displacement relation that can be described by a tri-linear expression 

given in eq. (1) (and shown graphically in the Fig. 2 insert). The first stage represents the pin’s 

elastic stretching, which is followed by debonding (second stage), and frictional pull-out of 

fully debonded pin (final stage). 

𝑃 =

{
 
 

 
 
𝛿

𝛿𝑑
𝑃𝑑                     

𝛿𝑓−𝛿

𝛿𝑓−𝛿𝑑
𝑃𝑑 + 

𝛿−𝛿𝑑

𝛿𝑓−𝛿𝑑
𝑃𝑓       

𝑃𝑓 +
𝛿𝑓−𝛿

𝛿𝑝𝑢𝑙𝑙−𝛿𝑓
𝑃𝑓           

 

  (0 ≤ 𝛿 ≤ 𝛿𝑑)   
  

(𝛿𝑑 ≤ 𝛿 ≤ 𝛿𝑓)
     

      (𝛿𝑓 ≤ 𝛿 ≤ 𝛿𝑝𝑢𝑙𝑙)    

       (1) 

where P is the bridging force, Pd the maximum debonding force, Pf the maximum friction force, 

and 𝛿, 𝛿𝑑,𝛿𝑓 are the corresponding displacements, and 𝛿𝑝𝑢𝑙𝑙 the pin’s pull-out displacement. 

The crack propagation rate is affected by the pin quality, reflected by the pin bridging 

parameters used in the models. To account for the variations, the prediction method assumed 
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that each pin row has its own bridging law parameters, being calculated from the actual peak 

debond and frictional loads for each pin row based on a summation of damaged, imperfect and 

missing pins as observed in the tests. An imperfect or damaged pin was counted as a half pin, 

in terms of the bridging force value. Thus, the effective peak bridging force in each pin row 

was calculated as: 

      𝑃𝑑 =
𝑛𝑒𝑓𝑓

𝑛𝑛𝑜𝑚
𝑃𝑑0 or 𝑃𝑓 =

𝑛𝑒𝑓𝑓

𝑛𝑛𝑜𝑚
𝑃𝑓0                    (2) 

where nnom is the nominal number of pins in a pin row as manufactured, neff is the number of 

effective pins in a pin row (based on post-failure examination), Pd and Pf now refer to the 

effective peak debond and frictional loads, respectively.  

Two extreme scenarios are used to predict the upper and lower bounds of fatigue life. The first 

case assumed a perfect condition that every pin is perfectly inserted, with neff  = nnom = 7 in the 

specimen. The second case used the worst pin condition as observed after the static load tests 

(specimens S1-S3), with an average effective pin number neff  = 5. 

2.3 Degradation law of single pin bridging force under fatigue loading 

There are currently two published papers [16,26] proposing possible pin degradation laws based 

on experimental tests. However, both laws [16, 26] have limitations (as discussed in the 

Introduction) and thus cannot be used directly in the fatigue prediction procedure of this study.  

A new degradation law is proposed in this paper based on a damage mechanics model originally 

proposed by Peerlings et al [25]. The model in [25] was aimed at describing the damage model 

variables in the high-cycle fatigue regime within the interface elements: 

𝐷 = −
1

𝛼
ln (1 −

2𝛼𝑐

𝛽+1
𝜀𝑎
𝛽+1

𝑁)                     (3) 

where 𝛼, 𝛽 and c are material parameters at a constant strain amplitude 𝜀𝑎.   
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To account for both cyclic displacement amplitude and mean displacement, a modified 

degradation law is proposed for this paper: 

𝐷 = −
1

𝛼
ln (1 −

2𝛼𝑐

𝛽+1
𝑁𝑞𝛽+1𝑟𝑑)                    (4) 

where 𝛼, 𝛽, c and d are material parameters, 𝑞 and 𝑟 are calculated by 

𝑞 =
𝛿𝑎

𝛿𝑝𝑢𝑙𝑙
 or 𝑞 =

𝛿𝑎

𝛿𝑑
                       (5) 

𝑟 =
𝛿𝑚

𝛿𝑝𝑢𝑙𝑙
 or 𝑟 =

𝛿𝑚

𝛿𝑑
                       (6) 

where 𝛿𝑎 and 𝛿𝑚 are respectively the cyclic displacement amplitude and mean displacement 

acting on a pin row, 𝛿𝑑 is the maximum debond displacement (debond degradation law), and 

𝛿𝑝𝑢𝑙𝑙 is the pin’s maximum displacement under the static pull-out test (frictional degradation 

law). The pin length effect can be normalised using the maximum displacement, therefore this 

law can be used for modelling different pin lengths.  

The fitting parameters 𝛼, 𝛽, c and d for the debonding and frictional degradation law (eq. 4) 

are calculated based on the experimental test data in [16, 26] (Fig. 3) by a numerical fitting code 

[28], and are listed in Table 2. 

The normalized residual peak debond force and friction forces (Pd/Pd0, Pf/Pf0) were then used 

to find the accumulated bridging force reduction parameters, Dd (debonding dominance) and 

Df (friction dominance) by the debonding and frictional degradation laws:  

𝐷𝑑 = 1 −  𝑃𝑑/ 𝑃𝑑0                          (7) 

𝐷𝑓 = 1 −  𝑃𝑓/ 𝑃𝑓0                           (8) 

The proposed degradation law was used to describe the trend for the debonding and frictional 

reduction of pin bridging force under varying crack opening displacement amplitudes.  
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Fig. 3 Degradation law fitting: (a) debonding dominance test in [16] under two different sets 

of amplitude and mean displacement, (b) frictional dominance test in [26] under four different 

sets of amplitude and mean displacement. Test conditions in [16, 26] are given in Table 1. The 

best fitted lines for the test data are used for determining the fitting parameters in eq. (4). 

 

      Table 1. Summary of displacement controlled fatigue tests in [16, 26]   

 

Table 2 Fitting parameters for degradation law, eq. (4) 

 α           β c  d 

Debonding phase (data from [16]) -13.55 2.83 0.0105 2.56 

Frictional pullout (data from [26]) -14.19 0.79 2.51 0.44 

 

 

Fig.4 Crack opening displacement and its relation to the local amplitude and mean displacement 

(𝛿𝑎, 𝛿𝑚) on a particular pin row as the crack propagates under fatigue tests 

Since the crack opening displacement applied on each pin row varies as the pin row position 

changes in the crack wake as illustrated in Fig. 4, equations (4-6) and fitting parameters in Table 

Test condition Experiment input displacement  

(mm) 

Cyclic displacement 

ratios (eqs. 5-6) 

𝛿𝑎  𝛿𝑚  𝛿𝑑  𝑞 𝑟 

Debonding ref [16] 

Test 1 0.25 0.16 0.56 0.45 0.275 

Test 2 0.41 0.25 0.56 0.72 0.44 

Frictional ref [26] 𝛿𝑝𝑢𝑙𝑙   
  

Test 1 0.1 0.15 4.5 0.022 0.033 

Test 2 1.6 1.5 4.5 0.355 0.333 

Test 3 0.1 3 4.5 0.022 0.667 

Test 4 1.6 3 4.5 0.355 0.667 
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2 were used in the proposed damage accumulation calculation. In the ith crack growth increment, 

the number of load cycles required (Nfi) under displacement condition 𝑞𝑖 and 𝑟𝑖 is obtained 

by setting D = 1 and solving equation (4) for N, resulting in 

𝑁𝑓𝑖 = 
(1−𝑒−𝛼)

2𝛼𝑐

𝛽+1
𝑞𝑖
𝛽+1𝑟𝑖

𝑑
                          (9) 

Using equation (9) for the fatigue life, equation (4) can be rewritten in terms of the relative 

number of cycles Ni/ Nfi (similar to the Miner’s rule): 

𝐷𝑖 = −
1

𝛼
ln (1 − (1 − 𝑒−𝛼)

𝑁𝑖

𝑁𝑓𝑖
)                   (10) 

If a pin row has experienced a series of damage Di (i = 1,…, k) because of crack propagation, 

then the accumulated damage ratio Dacc is calculated by 

𝐷𝑎𝑐𝑐 = −
1

𝛼
ln(1 − (1 − 𝑒−𝛼)∑

𝑁𝑖
𝑁𝑓𝑖

𝑘

𝑖=1

)                                          (11) 

2.4 Application of pin degradation law 

To simplify the single pin bridging behaviour under fatigue loading, the aforementioned method 

assumes that debonding occurs first, which is followed by pin frictional pullout. The peak 

debonding force degrades with increasing load cycles. The peak residual debonding load Pd can 

be calculated by equation (12) and using the parameters in Table 2. 

 𝑃𝑑 = (1 − 𝐷𝑑) 𝑃𝑑0                              (12) 

According to the experimental data in [16], the slope of the elastic stretching portion of the 

curve does not change during fatigue testing, indicating that the elastic modulus of the pins was 

not affected by fatigue. Thus, the corresponding displacement to the peak residual debonding 

force, 𝛿𝑑, also reduces, and is proportional to Pd: 

𝛿𝑑 = (1 − 𝐷𝑑) 𝛿𝑑0                        (13) 

The degradation of Pd and 𝛿𝑑 changes to the pin bridging law (load vs. displacement relation). 
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A typical pin’s bridging law change under fatigue load is illustrated by Fig. 5. The initial 

response and early degradation are shown in Figs. 5a and 5b. When the peak residual debond 

force (Pd) becomes lower than the peak friction force (Pf), the load vs. displacement relation 

changes to Fig. 5c, where the pin still experiences further debonding until the applied load 

overcomes the peak debond force, at which point the pin is fully debonded and the frictional 

pullout takes over as shown in Fig. 5d. After that, the peak friction force and failure 

displacement 𝛿𝑝𝑢𝑙𝑙 degrade with increasing load cycles according to: 

 𝑃𝑓 = (1 − 𝐷𝑓) 𝑃𝑓0                      (14) 

𝛿𝑝𝑢𝑙𝑙 = (1 − 𝐷𝑓) 𝛿𝑝𝑢𝑙𝑙_0                    (15) 

where Df is the accumulated damage parameter calculated by the friction degradation law.  

At each crack growth increment, calculated values of crack opening displacement at each pin 

row and strain energy release rate at the crack front were used for the subsequent computation 

steps, i.e. numerical integration of fatigue crack growth and calculation of the pin bridging force 

degradation as illustrated in Fig. 1. The degraded pin’s bridging law at the current crack 

increment was calculated by the procedure shown in Fig. 6. All calculations were performed by 

using the Microsoft Excel tool. Finally, updated bridging laws for each pin row were manually 

transferred to an ABAQUS input file for the simulation of the next crack increment. 
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Fig. 5 Typical pin’s bridging law evolution under fatigue load: (a) initial status, (b) initial 

debonding degradation (Dd due to Pd, 𝛿𝑑), (c) continue debonding degradation (Dd) at 𝛿 < 𝛿𝑑 <

𝛿𝑓0, (d) pin fully debonded and experiencing frictional degradation (Df). 

 

 

 
 

Fig. 6 Calculation procedure of pin’s bridging law under fatigue loading, where δ and P are 

the current crack opening displacement and bridging force acting on a pin row.  

It is worth noting that this model does not account for the effect of pin breakage. The pin 

breakage mechanism under fatigue is complicated as the degradation of residual shear 

properties requires further investigation. However, the effect of pin breakage on fatigue life 

found in our studies (Fig. 11b, Group 2 specimens) is only noticeable at the early stage of the 

fatigue testing and is negligible after 10,000 cycles. Since these pins were subjected to relatively 

large crack opening displacement, they typically suffered rapid degradation, i.e. pin’s frictional 

pull-out mode was dominant, reducing the pin bridging force by 60-70% after 1000 cycles. 

Thus, whether the pin breakage occurred or not, their contribution to the fatigue resistance in 

the later stage (i.e. after 10,000 cycles) is insignificant. 

3 Experimental 

3.1 Materials and specimens 

Since the fitting parameters for the proposed pin force degradation law are based on the 

experimental results from [16, 26], similar pin and laminate materials and manufacturing 
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methods were selected for this study. Pinned DCB specimens were fabricated using carbon 

fibre and epoxy prepreg AS7/8552 with a unidirectional (UD) layup of [0]24. The specimen 

geometry is shown in Fig. 7 and the material properties are given in Table 3. During the 

specimen fabrication, a release film of 50 mm length was inserted at the mid-plane to create an 

initial delamination crack between the adherends.  

 

Fig. 7 Geometry and dimension of z-pinned DCB specimen for both static and fatigue tests 

The z-pins were made of carbon fibre-bismaleimide (BMI). The pinned region is 25 mm long, 

covering the specimen width, and is 12 mm from the initial crack tip. The pin diameter is 

0.51 mm, with a pin pitch distance of 3.2 mm, resulting in the pin areal density of 2%. The pins 

were inserted through the uncured laminate by an ultrasonically assisted pinning (UAZ) process. 

The specimens were then autoclave cured under the following conditions; ramp to 110oC at 

3oC/min, hold for 60 minutes, ramp to 180oC at 3oC/min, hold for 120 minutes, ramp to 60oC 

at 5oC/min (nominal 7 bar pressure during cure).  

To characterize the single pin mode-I bridging law, a sample with a 6×6 pin array was 

manufactured for the pin pull-out test (Fig. 8). The z-pins and laminate were made of the same 

materials as for the DCB specimens. The specimen was 30 mm×30 mm with a thickness of 3.2 

mm. A through-thickness tensile test was conducted (i.e. the pin pull-out test) and the load 

measured from the test was then divided by the total number of pins in the specimen (36) to 
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determine the average single pin traction load. 

  Table 3 Material properties and Paris law constants of AS7/8552 [24] 

𝐸11(GPa) 𝐸22=𝐸33(GPa) 𝐺12=𝐺13(GPa)  𝜐12= 𝜐13 𝐺𝐼𝐶(J/m2) C m 

145 10 5  0.34 280 6.0E-34 13.14 

 

 
 

Fig. 8 Mode I pin pull-out test, (a) specimen, (b) specimen in mounting jigs and test machine 

3.2 Test method 

Table 4 summarizes the tests performed in this work. Static load tests of pinned DCB specimens 

and pin pull-out tests were conducted on a 50 kN electro-servo mechanical machine (Instron 

3369) under a displacement controlled loading rate of 1 mm/min and 0.5 mm/min, respectively. 

Fatigue tests for pinned DCB specimens were conducted under displacement controlled loading 

at a frequency of 3 Hz and cyclic load ratio of 0.1. Two groups of fatigue tests were conducted, 

in which the applied cyclic displacement amplitude was either 80% or 90% of the maximum 

displacement under the static load test (dPmax). Three samples were tested for each test condition. 

To minimize the thickness effect on crack growth rate, specimens with half specimen thickness 

of 1.70±0.02mm were selected for the fatigue testing. 

 Table 4 Summary of experimental tests conducted in this study 

Specimen Load Test condition No. of 

tests 

Loading rate 

/ Frequency  

Specimen No. Half thickness 

(mm) 
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Pin pull-out  Static  Displacement control 3 0.5 mm/min SP1, SP2, SP3 1.68-1.85 

Pinned DCB Static Displacement control 3 1 mm/min S1, S2, S3 1.62-1.78  

Pinned DCB Fatigue Max disp. 22.7mm 

(80% dPmax) 

3 3 Hz F1-1, F1-2, 

F1-3 

1.70±0.02 

Pinned DCB Fatigue Max disp. 25.7mm 

(90% dPmax) 

3 3 Hz F2-1, F2-2, 

F2-3 

1.70±0.02 

4. Results and discussion 

4.1 Pin pull-out tests under static load 

The compliance of the test machine and deformation of the tab-to-specimen adhesive bond layer 

are excluded by conducting separate compliance tests. The load vs. displacement curves of three 

tests of the pin pull-out are shown in Fig. 9. Specimens SP1 and SP3 showed simular behaviour 

that can be represented by a tri-linear bridging law, whereas specimen SP2 exhibited higher 

frictional traction force after the pin debonded. Post test observation has revealed that pins in 

SP2 had relatively larger misalignment, which effectively increased the average embedded 

length and induced a transition from the mode I to mode II, and thus led to the increased traction 

force. 

 

 

Fig. 9 Measured load vs. displacement curves from experimental pin pull-out testing  

4.2 Fatigue tests and prediction results of z-pinned DCB 

To validate the proposed prediction method, two groups of specimens were tested; each was 
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subjected to a specified cyclic displacement (Group 1 at 80% of the maximum displacement of 

the static load test, 0.8dPmax, and Group 2 at 90%, 0.9dPmax).  

For Group 1, predicted upper and lower bounds of crack growth rate are compared with test 

data in Fig. 10a. It demonstrates good coverage of the model of all three test results (F1-1, F1-

2 and F1-3). Crack length vs. cycle number is plotted in Fig. 10b. Resistance to crack growth 

by the pins was gradually enhanced and the full benefit of z-pinning was reached at the crack 

length of 30 mm, by which point a large-scale bridging zone was completely established. For 

all three tests, a stable fatigue crack growth rate was found at about 4. 5×10-6 mm/cycle, which 

is very close to the lower bound of the prediciton (Fig. 10a). This suggests that the predicted 

“perfect pin case” only slightly underestimates the stable crack growth rate. Since this group 

was tested under relatively smaller displacement, pins mainly experienced the debonding 

degradation as discussed in Section 2.4.  

For Group 2 (0.9dPmax) predicted results and experimental test results are shown in Fig. 11. The 

larger applied displacement caused the pins to fully debond at an earlier stage, therefore the 

frictional degradation was dominant. Consequently, specimens failed before the crack growth 

rate reached a stable value. Specimens F2-1 and F2-2 experienced a faster crack propagation 

period when the crack reaches 30-35 mm, compared to the predicted upper bounds (i.e highest 

predicted crack growth rate). This is mostly due to fracture of the misaligned pins before 

complete degradation (which is expected if the pins were subjected to relatively large applied 

displacements). The failure mechanism is discussed in more detail in the following section.  
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Fig. 10 Group 1 (0.8 dPmax): experimental test and prediction under maximum applied 

displacement of 22.7 mm: (a) fatigue crack growth rate vs. crack length, (b) crack length vs. 

load cycles. 

 

 

Fig. 11 Group 2 (0.9 dPmax): experimental test and prediction under maximum applied displacement 

of 25.7 mm: (a) fatigue crack growth rate vs. crack length, (b) crack length vs. load cycles  

 

4.3 Discussion of pin bridging zone 

The difference in fatigue response between the Group 1 (0.8dPmax) and Group 2 (0.9dPmax) tests 

can be understood by post failure examination. Under smaller applied displacement (Group 1), 

Fig. 12a shows that most of the pins in specimen F1-3 were pulled out. In contrast, the first four 

pin rows of specimen F2-2 (Group 2, under larger applied dispalcement) had experienced pin 

breakage, Fig. 12b.  

The micromechanical behaviour of the pins as the crack propagates can be understood with the 

help of the finite element model. Fig. 13 shows a typical simulation of the through-thickness 
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stress contours on a deformed DCB specimen (Group 1 test load). The large crack bridging 

zone behind the crack tip (a = 36 mm) involves pin rows of all stages. During the fatigue crack 

propagation, each pin row experiences the following four stages: 

Stage 0: before the crack tip reaches the first pin row location; all the pins are inactive;  

Stage 1: crack tip passes the first pin row; the pins experience elastic stretching and exert 

a small amount of bridging force;  

Stage 2: as the crack propagates further, the first pin row is further behind the crack tip 

and experiences more elastic stretching and exerts a higher bridging force; 

Stage 3: pins are fully debonded from the laminate and exert a small part of the bridging 

load by frictional pullout action.  

 

Fig. 12 After fatigue failure: (a) specimen F1-3 tested at smaller applied displacement (Group 1, 

at 0.8 dPmax), (b) specimen F2-2 tested at larger applied displacement (Group 2, at 0.9 dPmax) 

 

 

Fig.13 Simulation of a DCB specimen under tension load, showing the first three pin rows in 

the crack wake (current crack length 36 mm, deformation scale factor 3.0, contour map 
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shows the interlaminar peel stress).  

The predicted degradation process of each pin row is presented in Fig.14 based on an FE model 

using a perfect pin insertion condition. During Stage 1, a relatively small displacement is 

applied to the debonding degradation law, therefore the degradation process is very slow. When 

the pins exert higher bridging load (Stage 2), a relatively larger displacement is applied to the 

debonding degradation law, leading to a moderate degradation rate. After the pins are fully 

debonded (Stage 3), the frictional degradation law is triggered and the residual peak load 

decreases rapidly.  

In Fig. 14, the crack length corresponding to a specified load cycle number is indicated by a 

vertical line. At the beginning (a < 24 mm), only three pin rows were activated. Once the crack 

length has reached 29.8 mm, the number of activated pin rows has gradually increased to a 

steady state (five pin rows in this case).  

This simulation result is consistent with the measured crack growth rate vs. crack length relation 

(Fig. 10a) for the crack length a =30 mm, where a stable value of fatigue crack growth rate was 

reached and maintained. The crack wake maintained a so-called “steady state of pin bridging ” 

zone. As the crack grows beyond 30 mm, for each new pin row that enters the steady state 

bridging zone, an earlier pin row will fail (i.e. either pins being completely pulled out or broken), 

thus maintanining a maximum of five pin rows in the established bridging zone. It’s worth 

noting that the phenomenon of steady state bridging zone was found in a previous finite element 

model under static load [28].  
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Fig. 14 Simulated bridging force degradation under fatigue loading (Group 1 test, applied 

displacement at 0.8 dPmax and assuming perfect pin case) 

4.4 Effect of including debonding behaviour in predictions 

To evaluate the effect of including the debonding phase in fatigue predictions, a predicted lower 

bound crack growth rate (i.e. perfect pin insertion, which considers only the frictional 

degradation) was plotted in dotted red line on Fig. 15. The difference in fatigue life between the 

two prediction methods has gradually increased by 4 times (for applied displacement at 0.8 

dPmax) and by 1.8 times (for applied displacement at 0.9 dPmax). This suggests that the debonding 

phase takes up approximately 75% or 44% of the total fatigue life at 0.8 or 0.9 dPmax. It is 

therefore essential to include the debonding phase in the proposed method to accurately predict 

the fatigue response over a range of applied displacement amplitudes.  

Based on the above discussions, the proposed predictive model has been calibrated and 

validated with one material system (CFRP laminate and carbon fiber z-pins). Whether the 

degradation rate is dependent on the layup, laminate and pin materials, pin diameter and surface 

treatment, and pin area density, would require further investigations as the current study on 

single pin fatigue behavior is very limited (only refs. [16, 26] are found in the open literature).  
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Fig. 15 Predicted crack growth rate vs. crack length relation: (a) Test Group 1 (0.8 dPmax), (b) 

Test Group 2 (0.9 dPmax) 

 

5. Conclusions 

A method for predicting the fatigue crack growth life of z-pin reinforced composite laminates 

under mode I loading has been developed and applied to a pin-reinforced double cantilever 

beam under displacement controlled cyclic loading.  

An empirical degradation law based on a damage mechanics approach is proposed to describe 

the reduction of bridging force experienced by each pin row under cyclic loading. This law can 

account for damage accumulation at each pin row as it is subjected to different displacement 

amplitude when the crack tip moves past the pin row. The pins’ bridging law is fully defined by 

assuming that the frictional peak load and displacement will only be degraded when the pin is 

fully debonded. Results show that fatigue life is underestimated if only the frictional behavior 

is considered. This demonstrates the importance of incoporating the pin debonding behaviour 

in any fatigue prediction. Crack growth predictions show good agreement with test results in 

terms of the crack length vs. fatigue life and fatigue crack growth rate vs. crack length relations 

under two different applied displacements (i.e. 80% or 90% of the maximum displacement at 

static failure).  
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