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Highlights

• A closed-loop deep brain stimulation system is presented.

• Neural connectivity features are explored to improve classification.

• A stream clustering approach is proposed.

• Performance of the proposed model achieves a 100% of accuracy.
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Abstract

Idiopathic Parkinsons disease (PD) is currently the second most important neu-

rodegenerative disease in incidence. Deep brain stimulation (DBS) constitutes

a successful and necessary therapy; however, the continuous stimulation it pro-

vides can be associated with multiple side effects. DBS uses an implanted pulse

generator that delivers, through a set of electrodes, electrical stimulation to the

target area, normally the Sub Thalamic Nucleus. Recently, Closed-loop DBS

has emerged as a promising new strategy, where the device stimulates only when

necessary, thereby reducing any adverse effects. Here, we present a Closed-loop

DBS system for PD, which is able to recognize, with 100% accuracy, when the

patient is going to enter into the tremor phase, thus allowing the device to stim-

ulate only in such cases. The expert system has been designed and implemented

within the data stream mining paradigm, suitable for our scenario since it can

cope with continuous data of a theoretical infinite length and with a certain

variability, which uses the synchronization among the neural population within

the Sub Thalamic Nucleus as the continuous data stream input to the system.

Keywords: Clustering, Data Stream Mining (DSM), Expert System, Deep

Brain Stimulation (DBS), Parkinson’s Disease (PD), Neural Engineering.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative dis-

order. It is expected to grow to pandemic proportions by 2040, surpassing

Alzheimer’s disease (Dorsey & Bloem, 2018). Nonetheless, it remains an idio-

pathic disease in about 95% of cases (Farrer, 2006), although it is known that it

is caused by the degeneration of dopaminergic neurons of the Substantia Nigra

Compacta (SNC).

The loss of neurons in this brain area produces an imbalance between the

direct and indirect pathways, with the resultant prevalence of the indirect path-

way. This disequilibrium is responsible for the symptoms of the disease, which

include tremor of the limbs at rest (the so-called resting tremor (RT)), muscle

rigidity, inability to initiate precise movements (akinesia) and slow motion, es-

pecially in complex voluntary movements (bradykinesia). PD is a disease that

encompasses different subtypes. In this study we work with patients suffering

from benign tremulous parkinsonism. The symptomatology present in this pa-

tients includes: 1) A prominent RT, being this the main symptom; 2) symptoms

not related to tremor remain mild; 3) majority absence of gait disorder; 4) ab-

sence of disability apart from tremor. (Josephs et al., 2006) . RT makes the

patient transit between different movement states: non-tremorous resting state

(NT ), in which the patient does not experience symptomatology; the tremor

state (T ) itself, in which the patient experiences RT, and a third state called

Tremor Onset (TO), which is supposed to hold the key to understanding the

transition between NT and T.

The time-stamp indicating the beginning of the tremor episode was determined

by a movement disorder specialist, and tremor-onset was detected through the

EMG signal as described in 3.2.2. Data labels have not been used in the pro-

posed system, but they have served for the previous verification of the existence

of such tremor states in the used data.
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To alleviate these symptoms, the first option is usually a pharmacological

treatment, with or without dopaminergic effects. However, these patients have

a tremor with high resistance to medication, even at the highest tolerable doses

of levodopa (Josephs et al., 2006). In addition, the use of levodopa leads to

dyskinesias (LID), in which the patient suffers from involuntary movements

that may ultimately be worse than the original PDs symptomatology.

A second line of treatment in such cases, is Deep Brain Stimulation (DBS).

Treatment with DBS can be administered in conjunction with levodopa if neces-

sary, for the rest of the symptoms, if present, including bradykinesia and rigidity.

DBS consists of the surgical implantation of a neuro-stimulator, an implantable

medical device (IMD) that uses an implanted pulse generator (IPG) to deliver

electrical current through a set of electrodes to the surgical target, normally

the SubThalamic Nucleus (STN), restoring its normal functioning. In the con-

text of cardiac illnesses, pacemakers have the ability to adapt the stimulation

to perform event-response in real time. However, presently, neurostimulators,

once implanted, provide a continuous stimulation, which may induce adverse

effects such as paresthesia, psychiatric or cognitive malfunction and even an

increased risk of suicide (Benabid et al., 2009; Sugiyama, 2015). Moreover, cur-

rent DBS treatment requires that the battery must be changed on average every

3-5 years (Medtronic, 2018), although in practice it occurs more frequently than

this to prevent the deterioration of the treatment. Real-time adaptive (closed-

loop) DBS systems represent a better strategy, in which the IMD stimulates

only when necessary, on demand (Priori et al., 2013; Little et al., 2015; Camara

et al., 2015a,c) thereby reducing the adverse effects. Yet the implementation

of such a strategy requires the knowledge of what features of the STN activity

change when (or ideally, shortly before) the symptoms appear.

Disentangling the behaviour of the STN in the aforementioned states (NT,

TO and T ) is the key to understanding the nature of the tremor. Furthermore,

studying the temporal dynamics of such activity could be useful as well in de-
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signing better DBS treatments, even tailoring them to the individual concerned,

as a further step towards personalised medical care. However, this task is ex-

ceptionally difficult, since it requires recordings that capture the neural activity

of patients while transitioning from NT to T, in a natural and spontaneous way,

in the absence of medication. Furthermore, local field potentials recorded from

the STN (STN-LFP) in humans are generally acquired in the peri-operative

period, after the surgical implantation of the electrodes, but prior to the final

internalisation of the neurostimulator, and are not usually accessible afterwards.

These two restrictions make this kind of recordings exceptional. In this work,

we analyse four of them from our dataset, which fulfil these properties. They

allow us to characterise the dynamical transitions, by identifying the different

states. Especially interesting is the fact of being able to detect the TO state,

and distinguish it from T, as it is the first step in preventing or suppressing the

tremor by means of closed-loop DBS, before the tremor actually starts up for

the patient.

2. Neural oscillations versus synchronization

LFPs provide one of the best sources of information with regard to brain

activity, since they enable us to observe the original signal generated within

deep structures without the need to apply a mathematical algorithm of source

reconstruction.

One of the interesting features we can explore using the LFP is the neural

oscillations, whose deviation from the typical patterns of healthy brain activ-

ity is often an indication of a pathological condition. Such deviations may not

be restricted to the modification of, e.g., the spectral power of the individual

LFPs in the frequency domain, but may include alterations in the communi-

cation between neural populations, that is, their functional and effective con-

nectivity (Friston, 1994). Indeed, the relation between local synchronization,

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as reflected by the spectral power at certain frequency bands, and connectivity

among neurons remains an open question. Some dopaminergic studies have sug-

gested that the pathological performance of the STN, in which neurons oscillate

synchronously with high amplitude, involves also an increase in spatial synchro-

nization. When neurons trigger at the same time, there is no temporal delay,

which is necessary for the communication between neurons, that is, functional

and/or effective connectivity (Hohlefeld et al., 2013). Thus, in these studies it

has been observed that during ON medication periods, the pathological spatial

synchronization disappears and connectivity between STN neurons is increased.

2.1. LFP-STN Neural Oscillations

There are many studies on local synchronization. It is well known that when

neurons oscillate synchronously in the basal ganglia, mainly in the subthalamus,

it entails dysfunctional motor states in PD patients. This has been observed at

the single cell (Lourens et al., 2013) and at the LFP level (Weinberger et al.,

2009; Schnitzler & Gross, 2005). Most of these studies found excessive neuronal

synchronization in the beta frequency band (between 12 and 30 Hz), which is

linked to bradikinesia and rigidity (Brown & Williams, 2005; Weinberger et al.,

2009). Additionally, this beta synchronization is linearly related to the degree

of levodopa administered (Kühn et al., 2006) and to the treatment of PD using

DBS (Brown et al., 2004; Wingeier et al., 2006; Meissner et al., 2005).

However, the influence that beta band synchronization has on the occurrence

of the resting tremor is still an open question. Indeed, some authors claim that

there is no relationship between these events (Weinberger et al., 2006), while

others maintain the contrary (Levy et al., 2000). Additionally, it has been ob-

served that there is no causal link between the dopamine deficit in the striatum

and the severity of the tremor (Deuschl et al., 2000).

There is also controversy as to whether this beta band synchronization is
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generated within the STN or if it merely reflects the overall synchronization in

the basal ganglia circuit (Schnitzler & Gross, 2005; Bevan et al., 2006). In this

regard there are in-depth studies that conclude that these oscillatory patterns,

at least in the beta band, are generated within the STN (Kühn et al., 2005).

2.2. LFP-STN Synchronization

There are not many studies on functional connectivity in STN-LFP, whose

analysis we believe is essential not only to understand the functioning of the

basal ganglia itself but also to improve the treatments of some extended neuro-

logical diseases, such as PD (Benabid et al., 2009). It has been observed that,

as in the case of neural oscillations, connectivity in the beta band is modulated

by levodopa (Hohlefeld et al., 2013). Yet to the best of our knowledge, there is

no published research that studies synchronization within the STN during both

tremorous and atremorous states.

Besides, a drawback of many studies is that they consider only the beta

band. Yet in (Priori et al., 2004; Marceglia et al., 2006), the authors found

different behaviours at the lower (<20Hz) and upper (>20Hz) beta bands. This

result suggests that the oscillations take place only in the lower beta band, and

what is observed in the upper beta is just a “contamination” of these activities.

In order to be as thorough as possible, we estimated the synchronization levels

during tremor and atremorous episodes, not only in the lower ([12-20] Hz) and

upper ([20-30] Hz) beta bands, but also in the tremor ([3-7] Hz), alfa ([8-12] Hz)

and gamma ([30-45] Hz) bands.

Given the heterogeneity across subjects, and to be certain that the results

are valid, we performed the analysis per subject. This allows us not only to deal

with inter-subject heterogeneity, but also to observe, in a subject-specific way,

what happens to the synchronization level in the STN before, during, and after

the appearance of the tremor.
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The purpose of this paper is twofold. Firstly, we want to characterise syn-

chronization in the STN, and study which of them are more informative differ-

entiating the distinct states. To this end we apply both functional and effective

connectivity methods. Moreover, and given that it remains an open question,

we want to know which frequency bands show changes in the synchronization

with the appearance of the tremor. Secondly, we face the design of a data

stream mining system which is able to identify the dynamical states in which

the patient transits, to recognise and adapt itself to concept drifts, to perform in

real time and to do it whilst employing a limited amount of resources (memory).

3. Signal Preprocessing

3.1. Patients dataset

The dataset used in this study consists of four recordings from parkinso-

nian patients diagnosed with tremor-dominant PD, who underwent surgery for

the implantation of a neurostimulator (DBS treatment) at the John Radcliffe

Hospital in Oxford, UK. The successful implantation of the DBS electrode lead

within the STN was verified with postoperative magnetic resonance. The local

research ethics committee of the Oxfordshire Health Authority approved the

recordings and informed consent was obtained from the patients involved.

Neurophysiological data was acquired by employing a Medtronic DBS Lead

Model 3387, which contains four electrodes spaced 1.5 mm apart. This allows

for three different contact pair (electrode) configurations (0+1, 1+2, and 2+3)

to be simultaneously recorded in a bipolar fashion with one contact used as

reference.

Thus, each record consists of three channels of LFP, collected through the

electrodes located in the basal ganglia, specifically the STN. LFPs capture the
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summarised electrical activity of the neuron population between each contact.

Recordings were performed during a peri-operative observation period in which

the depth electrodes were already implanted but were not stimulating. As a

result, data was accessible for recording. The original dataset is composed of

33 files, but we used in this study only those four records capturing the neural

activity of patients while transitioning from NT to T, in a natural and sponta-

neous way, in the absence of medication. This ratio (4 records out of 33) reflects

the difficulty in obtaining recordings such as those used in this research.

3.2. Data Preparation

3.2.1. Signal Preprocessing

LFP data was two-pass filtered into tremor, alfa, lower-beta, upper-beta and

gamma bands using band-pass filtering with a 500 order FIR filter designed with

Hamming window, and using 2 seconds of real data as padding. The movement

artefacts around 1Hz and line noise (in Europe, 50 Hz) were excluded after this

filtering step.

Some of the connectivity methods work with the analytic signal. To this

end the Hilbert transform of the filtered LFP data was performed, which can

be expressed as A(x) = x + iH(x) , where x is the original signal, H(x) is its

Hilbert transform, and i is the imaginary unit.

Finally, the data was segmented in windows containing 10 cycles at the cen-

tral frequency of the band, with an overlap of 50%. The level of overlapping is

motivated for capture with high temporal resolution the rich dynamic behaviour

that STN-LFP has.

The EMG signal in tremor is made up of bursts, whose peaks are at a fre-

quency of 30 Hz and above. Consequently, EMG data were high-pass filtered

above 30 Hz using a two-pass procedure with a 500 order FIR filter designed

using a Hamming window. The EMG signal was then rectified using the Hilbert

envelope. This rectified signal is filtered again a FIR 2-45 Hz filter. With this,
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the tremor in Hilbert’s rectified signal is already at low frequencies.

3.2.2. Tremor state labelling

Each recording holds a single tremor-onset event. A clinical specialist on

movement disorders marked the time in which the tremor starts. Tremor on-

set was calculated based on the amplitude of filtered and rectified EMG signal,

following the same procedure used previously with this data (Bakstein et al.,

2012). The magnitude of the EMG time series value was checked against a

threshold of 3 times the mean of the EMG amplitude in the first 5s of the

recording (which contain atremorous data). If a peak of high tremor frequency

activity is detected at any point in time, the average of the following 5sg (time

enough to cover any period of tremor-onset) of data is calculated to confirm

the tremor-onset detection. Specifying a threshold would also detect peaks of

tremor activity, however short magnitude spikes may trigger an incorrect detec-

tion.

A single time of tremor-onset was calculated for each recording. This mark,

together with the one determined by the clinical specialist divide the record-

ing into the 3 tremor states of which it is composed: NT(atremorous state),

TO(tremor-onset state) and T(tremor state).

4. Connectivity

The analysis of synchronized activity is a relatively novel approach to employ

when observing the functioning of the brain. There are several mathematical

methods to estimate connectivity. For instance, functional connectivity (FC)

methods quantify the statistical dependence between temporal series without

giving any information about the directionality. On the other hand, effective

connectivity (EC) methods rely on the assumption that, when studying brain

connectivity, true interactions between two neural sources appear with a certain

time delay, the time in which the information is travelling (Nolte et al., 2004).
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These are able to detect this directionality.

In this work, we applied two classical linear methods (Coherence and Am-

plitude Envelope Correlation), two information-theory based methods (Mutual

Information and Phase Transfer Entropy), a phase synchronization method

(Phase-Locking Value) and a high-order spectra method (Bicoherence). All

of them are FC measures, except the phase transfer entropy, which belongs to

EC methods. These measures have been applied after filtering the data to the

bands of interest: Tremor, Alfa, Lower Beta, Upper Beta and Gamma bands

separately. By applying this battery of measures, we intended to thoroughly

characterise both linear and nonlinear connectivity within the LFP of the STN

in order to have a detailed description of the pattern of FC/EC within the STN.

Henceforth, we briefly describe these indexes.

4.1. Classical Methods

4.1.1. Coherence.

The coherence function estimates the linear correlation between two signals

x and y as a function of the frequency. It is defined as the cross-spectrum

Cxy(f) normalised by the product of the individual power spectral densities

(auto spectrum) of each signal, Cxx(f) and Cyy(f) (Pereda et al., 2005):

Γxy(f) =
Cxy(f)√

Cxx(f)Cyy(f)
; 0 6 |Γxy(f)| 6 1 (1)

We used the Welch’s averaged, modified periodogram method to estimate

the auto and cross spectra, since we are dealing with finite amount of data.

4.1.2. Amplitude Envelope Correlation.

Amplitude envelope correlation (AEC) is an index developed to detect signal

coupling without phase coherence. It is able to detect synchronization in a less

precise coupling of signals than coherence, since the envelope of band-limited

signals does not change as rapidly as the signals themselves (Bruns et al., 2000).
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Given two signals x and y, AEC is the mean correlation of their envelopes.

We calculate AEC as:

AEC = corr (abs(xh), abs(yh)) (2)

where xh and yh are the Hilbert analytical signals of x and y respectively.

4.2. PS Methods Phase−Locking Value

Phase synchronization indexes (PS) are used to investigate if the phases of

two oscillators are coupled, even if their amplitudes may not be. If two sys-

tems present PS, it means that the difference of their phase over time remains

bounded.

The preferred index to observe this phenomenon in neuroscience is arguably

the Phase-Locking Value (PLV), which measures the relative phase difference

between x and y and estimates how it is distributed over the unit circle (Lachaux

et al., 1999). It is defined as:

PLVx,y = T−1
∣∣∣∣∣
∑

T

ei[φx(t)−φy(t)]

∣∣∣∣∣ ; 0 6 PLVx,y 6 1 (3)

where φx and φy are the phases of x and y,extracted from the Hilbert ana-

lytical signal, respectively, wrapped to the interval [0, 2π). Thus, we work with

the cyclic relative phase, avoiding the phase slips of 2π that may be present in

the signal. We get a value of one when the phase difference across windows is

the same, and a value of zero when it varies randomly.

4.3. Information Theory Based

4.3.1. Mutual Information.

Mutual Information (MI) is one of the most used indexes of interdependence

based on information theory. MI draws from Shannon’s concept of entropy

(Shannon & Weaver, 1949), which can be regarded as the amount of informa-

tion a variable holds. Therefore, it is also a measure of its uncertainty.

12
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Given a random signal x, with a probability distribution p(x) = P{X = x},
xεX, its entropy is defined as:

H(X) = −
∑

x∈X
p(x) log p(x) (4)

Joint Entropy is the extension of the concept of entropy to two variables.

The joint entropy for a couple of discrete random X and Y signals is:

H(X,Y ) = −
∑

x∈X
−
∑

y∈Y
p(x, y) log p(x, y) (5)

The joint entropy will always be less than or equal to the sum of the indi-

vidual entropies: H(X,Y ) ≤ H(X) +H(Y ); equality being met only if they are

independent variables.

Henceforth, for a pair of random variables, we can estimate the amount of

information they share, which is the concept of MI:

MI =
∑

x∈X

∑

y∈Y
p(x, y)log

p(x, y)

p(x)p(y)
(6)

where p(x, y) is the joint probability. If MI = 0, then the variables are

independent. Otherwise (i.e., if MI > 0), there exists some degree of interde-

pendence between both signals (Pereda et al., 2005).

4.3.2. Phase Transfer Entropy.

Phase Transfer Entropy (PhTE) quantifies the directed interaction between

two time series by applying the concept of transfer entropy to their phases (Lo-

bier et al., 2014). It has the advantage, when compared with other directed

methods such as Granger or Dynamic Causal Modelling, to be model free (not

making assumptions about the system) and works with only one parameter,

thereby reducing the possibility of erroneous results due to the election of pa-

rameters. PhTE is defined as:

PhTEx→y = H (φy(t), φy(t′))+H (φy(t′), φy(t′))−H (φy(t′))−H (φy(t), θy(t′), φx(t′))

(7)
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where φx(t′) and φy(t′) are the past states at time point t = t − δ: φy(t′) =

φy(t− δ) , φx(t′) = φx(t− δ), and H(•) is the entropy and the joint entropy as

defined previously in equations 4 and 5.

4.4. High−Order Spectra Methods − Bicoherence

Power spectrum analysis is usually performed via Fourier Transform (FT),

of the second order statistic of the signal. But, unfortunately, this measure

loses information about the phase relationships between frequency components,

a fact that has been linked with impaired functions in the brain (Wong et al.,

2009).

The bispectrum is a two dimensional version of the FT based on the third

order cumulant of the signal. It is defined as:

B(f1, f2) =
∞∑

m=−∞

∞∑

n=−∞
R(m,n)e−j2πf1me−j2πf2n (8)

where R(m,n) is the third order cumulant as a function of the lags m and

n, and f1 and f2 are the frequencies in study.

The bispectrum can be used to investigate if the signals at f1, f2 and f1 +f2

are synchronized, which would mean that the oscillation at f1 + f2 is due to

the nonlinear relationship between both signals. Bicoherence (BICOH) can be

calculated as a normalised version of the bispectrum (Mendel, 1991):

BICOH(f1, f2) =
B(f1, f2)√

P (f1)P (f2)P (f1 + f2)
(9)

where P (f) is the power spectrum at frequency f . For incoherent signals

this measure tends to zero.

5. Performance evaluation of the synchronization indexes

The entity-relation diagram of figure 1 illustrates the dimensions of informa-

tion in our dataset. We have information on what is happening within the STN
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Figure 1: E-R Model. The E-R diagram represents the relevant entities of our dataset and

their interrelationships.

between each pair of contacts, at each frequency band, and from the perspective

of each connectivity index. This constitutes a lot of information, but certainly

not all of it is useful in identifying the movement states. We therefore need to

reduce the dimensionality of the data, ignoring in the subsequent steps the irrel-

evant attributes. This step is important for several reasons: Firstly, to improve

the performance of our task, since subjoining irrelevant features is self-defeating

for ML algorithms. Secondly to reduce the computational requirements of the

system, since fewer features need to be calculated by the IPG in real time. Fi-

nally, it allows us to improve the explicability of our results, thereby gaining

insight into the FC mechanisms within the STN associated to the appearance

of the tremor.

To this end, we could simply perform a manual selection of the attributes,

by removing or adding them one by one and testing the results, but this is a

nave and arduous process. Methods from ML are however very useful. In this

work we used a wrapper method with a KNN classifier with k = 5 perform-

ing a ten-fold cross validation for the attribute selection problem. KNN is a

lazy and non-parametric algorithm, which is highly sensitive to irrelevant at-

tributes. Although wrapper methods are computationally more expensive than

filter methods, they render better performance. Feature selection is calculated

here in order to unveil which synchonization indexes and frequency bands are

more informative. This process will not be carried out by the IMD, and it is

not part of the proposed clustering system.

We applied the feature selection procedure in two steps. Firstly, we studied
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FILE
SELECTED BANDS

(Accuracy)

SELECTED INDEXES

(Accuracy)

1
TB: 96.56%

PhTE: 93.78%

BiCOH: 88.15%

MI: 87.02%

LB: 91.43%

BiCOH: 81.31%

PhTE: 75.57%

MI: 75.95%

2
TB: 98.35%

PhTE: 88.75%

BiCOH: 86.89%

MI: 82.10%

PLV: 75.50%

LB: 92.99%

MI: 80.09%

BiCOH: 78.86%

PhTE: 72.05%

PLV: 70.95%

3
TB: 93.13%

BiCOH: 76.13%

MI: 66.63%

PhTE: 61.50%

LB: 87.15%

BiCOH : 76.13%

MI: 66.63%

PhTE : 61.50%

4 TB: 93.15%
BiCOH: 79.42%

MI: 64.39%

LB: 85.87%
BiCOH: 67.99%

MI: 57.31%

Table 1: Features Selection results using a wrapper method with a K-NN algorithm.

the preferred frequency bands, those that produce the highest accuracy. Sub-

sequently we performed a second round of feature selection in these bands. We

have summarised the selected bands and features in table 1.

The preferred bands in all cases were the tremor (TB) and the lower-beta

(LB) bands. The selected indexes per each band were the same in all the cases,

except for the phase indexes, PLV and PhTE which are not always selected per

all the recordings. However, the degree of accuracy varied across files, so we

cannot conclude at this point that only one index is valid, but we would choose

three for further analysis.
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Before applying a feature selection procedure we had results from six syn-

chronization measures, each of them calculated per each of the four evaluated

frequency bands. After that, we reduced the dimensionality, choosing only two

frequency bands (TB and LB) and only three indexes, PhTE, MI and BiCOH.

Hereinafter we continue our experimentation only with these selected features;

only these will be evaluated in our system.

6. Data Stream Mining

6.1. Data Stream Mining

Data mining refers to the set of technologies to handle larger datasets to

find patterns, trends or rules and explain data behaviour (Witten et al., 2016).

In classical data mining techniques, a model is built during the so-called train-

ing phase, in order to make future predictions, recognising the class of a given

sample not seen by the system before - the so-called testing phase. These tech-

nologies have consolidated due to the huge amount of data, which is collected

and handled on a day to day basis. Indeed, this is a trend that continues growing

at a fast pace in different areas, especially in the healthcare context (Miljkovic

et al., 2016).

However, this approach does not always fit well in real-time analytic scenar-

ios, in which it is important to analyze the data, extract the relevant features

and take decisions in real time. In other words, while data mining can handle

well considerable quantities of data, it does not consider the continuous supply

of data. Models cannot be updated when new information arrives. This implies

that they are not able to self-adapt in response to the observation of new sam-

ples, and the complete training process has to be repeated. Furthermore, the

length of the data feed is much larger than the storage for instance, our scenario

in which we have a neural signal monitored during the entire life of an individual.
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Contrary to traditional data mining, data stream mining (DSM) involves

a set of algorithms, emerged as a paradigm to address the continuous data

problem and changes in the behaviour of the stream. A data stream can be

considered a signal with time as an independent variable, which needs to be

processed online, as each sample arrives. In this way, data samples of such sig-

nals will feed the model sequentially, training it in a continuous way. In such

systems, we do not distinguish between the training and the testing phase, as

both tasks are continuously updating the model online. This way of functioning

is very interesting, since it allows the system to adapt itself to changes in the

data, as we will discuss hereinafter.

There are, though, two main algorithmic challenges in this scenario. First,

the data stream has infinite length and arrives fast, and therefore it is necessary

to extract information from it in real time. Second, the data may be evolving,

experiencing shifts (non-stationary data such as neurological signals) and mod-

els must adapt themselves when there are changes in the data (Bifet et al., 2018).

The core assumption is that training samples arrive very fast and should be

processed and discarded to make room for new samples, thus being processed

one time only. More specifically, DSM presents a set of different requirements

(Bifet et al., 2018):

Uniqueness: Each sample must be processed before a new one arrives, and

it has to be done only once, without the retrieval of any previous samples being

possible. Since our source of data is the STN, our data stream will be endless.

This fact makes this requirement critical for our purpose.

Limitation of resources: The hardware that will analyse the data, the

IPG, as any other IMD, has restricted capabilities of energy, storage, and com-

puting power (Camara et al., 2015b), principally due to its implantation. This

limitation of memory is one of the main motivations behind using data streams,

as memory can be overloaded when too much data is stored in it.

Limitation of time: DSM algorithms should scale linearly with the number
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of samples to work in a limited amount of time. The algorithm should be able

to process the data at the speed of the stream. In the proposed system, the

algorithm has to test and train at the speed of the neurostimulator register and

pre-process a time window, with the minimum plausible delay to detect the shift

in the tremor state as soon it appears.

Evolving time series: DMS works with non-stochastic time series, which

evolve over time. The changes in the data are called concept drifts, and our

DSM algorithm has to able to detect them, adapting the output.

Readiness: The algorithm must be able to commence working after a learn-

ing period as small as possible.

Immediacy: An algorithm should be ready to produce the best model at

any time regardless of the number of processed samples.

6.2. Stream Clustering

The objective of our system is to detect the tremor through the data stream

recorded from the electrodes. In this scenario, the labels of the new samples are

unknown to the system; in fact, its purpose is to create them. We are therefore

in an unsupervised learning scenario. The objective of stream clustering is to

cluster the samples of the time series according to the speed at which the data

stream is generated, updating the clustering with each newly arriving sample,

and within the constraints presented in the previous section.

As with classical clustering techniques, the main goal of stream clustering is

grouping the instances into clusters according to their commonalities, so that

instances within each cluster are similar to each other while instances from dif-

ferent clusters are distinct. Obviously, the success in this task is closely related

to the quality of our features, in our case the value of the synchronization in-

dexes. This is one of the reasons why a feature selection was applied prior to

the analysis with DSM.
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Here we use an ad-hoc algorithm for DSM, ClusterGenerator, since it en-

sures an evaluation unbiased by possible incorrect outcomes of stream clustering

algorithms (Kremer et al., 2011). We briefly describe it now.

The algorithm forms and continuously maintains microclusters, a technique

used in other stream-clustering approaches. A microcluster is a compact repre-

sentation of the data distribution, from which we can derive the mean and

the standard deviation. It is represented as a cluster feature tuple CF =

(n,LS, SS), where the data stored in it are the number of points within the

microcluster n, their linear sum LS, and their squared sum SS. Microclusters

are representatives for sets of similar data points.

Stream clustering algorithms usually alternate between two phases, com-

monly called online and offline phases. In the online phase, microclusters are

created. Working with microclusters is a key point, since in this way it is not

necessary to access the past samples of the stream, i.e each sample will be ac-

cessed only once, which satisfies the uniqueness condition. During the offline

phase time is not critical, and is typically used for the user to make an analysis

of the existing clusters at each temporal moment, stored in the so-called snap-

shots. This phase typically requires more than one pass to the stored data (to

the microclusters) and is a very useful phase in big data analytics environments.

Cluster Generator adopts only the online phase, which assures us a lower com-

putation requirement, which is a very important property in our domain. In

addition, the offline phase usually reduces the number of microclusters. How-

ever, in the use scenario of the presented system, the number of microclusters

is small and determined by the clinical problem, so that offline clustering is

omitted.

Cluster generator is a partitioning-based clustering algorithm. The cluster

boundaries are determined as described in (Welzl, 1991; Gärtner, 1999), that

suggest creating spherical clusters of the smallest possible radius that contains

all the instances of the cluster. The pseudocode of this algorithm is presented
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Algorithm 1. Smallest enclosing Disks

minidisk(P,S)

D := MD(∅,S)

if |S| = d+1

return D

end

while i≤ n
if Pi 6∈ D

D := minidisk (P −{pi} , S ∪ {pi})
end

end

return D

end

in Algorithm 1 and described herein below. For further details, the source code

of the used algorithm is publicly available at (A.Bifet, 2018).

Given a set of points P = {p1, ..., pn} ⊆ Rd, let D(P ) denote the closest disk

of smallest radius that contains P . D(P ) exists and it is unique. For P, S ⊆ Rd,

P ∩S = ∅, let MD(P, S) be the smallest disk containing P , with all the points in

S on its boundary. So we have MD(P, ∅)=D(P ), and MD(∅,S) to be the smallest

disk containing all the points of S on the boundary. D(P ) is determined by at

least tree points on its boundary. i.e there is a subset S of P on the boundary

of D(P ) such that S ≤ 3 and D(P ) = D(S); so if D(P − {p}) 6= D(P ), then

p ∈ S, and p lies on the boundary of D(P ). (Welzl, 1991)

minidisk is a recursive algorithm that computes D(P, S) incrementally by

adding the points in P successively while maintaining the smallest enclosing

disk. When the algorithm calls minidisk(P,∅), all sets S that resulting from

recursive calls are affinely independent (Gärtner, 1999)
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Summarizing, the reasons why we opted for DSM are as follows:

• Neural activity is a source of non-linear, non-stationary data. Thus, it

calls for a system able to adapt itself, learning in a continuous way.

• IMDs are devices with restricted capabilities of energy, storage, and com-

puting power. Any proposed measure to operate imbibed in them should

be as efficient as possible. DSM methods are thought to obtain the maxi-

mum accuracy with minimum time and memory use (Bifet et al., 2018).

• It has been applied to other problems dealing with sensor data and the

Internet of Things, due to its capacity to monitor processes and improve

their quality (Bifet et al., 2018; Gaber et al., 2005)

• The main motivation for choosing a stream-clustering technique, instead

of a classification one, is determined by the context of application of the

system: a clinical environment during a neurosurgery procedure. In this

scenario, the best of systems that could be designed, is one that would be

able to recognise the different movement states autonomously with a high

level of accuracy. This is due to the short time available in the clinical

environment for a possible training of the system. Note that the system

must be prepared for full operation during the peri-operative period. For

this reason, the main objective is to design a system capable of separating

the samples that arrive in real time, without the need of prior training

or data labelling. With a stream-clustering system, we only need to ex-

pose the patient to the different movement states, so that the clusters are

open. This process is faster and more efficient than collecting long peri-

ods of subthalamic signal, then labelling them and training a classification

system. This fact is key to the usability of the system in a real clinical

environment.
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Figure 2: Example of sliding window strategy

7. System Description

One of the relevant aspects of the system is how data is treated. In a real-

time application, in which neural samples arrive continuously to the system in

a non-predefined order, an on-line analysis was used to evaluate LFP streams

following a sliding window strategy, in which the size of the window was fixed

and the buffer kept the newest instances. Similar to the first-in, first-out data

structures (Gama, 2010), whenever a new instance was inserted into the win-

dow, another instance i-H was forgotten , where H represents the window size

(see Figure. 2).

In clinical application, the system starts up during the peri-operative period.

The IPG starts registering the STN-LFP signals, which are divided into 10-

cycles windows. After that, the synchronization index is calculated over each

LFP window and per each contact pair, obtaining a set of coefficients:

S = I(LFP ) = {I(LFP )w=1, I(LFP )w=2, · · · , (LFP )w=n} (10)

where I(LFP )w=i is:

I(LFP )w=i = Sw(i) = Ic1−c2w=i , Ic1−c3w=i , Ic2−c3w=i (11)

where w is the number of the observed window, cx and cy are the channel

pairs between which the synchronization is calculated, I is the synchronization

measure employed and S represent the result of the synchronization per each
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window, i.e our datastream. Finally, the LFP stream S is sent to the clustering

algorithm.

According to Algorithm 2, the system works in the following way. Firstly,

during the set-up phase the necessary clusters are initialised inside the sys-

tem. For that, the system observes the activity of the STN for some time, during

which it is necessary for the patient to experience the different movement states.

During this time the signals on each electrode are collected, pre-processed and

the synchronization measure is extracted. The output of the synchronization

index determines autonomously which cluster the sample will go to. The process

finishes when three clusters (NT, TO and T) are created, one per movement

condition.

Once the clusters are initialised, the system enters into the operation

phase, whose core is very similar to the set-up phase. The main difference

is that in this phase the clusters are already created. The system should not

open new clusters, but merely evaluate the arriving samples, decide the cluster

each sample should go to and update the microcluster of the elected cluster after

the instance is included. We will later discuss the evaluation of this process.

The operation phase of the system is depicted in Figure 3.

8. Experimental Analysis

8.1. Clustering-Streams Results

8.1.1. Evaluation Measures

Before presenting the results, we describe the evaluation measures. We em-

ployed external measures, since the ground truth is available against which to

compare the clustering result.
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procedure Set-Up Phase (during peri-operative period)

while num (tremor states seen) < 3

capture STN records

pre-process dataraw

get synchronization index

if sample belongs to existing cluster

add sample to cluster

update microcluster

else

open new cluster

end

end

end

procedure Operation Phase (after the neuroestimulator is internalized)

capture STN records

pre-process dataraw

get synchronization index

add sample to cluster

update microcluster

end
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Figure 3: Stream Clustering - Closed-loop DBS system model
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Accuracy (ACC): Fractions of instances assigned to their correct cluster.

acc =

∑Nw

i=1 TP

Nw
(12)

where TP means a true positive (an instance correctly identified), and Nw is

the total number of windows in the record.

Cluster Mapping Measure (CMM): CMM is an ad-hoc measure for

stream clustering. Similar to accuracy, it quantifies how a given clustering is

different from the ground truth, but in this case taking into account the type of

errors that can occur during stream clustering, called faults. These faults can

be derived from missed, misplaced or noisy points. The estimated CMM ranges

between 0 and 1. The lower the faults, so the closer CMM is to 1 (Kremer et al.,

2011).

8.1.2. Experimental Analysis

In order to follow this section, we first introduce the concepts of weight and

horizon (Kremer et al., 2011):

Weight. Consider ti (the time in which the sample Sw(i) arrived to the sys-

tem) and t0 (the present time), with ti < t0. The weight of Sw(i) is the decay

function: weight(Sw(i)) = 2−λ(t0−ti), where λ is a parameter that controls the

ageing of the function. In this case, 1/λ is the half-life of Sw(i). In our case, λ

is set to zero, so we do not consider decay in our stream.

Horizon. Since this paradigm works with real-time and infinite data, stream

clustering techniques have to forget past samples. To this end, only a sub-

set of the recent samples of the stream S is considered at a given time. The

horizon (H) for a stream S and a defined threshold value of ξ, is defined as

H = {Sw(i)εS |W (Sw(i))ξ}.

As stated previously, the records capture the neural activity of patients while

transitioning from NT to T. Thus, the sequence order the recordings is NT →
TO → T, as shown in figure 4.a. If we evaluate the system over these records,
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Figure 4: a) Original order of the states in the recordings. b) States re-ordered to test OP-2: in

which initialised clusters during peri-operative period will be maintain in the system memory.

We simulate that by making the section of the operation phase as long as sections of set-up

phase c) States re-ordered to test OP-1: in which initialised clusters during peri-operative

period are not maintained in the system memory. We simulate that by making the sections

of the operation phase longer than sections of set-up phase

we can test if the system can adapt to concept drifts, detecting the three states,

and thus opening the three clusters. However, this would be similar to training

the system, without testing it later (Although in stream clustering we do not

talk of training and testing, we will refer to it this way for the sake of clarity),

since with this experimentation it is not possible to test immediacy and readi-

ness, essential features to indicate if the system will work properly in real-time

and real environment states. We need to test the system once the clusters are

opened. To this end, as stated in Algorithm 2, we firstly expose the system to

the tremor states (set-up phase), to later test states (operation-phase) to see

if it is able to identify correctly the arriving instances, by adding them to the

correct cluster.
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To this end, the files were reordered, positioning a subsection of windows

of each state at the beginning of the file, as shown in figure 4b and 4c. The

number of selected windows is the 50% of the smallest section in the file. We

used this subsection as a training period, in which the system was exposed to

all the tremor states. Accordingly, a cluster of each type is opened. The horizon

in this case was fixed to the number of windows within this subsection (3x in

the example of the figure).

It is important to remark here that this period is just to simulate the func-

tioning of the system in a real environment. It is not a typical training phase

itself, since it is the system itself that opens the clusters based on the instances

it receives, the label information is not provided. The sequence order of the files

to carry out the experimental analysis is therefore NT → TO → T → NT →
TO → T.

At this point, the issue of forgetfulness becomes important. To assess the

influence of whether maintaining the opened clusters or not, we designed two

possible configurations for the operation phase: OP-1, corresponding with Fig-

ure 4c, in which we provoked the system to forget some of the clusters by fixing

the parameter H low enough; and OP-2, corresponding with Figure 4b, where

the opened clusters are not forgotten. The results for both configurations are

presented in Table 2.

In the OP-1, the system reaches the so-called point of forgetfulness. An ex-

ample is depicted in Figure 5, in which the cluster T has been forgotten. Under

this situation, if the arriving points are not strongly separable from the existing

ones, they wouldn’t be assigned to their proper class. We have tested this, and

have found that this error never happened when comparing a sample of TO or T

with a sample of NT. However, we have found that it is possible for the system

to get confused between TO and T instances if one of these clusters is forgotten.
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Figure 5: Forgetfulness Point. By fixing H short enough we simulate the case in which at

some point a cluster is forgotten by system. In the so-called forgetfulness point, the system

forgets T cluster

Actually, this would not suppose a problem in the particular case of our

system, since both clusters (TO-cluster and T-cluster) will produce the same

output, since the decision as to whether to apply stimulating pulses or not in

both cases would be positive. In fact, we could perfectly have merged these two

states. However, we decided to maintain them separately to test the power of

the synchronization measures and our system in distinguishing each individual

state.

One might think that increasing the value of the horizon could fix the prob-

lem, however: 1) it would imply more memory use, a fact we want to avoid;

and 2) using a large value of H, the cluster tails become longer, increasing the

probability of overlapping clustering (Kremer et al., 2011).

The solution could be to open the clusters and maintain them in memory,

possibly as a background task. Remember that we would not maintain all the

information and points of the clusters, just their CFs. To this end, we designed

experiment 2, corresponding to Figure 4b, in which we wanted to simulate the

behaviour of the system when opened clusters are not forgotten. As can be

observed in the results for configuration 2 in table 2, the accuracy improves
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FILE BAND FEATURE
OP-1 OP-2

ACC CMM ACC CMM

1

TB

PhTE 66.89 0.6729 100 0.7614

MI 66.89 0.6852 100 0.7837

BICOH 66.89 0.66 100 0.7730

LB

PhTE 73.87 0.7977 100 0.8318

MI 73.87 0.8815 100 0.9298

BICOH 73.87 0.852 100 0.9183

2

TB

PhTE 73.51 0.7284 100 0.7961

MI 73.51 0.7089 100 0.7589

BICOH 73.51 0.7049 100 0.7653

LB

PhTE 51.73 0.8704 100 0.93

MI 51.73 0.8595 100 0.8907

BICOH 51.73 0.8447 100 0.8628

3

TB

PhTE 50.81 0.6063 100 0.9201

MI 50.81 0.6250 100 0.9071

BICOH 50.81 0.6144 100 0.9665

LB

PhTE 51.73 0.6914 100 0.9880

MI 51.73 0.6670 100 0.9835

BICOH 51.73 0.6660 100 0.9812

4

TB

PhTE 84.47 0.8228 100 0.9144

MI 84.47 0.8228 100 0.9483

BICOH 84.47 0.8899 100 0.9264

LB

PhTE 77.90 0.5972 100 0.9741

MI 77.90 0.5641 100 0.9870

BICOH 77.90 0.9768 100 0.9810

Table 2: Results of Stream Clustering for configurations OP-1 in which clusters are not

maintained in the system and OP-2 in which the system takes advantage of the peri-operative

period initializing the clusters in the system

significantly, reaching 100% in all the observed cases. This is because when

maintaining the learned clusters in the system, the confusion between TO and

T does not occur. Note that keeping the information about the opened clusters

is not equivalent to the classical approximation of training and testing. This is

later addressed in the discussion section.

The obtained results in OP-2 show a very good level of immediacy and

readiness, since we were able to detect all changes of states (our concept drifts),

adapting the output.
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To control stochasticity levels in the outputs due to the online modification

of the clusters, the determination of the rest of the system’s hyperparameters

has been done by fine tuning. The percentage of change in radius increase, ra-

dius decrease and cluster addition has been set to 0.5, 0.5 and 0.3 respectively.

Higher values lead to a loss of accuracy of the system. Finally, in our system we

do not allow the removal of created clusters or the joining of two clusters, since,

as previously stated, the system achieves best performance when the necessary

clusters are opened and maintained in the system. In this respect, it has been

verified that the rate of 0.3 in the cluster addition hyperparameter is sufficient

to open only the necessary clusters. i.e, no more than the three necessary clus-

ters are opened.

8.2. Comparing DSM with a traditional clustering approach

In this section we present results of accuracy for two classical and popular

clustering approaches for the sake of comparing them with stream clustering.

Both chosen because they carry relatively little computation: i) K-means++

(Arthur & Vassilvitskii, 2007) using 3 clusters and ii)a density-based clustering

using a canopy algorithm (McCallum et al., 2000), with 3 clusters; a periodic

pruning rate of 0 to avoid deleting open clusters (as in stream clustering); The

tight distance T2 and loss distance T1 have been set individually for each record:

T2 has been set based on the feature (synchronization index) standard deviation

as SD = 0.5 ∗ SD/(max−min) ; and T1 = T2 ∗ 1.25.

We perform the analysis by considering the features both alone and com-

bined, to improve the results of the classical clustering techniques. However,

as can be seen in table 3, the results of classical techniques are far from the

performance obtained with DSM.

The results confirm our initial hypothesis which is why we opted for DSM:

neural activity constitutes a source of non-linear and non-stationary data. For
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that reason a system able to adapt itself, learning in a continuous way would

benefit the performance, increasing significantly the global accuracy and using

the IMD resources much more effectively.

9. Discussion

9.1. Heterogeneity of LFP Connectivity across patients.

Previous studies on LFP-STN show that it presents a high degree of hetero-

geneity across patients (Whitmer et al., 2012; Levy et al., 2000; McNeely et al.,

2011). This suggests that several connectivity patterns could exist, which have

yet to be identified (Hohlefeld et al., 2013).

We have not delved deeply into this question, but the applied feature se-

lection procedure reveals some information about it. Some synchronization

measures are more stable across patients, while others are more specific, not

showing changes in all cases, as is the case of PLV and PhTE.

Despite the inter-subject variability, the connectivity patterns revealed from

some indexes perfectly detect the change between tremor states in all the cases.

This is exactly the reason why they have been selected as features, while others

cannot properly distinguish among states, and were discarded. Certainly, more

studies in this direction are necessary.

9.2. Preferred Frequency Bands.

As mentioned before, previous studies have found that local synchroniza-

tion in the beta band is linked with bradykinesia and rigidity, but not with

the tremor. Our results show that the connectivity fluctuations when tremor

appears are more appreciable on the tremor and the lower beta bands. We have

observed, as in other studies that not all the beta band is involved at the same

level in PD symptomatology (Priori et al., 2004; Marceglia et al., 2006).
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File Band Feature Subset
Stream-

Clustering
K-means++

Density-based

(Canopy)

1

TB

PhTE 100 46.82 45.17

MI 100 44.37 52.98

BiCOH 100 30.46 34.43

PhTE + MI +

BiCOH
- 59.60 50.99

LB

PhTE 100 58.62 51.54

MI 100 57.89 58.07

BiCOH 100 54.44 56.3

PhTE + MI +

BiCOH
- 48.27 60.25

2

TB

PhTE 100 45.69 46.35

MI 100 54.96 53.64

BiCOH 100 45.35 54.3

PhTE + MI +

BiCOH
- 50.34 55.63

LB

PhTE 100 57.35 60.60

MI 100 54.80 50.81

BiCOH 100 59.53 62.79

PhTE + MI +

BiCOH
- 43.38 55.35

3

TB

PhTE 100 61.3 59.67

MI 100 47.73 39.61

BiCOH 100 55.78 54.15

PhTE + MI + BiCOH - 48.92 48.64

LB

PhTE 100 63.43 53.83

MI 100 62.54 45.06

BiCOH 100 63.59 55.24

PhTE + MI +

BiCOH
- 36.85 52.5

4

TB

PhTE 100 52.01 50.31

MI 100 54.03 51.55

BiCOH 100 52.01 51.08

PhTE + MI +

BiCOH
- 48.76 43.78

LB

PhTE 100 64.39 61.14

MI 100 58.82 53.89

BiCOH 100 61.46 55.8

PhTE + MI +

BiCOH
- 37.84 57.38

Table 3: Accuracy results comparison between stream and classical clustering

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9.3. Application of LFP connectivity to closed-loop deep brain stimulation.

Presently, PD has no cure. Therefore, the treatments are aimed at combating

the associated symptomatology. The first option is in most cases is treatment

based on levodopa. However, it can lead to numerous complications, and with

the advance of the disease, some patients have to undergo surgery to change

from a pharmacological treatment to neurostimulation via an implantable med-

ical device called a neurostimulator (Perlmutter & Mink, 2006).

As commented in the introduction, both ECG signals and pathological events

in cardiac diseases are well known; the first pacemaker dates back to 1958,

while the first HFS-STN device (high frequency stimulation of the STN) did not

appear until 1993 (Benazzouz et al., 1993; Benabid et al., 1994). Moreover, we

know less about neural oscillations, because the signal is less accessible and more

complex than ECG. Maybe for these reasons, neurostimulators and pacemakers

do not work in the same way. More research work is needed concerning LFP

connectivity and its relation to DBS (Benabid et al., 2009). In this sense, the

main contribution of this paper is to find that some connectivity measures are

able to distinguish with high accuracy between tremorous and atremorous states

directly from LFP-STN activity, employing a stream clustering system. This

approximation is appropriate for the closed-loop DBS problem since:

1. It does not need any other measure. It only requires as input the LFP

signal that can be recorded by the IPG.

2. The system has been tested in immediacy and readiness parameters, show-

ing that it is able to detect the change between states in real time, with

no delay and with 100% accuracy.

Of course, as mentioned previously, these good results are not only the out-

come of the stream clustering system but of the connectivity indexes employed

as meters of LFP activity. In fact, if we perform an analysis into the dynamic

of such measurements we can see how they reflect the drifts between states

and that the mean level of synchronization varies across states. Figure 6 shows
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Figure 6: Dynamic Analysis of LFP-STN measured with MI over the tremor band. The left

and right black vertical line represents the transition from NT to TO and from TO to T ,

respectively. The horizontal lines represent the 2 and 3 standard deviation thresholds for

statistical significance

an example of dynamics measured by MI index calculated over the tremor band.

As a last observation, as depicted in Figure 6, the physical symptoms appear

in the T period. Thus, since we are able to separate TO instances from T

instances we could decide whether to stimulate only in the T period or from the

beginning of TO. We could even prepare the IPG once the TO instances arrive

to the clustering, and launch the stimulation when the T instances appears. All

the possibilities will be perfectly possible with rigorous accuracy in the presented

system.

9.4. Maintain Opened Clusters Strategy.

As stated in section eight, the system is conceived to be initialised during

the peri-operative period. To this end, the system observes the activity of the

STN during the necessary time to watch the patient transiting between the

movement states, and thus it is able to open the required clusters

We have tested several experiments to observe the effect that forgetting the

initialised clusters has in classifying the subsequent instances, and subsequently

in the accuracy of the system. The best results were though obtained when we

maintained the opened clusters in the system, since the possibility of confus-

ing an arriving instance to a similar one belonging to another cluster reduced
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Figure 7: Ways of updating clusters in stream clustering technique. a) cluster re-positioned.

b) radius decrease and c) radius increase. The direction of the arrows indicates in which

direction the cluster evolves

drastically. Nonetheless, due to the conclusions obtained from experimentation,

we strongly recommend to initialise and maintain the clusters opened in the

system, to avoid misclassification.

As previously stated, this approximation is not equivalent to the classical

approximation of training and testing for two main reasons:

1. In classical clustering, the clusters centroids are set during the training

phase and remain constant afterwards. When we need to know the class

of an instance, we evaluate to which cluster it belongs.

In stream clustering, we update the cluster structure after the inclusion of

the new sample: The centroids of clusters can be re-positioned, and the

radius of the cluster can increase or decrease, as illustrated in Figure 7.

2. In classical clustering all the information about the clusters is maintained

in memory, whilst DSM algorithms operate using a limited amount of

memory. To this end the stream clustering algorithm stores the so-called

CFs, presented in section five, and the structure to maintain only that

strictly necessary to operate. This information is updated each step, evolv-

ing at the time and form STN-LFP activity does.
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9.5. Stochasticity of the System

There are two components in the system that can be stochastic in nature:

1. The inputs. We could find two sources of stochasticity in the inputs:

• The noise present in the data. To reduce the effects of possible noise

in the data, recordings have been pre-processed as presented in sec-

tion 3.2.

• The peak frequency of Parkinsonian tremor may not always be at the

same frequency varying slightly, not only across subjects, but also in

different windows of observation of the same subject. In order to be

sure we capture the tremor peak, two approaches can be taken:

i) Identify the peak frequency between the 3-7 Hz band, denoted with

fp, and filter the signal between (fp−0.5) and (fp+ 0.5). Note here

that the peak frequency in PD have an approximate bandwidth of

1Hz. However, the tremor peak is not always exactly at the same fre-

quency so that, to be sure to capture the peak, we should perform an

ad-hoc detection and filtering process for each signal window. This

approach would be very expensive, given the restricted capabilities

of energy, and computing power of the IMDs, which would limit the

application of our system.

ii) Use the entire tremor [3-7] band. In this respect, the results show

that the selection of the whole tremor band gives a high accuracy,

probably because, being the tremor a narrow peak, most of the power

in the band is concentrated surrounding this peak, acting like a natu-

ral narrow-pass filter. We checked the data and, in fact, up to 78.7%

of the power of the band falls withing 1 Hz of the tremor peak. A

recent paper (Bruña et al., 2018) showed that, when using Hilbert

transform (as in PhTE), the existence of a clear frequency peak is

enough to ensure that the phase is extracted correctly, and it is not
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needed to use a narrower band. This is probably also true for MI

and BiCOH.

2. The cluster movements: To control stochasticity levels in the outputs

due to an incorrect update of the clusters, the selection of the systems

hyperparameters that control such updates has been determined by fine

tunning, as stated in section 8.1

10. Conclusions & Future Work

Health-care expert systems meet the challenge of processing of physiological

signals to help diagnose, identify symptoms, improve treatments to ultimately

ameliorate the quality of life of patients (Wu et al., 2010; Parisi et al., 2018; Shi

et al., 2017; Nancy et al., 2017). An example of these devices are the IMDs,

which, implanted within the body, treat medical conditions, monitor the state

or improve the functioning of some body part. These devices deal with infinite

and non-stationary signals such as LFP. The supported system needs the intel-

ligence to adapt itself to changes and provide the most appropriate treatment in

each moment. In this demanding scenario, DSM emerges as a promising tech-

nique to deal with this sort of restrictions. To the best of our knowledge, none

of the existing solutions uses LFP signals as data streams. Therefore, we take

advantage of the full potential of DSM and have designed a closed-loop DBS

system using LFP streams.

In the first part of the work, we studied whether the patterns of LFP con-

nectivity within the STN change when the motor symptoms of PD emerge.

As suggested by the results, the tremor onset implies a change in connectiv-

ity in some frequency bands, which can be used to improve the DBS systems

currently employed. Our results also show the potential of STN-LFP synchro-

nization streams for closed-loop DBS purposes. In fact, the behavior of the

clustering, which is the core of the system, is remarkable, achieving an accuracy

of 100% in all cases. The system has demonstrated that it is able to detect
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concept drifts in the data by clustering correctly the arriving instances with a

high level of immediacy.

The results are promising since, to the best of our knowledge, this is the

first study attaining such levels of accuracy. Nevertheless, as a future work, it

would be ideal to reproduce them in new datasets with more patients, when

available. We hope this contribution can serve as a seed to future work that

explores the use of STN-LFP synchronization for closed-loop DBS. In addition,

and given the accuracy levels achieved here, it would also be interesting to study

if data stream mining algorithms respond well in other on-demand stimulation

scenarios or in other actuating devices in the medical environment.

Finally, we would like to mention that there is another line of research in

closed-loop DBS that proposes the use of systems able to adapt in real time

the parameters of the stimulation (the frequency, duration and amplitude of a

square-wave pulse train) (Feng et al., 2007; Rosin et al., 2011). The objective of

such systems is to modulate the waveform of the stimulation, which presently

in practice must be hand-tuned by the clinician during the visit of the patient

to the hospital periodically every 3-12 months (Deuschl et al., 2006). For their

part, the aim of our system is to detect when the patient needs the stimulation

itself, to reduce the side effects induced by chronic DBS and to make more effi-

cient use of the IPGs battery. In our opinion, the combination of both kinds of

approaches will constitute the complete solution for an intelligent DBS system,

able to adapt the stimulation parameters by itself, and also capable of start up

and shut down itself as required by the changing dynamics of the STN in real

time.
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