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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Tool condition monitoring has been considered as one of the key enabling technologies for manufacturing optimization. Due to the high cost and
 
limited system openness, the relevant developed systems have not been widely adopted by industries, especially Small and Medium-sized
 
Enterprises. In this research, a cost-effective, wireless communication enabled, multi-sensor based tool condition monitoring system has been
 
developed. Various sensor data, such as vibration, cutting force and power data, as well as actual machining parameters, have been collected to
 
support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases.
 
The system can be extended to wide manufacturing applications.
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1. Introduction 

For a machining process, the severe wear of a cutting tool 
will lead to low machining quality of a workpiece in terms of 
accuracy and surface roughness. In a worse scenario, it could 
make a manufactured workpiece disqualified and a machine 
system deteriorated. According to statistics, more than 75% 
of the equipment failures in a production process are caused 
by the severe tool wear or failure [1]. From the economic 
point of view, Zhang and Zhang [2] presented that about 3% 
to 12% of production cost is related to the conditions of 
cutting tools and their replacement. Therefore, it is vital to 
develop a Tool Condition Monitoring (TCM) system to 
understand the status of cutting tools efficiently and 
effectively in order to predict and optimize their lifespans. 
From [3, 4], it could be summarized that a precise and reliable 
TCM system could generate 10-50% cutting speed increment, 
75% downtime reduction, also about  30% maintenance cost 
saving [5]. 

For TCM, the prior research can be divided into two main 
parts: direct methods and indirect methods. The direct 
methods require a lot of equipment to measure the conditions 

of the tools so involve high-cost labors. Due to high costs and 
inflexibility, the methods are not widely adopted by industries 
[6]. On the other hand, the indirect methods are to monitor 
cutting tool conditions by using sensors augmented with 
effective data analytics. Owing to the flexibility, nowadays, 
more research and commercial products have used the 
indirect methods for TCM. For instance, the commercial 
systems Kistler [7] and Brankamp [8] have been widely used 
in laboratories to support predicting the lifetime of tools and 
monitoring the cutting force. However, these commercial 
systems have not been widely adopted in the industrial sector, 
especially for Small and Medium-size Enterprises (SMEs), 
due to the high product cost and incompatible configuration. 
Huang et al. [9] indicated that a PZT type accelerometer, 
which measures the vibration signal for TCM, cannot be 
integrated into the intelligent modules even at a price of 
$ 500-1000. Hence, it is imperative to develop a low-cost 
TCM system with high robustness and flexibility, as well as 
the least human intervention. 

Appropriate signals to be used for TCM are essential to 
ensure the accuracy of the monitoring system. Vibration 
changes along with the increase of the tool wear, which is 

2212-8271 © 2018 The Authors. Published by Elsevier B.V. 
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support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases.
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directly caused by the contact between the tool and the 
workpiece surface [10]. Siddhpura and Paurobally [11] 
showed that for TCM the vibration-based study has accounted 
for more than 20% of the published works. Therefore, the 
vibration signal should be a reasonable choice to reflect the 
condition of the cutter. In addition, the process of the tool 
wear is very complicated due to the fact that abnormal tool 
conditions could have different forms. A single sensor signal 
is not able to provide sufficient information to predict tool 
wear [12]. Recently, a multi-sensor solution, which could 
effectively eliminate the uncertainty caused by a single sensor 
monitoring, has drawn more research attention [13]. Different 
sensor signals can reflect the tool wear from different 
perspectives. All these data are independent and can be 
complementary to achieve a more accurate prediction. 
However, a challenge for utilizing multiple-sensor solution is 
how to effectively fuse various sensor signals and unearth 
useful information from the dataset. 

This paper is primarily focused on developing a multi-
sensor based monitoring system with data fusion capabilities. 
Real-time TCM is realized to support high accurate 
predictions on tool wear and product quality. Current, 
accelerometer and piezoelectric sensors are integrated into 
the developed TCM system to acquire different signals for 
decision marking. Furthermore, CNC machining processes 
have been selected as a case study considering the popularity 
and complexity of the CNC machining processes. This design 
of the system provides a low-cost and flexible solution for 
TCM, suitable for SMEs’ applications. It can be also 
extendable to support wider manufacturing applications. 

The rest of this paper is organized as follows. In section 2, 
the framework of the system and working principles of 
sensors will be explained. Section 3 shows the design and 
procedure of machining experiment to validate the 
monitoring system, followed by a brief analysis of collected 
data in Section 4. Section 5 draws conclusions. 

2. The multi-sensor monitoring system 

In order to be in line with the industrial demand for low-
cost, flexible and easily implementable monitoring system, an 
Arduino developing board has been selected as the hardware 
platform to equip multiple-sensors for this research. It is an 
open source micro-control platform costing only US $25. It 
can be combined with a variety of sensors or devices [14]. To 
enhance the flexibility and reduce the implementation cost, a 
wireless communication solution is considered in this work. 
A Wi-Fi based Arduino Uno board has been selected to form 
up the sensor nodes. Besides, a local database has been 
developed to host and manage the multiple sensor data and a 
big data technology through the Apache Spark has been 
implemented to organize acquired numerous data and to 
support further data fusion and analysis. In this study, three 
types of sensors have been employed to monitor vibration, 
cutting force and energy consumption profiles of a CNC 
milling machine. Due to the characteristic of the wireless 
sensor network, the system can be easily expanded to add 
more types of sensors into the system. The framework of the 
monitoring system is depicted in Fig. 1. 

Fig.1. Monitoring system framework 

2.1. Accelerometer 
For the purpose of measuring the vibration status of the 

cutting tools, a 3-axis accelerometer (model MMA7361 with 
datasheet shown in Table 1) has been adopted. In addition, 
the sensitivity of the MMA7361 is based on the principle of 
capacitance, making it cheaper and requiring only a single 
chip to measure the acceleration of triaxle. The measurement 
of acceleration is based on the displacement change of the 
chip’s central mass between the fixed beams of the 
capacitance. The conversion formula from the ADC input 
value to the acceleration is as follows [15]: 

adc _ input  ref _ v  v1023 0
Acc  (1) 

sen . 
Where, 
• 𝐴𝐴𝐴𝐴𝐴𝐴 = acceleration of each axial, 
• 𝑎𝑎𝑎𝑎𝐴𝐴_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = raw value from accelerometer, 
• 𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣 = voltage of sensor supply, 
• 𝑣𝑣𝑜𝑜 = voltage at 0 acceleration, 
• 𝑠𝑠𝑟𝑟𝑖𝑖. = sensitivity of accelerometer. 

Due to gravity, calibration may be done using the 
acceleration. It follows the principle:  the output values of the 
x and y axial should be 0 because the accelerometer is 
stationary; the output value of the z axial is 100 that means 
the acceleration equal to the gravity acceleration (as the unit 
of the output value is g × 10−2, and g is the acceleration of 
gravity). 

Table 1. Datasheet of the 3-axis accelerometer MMA7361 

Characteristic Value 
Supply Voltage (V) 3.3 or 5 
Sensitivity (mv/g) 800 (1.5g), 206 (6g) 

Bandwidth Response (HZ) 400 (X, Y), 300 (Z) 

2.2. Current sensor 

For monitoring energy consumption, the YHDC current 
sensor (Datasheet in Table 2) has been employed in this 
design. This sensor is a widely used transformer for the 
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Operating
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No. Spindle speed N (RPM) Feed 𝑓𝑓𝑧𝑧 (mm/tooth)
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measurement of Alternating Current (AC). The output value 
of the sensor does not consider any instantaneous current, as 
the current direction and size are continuously changing in a 
circuit. Instead, the output value is IRMS, which is called the 
root mean square current. It is used to describe the average 
strength of the current, and its direction can be ignored [16]. 
The voltage is relatively stable and around 230 volts in the 
UK, so the measured power is calculated as: 

𝑃𝑃 = 230 × 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅		 (2) 

Table 2. Datasheet of the YHDC clamp current sensor 

Input current Output voltage Turn ratio Work temperature 
0-100A 0-50mV 100A:0.05A -25℃～+70℃ 

2.3. Piezoelectric sensor 

With the purpose of the cutting force measurement, two 
piezoelectric disk sensors (Datasheet in Table 3) have been 
integrated into the design. The piezoelectric effect reflects the 
change in force or acceleration through the change of the 
output charge. The relationship between the cutting force in 
the milling process and the signals of these two piezo sensors 
can be established using experiments. 
Table 3. Datasheet of Piezoelectric disk sensor 

Resonant Insulation Maximum Operating 
frequency resistance input voltage temperature range 
6.5±0.7KHz 100MΩ Min 30Vp-p -20℃ to +70℃ 

3. Design of experiment 
To assess the capability of the developed system, an 

experiment has been designed to use the accelerometer, 
piezoelectric sensor and current sensor to monitor the milling 
process for tool life prediction. The acquired data are 
evaluated according to the Taylor’s equation [17], which is a 
common empirical formula for tool life prediction. The 
general form of the Taylor’s equation is expressed as:  

𝑉𝑉𝑐𝑐𝑇𝑇𝑛𝑛 × 𝑎𝑎𝑝𝑝𝑉𝑉𝑓𝑓 = 𝐶𝐶		 (3) 

Where 𝑉𝑉𝑐𝑐 is the cutting speed, T is the tool life in Minutes, 
n is an exponent that depends on the specific tool level and 
used materials, determines the slope of the tool life curve. 𝑎𝑎𝑝𝑝 
is the depth of cut, 𝑉𝑉𝑓𝑓 is the feed rate, and C is a constant that 
depends on the machine and workpiece material. 

To generate a more accurate prediction on tool life, some 
expanded formulas for the Taylor tool life model has been 
proposed [18]. In the formulas more machining variables 
need to be obtained. This leads to the prediction model to 
become far more complex. Eslamian [19] pointed out that 
expanding the model may produce inconsistent results when 
multiple parameters are changed at the same time. To this end, 
Equation 3 is used in this study. 
According to the Taylor’s equation, the cutting speed (𝑉𝑉𝑐𝑐 ), 

feed rate (𝑉𝑉𝑓𝑓 ) and depth of cutting (𝑎𝑎𝑝𝑝 ), which are highly 
related to the tool life, have been considered in this 
experiment. Based on the recommend values of milling 
spindle speed and feed indicated in [20], the experimental 
parameters used in this work are listed in Table 4. 

Table 4. Cutting parameter 

No. Spindle speed N (RPM) Feed 𝑓𝑓𝑧𝑧 (mm/tooth) 

2000	 0.0127 

2 2500 0.0203 
3 3500 0.0254 
4 4500 0.0508 

For the milling process, the cutting speed 𝑉𝑉𝑐𝑐 in m/min can 
be expressed as equation 4, and the feed rate 𝑉𝑉𝑓𝑓 in mm/min 
can be indicated as equation 5. 

= 𝜋𝜋𝜋𝜋𝜋𝜋 𝑉𝑉𝑐𝑐 1000		
(4) 

𝑉𝑉𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑓𝑓𝑧𝑧 (5) 
Where, 
•	 D= tool diameter (mm, the value is 12 in this 

experiment), 
•	 N = spindle speed (RPM), 
•	 𝑁𝑁 = number of cutter flute (Z=4 in this experiment), 
•	 𝑓𝑓𝑧𝑧 = feed (mm/tooth). 

With 4 different parameters of spindle speed and feed, 16 
parameter combinations have been designed by Taguchi 
method, shown in Table 5. In order to achieve a good surface 
quality, the depth of cut has been carefully designed based on 
the classical method provided in [21]. 
Table 5. Experiment parameters 

Spindle Cutting Feed rate Depth of Width of 
No. speed N speed 𝑉𝑉𝑐𝑐 𝑉𝑉𝑓𝑓 cut 𝑎𝑎𝑝𝑝 cut 

(RPM) (m/min) (mm/min) (mm) (mm) 

1 2000 75 102 1.5 12 
2 2000 75 203 2 12 
3 2000 75 356 2.5 12 
4 2000 75 914 3 12 
5 2500 94 102 2 12 
6 2500 94 203 1.5 12 
7 2500 94 356 3 12 
8 2500 94 914 2.5 12 
9 3500 132 102 2.5 12 
10 3500 132 203 3 12 
11 3500 132 356 1.5 12 
12 3500 132 914 2 12 
13 4500 170 102 3 12 
14 4500 170 203 2.5 12 
15 4500 170 356 2 12 
16 4500 170 914 1.5 12 

The system is shown in Fig. 2. All the experiments have 
been carried out on an SYIL X4 CNC machine by using 4 
flutes 12mm HSS milling cutter to machine aluminum blocks. 

Fig. 2. System setup of machining process monitoring 1 
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 4. Result analysis 

As shown in Fig. 3, 16 slots have been machined with 
different parameter combinations on 3 aluminum blocks, 
respectively. 62023 samples of sensor data during the entire 
experiment process, each sample containing 8 different 
signals, acquired from 2 piezoelectric sensors, a 3 Axes 
acceleration sensor, and 3 phases power sensors, have been 
collected by the monitoring system steadily and stored in a 
Big Data database. 

Fig. 3. Workpiece after machining 

4.1 Signal analysis based on process monitoring 
The total power and 3-axis acceleration captured during 

the experiment process are plotted in Fig. 4(a) and Fig. 5(a) 
respectively. From the power graph, it is noted that the 
highest value of power occurs at the initial stage (highlighted 
in red box) of the experiment which is close to 3500W. This 
anomaly is explained later on. The lowest power appears at 
the standby stage that is about 230W. From Time 21:03:36 
onwards, a stable and continuous processing phase starts, and 
the average power is 690W. For acceleration in Fig. 5(a), the 
x- and y- axial acceleration values in the initial stage reach 
0.1g and the z axial peaks reach nearly 6g. The values at the 
standby stage are 0g for x- and y-axis and 1g for z-axis, 
respectively. Based on the calibration principle of the 
accelerometer described in Section 2, the accelerometer is 
stationary at this time, the acceleration values in x- and y-
axial in the continuous processing stage is about 0.05g, and 
0.4g in the z-axis. The signs of acceleration represent the two 
opposite directions of acceleration. It can be observed that the 
trends of the power and acceleration graphs show substantial 
similarity, thus, the system can be confirmed able to collect 
signals to reflect the processing status. 

The abnormal peak values of the power and acceleration 
captured during the initial stage are caused by a failure cutting, 
shown in Fig. 6. The graphs in the processing phase are shown 
in Fig. 4 (b) and Fig. 5 (b), which are corresponding to the red 
boxes in Fig. 4 (a) and Fig. 5 (a). Compared with normal 
cutting, the failure cutting shows large fluctuations in power 
level, and the average power of the failure cutting is about 
1288W, and the energy consumption is 0.42kwh, which is 3.5 
times bigger than the normal machining with the same 
parameter. Moreover, the similar results can be seen from Fig. 
5 (b), the acceleration values in the three-axes change rapidly 
with larger amplitudes than the normal cutting, especially in 
z - axis, which shows good correlation with the power 
plotting. This indicates that the vibration level of the cutter 
during abnormal condition was far stronger than that of the 
normal cutting, which is in line with Mukhopadhyay et al. 
[221] statement that vibration sensor signal amplitude 
increases, corresponds to the energy increment that generated 

by the tool flank wear.  This proves the potential of the system 
for the monitoring of tool wear. 

Fig. 4.  (a) Power against time; (b) The enlarged failure zone (red box in 
(a)) 

Fig. 5.  (a) Acceleration against time; (b) The enlarged failure zone (red in 
(a)) 

. 

Fig. 6. Machining with an opposite spindle rotation direction 
In the experiment, two piezoelectric sensors are mounted 

on both sides of the longitudinal workpiece holder, to collect 
the relevant signals reflecting the cutting force. The results 
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are depicted in Fig. 7. By comparing to the power and 
acceleration signals, the pattern of the cutting force signal is 
under a low degree of correspondence with the actual 
machining situation. This is probably because the principle of 
the sensor is more suitable for the sudden increase force, not 
sensitive to small changes, and the mounting location seems 
not efficient. Therefore, a further data amplify method and the 
investigation of a proper mounting position will be 
considered in the future work, to make the piezoelectric 
achieve the desired function. 

Fig. 7. Charge against time for the piezoelectric sensor 

4.2 Signal analysis based on tool life 

Based on the obtained data, the total acceleration and 
power values for every slot under normal condition have been 
averaged. The graph is shown in Fig. 8. It can be seen that, 
among the machining processes of the 16 slots, the maximum 
power appears at the machining of the 6th slot, which is about 
1100W. The minimum value is close to 300W, which is for 
the machining of the 3rd and 8th slot. For acceleration, the 
highest value is about 1.3g at the 4th machining and the 
minimum is 0.3g at the 8th machining. In addition, the 
polyline can confirm again that the signals of the power and 
acceleration obtained by the system fit to a certain degree. In 
simple terms, the values of power and acceleration are in the 
similar trends. This result shows the data fusion in the future 
is promising. 

Fig. 8. Power and total acceleration for 16 slots 

In this experiment, the Taguchi orthogonal method has 
been employed to design the parameter combination within 
cutting speed, feed rate and depth of cutting. After averaging 
the total acceleration and power values for every slot, the 
average values and parameter factors are inputted into the 
Taguchi analysis. The main effects plot for means is obtained 
as is shown in Fig. 9. It can be found out that the result is 
consistent with the finding of Taylor and other studies [23]. 
The cutting speed performs a significant effect both on the 
acceleration and power, followed by the feed rate and the 

depth of cutting. Thus, it shows that the data collected by this 
system has the feasibility to establish the relationship between 
parameters and tool life, which will be carried out in future 
studies. 

Fig. 9. Main Effects Plot for Means of the acceleration and power 

The processing time of 16 slots with the same parameters 
is about 39 mins and the power increment is shown in Fig. 10. 
It can be inferred that power increment graph is consistent 
with the curve of the Taylor tool wear shown in Fig. 11. The 
rapidly increasing stage of power is within 5 mins of 
machining start, which in the interval a (shown in Fig. 10). It 
corresponds to the initial rapid stage of the tool wear. Then 
the increment gets slower, which is in the interval b (shown 
in Fig. 10), corresponding to the stable stage of tool wear. Due 
to the insufficient processing time of experiments, the 
accelerated stage of tool wear, however, has not been 
reflected in the graph. Despite this, the graph of the power 
increment power is aligned with the Taylor curve. It confirms 
the system provides feasible tool wear monitoring. 

Fig. 10. Power superposition 
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Fig. 11. Taylor tool wear curve [17] 

5. Conclusions 

A low-cost and flexible multi-sensor TCM system has 
been developed. The monitoring system has been set up with 
a 4-axis CNC milling machine in the laboratory to collect 
experimental data. Signals of power, vibration and cutting 
force have been collected from the machine for predicting 
tool wear. A Taguchi method has been employed to design 
the experiments. The data obtained by the system shows that 
the selected sensors demonstrate a good ability to capture the 
status of the cutting tools. Further data analysis shows that the 
relationship between the machining parameters and tool life 
can be established using the monitoring system. Moreover, 
analysis is given to prove that this low-cost and flexible 
monitoring system is feasible and effective for tool wear 
monitoring It is suitable to support SMEs’ applications. 

Future research includes: comparing and calibrating the 
proposed monitoring system with existing commercial 
cutting force and vibration systems provided from Kistler, 
appending more appropriate data analysis algorithms into the 
system to enhance its intelligence and data fusion; extending 
the current monitoring system from milling machining to 
other application areas. In particular, this system will be used 
to support a PU process to provide real-time monitoring of 
the status of the resin chemistry used for tooling board 
manufacturing. More types of sensors such as flowmeter, 
pressure and temperature sensors will be integrated into the 
system for this application. 
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