
The agent programming language Meta-APL

Thu Trang Doan, Natasha Alechina, and Brian Logan

University of Nottingham, Nottingham NG8 1BB, UK
{ttd,nza,bsl}@cs.nott.ac.uk

Abstract. We describe a novel agent programming language, Meta-APL, and
give its operational semantics. Meta-APL allows both agent programs and their
associated deliberation strategy to be encoded in the same programming lan-
guage. We define a notion of equivalence between programs written in different
agent programming languages based on the notion of weak bisimulation equiv-
alence. We show how to simulate (up to this notion of equivalence) programs
written in other agent programming languages by programs of Meta-APL. This
involves translating both the agent program and the deliberation strategy under
which it is executed into Meta-APL.

1 Introduction

In this paper we sketch the agent programming language Meta-APL. Its distinguishing
feature is that the agent’s deliberation strategy can be encoded as part of the agent pro-
gram. Meta-APL is designed to form part of a platform for verifying multi-agent sys-
tems where the agents are implemented in different (BDI-based) agent programming
languages. As part of the verification process, the agent programs will be translated
into Meta-APL and verification tools designed for Meta-APL will be used to verify the
system. Similar approaches have been proposed before, see for example [4]. The dis-
tinguishing feature of our approach is that Meta-APL is itself an agent programming
language (rather than a special purpose library as in [4]) and that the deliberation strat-
egy of the target agent can be expressed in the Meta-APL program along with the agent
program itself. It is clearly necessary to encode the deliberation strategy correctly, as
executing the same program under different strategies may give very different results.
Other agent programming languages have also been used to program agent deliberation,
see for example [1]. However Meta-APL is specifically designed with this capability in
mind, for example it is possible to write rules in Meta-APL which match against the
contents of the agent’s plan base.

This paper describes the first step towards this long term goal, concentrating on the
design and the operational semantics of Meta-APL itself. We also define a notion of
equivalence or bisimulation between programs written in different agent programming
languages. We sketch how programs written in other agent programming languages
plus their deliberation strategies can be translated in Meta-APL so that the resulting
Meta-APL program is equivalent to the original program together with its deliberation
strategy.

The remainder of this paper is organised as follows. In section 2 we introduce the
syntax of Meta-APL. In section 3 we define its operational semantics. In section 4 we

define the notion of equivalence between programs and show how to simulate programs
written in 3APL [2]. We conclude and outline directions for future work in section 5.

2 Syntax of Meta-APL

The language of beliefs and goals in Meta-APL is similar to that of other BDI-based
agent programming languages, for example, 3APL [2], but we assume a propositional
language for ease of presentation (to avoid extra notation to do with substitutions etc.
The actual implementation has Prolog-like syntax for beliefs).

We assume that beliefs and goals are built using propositional atoms from a finite
set Prop. Beliefs are either atoms p, or Horn clauses p:- q1, . . . , qn. A belief base is a
finite set of beliefs. A belief query φ is defined as φ ::= p | not p | φ1 and φ2 | φ1 or φ2,
where not is negation as failure. Goals are atoms or conjunctions of atoms. A goal base
is a finite set of goals.

Before we introduce plans, we define the notion of a plan body. A plan body is a
finite sequence of basic actions, test actions, meta-actions and sub-goals, where

– A basic action has the form of #a where the symbol # is used to indicate that this
is a basic action, and a is the name of the basic action.

– A test action has the form of ?ϕ where ? is used to indicate that this is a test action,
and ϕ is a belief query.

– A sub-goal has the form of !g where ! is used to indicate that this is a sub-goal, and
g is a goal.

– Meta-actions are actions that allow the agent to add and delete beliefs and goals,
and to delete and execute applicable plans. The set of meta-actions is as follows:
• add-bel(d) is for adding a belief d into a belief base.
• del-bel(d) is for deleting a belief d from a belief base.
• add-goal(d) is for adding a goal d into a goal base.
• del-goal(d) is for deleting a goal d from a goal base.
• del-plan(i) is for deleting an applicable plan i from a plan base.
• exec(i) is for executing an applicable plan i.
• step(i) is for executing a single step of an applicable plan i.

A plan in Meta-APL represents the triggering conditions and execution state of a
plan body. A plan is a tuple of the form (g, b, π, x, π′) where:

– g is a goal,
– b is a context query (defined below),
– π is an initial plan-body,
– x is a flag for specifying the state of the plan which can have one of the following

values: a (to say that it is active), ex (to say that it is executed), na (to say that it is
not active).

– π′ is a partially executed plan-body.

A plan base is a finite set of plans.
Context queries are evaluated against the agent’s belief and plan bases. In order to

define context queries, we first need to introduce the notion of plan-body terms, goal

terms and flag terms. Informally, a plan-body term is a plan-body except that variables
may occur where plan-bodies normally are. Given a set Vars of variables, the syntax of
plan-body terms is as follows:

tπ ::= X |!s |?ϕ | #a | ma(d) | mb(tπ) | tπ; t′π

where X ∈ Vars, !s is a sub-goal, ?ϕ is a test action, #a is a basic action, ma(d)
is a meta-action with ma ∈ {add-bel,del-bel,add-goal,del-goal}, d is a
belief, and mb(tπ) is also a meta-action with mb ∈ {del-plan,exec,step}.

A goal term is either a variable or a goal. A flag term is either a variable or a flag.
Then, context queries are defined by the following syntax:

b ::= X | t1 = t2 | t1 6= t2 | ϕ | p(tg, b, tπ, tx, tπ′) | ¬p(tg, b, tπ, tx, tπ′) | b&b′

where X ∈ Vars, t1, t2, tπ and tπ′ are plan-body terms, ϕ is a belief query, tg is a goal
term, and tx is a flag term. Evaluation of context queries will be defined in the next
section when we define the operational semantics of Meta-APL. Informally, a belief
query is evaluated against the belief base in a standard way, t1 = t2 is used to check if
two terms t1 and t2 are unifiable, p(tg, b′, tπ, ts, tπ′) means that there is a plan in the
plan base that can unify with (tg, b

′, tπ, ts, tπ′); and ¬p(tg, b′, tπ, ts, tπ′) means there
is no applicable plan in the plan base which can unify with (tg, b

′, tπ, ts, tπ′).
A plan (g, b, π, x, π′) is effectively identified by the first three components g, b and

π. It can not happen that two applicable plans have the same first three components in a
plan base at the same time. During the existence of the plan, its components g, b, π stay
unchanged.

In Meta-APL, plans are generated by means of rules. A rule has the form:

g, b→ π.

where g is a goal and is optional, b is a context query where variables are not allowed
to occur outside the scope of the atom p(. . .), and π is a plan-body. When a rule has no
goal, we define that its “hidden” goal is >.

3 Operational semantics of Meta-APL

An agent program consists of an initial belief base, an initial goal base and a set of rules.
The initial plan base is empty.

A configuration is a tuple of the form 〈σ, γ,Π,D〉 where σ is a belief base, γ is a
goal base, Π is a plan base and D is a phase indicator of the deliberation cycle which
can have one of the following values to indicate in which phase the configuration is:
UpdatePercept, ApplyRule, and Exec.

Informally, an agent runs by repeatedly performing a deliberation cycle. In the delib-
eration cycle, there are three main phases: updating percepts (UpdatePercept), match-
ing and applying rules (ApplyRule), and executing executable intentions (Exec). At the
beginning of a deliberation cycle, the agent first updates its percepts where the belief
base of the agent is updated according to the percepts collected from the environment.

In this phase, the agent also updates its goal base by adding new goals which are re-
ceived from outside and dropping goals which become achieved after the belief base
is updated. In the next phase, the agent looks for applicable rules from the set of rules
against the belief base, the goal base and the plan base. Then, an arbitrary applicable
rule is applied to add a new applicable plan into the plan base. Notice that this newly
added applicable plan may enable or disable the applicability of other rules. The agent
then repeats looking for applicable rules and applying them, one by one, until no more
are found. This is when the agent switches to the next phase where it executes exe-
cutable intentions. In this phase, an executable applicable plan is selected and executed.
After a plan is executed, the flag of the plan is set to be “ex”. The phase is continued
until all executable plans are marked with “ex”. Then, the phase is changed to Update-
Percept for starting a new deliberation cycle and all “ex” applicable plans are changed
to “a”.

In the following, we discuss each phase of the deliberation cycle in more detail
and define the operational semantics by describing transition rules which transform one
configuration to another.

First we give a definition of evaluation of beliefs, goals and belief queries. For a
belief base σ and a belief or goal d, we say that σ |=Pr d iff d is propositionally
entailed by σ. For a goal base γ and a goal d, we say that γ |=g d iff d propositionally
follows from one of the goals in γ. Finally, for belief query φ and a belief base σ, we
define σ |=naf φ as follows:

σ |=naf p iff σ |=Pr p.
σ |=naf ¬p iff σ 6|=Pr p.
σ |=naf φ1 and φ2 iff σ |=naf φ1 and σ |=naf φ2.
σ |=naf φ1 or φ2 iff σ |=naf φ1 or σ |=naf φ2.

Next we define how to evaluate a context query, where variables can occur only
within the scope of the literal p(. . .), against a configuration 〈σ, γ,Π,D〉. We write
t = g | θ to say that two terms t and g are unifiable by the most general unifier (mgu)
θ. When two terms t and g fail to unify, we write t 6= g. We evaluate a context query
against a configuration 〈σ, γ,Π,D〉 inductively as follows:

– 〈σ, γ,Π,D〉 |= ϕ | ∅ iff σ |=naf ϕ where ∅ is used to denote an empty substitution
– 〈σ, γ,Π,D〉 |= t1 = t2 | θ iff the two terms t1 and t2 are unifiable by the mgu θ,

that is t1 = t2 | θ.
– 〈σ, γ,Π,D〉 |= t1 6= t2 | ∅ iff the two terms t1 and t2 are not unifiable.
– 〈σ, γ,Π,D〉 |= p(tg, b

′, tπ, ts, tπ′) | θ iff there exists an applicable plan i ∈ Π
such that p(tg, b′, tπ, ts, tπ′) = i | θ.

– 〈σ, γ,Π,D〉 |= ¬p(tg, b′, tπ, ts, tπ′) | ∅ iff for all applicable plans i ∈ Π , we have
that p(tg, b′, tπ, ts, tπ′) 6= i.

– 〈σ, γ,Π,D〉 |= b1&b2 | θ iff 〈σ, γ,Π,D〉 |= b1 | θ and 〈σ, γ,Π,D〉 |= b2 | θ

Given a plan base Π , in order to determine which plans can be executed, we define
the relation “>” over plans in Π as follows. Given

i1 = (g1, b1, π1, s1, π
′
1)

i2 = (g2, b2, π2, s2, π
′
2)

we say that i1 > i2 iff p(g2, b2, π2, ,) occurs in b1 (is a subformula of b1). We use the
notation underscore as in Prolog for representing any value. This means i1 is created
because of the existence of i2 and we shall call i1 to be the meta plan (of i2). In each
deliberation cycle of the agent, we only execute the maximal meta applicable plan,
which could indirectly lead to the execution of the lower meta plans through the help of
the meta-actions for executing intentions.

Then, we define the set of active plans (those with the flag to be a), the set of roots
(the most meta applicable plan), the set of leafs (the least meta applicable plans or the
object applicable plans), and the set of executable applicable plans (only roots which
are not leafs are allowed to execute), respectively, with respect to a plan base Π as
follows:

active(Π) = {(g, b, π, a, π′) ∈ Π}
root(Π) = {i ∈ active(Π) |6 ∃i′ ∈ active(Π) : i′ > i}
leaf(Π) = {i ∈ active(Π) |6 ∃i′ ∈ active(Π) : i > i′}

executable(Π) = root(Π) \ leaf(Π)

Before defining transition rules for the operational semantics of Meta-APL, let us
model an environment by two functions env percept and env perform. The ef-
fect of each function is as follows:

– env percept(σ, γ, e) takes a belief base σ, a goal base γ, and the environment e
as arguments. This function returns a pair of an updated belief base and an updated
goal base. The current implementation assumes that percepts are atomic formulas,
and the updated belief base is obtained by adding new beliefs and removing incor-
rect beliefs according to the percepts from the environment. Likewise, the updated
goal base is obtained by adding new goals and removing achieved goals, also, ac-
cording to the percepts from the environment.

– env action(α, e) takes a basic action and the environment as argument. This
function performs the action on the environment. For the moment, we assume that
this function returns the value true or false where it only returns true iff the basic
action is supported by the environment.

At the beginning of a deliberation cycle, an agent always updates its belief base and
goal base. The transition rule for the phase of updating percepts is as follows.

env percept(σ, γ) = (σ′, γ′)

〈σ, γ,Π,UpdatePercept〉 → 〈σ′, γ′, Π,ApplyRule〉
(1)

The transition above expresses the phase UpdatePercept where the belief base and
goal base are updated with the percepts. Apart from the belief base and the goal base
being updated, the phase indicator also changes from UpdatePercept to ApplyRule
so that the agent can start the next phase.

We say that a rule g, b→ π is applicable with respect to a configuration 〈σ, γ,Π,D〉
by a substitution θ iff the following conditions hold:

– γ |=g g,

– 〈σ, γ,Π,D〉 |= b | θ,
– There is no applicable plan (g, bθ, πθ,X, π′) ∈ Π where π′ 6= ε.

Let Applicable(〈σ, γ,Π,D〉) be the set of pairs of (ρ, θ) where ρ is an applicable rule
with respect to 〈σ, γ,Π,D〉 and θ is the corresponding substitution. Moreover, the last
condition is for avoiding the case when a rule may be fired more than once to produce
the same applicable plan. The transitions rules for the phase ApplyRule are as follows:

∃((g, b→ π), θ) ∈ Applicable(〈σ, γ,Π,ApplyRule〉)
〈σ, γ,Π,ApplyRule〉 → 〈σ, γ,Π ∪ {(g, bθ, πθ, a, πθ)},ApplyRule〉

(2)

The phase will change to the next one when there are no more applicable rules.

Applicable(〈σ, γ,Π,ApplyRule〉) = ∅
〈σ, γ,Π,ApplyRule〉 → 〈σ, γ,Π,Exec〉

(3)

Notice that programmers have the responsibility to make sure that the loop of ap-
plying applicable rules terminates. A neglectful design of rules can easily cause the
phase ApplyRule to run forever, for example if one of the rules is p(G,B,Π, a,X)→
exec(G,B,Π, a,X).

In the phase of executing applicable plans, we execute the first step of every exe-
cutable plan (those which are active, root and not leaf). Let us define transition rules
corresponding to each type of the first step as follows.

The following rule is for executing a basic action.

i = (g, b, π, a,#α;π′) ∈ executable(Π) and env action(α) = true

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉
(4)

When the basic action is not allowed (or supported) by the environment, the applicable
plan is put into the inactive state as follows:

i = (g, b, π, a,#α;π′) ∈ executable(Π) and env action(α) = false

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, na,#α;π′)},Exec〉
(5)

The test action simply checks if the belief query is true against the belief base.

i = (g, b, π, a, ?ϕ;π′) ∈ executable(Π) and σ |=naf ϕ
〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉

(6)

When it is not, the test action is not removed from the applicable plan.

i = (g, b, π, a, ?ϕ;π′) ∈ executable(Π) and σ 6|=naf ϕ
〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, na, ?ϕ;π′)},Exec〉

(7)

We execute a sub-goal by simply leaving it there and the programmer needs to define a
suitable rule to process the subgoal.

i = (g, b, π, a, !h;π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, ex, !h;π′)},Exec〉
(8)

The following rule is for the case of the meta-action for deleting beliefs:

i = (g, b, π, a,del-belief(d);π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ \ {d}, γ,Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉
(9)

The effect of the above rule is to remove the belief d from the belief base. Similarly, we
have the following rules for the case for adding a new belief.

i = (g, b, π, a,add-belief(d);π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ ∪ {d}, γ′, Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉
(10)

where γ′ = γ \ {g ∈ γ | σ ∪ {d} |= g}. Besides the effect of adding new beliefs, we
also remove achieved goals from the goal base. The following rule is for deleting a goal
from the goal base:

i = (g, b, π, a,del-goal(d);π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ \ {d}, Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉
(11)

Similarly, we have the following rule for adding a new goal into the goal base:

i = (g, b, π, a,add-goal(d);π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ′, Π \ {i} ∪ {(g, b, π, ex, π′)},Exec〉
(12)

where γ′ = γ ∪ {d} iff σ 6|= d; otherwise, γ′ = γ. This means d is added into the goal
base only when it is not an achieved goal.

The next transition rule is for deleting an applicable plan.

i = (g, b, π, a,del-plan(i′);π′) ∈ executable(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i, i′} ∪ {(g, b, π, ex, π′)},Exec〉
(13)

Then, we define the transition rules for the meta-actions for executing applicable
plans. In principle, the “exec” meta-action makes similar effect as executing the first
step of an intention.

For convenience, we also define a different transition rule, denoted as→i for exe-
cuting an active applicable plan i which is not required to be a root, but has to be active
(i.e. the flag is a). The definitions are the repetition of those above for the execution
phase where we replace the condition i ∈ executable(Π) by i ∈ active(Π). Then for
every transition rule of the form 〈σ, γ,Π,Exec〉 → 〈σ′, γ′, Π \ {i} ∪ {i′},Exec〉, we
also define:

i ∈ active(Π)

〈σ, γ,Π,Exec〉 →i 〈σ′, γ′, Π \ {i} ∪ {i′},Exec〉
(14)

Notice that the transition rules→i are not the operational semantics of Meta-APL but
we use them as auxiliary transition rules for defining the operational semantics of the
meta actions exec and step of Meta-APL. We shall define the transition rule for the
meta-action exec(i′) based on→i′ as follows:

i = (g, b, π, a,exec(i′);π′) ∈ executable(Π) and
〈σ, γ,Π,Exec〉 →i′ 〈σ, γ′, Π \ {i′} ∪ {i′′},Exec〉

〈σ, γ,Π,Exec〉 → 〈σ′, γ,Π \ {i, i′} ∪ {i′′, (g, b, π, ex, π′′)},Exec〉
(15)

where π′′ = exec(i′′);π′ if i′′ is not an empty plan; otherwise π′′ = π′. The above
rule means that if we have an executable applicable plan which starts with exec(i′),
and i′ can be executed by means of→i′ to become i′′, then exec(i′) means to execute
i′ and to change to exec(i′′). The semantics step(i′) is similar to exec(i′) except
that the action step(i′) does not execute the remainder i′′ of i′. The transition rule for
this meta-action is as follows:

i = (g, b, π, a,step(i′);π′) ∈ executable(Π) and
〈σ, γ,Π,Exec〉 →i′ 〈σ′, γ′, Π \ {i} ∪ {i′′},Exec〉

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i, i′} ∪ {i′′, (g, b, π, ex, π′)},Exec〉
(16)

In both cases of the transition rules for exec and step, if i′ 6∈ Π or is inactive, then i also
becomes an inactive plan.

i = (g, b, π, a,exec(i′);π′) ∈ executable(Π) and i′ /∈ active(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, na,exec(i′);π′)},Exec〉
(17)

We also have:

i = (g, b, π, a,step(i′);π′) ∈ executable(Π) and i′ /∈ active(Π)

〈σ, γ,Π,Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b, π, na,step(i′);π′)},Exec〉
(18)

Notice that the new definition of the transition rules→ for the meta-actions exec
and step also implicitly gives extra definitions of the transition rule→i. This helps us
to define further transition rules for nested meta-actions exec and step.

Then, when there is no more executable plans, the phase turns back to UpdatePer-
cept for a new deliberation cycle. All plans have the flag “ex” are also changed to “a”
for further execution in the next deliberation cycle. We also have:

executable(Π) = ∅
〈σ, γ,Π,Exec〉 → 〈σ, γ,Π ′,UpdatePercept〉

(19)

where Π ′ = (Π \ {(g, b, π, ex, π′) ∈ Π}) ∪ {(g, b, π, a, π′) | (g, b, π, ex, π′) ∈ Π∧
π′ 6= ε} ∪ {(g, b, π, na, ε) | (g, b, π, ex, ε) ∈ Π}.

In the above transition rule, when transiting from the phase Exec back to Update-
Percept in the deliberation cycle, all applicable plans in the plan base with the flag
being ex are changed back to a so that they are ready for further execution, except those
have an empty plan (denoted as ε) which are changed to the state inactive.

4 Simulating 3APL

In this section we show how to translate agent programs of 3APL into Meta-APL. Both
languages share similar features, but have different deliberation cycles. We show how
meta rules can be used to simulate deliberation cycle of other languages in Meta-APL.

First we define what we mean by simulating one program by another program.
We use the concept of weak bisimulation [5]. We treat transitions other that basic
actions as internal or τ actions. By a run of a program we will mean a sequence

s0
a0−→ s1

a1−→ s2 . . . where si are agent’s configurations and ai are transitions of
the agent’s operational semantics which are either basic actions or other internal τ tran-
sitions. Two runs r = s0

a0−→ s1
a1−→ s2 . . . and r′ = s′0

a′0−→ s′1
a′1−→ s′2 . . . are

equivalent if there is a symmetric relation R (later referred to as equivalence) between
the configurations in r1 and r2 such that:

– R(s0, s
′
0)

– if R(s, s′) then the agent’s beliefs about environment in s and s′ are the same
– if R(s, s′) and s τ∗−→ t1

a−→ t2 in r, then s′ τ∗−→ t′1
a−→ t′2 in r′ and R(t2, t′2),

where τ∗ is a sequence of 0 or finitely many internal transitions, and a is the first
basic action occurring after s

Intuitively, R(s, s′) means that in configurations s and s′ the agent has the same beliefs
and goals.

We say that a program p1 simulates another program p2 iff:

– For every run r1 of p1, there is a run r2 of p2 such that r1 and r2 are equivalent.
– For every run r2 of p2, there is a run r1 of p1 such that r2 and r1 are equivalent.

In this paper we show how to translate a program p2 of some agent programming lan-
guage into a program p1 of Meta-APL so that p1 simulates p2.

4.1 3APL

In this paper, we refer to 3APL as the agent programming language which was presented
in [2]. Since the version of Meta-APL introduced in this paper for simplicity only al-
lows propositional beliefs and goals, we show how to simulate propositional 3APL pro-
grams, but the extension to full 3APL beliefs and goals is straightforward. Moreover,
we also slightly modify 3APL in order to omit the plan constructs if-then-else
and while-do.

An agent in 3APL can have three types of rules:

– PG (plan generation) rule: g ← b | π
– GR (goal revision) rule: g ← b | g′
– PR (plan revision) rule: π ← b | π′

Where g and g′ are goals, b is a belief query, π and π′ are plans. A plan π is a sequence
of basic actions, test actions and abstract plans. Moreover, test actions are of the form
B(ϕ) only. Branching and looping constructs (if-then-else and while-do) in a plan are
not allowed as they can be translated into rules in 3APL using abstract plans. Note that
omitting if-then-else and while-do in plans does not reduce the expressiveness
of 3APL as they can be represented by abstract plans by using PG and PR rules. For
example, the following PG rule of 3APL:

g ← b | π;if b′ then π1 else π2 end-if;π′.

is translated into an abstract plan by one PG rule and two PR rules as follows:

g ← b | π; abs;π′.
abs← b′ | π1.

abs← ¬b′ | π2.

Similarly, the while-do construct

g ← b | π;while b′ do π1 end-while;π′.

is translated into abstract plans as follows

g ← b | π; abs;π′.
abs← b′ | π1; abs.

abs← ¬b′ | ε.

In order to prove the correctness of the simulation, we need to show the equivalence
between runs in 3APL and those by the simulation. Firstly, we specify a deliberation
cycle of 3APL. A basic deliberation cycle of 3APL is as follows:

1. Apply applicable rules.
2. Execute plans.

However, we have not defined in detail each of the above two stages. In the stage of
applying applicable rules, two extreme approaches are either to apply only one rule,
or to apply all the rules until no more are applicable (more precisely, compute a set
of applicable rules, if it is not empty, choose a rule and apply it, recompute the set of
applicable rules, etc. until the set of applicable rules is empty). In the stage of plan
execution, a common approach is to pick a plan and to execute one step. If plans for
executing a step are selected randomly, we call this an interleaved execution method.
Otherwise, if a selected plan is executed completely before any other plan’s steps are
selected, we called this a non-interleaved execution method.

In order to demonstrate how to simulate 3APL by means of Meta-APL, we choose
the following approach to define how the rule application is done:

1. Apply all applicable PG rules (in any order).
2. Continuously pick an applicable PR rule and apply until no more are applicable.

The two different methods of plan executions are considered in the next sections.

4.2 Simulating interleaved deliberation cycle of 3APL

Firstly, we translate a plan π in 3APL into Meta-APL by translating each element of π.
Let us denote the translated plan as tr(π).

We translate each type of rules into the corresponding ones in Meta-APL as follows:

– A PG rule g ← b | π is translated into: g, b→ tr(π).
– A GR rule g ← b | g′ is translated into the following rule:

g, b & ¬p(g, ,del-goal(g);X, a,)→ del-goal(g);add-goal(g′).

The above rule is for replacing a goal g in the goal base with another goal g′.
Comparing to the original rule in 3APL, the guard of the translated rule has an
extra condition ¬p(. . .) which is for preventing from applying the same rule and
other rules for revising the same goal g once this rule has been fired.

– A PR rule π ← b | π′ is translated into the following rule:

p(G,B, P, a, tr(π)) & b &

¬p(G′, p(G,B, P, a, tr(π)) & B′, P ′, a,del-plan(G,B, P, a, tr(π));X)

→ del-plan(G,B, P, a, tr(π)); tr(π′).

The above rule is for revising a plan tr(π) in the plan base with another plan tr(π′).
Similar to the case of GR rules, the guard of the translated rule also has an extra con-
dition ¬p(. . .) which is for preventing from applying the same rule and other rules for
revising the same plan tr(π) once this rule has been fired.

Then, we implement the interleaved deliberation cycle. Below are the rules for im-
plementing the interleaved deliberation cycle of 3APL:

¬p(G1, B1, P1, a,step(G2, B2, P2, a, Y)) & p(G3, B3, P3, a,X)

→ step(G3, B3, P3, a,X).

p(G1, B1, P1, a,step(G2, B2, P2, a,X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′)

→ del-plan(G1, B1, P1, a,step(G2, B2, P2, a,X)).

p(G1, B1, P1, a,step(G2, B2, P2, a,X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′)

→ step(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′).

p(G1, B1, P1, a,step(G2, B2, P2, a,X))

& X 6= del-plan(G3, B3, P3, a, Y);Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a,X);X ′)

& p(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z);Z ′)

→ step(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z);Z ′).

p(G1, B1, P1, a,step(G2, B2, P2, a,X))

& X 6= del-plan(G3, B3, P3, a, Y);Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a,X);X ′)

& p(G5, B5, P5, a,exec(G6, B6, P6, a, Z))

→ step(G5, B5, P5, a,exec(G6, B6, P6, a, Z)).

We also have the following rule for executing the rules which translate GR rules:

p(G1, B1, P1, a,del-goal(G);Z)→ exec(G1, B1, P1, a,del-goal(G);Z).

The first rule selects an arbitrary plan in the plan base for execution but of only one
step. Then, once applied, the rule is not applicable any more in that cycle, hence, we

can prevent selecting another plan to apply at the same cycle. When a plan is selected
to execute but it is also selected to be revised by another rule, we transfer the selection
to the newly revised plan by means of the next two rules. Finally, the last two rules are
there blocking the above selection when there are the application of rules to revise plans
or goals where they generate plans starting with either del-plan or exec.

Let us revisit the example in [3] as an illustration of how the translation from 3APL
into Meta-APL works. The example is about moving blocks on a floor to a desired
configuration by an agent which has the power to put a block which has nothing on the
top on the floor or on top of other block which also has no block on top. In the example,
there are three blocks namely a, b and c. The initial setting is that a and b are on the
floor while c is on top of a. The desired setting is that c is on the floor, b is on c and a is
on b.

In 3APL, the program of the agent is as follows:

– Belief base: on(a, floor), on(b, floor), on(c, a)
– Goal base: on(c, floor) ∧ on(b, c) ∧ on(a, b)
– Rule base:

on(X,Y)← ¬on(X,Y) | clear(X); clear(Y);move(X,Y).

clear(X);Z ← on(Y,X) ∧X 6= floor | clear(Y);move(Y, floor);Z.

clear(X);Z ← ¬on(Y,X) | Z.
clear(floor);Z ← > | Z.

The set of rules above is translated into Meta-APL as follows:

on(X,Y),¬on(X,Y)

→!clear(X); !clear(Y);#move(X,Y).

p(G,B, P, a, !clear(X);Z) & on(Y,X) & X 6= floor

& ¬p(G′, p(G,B, P, a, !clear(X);Z) & B′, P ′, a,

del-plan(G,B, P, a, !clear(X);Z);Z ′)

→ del-plan(G,B, P, a, !clear(X);Z); !clear(Y);#move(Y, floor);Z.

p(G,B, P, a, !clear(X);Z) & ¬on(Y,X)

& ¬p(G′, p(G,B, P, a, !clear(X);Z) & B′, P ′, a,

del-plan(G,B, P, a, !clear(X);Z);Z ′)

→ del-plan(G,B, P, a, !clear(X);Z);Z.

p(G,B, P, a, !clear(floor);Z)

& ¬p(G′, p(G,B, P, a, !clear(floor);Z) & B′, P ′, a,

del-plan(!clear(floor);Z);Z ′)

→ del-plan(!clear(floor);Z);Z.

Notice that the above rules are in the abbreviated form.
We sketch here the proof that one cycle in 3APL corresponds to one or more cycles

in the simulation by Meta-APL (hence the runs of the two programs are equivalent).
There are two cases:

1. Consider a cycle in 3APL, if there are no PR and GR rules applicable, at the end of
the cycle, a plan is selected for execution. The corresponding run in Meta-APL also
contains only a single cycle, as no rules into which PR and GR rules are translated
are applicable, there is no plan starting with del-plan or exec, hence, a plan
which is selected for execution of one step is not blocked. The corresponding cycle
is chosen by selecting the corresponding plan in the case of 3APL.

2. Consider a cycle in 3APL where some PR or GR rules are applicable, at the stage
of applying PR and GR rules, it is repeated until no more PR and GR rules are ap-
plicable. We define sequences of PR rule application which are sequences of plans
π0, . . . , πk where πi is obtained by appling some PR rule to revise πi−1for all i ≥ 1.
We also define a sequence of GR rule application as a sequence of goals g0, . . . , gm
where gi is replaced by applying some GR rule for all i ≥ 0. Then, let n + 1 be
the length of the longest sequence among sequences of PR rule applications, then
we construct a run in Meta-APL containing n + m + 1 cycles where the starting
and ending configurations are equivalent to configurations in 3APL before and af-
ter the cycle, respectively. In the first cycle, we apply all translated PR rules which
are applicable by following the order of PR rule application in 3APL (ignore those
which is not applicable yet). Of course, since some PR rule is applied, any plan
which is selected for execution is blocked. We repeat this again and again and after
n cycles, we must reach a configuration where no more PR rules are applicable.
Then, the next cycles are for applying GR rules in the order of the corresponding to
the sequence of GR rule application. The final cycle is just for selecting the corre-
sponding plan in 3APL for execution (and it is not blocked as no more PR and GR
rules are applicable).

The reverse direction can be shown similarly.

4.3 Simulating non-interleaved deliberation cycle of 3APL

In this section, we simulate the non-interleaved deliberation cycle of 3APL. In this
deliberation cycle, we keep executing a plan and any plans which revise this plan until
it becomes empty. The implementation of the non-interleaved deliberation cycle is quite
similar to the case of interleaved deliberation cycle as in the previous section except that
we interchange the use of the meta-actions step and exec.

In particular, we keep the function tr to translate plans, the translation of PG, GR
and PR rules from 3APL to Meta-APL unchanged. The only difference comparing to
the case of the interleaved deliberation cycle of 3APL is the implementation of the non-
interleaved deliberation cycle. The rules to implement the non-interleaved deliberation
cycle of 3APL are as follows:

¬p(G1, B1, P1, a,exec(G2, B2, P2, a, Y)) & p(G3, B3, P3, a,X)

→ exec(G3, B3, P3, a,X).

p(G1, B1, P1, a,exec(G2, B2, P2, a,X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′)

→ del-plan(G1, B1, P1, a,exec(G2, B2, P2, a,X)).

p(G1, B1, P1, a,exec(G2, B2, P2, a,X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′)

→ exec(G3, B3, P3, a,del-plan(G2, B2, P2, a,X);X ′).

p(G1, B1, P1, a,exec(G2, B2, P2, a,X))

& X 6= del-plan(G3, B3, P3, a, Y);Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a,X);X ′)

& p(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z);Z ′)

→ step(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z);Z ′).

p(G1, B1, P1, a,exec(G2, B2, P2, a,X))

& X 6= del-plan(G3, B3, P3, a, Y);Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a,X);X ′)

& p(G5, B5, P5, a,step(G6, B6, P6, a,add-goal(G);Z))

→ step(G5, B5, P5, a,step(add-goal(G);Z)).

p(G1, B1, P1, a,exec(G2, B2, P2, a,X))

& X 6= del-plan(G3, B3, P3, a, Y);Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a,X);X ′)

& p(G5, B5, P5, a,step(G6, B6, P6, a,del-goal(G);Z)))

→ step(G5, B5, P5, a,step(G6, B6, P6, a,del-goal(G);Z))).

Similar to the implementation of the interleaved deliberation cycle of 3APL, the first
rule is also to select a plan to execute by using the meta action exec. Since exec is
used, this selection of the plan to execute is still kept in the next deliberation cycle if it
does not become empty. We also have the next two rules is for changing the selection
of a plan to its parents when it is revised by some rule. Finally, the last three rules
are also for blocking the selected plan from being executed if some plans or goals are
revised. Notice that we have more than one rule comparing to the implementation of
the interleaved deliberation cycle of 3APL.

In order to execute the rules which translate GR rules, we have the following rules:

p(G1, B1, P1, a,del-goal(G);Z)→ step(G1, B1, P1, a,del-goal(G);Z).

p(G1, B1, P1, a,add-goal(G);Z)→ step(G1, B1, P1, a,add-goal(G);Z).

It is straightforward to prove that the translated program in Meta-APL simulates the
non-interleaved deliberation cycle of 3APL. The proof is similar to that of the inter-
leaved case in the previous section.

5 Conclusions and future work

We have introduced the syntax and operational semantics of Meta-APL. We have sketched
how it can be used to simulate programs written in other agent programming languages
together with their operational semantics. In our future work, we plan to develop au-
tomatic methods for producing provably equivalent translations of agent programs in
Meta-APL and a set of tools for automatically verifying properties of agent systems
implemented in Meta-APL.

References

1. M. Dastani, F. de Boer, F. Dignum, and J.J. Meyer. Programming agent deliberation: an
approach illustrated using the 3APL language. In The Second International Joint Conference
on Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14-18, 2003, Melbourne,
Victoria, Australia, Proceedings, pages 97–104. ACM, 2003.

2. M. Dastani, F. Dignum, and J.J. Meyer. 3APL: A Programming Language for Cognitive
Agents. ERCIM News, European Research Consortium for Informatics and Mathematics,
Special issue on Cognitive Systems, 2000.

3. Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer. A Program-
ming Language for Cognitive Agents Goal Directed 3APL. In Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, editors, Programming Multi-Agent Systems, First International
Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003, Selected Revised and Invited
Papers, volume 3067 of Lecture Notes in Computer Science, pages 111–130. Springer, 2003.

4. Louise A. Dennis, Berndt Farwer, Rafael H. Bordini, and Michael Fisher. A flexible frame-
work for verifying agent programs. In Lin Padgham, David C. Parkes, Jörg P. Müller, and
Simon Parsons, editors, 7th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Volume 3, pages 1303–
1306. IFAAMAS, 2008.

5. R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation seman-
tics. Journal of the ACM (JACM), 43(3):555–600, 1996.

