
 

 

 

 
 

 
 

      
 

   
   

     
    

 
 
 

      
    

 
 

   
 
 

          
  

 
           

  
        

      
 

             
        

        
       

            
            

   

The likely effects of thermal climate 
change on vertebrate skeletal muscle 
mechanics with possible consequences 
for animal movement and behaviour

James, R. & Tallis, J. 

Published PDF deposited in Coventry University’s Repository 

Original citation: 
James, R & Tallis, J 2019, 'The likely effects of thermal climate change on vertebrate 
skeletal muscle mechanics with possible consequences for animal movement and 
behaviour.' Conservation Physiology, vol. 7, no. 1, coz066. 
https://dx.doi.org/10.1093/conphys/coz066 

DOI 10.1093/conphys/coz066 
ESSN 2051-1434 

Publisher: Oxford University Press 

© The Author(s) 2019. Published by Oxford University Press and the Society for 
Experimental Biology. 

This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Copyright © and Moral Rights are retained by the author(s) and/ or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This item cannot be 
reproduced or quoted extensively from without first obtaining permission in 
writing from the copyright holder(s). The content must not be changed in any way 
or sold commercially in any format or medium without the formal permission of 
the copyright holders. 

http://creativecommons.org/licenses/by/4.0
https://dx.doi.org/10.1093/conphys/coz066


Volume 7 • 2019 10.1093/conphys/coz066 

Review article 

The likely effects of thermal climate change on 
vertebrate skeletal muscle mechanics with 
possible consequences for animal movement and 
behaviour 

Rob S. James * and Jason Tallis 

Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK 

*Corresponding author: Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, CV1 5FB Coventry, UK. Email: 
apx214@coventry.ac.uk 

..........................................................................................................................................................
 

Changes in temperature, caused by climate change, can alter the amount of power an animal’s muscle produces, which could 
in turn affect that animal’s ability to catch prey or escape predators. Some animals may cope with such changes, but other 
species could undergo local extinction as a result. 

Climate change can involve alteration in the local temperature that an animal is exposed to, which in turn may affect skeletal 
muscle temperature. The underlying effects of temperature on the mechanical performance of skeletal muscle can affect 
organismal performance in key activities, such as locomotion and fitness-related behaviours, including prey capture and 
predator avoidance. The contractile performance of skeletal muscle is optimized within a specific thermal range. An increased 
muscle temperature can initially cause substantial improvements in force production, faster rates of force generation, relax­
ation, shortening, and production of power output. However, if muscle temperature becomes too high, then maximal force 
production and power output can decrease. Any deleterious effects of temperature change on muscle mechanics could be 
exacerbated by other climatic changes, such as drought, altered water, or airflow regimes that affect the environment the 
animal needs to move through. Many species will change their location on a daily, or even seasonal basis, to modulate the 
temperature that they are exposed to, thereby improving the mechanical performance of their muscle. Some species undergo 
seasonal acclimation to optimize muscle mechanics to longer-term changes in temperature or undergo dormancy to avoid 
extreme climatic conditions. As local climate alters, species either cope with the change, adapt, avoid extreme climate, move, 
or undergo localized extinction events. Given that such outcomes will be determined by organismal performance within 
the thermal environment, the effects of climate change on muscle mechanics could have a major impact on the ability of a 
population to survive in a particular location. 
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Introduction 
Global average temperatures are rising at a rate of about 
0.2◦C per decade; the rate of temperature change is much 
greater in some regions, such as up to three times higher in the 
Arctic (IPCC, 2018). Global climate change is also initiating 
more frequent and more intense extreme weather events, such 
as heavy rainfall and heat waves causing floods and drought, 
respectively (IPCC, 2018). These acute and chronic changes in 
the local environment and threats to animal habitats brought 
about through climate change have, and continue to, alter the 
behaviour, geographical range, and survival of many animal 
species (Perry et al., 2005; Chown et al., 2010; Evans et al., 
2015; Beever et al., 2017). 

Many previous studies focusing on the effects of global 
climate change on animals have considered the effects of 
altered temperature. Such studies have demonstrated that 
changes in temperature have been linked with shifts in geo­
graphical range of species, effectively causing local extinc­
tions. For example, the movement of most species of fish 
in the North Sea to more Northern and/or deeper, therefore 
colder waters (Perry et al., 2005). There are many examples 
where explanation of such observed shifts, or prediction of 
likely future shifts, in species distribution is dependent on 
incorporating underlying temperature-induced physiological 
changes into the predictive models used (Chown et al., 2010, 
Somero, 2012; Evans et al., 2015). Some modelling studies 
have considered that rising temperatures could restrict the 
amount of time that individual animals can be active in their 
environment, thereby reducing the time available to partake 
in fitness-related behaviours (Evans et al., 2015). However, 
more attention needs to be given to the effects of temperature 
on the actual performance of animals while they are active to 
improve modelling of the effects of climate change on animal 
species survival and distribution. 

Temperature affects the chemical and physical proper­
ties of animals and their environment, such as the rates 
of biochemical reactions within an animal and the density 
of fluids an animal moves through. Standard performance 
curves can be used to describe the change in performance 
with temperature, indicating the maximal performance, the 
optimal temperature for maximal performance (Topt), and the 
performance breadth, which is the range of temperature over 
which a specified level of performance can be attained (Fig. 1; 
Angilleta, 2009). For example, the reaction rates of metabolic 
enzymes are affected in a similar way to this standard curve 
with variation in Topt of a specific enzyme between species or 
populations (Hochachka and Somero, 2002). Such enzymes 
exhibit relatively rapid declines in performance at higher than 
optimal temperature with inactivation and eventual denatu­
ration occurring. Therefore, both increases and decreases in 
environmental temperature due to climate change could result 
in reductions in performance. Figure 1. 

Given that animal performance is influenced by the 
mechanical performance of skeletal muscle, this review 

Figure 1: Theoretical performance curve showing the effect of 
temperature on performance. Topt is the optimum temperature to 
maximize performance; Pmax is the maximal performance; breadth is 
the performance breadth, which is the range of temperature over 
which performance is above a specified percentage of maximal 
performance. 

will focus on the acute and chronic effects of temperature 
change on skeletal muscle mechanics and consider how such 
effects could influence animal behaviour and survival as 
a result of climate change. Skeletal muscle mechanics has 
been shown to constrain aspects of animal performance 
that are important in some behaviours, such as sprinting, 
as used during an escape response, and bite force, as would 
be used during some aggressive behaviours. For example, 
previous studies have found strong correlations between 
individual variation in skeletal muscle mechanics or activity 
of metabolic enzymes in muscle, as a proxy of muscle 
mechanics, and variation in maximal sprint performance 
within a lizard species (Johnson et al., 1993; Higham et al., 
2011). Variation in isolated iliotibialis, a leg extensor, muscle 
power output between related lacertid lizard species has been 
found to be strongly correlated, r = 0.77, with variation in 
sprint performance (Van Hooydonck et al., 2014). A linkage 
has also been demonstrated between high performance in 
such muscle-powered activities and fitness, via longer-term 
survivorship or improved reproductive success (Miles, 2004; 
Lailvaux and Irschick, 2006; Husak et al., 2008). Therefore, 
this review will also consider, where possible, how any 
temperature-induced alterations in muscle mechanics may 
impact locomotor performance and behaviour. Determining 
the existence of linkages between changes in skeletal muscle 
mechanics and effects on locomotor performance and 
behaviour is key to understanding the extent to which 
muscle mechanics could constrain locomotion and behaviour 
in a changing climate. Where possible, this review will 
differentiate between temperature effects on endotherms and 
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ectotherms. Endotherms use heat from metabolism to regulate 
their core body temperature, often within a narrow range of 
temperatures, whereas the body temperature of ectotherms 
is dependent on their external environment and can undergo 
large daily and seasonal changes (Angilletta, 2009). 

Effects of acute temperature change on 
skeletal muscle mechanics 
Changes in temperature can have profound effects on skeletal 
muscle mechanics. Studies, using skeletal muscle isolated from 
vertebrates, have generally demonstrated that up to an opti­
mal, often relatively high, temperature, increased temperature 
causes greater force production, faster rates of force genera­
tion and relaxation, higher shortening speed, and enhanced 
power output (Bennett, 1984; Rall and Woledge, 1990; Syme, 
2006; James, 2013). This general finding is consistent in both 
endotherms and ectotherms. 

Muscle mechanics during short-term 
activity 

When a neurone stimulates a muscle cell, calcium is released 
from the sarcoplasmic reticulum into the muscle cytoplasm, 
increasing calcium concentration to initiate a chain of events 
that allow myosin to interact more strongly with actin (Jones 
et al., 2004). Muscle force is produced via the interaction 
between myosin and actin, with myosin binding to actin to 
form cross-bridges that undergo a conformational change to 
produce force. These cross-bridges can be in low or high 
force–producing states (Ranatunga, 2018). When the neural 
stimulus ends, calcium is taken back into the sarcoplasmic 
reticulum, while parvalbumin also binds calcium in the cyto­
plasm and shuttles it to the sarcoplasmic reticulum, thereby 
reducing the concentration of calcium in the muscle cell; a 
reduction in calcium concentration decreases the number of 
interactions between myosin and actin, lowering muscle force 
to a ‘resting’ level (Berchtold et al., 2000). Therefore, greater 
calcium concentration in the cytoplasm causes higher num­
bers of cross-bridges to form and greater force production, 
whereas more rapid calcium release into the cytoplasm leads 
to faster force generation and more rapid calcium uptake from 
the cytoplasm causes faster muscle relaxation. 

Isolated skeletal muscle mechanics has often been deter­
mined using isometric studies, whereby the muscle is activated 
while kept at an overall constant length (Josephson, 1993; 
Caiozzo, 2002). The maximal isometric force that a skeletal 
muscle can produce increases as temperature rises (Bennett, 
1984; Rall and Woledge, 1990; Syme, 2006; James, 2013). 
However, at higher temperatures, this change in force is 
usually relatively low, and above the optimal temperature, 
a gradual reduction in force occurs (Fig. 2). For example, a 
comparison of maximum isometric force produced by single 
fibres from species of ectothermic fish from the Antarctic, 
North Sea, and Central Africa demonstrated that the mus­
cle of each fish produced maximal force at temperatures 

Figure 2: Effect of temperature on the maximal isometric stress 
(force normalized to muscle cross-sectional area) generated by 
isolated mouse diaphragm muscle. Each data point represents the 
maximum stress generated by one muscle at that temperature. Eight 
muscles were subjected to four different temperatures each. 
Temperature was randomized for each muscle. Based on data 
presented in James et al. (2015). 

around those that occurred in their natural environment, with 
decreases in force at lower and higher temperatures, such that 
each species outperformed the other species when in its own 
physiological temperature range (Altringham and Johnston, 
1986). Skeletal muscle in endotherms has also been found to 
show high thermal sensitivity of isometric force production 
outside of physiological temperature ranges, regardless of 
whether the muscle is from the body core, where temperature 
is relatively constant, or the periphery of the body, such as 
found in diaphragm (core) and soleus (peripheral) muscle 
isolated from laboratory mice, Mus musculus (James et al., 
2015), or in muscle from different regions of endothermic 
fish (Altringham and Block, 1997; Bernal et al., 2005; Donley 
et al., 2012). As temperature rises, there is no change in the 
number of cross-bridges that form (myosin heads attached 
to actin binding sites) within skeletal muscle, but there is 
an increase in the proportion of cross-bridges that are in a 
high force producing state, thereby enhancing muscle force 
generation (Bershitsky and Tsaturyan, 2002; Decostre et al., 
2005; Colombini et al., 2008; Ranatunga, 2018). Figure 2. 

During isometric actions, temperature does not just affect 
the maximal amount of force produced. Rates of force gen­
eration and relaxation, during isometric activities, increase 
as temperature rises (Ranatunga, 1982; John-Alder et al., 
1988; Swoap et al., 1993; Altringham and Block, 1997; De 
Ruiter and De Haan, 2000; Wilson et al., 2000; Herrel et al., 
2007; James et al., 2015). Data from both ectothermic and 
endothermic species indicate that the rate of change decreases 
as the optimal temperature for maximal mechanical perfor­
mance of muscle is approached. Changes in rates of force 
generation and relaxation could have important influences 
on whole animal performance; in some species, they may 
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influence the stride frequency that an animal can attain (John­
son et al., 1993; see discussion below on temperature effects 
on work loops). Increased temperature raises myofibrillar 
ATPase activity and the rate at which parvalbumin binds 
calcium, thereby increasing rates of isometric force generation 
and relaxation, respectively (Barany, 1967; Stein et al., 1982; 
Hou et al., 1992). For example, as temperature increased from 
5◦C to  35◦C, there was a high correlation (r = 0.99) between 
change in rate of myofibrillar ATPase activity and rate of 
force generation in skinned psoas muscle fibres from rabbit, 
Oryctolagus cuniculus (Brenner and Eisenberg, 1986). 

Isolated muscle power output has traditionally been 
assessed during force–velocity experiments, whereby muscle 
is activated to produce force while at constant length and 
then shortened at a constant velocity or at a constant force 
(Josephson, 1993; Caiozzo, 2002). Such controlled shortening 
actions are repeated numerous times on a muscle preparation 
to determine the relationship between force output and 
shortening velocity in that muscle. Power output is calculated 
as force generated multiplied by shortening velocity. During 
such force–velocity experiments, performance of skeletal 
muscle generally improves as temperature rises, with 
increases in estimates of maximum shortening velocity 
and power output (Hill, 1938; Ranatunga, 1982; Marsh 
and Bennett, 1985; Johnston and Gleeson, 1987; Coughlin 
et al., 1996; Ranatunga, 1998). Again, the rate of change 
decreases as temperature approaches that normally used 
during locomotion. Notably, Olberding and Deban (2017) 
demonstrated, during force–velocity experiments, that frog, 
Osteopilus septentrionalis, plantaris muscle work output and 
shortening velocity exhibited much lower thermal sensitivity 
during low force, as would be used during routine movement 
or postural control, than high force contractions, such as 
would be used during maximal activities. 

Work loop experiments were developed to allow closer 
in vitro simulation of the type of muscle actions that occur 
in vivo during power-producing activities (Josephson, 1993; 
Caiozzo, 2002). The force generated by the muscle is plotted 
against the length change to produce a work loop, the area 
of which represents the work done during a length change 
cycle (Fig. 3). The power generated by the muscle can be 
determined as the sum of work done divided by the time 
taken to do that work. As temperature rises up to normal 
body temperature, there is an increase in work loop power 
output, in muscle isolated from amphibians, fish, mammals, 
and reptiles (Johnson and Johnston, 1991; Swoap et al., 1993; 
Altringham and Block, 1997; Rome et al., 1999; Donley et al., 
2007; Herrel et al., 2007; Seebacher and James, 2008; James 
et al., 2012; Seebacher et al., 2014; James et al., 2015). As 
temperature rises, work loop power output can be enhanced 
by a combination of increasing the maximal shortening veloc­
ity of the muscle such that maximal power output is achieved 
at a higher cycle frequency and by increasing the area of the 
work loop via the following: (i) reducing the time taken to 
generate force and to relax; (ii) enhancing the muscle’s ability 

Figure 3: Typical effects of temperature on work loop shape. Mouse 
soleus work loop shapes at maximal power output at 15.3◦C (broken 
line) and 37.4◦C (solid line) in the same muscle preparation. Maximal 
power output was produced at a length change cycle frequency of 
1 Hz at 15.3◦C and 5 Hz at 37.4◦C. Force was normalized to muscle 
cross-sectional area to calculate muscle stress and muscle length 
change was normalized to muscle length to calculate strain. Based on 
data presented in James et al. (2015). These work loop shapes 
demonstrate that at the higher temperature, there was more rapid 
force generation, greater maximal force, improved maintenance of 
force during shortening (likely to be at least partly due to an 
increased maximal shortening velocity, thereby altering the 
force–velocity relationship), and more rapid force relaxation. 

to produce force while shortening; and (iii) a reduction in the 
passive resistance to lengthening (Fig. 3; James, 2013). Ther­
mal sensitivity of muscle power output varies between species 
with, in general, higher thermal sensitivity in skeletal muscle 
from endotherms. Importantly, power output determined by 
work loops also indicates that increased temperature above, 
or below, that normally experienced can result in a decrease in 
power output, such that the optimal temperature for skeletal 
muscle power output generally seems to be about the normal 
active body temperature. Figure 3. 

In endotherms, there is evidence that some discrepancies 
in thermal sensitivity between skeletal muscles may relate to 
differences in location of each muscle in the body that result 
in variation in the range of temperature experienced. Skeletal 
muscle from the core of the body is maintained at a more 
narrow range of temperatures and has been found to have 
greater thermal sensitivity than muscle from the periphery in 
fish exhibiting regional endothermy (Altringham and Block, 
1997; Bernal et al., 2005; Donley et al., 2007, 2012) with  
comparably little difference found in mouse (James et al., 
2015). Work loop power output showed higher thermal 
sensitivity in muscle isolated from the deep endothermic 
core of yellow fin tuna, Thunnus albacares, than  from  
the more superficial region of skeletal muscle in this fish 
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(Altringham and Block, 1997). A comparison between bat, 
Carollia perspicillata, wing muscle (extensor carpi radialis 
longus) and mouse, M. musculus, limb muscle (extensor dig­
itorum longus) demonstrated that isometric force generation 
and relaxation times and maximal shortening velocity had 
lower thermal sensitivity, below core body temperature, in 
the bat wing muscle, which is likely to be subjected to much 
higher temperature ranges during flight than would occur 
in mouse limb muscle (Rummel et al., 2018). Therefore, it 
seems that muscles subjected to a more narrow range of 
temperatures, as would be expected in core body muscles 
in endotherms, can become specialized to produce higher 
mechanical performance over a narrow thermal range, while 
having higher thermal sensitivity, as predicted by theory of a 
generalist–specialist continuum (Angilleta, 2009; Angilletta 
et al., 2010). However, such differences may be dependent on 
species and the mechanical property measured. 

Muscle mechanics during sustained activity 

In some fitness-related animal behaviours, high performance 
cannot be attributed to an ability to produce bursts of high 
muscle force or power but is instead due to an ability to 
sustain muscle activity over a series of actions. Prolonged 
muscle and locomotor performance is affected by fatigue. 
Skeletal muscle fatigue is defined as a reversible progressive 
reduction in contractile function (Allen et al., 2008). 

While other mechanical variables show a typical trend of 
a temperature-induced improvement in performance, this is 
not consistently shown in the literature considering sustained 
muscle activity. Work by James et al. (2012) reported that 
the endurance of iliotibialis muscle isolated from Xenopus 
tropicalis, measured via a change in maximal work loop 
power over a protocol of repeated activations, increased with 
temperature (Fig. 4). A temperature-induced improvement in 
fatigue resistance has been reported in previous work using 
both protocols of repeated isometric tetani and cycles of active 
shortening (Roots et al., 2009).Conversely, there is conflicting 
evidence that increased temperature has limited effects on 
fatigue resistance (Place et al., 2009, Nocella et al., 2013) or  
may even cause fatigue to occur more quickly (Segal et al., 
1986). Figure 4. 

Ambiguity in findings make it difficult to make compar­
isons between studies, and such disparity is likely to arise, 
at least in part, from methodological discrepancies, includ­
ing whether the test temperature was close to normal body 
temperature, relevance of the fatigue protocol with respect 
to real-world function, and the complexity around aetiology 
of fatigue. As an example, previous work defines fatigue by 
an arbitrary decline in performance relative to a pre-fatigue 
maximal (Roots et al., 2009) or over an arbitrary number of 
predefined activations (ranging from 10 to 105 activations) 
(James et al., 2012, Nocella et al., 2013, Place et al., 2009) 
and is either measured during maximal or sub-maximal acti­
vation, force, or power-generating conditions. Fatigue occurs 
as a two-phase decline, whereby the initial rapid decline 

in muscle function may take longer and be attenuated at 
higher temperatures, but an increased temperature may cause 
performance to decline more rapidly in the latter phase where 
the loss of force occurs more slowly (Roots et al., 2009, 
Nocella et al., 2013). These distinct phases are not always 
considered in previous work and may be apparent without 
a temperature-induced change in the end point of fatigue 
(Nocella et al., 2013). 

Interestingly, the previously outlined temperature-induced 
increase in fatigue resistance reported by James et al. (2012) 
did not translate to whole-organismal endurance in the same 
species, X. tropicalis, where jump performance was decreased 
either side of an optimal temperature (Herrel and Bonneaud, 
2012). This may indicate that exertion capacity may be lim­
ited by factors external to the muscular contractile elements 
(Herrel and Bonneaud, 2012) or that the chosen fatigue 
protocol may not relate closely enough to the in vivo locomo­
tor demands of the whole organism. Studies using relatively 
long duration fatigue protocols may not accurately represent 
movements involved in feeding and burst locomotion, which 
are performed using single or small numbers of muscle acti­
vations (Olberding and Deban, 2017, Wilson et al., 2002). 
Burst performance, which is the result of a small number 
of high-force muscle activations, has been documented to be 
important for performance (Segre et al., 2015, Bennett, 1994) 
and survival (Watkins, 1996), so a reduction in phase one 
of the fatigue response with increasing temperature may be 
beneficial to some species in more burst like, shorter, periods 
of prolonged muscular activity. 

The aetiology of fatigue is complex, is species and mus­
cle specific, and is also temperature sensitive (Allen et al., 
2008, Fitts, 2008, James et al., 2012, Debold et al., 2016). 
For example, skeletal muscle fatigue has, at least in part, 
been attributed to accumulation of inorganic phosphate and 
hydrogen ions, which have been shown to directly inhibit 
interactions between myosin and actin, during the cross-
bridge cycle, and to indirectly cause lowered myofibrillar 
Ca2+ sensitivity, such that less force is produced at a specific 
calcium concentration, and there is a reduction in sarcoplas­
mic reticulum Ca2+ release (Allen et al., 2008, Fitts, 2008; 
Debold et al., 2016). There is evidence to indicate that increas­
ing temperature may reduce the effects of high concentrations 
of inorganic phosphate and hydrogen ions on muscle force 
production (Coupland et al., 2001, Debold et al., 2016), 
which would support evidence showing that temperature can, 
at least in some muscles, improve fatigue resistance. 

A further important aspect of fatigue is the mechanical effi­
ciency of muscle activity, which has also been demonstrated 
to be temperature sensitive. Data by Edwards et al. (1972) 
indicated that increasing temperature reduced the mechanical 
efficiency of isometric contractions in human quadriceps 
muscle in situ, such that higher temperatures elicited greater 
energy cost and more rapid fatigue while undertaking the 
same activity. However, it has been more recently demon­
strated that temperature effects on mechanical efficacy can be 
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Figure 4: Fatigue resistance of power production improved as test temperature increased during a series of work loops in X. tropicalis iliotibialis 
muscle. Orange, grey, and blue symbols represent 30◦C, 24◦C, and 15◦C data, respectively, for individuals housed at 24◦C. Data represented as 
mean ± sem, n = 8, plotted as a percentage of the maximum power output produced by each individual. Based on data presented in James et al. 
(2012). 

related to contractile velocity and, more specifically, a right­
ward shift in the efficiency–velocity relationship, whereby 
low-velocity muscle action may be less efficient at higher tem­
peratures due to an increased speed of cross-bridge cycling, 
and at higher temperature, mechanical efficacy increases 
(Ferguson et al., 2002). 

Despite the outlined challenges with summarizing the cur­
rent literature, it is likely that the effect of temperature on 
prolonged muscle activity is species specific. A disparity in 
subsequent locomotor performance between predator and 
prey as a result of changing temperature may affect the 
survival and abundance of a particular species. For example, 
Allan et al. (2015) found that exposure to an elevated temper­
ature influenced predator–prey interactions of two common 
reef fish. The piscivorous dottyback (Pseudochromis fuscus) 
demonstrated increased attack speed, while the planktivorous 
damselfish (Pomacentrus wardi) had decreased escape speeds 
and distances leading to increased predation rates. Other 
work has demonstrated that temperature effects on predator– 
prey relationships can, in some instances, also favour prey 
(Abrahams et al., 2007). 

Can the effects of acute temperature change 
on skeletal muscle mechanics constrain 
locomotion and behaviour? 
A key question as to whether changes in skeletal muscle per­
formance are important to survival of individuals or species 
is whether there is a direct link between variation in the 
mechanical performance of skeletal muscle, changes in loco­
motor performance, and subsequent alterations in behaviour. 
Modelling conducted by Seebacher et al. (2015) demonstrated 
that individual variation in the mechanical performance of 

isolated skeletal muscle could partially explain observed dif­
ferences in the overall swimming performance between those 
individual zebrafish, which in turn explained the time a fish 
was active in a novel environment and in turn an individual’s 
boldness in approaching a novel object. Thus, simplistically, 
longer, lower-weight fishes that had muscle that produced 
higher force at a quicker rate were more likely to have higher 
sustained and sprint swimming performance, such that they 
were more likely to spend more time active and to cover a 
greater distance in the behavioural test in the novel environ­
ment and were in turn more likely to show higher boldness 
in approaching a novel object (Seebacher et al., 2015). These 
findings suggest that variation in the mechanical performance 
of skeletal muscle can explain differences observed between 
individuals in locomotor performance and, in turn, behaviour. 
Thus, could effects of temperature on muscle mechanics and 
locomotion alter behaviour? 

One of the best examples of the effects of acute temper­
ature on locomotor performance and behaviour is the fight 
or flight response observed in some lizard species. At higher 
temperatures, such lizards will tend to flee from perceived 
predation risk. However, as environmental, and hence body, 
temperature decreases, it becomes increasingly likely that an 
individual will act aggressively and may attempt to bite the 
predator rather than run away (Hertz et al., 1982; Crowley 
and Pietruszka, 1983; Mautz et al., 1992). Sprint performance 
in lizards has high thermal sensitivity, with maximal and 
near maximal performance occurring over a narrow range of 
relatively high temperatures (Bennett, 1980; Huey and 
Kingsolver, 1989; Swoap et al., 1993; Herrel et al., 2007). In 
contrast, the maximal bite force produced by Trapelus pallida, 
a species of agamid lizard that exhibits this temperature-
related shift between fight and flight behaviour, is relatively 
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independent of temperature (Herrel et al., 2007). Herrel 
et al, (2007) demonstrated that the thermal sensitivity of 
the mechanical performance of muscle could explain the 
effects of temperature on bite force and running performance 
measured in this species. Isolated jaw muscle from T. pallida 
exhibited almost no change in maximal isometric force 
production between test temperatures of 20◦C and 40◦C, 
whereas caudofemoralis, a large muscle that retracts the 
femur, reduced in maximal isometric force by 20% between 
35◦C and 20◦C (Herrel et al., 2007). However, while isometric 
force production is important for jaw muscles during biting, 
the caudofemoralis muscle is likely to act primarily to produce 
power during sprinting. The maximal power produced by 
isolated caudofemoralis muscle during work loops decreased 
by more than 40% between 35◦C and 20◦C (Herrel et al., 
2007); other previous work on the desert iguana, Dipsosaurus 
dorsalis, has also found that isolated limb muscle power 
output, determined by work loops, has a high thermal 
sensitivity (Swoap et al., 1993). Overall, previous findings 
indicate that at least in these species studied, the acute thermal 
effects on the mechanical performance of skeletal muscle 
cause large changes in sprint performance but not bite force, 
due to the type of muscle activity being undertaken, as well 
as the differing intrinsic properties of the muscles involved. 
These thermal effects on sprint performance drive the 
observed shift from escape behaviour to aggressive behaviour 
at lower temperature in such lizard species. However, in 
some species of lizard, such as the Jamaican Grey anole 
Anolis lineatopus, individuals start their escape response from 
predators sooner at lower temperatures, rather than using 
any form of defensive behaviour, presumably as a different 
strategy to account for lower mechanical performance of limb 
muscle at reduced temperatures (Rand, 1964). 

Michelangeli et al. (2018) demonstrated that behaviour 
of individuals of delicate skink, Lampropholis delicate, was  
linked to thermal sensitivity of performance such that a 
distinct ‘hot’ group of individuals had higher preferred body 
temperature, lower breadth of selected body temperature, 
higher optimal performance temperature, and lower thermal 
performance breadth than the ‘cold’ group; the hot group, 
when at a common temperature, spent more time active, spent 
more time exploring and less time hiding when in a novel 
environment, and had faster maximal sprint speeds than the 
cold group. These findings suggest that thermal physiology 
can constrain behaviour in predictable ways, affecting the way 
that individuals use niches within a habitat. 

While the published literature is relatively sparse, it seems 
likely that colder or hotter environments will affect the 
mechanical performance of skeletal muscle and could in turn 
influence aspects of animal performance and behaviour, but 
further work is needed to better elucidate such relationships. 
What is clear is that some species are able to respond 
to changes in environmental temperature by undergoing 
acclimation of physiological processes or spending time in 
a ‘dormant’ state. 

Chronic responses to 
temperature—acclimation and dormancy 

As environmental temperature alters over time, individuals 
may be able to continue to be active and survive at that 
temperature, if their thermal sensitivity is sufficiently low, or 
may undertake a physiological response, such as acclimation 
or dormancy, or may be forced to move to an environment 
with a more favourable temperature. 

Thermal acclimation 

Acclimation responses occur in many species that are sub­
jected to relatively large, seasonal changes in temperature and 
involve physiological changes to improve aspects of perfor­
mance at the seasonal temperature. In many, but not all, cases 
acclimation responses can be beneficial, enabling changes in 
the thermal sensitivity of physiological processes to effect sea­
sonal compensation in performance, such as to improve the 
mechanical performance of skeletal muscle and consequently 
locomotor performance at relatively low temperatures 
(Johnston and Temple, 2002; Wilson and Franklin, 2002; 
Seebacher, 2005; Angilletta, 2009). For example, muscle 
power output increased with temperature in caudofemoralis 
(the main muscle to power swimming) isolated from saltwater 
crocodiles, Crocodylus porosus, regardless of acclimation 
temperature (Seebacher and James, 2008; Fig. 5). However, 
cold-acclimated (20◦C) individuals had a higher rate of 
caudofemoralis force generation and relaxation than those 
that were warm acclimated (30◦C), enabling higher work loop 
power output in cold-acclimated muscle when tested at either 
acclimation temperature (Seebacher and James, 2008). In this 
study, the thermal sensitivity of myofibrillar ATPase activity 
of caudofemoralis muscle decreased with cold acclimation, 
providing at least some explanation for the results obtained 
(Seebacher and James, 2008). Glanville and Seebacher (2006) 
found, in much smaller individuals of the same species, 
that cold acclimation (20◦C) enabled individuals to achieve 
higher maximum sustained swimming performance (UCrit) 
than warm-acclimated (30◦C) individuals when tested at the 
cold acclimation temperature, the reverse being true at 30◦C. 
Therefore, in the saltwater crocodile, the cold acclimation of 
skeletal muscle helps explain the compensation in swimming 
performance seen at lower temperatures in cold-acclimated 
animals. In another example, acclimation of red (slower, 
more aerobic) muscle mechanics and swimming performance 
was compared between rainbow smelt, Osmerus mordax, 
and rainbow trout, Oncorhynchus mykiss, that  tend  to  
encounter relatively higher and lower ranges of temperature, 
respectively, over a year (Shuman and Coughlin, 2018). 
In both species, red muscle isolated from cold-acclimated 
individuals had faster rates of isometric force generation 
and relaxation than warm-acclimated individuals at the two 
test temperatures used, representing relatively cold and mid­
range environmental temperatures, although this effect was 
greater in smelt (Shuman and Coughlin, 2018). In work 
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Figure 5: Power output increased with temperature and was greater in cold-acclimated animals (20◦C, blue symbols) than warm-acclimated 
animals (30◦C, orange symbols), regardless of test temperature (open symbols at 30◦C, closed symbols at 20◦C) or frequency of length change 
cycles, in caudofemoralis muscle isolated from saltwater crocodile. Data represents mean ± sem, n = 8. Based on data presented in Seebacher 
and James (2008). 

loop studies, there was no significant effect of acclimation 
group on maximum skeletal muscle power output (Shuman 
and Coughlin, 2018). In both species, cold-acclimated fish 
showed higher maximum steady swimming speed, than 
warm-acclimated fish, at the mid-range test temperature, the 
difference between acclimation groups being much greater in 
smelt, the species that are subjected to a higher annual range 
in temperature (Shuman and Coughlin, 2018). Figure 5. 

Usually, acclimation occurs when the seasonal change in 
temperature is predictable and large when compared to daily 
variation in temperature. In contrast, species that live in envi­
ronments with relatively high daily variation in temperature 
may have lower thermal sensitivity enabling them to perform 
reasonably well over a comparatively broad range of temper­
atures (Angilletta, 2009). For example, amphibian tadpoles, 
which often live in relatively small volumes of water that can 
be subjected to high daily thermal variability, on the whole 
seem unable to acclimate, instead having comparably low 
thermal sensitivity such that locomotor performance is near 
maximal across a broad range of temperatures (Niehaus et al., 
2011). In contrast, Wilson and Franklin (1999) demonstrated 
that one species of tadpole, the striped marsh frog, Limnody­
nastes peronei, when acclimated to 10◦C achieved about 50% 
greater maximum swimming velocity and acceleration, at a 
relatively low temperature of 10◦C, in comparison to those 
acclimated to 24◦C. When acclimation period at 10◦C was  
increased from 6 weeks to 8 months, there was also a marked 
reduction in swimming performance at 24◦C (Wilson and 
Franklin, 1999). Niehaus et al. (2011) tested whether daily 
thermal variation around a mean acclimation temperature 

caused differences in thermal sensitivity of performance in 
striped marsh frog. They found that swimming performance 
and skeletal muscle lactate dehydrogenase (a marker enzyme 
for anaerobic metabolic capacity in skeletal muscle) activity 
showed the same thermal sensitivity across a temperature 
range of 14–34◦C regardless of the acclimation treatment, 
demonstrating that large daily thermal variation does not 
affect acclimation response in some species (Niehaus et al., 
2011). 

Some studies on thermal acclimation indicate that the 
capacity to acclimate to temperature change varies between 
species and can vary between populations within a species, 
possibly determined by the long-term variability in tempera­
ture that a population or species is subjected to (Johnston and 
Temple, 2002; Angilletta, 2009; Seebacher et al., 2012; Le Roy 
et al., 2017). Phenotypic plasticity in response to temperature 
seems to be more common in ectotherms living in large bodies 
of water as daily changes in temperature are buffered by 
the water volume unlike any large, often gradual, seasonal 
changes in temperature (Johnston and Temple, 2002). Species 
with the capacity to acclimate in response to temperature 
change have, in some studies, been shown to alter the mechan­
ical properties of skeletal muscle via mechanisms, such as 
changes in myofibrillar ATPase activity, differential expres­
sion of contractile protein isoforms, or changes in calcium 
handling (Johnston and Temple, 2002; Syme 2006). Such 
species that are able to acclimate may be better equipped to 
deal with, at least, small long-term changes in environmental 
temperature that can occur as a result of climate change. 
However, it is unclear whether these species can deal well 
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Figure 6: There was no significant difference in the soleus muscle power output–cycle frequency relationship between muscle removed from 
13-lined ground squirrel in the summer (red) compared with that removed from those that had undergone 3 months of torpor in winter (blue). 
Data represent mean ± sem. Based on data presented in James et al. (2013). 

with an overall more variable climate, particularly as such 
variability could mask the cue to acclimate. 

Dormancy 

Avoidance of extreme temperature and drought can be 
achieved via undergoing periods of dramatically reduced 
metabolism, often referred to as ‘dormancy.’ The effects 
of periods of dormancy on the mechanical performance of 
skeletal muscle and locomotion have not been extensively 
studied. Periods of dormancy to avoid drought and extreme 
temperatures are termed aestivation and can extend up to 
many months or years (Pinder et al., 1992). 

Aestivation for 3 months did not affect burst swimming 
performance of the green-striped burrowing frog, Cyclorana 
alboguttata (Hudson and Franklin, 2002). In addition, 9 
months of aestivation in the green-striped burrowing frog 
did not cause any significant changes in the maximal power 
output or fatigue resistance of isolated iliofibularis or sar­
torius muscles during work loop studies (Symonds et al., 
2007), despite significant reduction in the rate of tetanus force 
relaxation in iliofibularis muscle from aestivated individuals. 
Green-striped burrowing frogs are able to maintain skeletal 
muscle mass and cross-sectional area over these durations of 
dormancy (Symonds et al., 2007; Mantle et al., 2009), at least 
partially via reduced metabolism and increased expression of 
anti-apoptotic genes (Reilly et al., 2013), enabling absolute 
muscle mechanical performance to be maintained ready for 
emergence from aestivation. 

While climate change is more likely to cause regions to be 
on average warmer than colder, extreme weather events are 

likely to be more common and some of the overall findings 
from studies on hibernation may provide useful insight into 
dormancy in general. Up to 4 months of hibernation, while 
submerged in water, in the common frog, Rana temporaria, 
had no effect on maximal isometric force, force–velocity rela­
tionships from isovelocity experiments, or work loop power 
output in sartorius muscle (West et al., 2006). In the 13­
lined ground squirrel, Ictidomys tridecemlineatus, 3 months 
of hibernation did not cause a change in the maximal power 
output of soleus muscle (Fig. 6) but did reduce fatigue resis­
tance during work loop studies (James et al., 2013). Previous 
studies on ground squirrels have indicated little or no change 
in skeletal muscle fibre type but a decrease in skeletal muscle 
mitochondrial respiration rates, which would help explain the 
mechanical properties observed (James et al., 2013). Many 
other hibernating mammals, such as bears, bats, and various 
rodents, undergo limited muscle atrophy, with no change 
in muscle fibre type or small shifts toward more oxidative 
fibres and little or no changes in the mechanical properties of 
skeletal muscle (Cotton, 2016). Figure 6. 

These studies on hibernation reinforce the findings on 
aestivation to demonstrate that some species are able to 
spend substantial periods of time in a dormant state to 
avoid unfavourable climatic conditions without appreciable 
effects on subsequent mechanical performance of skeletal 
muscle, which is particularly important as post-dormancy 
such species tend to focus on fitness-related behaviours, such 
as finding and securing a mate. It is possible that further 
climate change could extend the periods of dormancy 
required. However, the possible duration of dormancy is 
limited, not least by the supply of stored energy required 
to maintain survival (Storey and Storey, 2007). 
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Conclusions and future directions 
The present review has demonstrated that changes in tem­
perature can have profound effects on the mechanical per­
formance of skeletal muscle, in turn affecting locomotor per­
formance, behaviour, and potential survival. In some species 
acclimation, dormancy or other behavioural responses could 
reduce or remove potential effects of climate change on per­
formance; there are limits to the efficacy of such approaches 
to dealing with climate change and many species are unable 
to acclimate or undergo dormancy. It is clear that the effects 
of temperature on muscle physiology differ between species 
and in some cases between populations within a species, 
which adds further complexity to modelling potential effects 
of climate change on fitness and species distribution. For 
example, the capacity of mosquitofish (Gambusia holbrooki) 
to acclimate critical sustained swimming performance and 
skeletal muscle metabolic enzyme activities has been found 
to vary between populations, even between populations from 
the same lineage (Seebacher et al., 2012). However, some 
species from relatively stable thermal environments, such as 
the Antarctic fish Pagothenia borchgrevinki, seem unable to 
acclimate burst locomotor performance in response to envi­
ronmental temperature change (Wilson et al., 2001), although 
they are able to improve critical sustained swimming per­
formance at higher temperatures via acclimation (Seebacher 
et al., 2005). While thermal acclimation incurs energetic costs, 
it can in some cases enable performance to be improved across 
a season and may facilitate some species to better buffer 
against thermal effects of climate change. In contrast, other 
species may also cope well with thermal effects of climate 
change by having relatively low thermal sensitivity, which 
although this can entail a relatively lower performance, it 
would be maintained over a wider temperature range. 

As discussed, individuals may respond to climate change 
by rapidly altering behaviours or timing of behaviours, such 
as mating, locomotion, food acquisition, habitat use, and 
predator avoidance (Beever et al., 2017). For example, in 
response to higher temperatures, some animals use microhab­
itats that provide lower temperatures, as has been observed 
in fish, mammals, and reptiles. However, the success of such 
an approach depends on availability of, and competition 
for, such refuges and the ability of such animals to have 
sufficient time outside the refuge to undertake key fitness-
related behaviours (Beever et al., 2017). 

While many journal papers considering effects of temper­
ature on skeletal muscle and locomotor performance set such 
studies against a background of climate change, there are not 
enough data to indicate whether increases or decreases in 
environmental temperature, of the magnitude likely in climate 
change scenarios, will cause meaningful effects on skeletal 
muscle mechanics, locomotor performance, and behaviour in 
the species studied as few studies have estimated the likely 
remaining capacity of a population to buffer against such 
changes. Responses of a species to climate change would 
ideally also need to be considered in terms of their wider 

ecosystem to account for climate change effects on such 
aspects as predator–prey interactions (Gabriel et al., 2005). 

Further work needs to be done to better simulate the 
effects of prolonged locomotor activity in isolated muscle 
preparations to clarify the effects of temperature on sus­
tained mechanical performance of skeletal muscle. As most 
previous studies have focused on thermal effects on one 
level of organization in a species removed from its envi­
ronment, it is difficult to fully comprehend how important 
the broader effects of climate change on muscle mechan­
ics will be in influencing local extinction rates of species. 
Therefore, additional work is needed to better understand 
the effects of temperature-induced changes on the mechani­
cal performance of skeletal muscle on fitness-related whole 
animal performance, behaviour, and in turn the ability of a 
species to maintain its geographical range. Further work is 
also needed to investigate whether different climate change– 
related variables interact in their effects on skeletal muscle and 
whole animal performance, e.g. changes in ocean pH, habitat 
fragmentation, dehydration (more likely during periods of 
drought), and effects of pollutants (such as plastics, etc). 
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