Finite element analysis of the proximal femur

P. Trikkas, A. Stamou and D. A. Eftaxiopoulos

School of Applied Mathematical and Physical Sciences National Technical University of Athens Greece

FreeFem++ Workshop 2009

Segmentation

- Computer tomography scans of the hip, from the Visible Woman Project, were used.
- The open source medical image tool Slicer, was used for the segmentation of the cortical and the trabecular part of the proximal femur.
- Automatic simple region growing and manual segmentation were combined.
- Two .stl files were created, one for each part of the bone, after surface smoothing was performed. The surface nodes were coincident on the interface between the two volumes.

Slicer coronal view

The two .stl files

Meshing, bonding and boundary condition surfaces

- The open source FE discretization tool Gmsh was used for meshing the volumes of the cortical and the spongy bone.
- Around 400000 tetrahedra were created.
- The bonding (welding) of the two volumes was achieved via a code in FreeFem++.
- New surface labels for the assignment of boundary conditions were created within Gmsh.

The bonding code

The boundary condition surfaces

The boundary condition volume

The material properties assignment code

```
int floios=reg(-141.642, -11.5074, 6.68015);
Ep=600.+17000.*(region==floios);
nu=0.3-0.02*(region==floios);
```

The Poisson's ratio distribution

The applied forces

The FE analysis code

```
solve Elasticity([u1,u2,u3],[v1,v2,v3],solver=CG)=
int3d(Th)((Ep*nu/((1.+nu)*(1.-2.*nu)))*div(u1,u2,u3)*
div(v1,v2,v3)+2.*(Ep/(2.*(1.+nu)))*
(epsilon(u1,u2,u3)'*epsilon(v1,v2,v3)))-
int3d(Th,55)(((-0.54/volume55)*836)*v1)-
.....
-int2d(Th,70)(((0.58/area70)*836)*v1)
```

The displacement magnitude

The maximum principal strain

The maximum shear strain

1.0000E-04 1.0000E-03 1.0000E-05 5.0000E-04 4.5998E-02

The maximum principal stress

The maximum shear stress

The Von Mises stress

The Von Mises stress

1.0193E+01 5.0564E+01 6.9550E-03 3.0378E+01 1.1208E+03

The strain energy density

Conclusions

- A linear finite element analysis of the proximal femur was performed.
- The maximum displacement magnitude occurs within the femoral head where the hip contact force is applied.
- The maximum tensile fracture risk in the cortex seems to be on the lateral part of the upper diaphysis and on the upper part of the femoral neck.

