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Abstract

Autonomous vehicles (AVs) attract a lot of attention recently. They are expected to

assist/replace the human drivers in maneuvering the vehicle, thereby reducing the like-

lihood of road accidents caused by human error, as a means to improve the road traffic

safety. However, AVs have their inherent safety and security challenges, which have to

be addressed before they are ready for wide adoption. This paper presents an overview

of recent research on AV safety failures and security attacks, as well as the available

safety and security countermeasures.

Keywords: Autonomous vehicle, safety, security, failures, attacks, countermeasures,

V2X communications, VANET, ITS.

1. Introduction

Many people get seriously injured or even lose lives in road accidents due to hu-

man errors, including drivers’ errors (e.g., driver’s inattention and distraction, reckless

driving, and poor driving skills), and other road users’ errors (e.g., violations of traffic

rules) [1]. Moreover, vehicle malfunction (e.g., brake failure), or environmental cir-5

cumstances (e.g., insufficient road information or lack of security infrastructure) affect

traffic safety as well [2]. To improve road traffic safety, a new type of vehicles has been

introduced, known as Autonomous Vehicle (AV), which enables a driving automation

system to replace human driver to control the vehicle with better recognition, decision
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and driving skills [3][4]. Furthermore, AVs can communicate with other vehicles, in-10

frastructure and pedestrians, as they are enabled with the vehicle to everything (V2X)

communication technology. Thus, the AVs, once widely deployed, are expected to

reduce human errors, optimize traffic flow, and ultimately enhance overall safety and

experience of road users [5][6].

AVs play significant role in assuring the safety of transportation systems. How-15

ever, AVs have their inherent safety and security challenges. If one component of

AV fails or is attacked, the in-vehicle network is impacted; then, the on-board com-

puter (’brain’ of AV) may issue the wrong command, and directly compromise traffic

safety [7]. For example, failed or tampered GPS (Global Position System) data affects

the localization of AV, and leads to traffic disturbance or crash hazard [8]. Furthermore,20

the wrong information will be exchanged between nearby AVs, which would be haz-

ardous. Thus, safety and security are crucial in AVs. Any failures (safety issues) and/or

attacks (security issues) may lead to major safety losses [9]. Adequate safety and secu-

rity countermeasures (CMs) have to be implemented to prevent and/or mitigate failures

and attacks.25

The motivation behind this paper is to provide and in-depth analysis of the issues

and available solutions related to AV safety and security in order to identify challenges

and future research directions of AVs. The paper:

• provides and overview of AV safety failures and security attacks;

• reviews available safety and security countermeasures, applicable to AVs;30

• identifies open issues, challenges, and future research directions.

AV safety and security is a broad topic. Therefore, admittedly, this work may not

have fully or thoroughly covered all safety and security aspects of AV. More in-depth

discussion on VANETs (Vehicular ad hoc networks) related security challenges and

solutions can be found elsewhere [10][11][12][13] [14][15]. ITS (Intelligent Trans-35

portation System) related problems and the corresponding cryptographic solutions are

detailed in [16]. In [17], various cyberattacks on AV are investigated in terms of fea-

sibility, severity, preventability, etc. Besides providing an overview of the AV related
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cybersecurity vulnerabilities and mitigation efforts, [18] also presents a list of knowl-

edge gaps which may be used as a road-map to addressing the cybersecurity challenges40

in the connected and autonomous vehicle sector.

The aforementioned works mainly focus on security issues. However, in AVs, se-

curity and safety are inter-related, as both the failures and the attacks may lead to the

safety losses. Thus, we discuss the safety failures, security attacks, and corresponding

countermeasures collectively to provide a more comprehensive overview of state of the45

art and challenges of AVs as compared to the other studies.

The rest of paper is organized as follows. Section 2 describes the AVs and their

communication networks. Section 3 summarizes the potential failures of AVs and de-

scribes the corresponding safety countermeasures. Section 4 presents the potential at-

tacks on AVs and the associated countermeasures. Section 5 addresses the open issues,50

challenges, and future research direction, and finally, Section 6 concludes the paper.

2. Autonomous vehicle and its communication networks

According to standard SAE J3016 [19], there are six levels of autonomy to classify

self-driving cars; these levels, which are basically a progression of self-driving features,

range from 0 (having no self-driving features at all) to 5 (fully-autonomous driving).55

In general, AVs differ from conventional vehicles in the following ways: 1) relatively

more sensors are equipped on AVs to perceive the surrounding environments; 2) the

computer is to assume the role of the human driver in maneuvering the vehicle; 3)

via V2X technology, AVs could communicate with any compatible systems including

AVs, infrastructure and pedestrians. Note that the term V2X encompasses V2V, V2I60

and V2P; V2V refers to Vehicle-to-Vehicle; V2I - Vehicle-to-Infrastructure; V2P -

Vehicle-to-Pedestrian [20].

Fig. 1 illustrates the major components of an AV as well as the communication be-

tween AVs and other systems (e.g., Roadside Unit). The AV’s sensors such as radar,

camera, and LiDAR (Light Detection and Ranging) are responsible for sensing vehi-65

cle’s dynamics (e.g., location and speed) as well as its immediate environment (e.g.,

distances to neighboring vehicles, road traffic conditions, and traffic signs) [21][22].
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The on-board computer processes this information and then commands the ECUs,

which control their corresponding actuators accordingly to achieve desired movement

speed and direction.70

AV domain

V2X domain

Infrastructure 

domain

RSU RSU

ECU1 ECUn

Actuators and 

sensors

Actuators and 

sensors

LiDAR
Camera

Radar Radar

GPS

receiver

WiFi, Cellular...

On-Board

Computer

Figure 1: AVs and their communications. (RSU - Road Side Unit; LiDAR - Light Detection and Ranging;

ECU - Electronic Control Unit; GPS - Global Position System.)

The connections between on-board computer, external sensors, ECUs, and actua-

tors form an in-vehicle network (also called the on-board network). Global Navigation

Satellite System (GNSS) is often used by AVs to obtain accurate location information.

As AVs are network-enabled, the failures and attacks on an AV could also affect

the connected ones. The network formed among vehicles and infrastructure via V2V75

and V2I communications is known as VANET (Vehicular ad hoc network) [23][24].
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VANET enables the information to be relayed among the connected cars and infras-

tructure.

VANETs are key parts in the Intelligent Transportation System (ITS) framework [25][26].

The ITS shall integrate and analyze the shared information in order to optimize the80

traffic management for improved safety, efficiency and mobility of the transportation

system. For example, ITS can dispatch vehicles away from congested areas, and dy-

namically adjust the road speed limits at on-peak and off-peak times.

3. Potential Failures of AVs and Available Safety Countermeasures

The failures that may jeopardize the AVs and the road users can be categorized into85

two groups [27][28]: 1) failures related to AV components (VF); 2) failures related to

infrastructure (IF). Fig. 2 shows the composition of VF: VF1 - hardware system fail-

ures (e.g., integration platform failure, sensor failures, actuator failure and controller

failure), VF2 - software failures, VF3 - vehicle mechanical failures, VF4 - failures of

the communication system (e.g., V2X communication system, in-vehicle communica-90

tion system), and VF5 - interaction platform failure (e.g., wrong human command, or

system fails to detect human command). VFs affect the AV performance and could

endanger road users’ safety.

 

Failures related to 
Vehicle Components 

(VF)

VF1. Hardware 
system failure

VF1.1

Integration 
platform failure

VF1.2

Sensor 
failure

VF1.3

Actuator 
failure

VF1.4

Controller 
failure

VF2. 
Software 

failure

VF3. Vehicle 
mechanical 

failure

VF4. 
Communication 
system failure

VF5. Interaction 
platform failure

Figure 2: Failures related to AV components.

Based on the traffic safety information analysis [29][30][31], failures related to in-

frastructure, IF, include the failures of IF1 - other road users (e.g., cyclist, pedestrian,95
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other vehicles on the road), IF2 - weather, IF3 - construction zones, IF4 - road con-

ditions (e.g., improper lane marking, and improper pavement conditions), and IF5 -

traffic signals and signs (e.g., traffic signal failure, and traffic sign failure), as shown in

Fig. 3. IF affects the driving environments, such as reducing visible area, bad pavement

conditions, and unsafe traffic signs, thereby increasing the possibility of road accidents.100
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Figure 3: Failures related to transportation infrastructure.

Safety countermeasures (CMs) are the technologies or policies, which may reduce

the likelihood of safety failures, or mitigate the failures. CMs can be classified into two

groups: 1) CMs that can be applied on the infrastructure; 2) CMs that can be applied

on the vehicle. AV safety failures and the corresponding countermeasures are shown105

in Fig. 4. The following subsections describe safety countermeasures in more detail.

3.1. Safety Countermeasures Applicable to Infrastructure

[32] [33] [34] and [35] describe several safety CMs that have been proposed and/or

implemented. Based on the countermeasure location, this type of CM can be fur-

ther classified into intersection-based and segment-based countermeasures [36]. Fig. 4110

shows the safety countermeasures and related failures.

3.1.1. Segment-based countermeasures

Segment-based CMs include the safety measures that can be achieved on the road

segment:
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Figure 4: AV safety countermeasures and the corresponding failures. (VF - vehicle component failures;

IF - infrastructure failures; OV - countermeasures applied On Vehicle; OI - countermeasures applied On

Infrastructure)

7



• Speed limit reduction: Lowering the speed limit could reduce the likelihood of115

speeding. This can be a CM for IF5.2 traffic sign failure.

• Pedestrian barrier is installed on the roadway medians or verges to prevent the

pedestrian from crossing the roadway recklessly. This can be a CM for IF1.2

pedestrian misbehavior.

• Bus lane, a separate lane for bus, which could improve the bus travel by reducing120

the delays caused by other traffic. This can be a CM for IF1 other road user

misbehavior (i.e., bus misbehavior). In addition, reasonable bus lane is proper

lane marking to lessen conflict/interaction between buses and cars and lessen

traffic congestion, which improve the road conditions (CM for IF4).

• Bike lane could ease the cyclists by reducing the delays caused by other traffic.125

This can be a CM for IF1.1 cyclist misbehavior. Similar to bus lane, bike lane

can also be considered as CM for IF4.

• Speed bump, which is intended to vertically deflect the vehicle, thereby reducing

its movement speed. If a road-side sign of slow speed is broken or missing,

the speed bump can be considered as alternative sign for vehicles, i.e., a CM to130

mitigate the impact of IF5.2 sign failure.

• Construction zone sign is intended to notify and keep the road users away from

the construction zone. This sign is necessary for IF3 construction zone. More

construction zone signs along road side is helpful to decrease the impact of IF5.2.

3.1.2. Intersection-based countermeasures135

Intersection-based CMs are the safety measures, which can be achieved on inter-

section [37]:

• Split phase timing: the division of a signal phase of one direction shared by

through traffic, turning vehicles, and crossing pedestrians into two protected

phases: a protected pedestrian crossing phase and a protected vehicle turning140

phase. This measure is used for mitigating IF1.2 pedestrian misbehavior, and

decreasing the impact of IF5.2 traffic signal failure.
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• Left-turn phase, which changes the signal phasing from permissive to protect-

ed/permissive or protected-only, which can be considered to ease IF1.2 pedes-

trian misbehavior, and reduce the impact of IF5.1 signal failure.145

• Increasing pedestrian crossing time: an increase in the length of signal phases on

the main and/or cross streets so that pedestrians have more time crossing streets.

This way can be used to mitigate IF1.2 pedestrian misbehavior, and conquer

IF5.1 traffic signal failure.

• High visibility crosswalk. A crosswalk with series of longitudinal white stripes,150

intended to increase awareness of pedestrians at intersections by using highly

visible marking patterns. This CM is used for mitigating IF1.2 pedestrian mis-

behavior, and improving road condition to lighten IF4.1.

• Left-turn bay: a storage area of some length for left-turning vehicles at an inter-

section, reducing the need for through traffic to decelerate or change lanes near155

the intersection in order to by-pass left-turning vehicles. This bay can make the

road marking better to overcome IF4.1 improper lane marking and IF5.2 traffic

sign failure.

• Signal installation can reduce the likelihood of IF1 road users misbehavior. Rea-

sonable and dense signal installation can decrease the probability of IF5.1 traffic160

signal failure.

3.1.3. Effectiveness of infrastructure safety countermeasures

The US highway safety manual [38] points out that proper countermeasures applied

on the infrastructure can effectively reduce road accidents. For example, pedestrian

barrier and high visibility crosswalk reduce 71% of crashes involving pedestrians walk-165

ing along roadways. Left-turn bay and phase reduce 54% in injury and fatal crashes in

Missouri [39] and 30% in intersection-related injury crash rate [40]. Split phase tim-

ing and increasing pedestrian crossing time brings 60% reduction in pedestrian-vehicle

crashes at intersections [41].
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3.2. Safety Countermeasures Applicable to Vehicle170

Corresponding to active safety and passive safety, the countermeasures applied on

the vehicle also can be classified into active and passive ones, as shown in Fig. 4. Ac-

tive CMs provide active safety features, which aim to prevent the vehicle from crash-

ing, while passive CMs serve to protect the vehicle users during a crash. Active CMs

include several driving assistance methods and AV specific countermeasures. Passive175

CMs consist of crash-worthy system or devices and the conspicuity of vehicle.

3.2.1. Active countermeasures

Active countermeasures can be classified into driving assistance methods and AV-

specific methods, as shown in Fig. 4. Driving assistance technologies can be used

for conventional vehicles and AVs. Table 1 demonstrates several driving assistance180

methods and their targeted failures.

Besides the driving assistance technologies, AV-specific countermeasures are also

proposed. As discussed in [42], no single type of sensors (e.g., radar, camera, and

LiDAR) should work well in sensing the surroundings in all kinds of conditions, thus

additional/redundant sensors/data would lead to more reliable estimation. Thus, multi-185

sensor fusion is required in AVs [43][44]. With redundant information, measurement

precision can be enhanced. In addition, with multi-sensor fusion, VF1.2 sensor failure

can be mitigated to some extent. To achieve multi-sensor fusion on AVs, combined

centralized and distributed architectures for hardware and software are needed [45].

Such architectures can also help alleviate VF1 hardware failure and VF2 software fail-190

ure. Freedom From Interference (FFI) can be a CM for VF2, as it ensures that a fault

in a less safety critical software component would not cause a fault in a more safety

critical component. FFI can be achieved by applying task monitors, watchdog timer,

or some other software [46]. Runtime Monitoring observes and checks if there is any

violations of some well-defined properties in the system; the detected violations ought195

to be tackled accordingly, thus it can be used to detect software failures (as CM for

VF2), communication system failure (as CM for VF4), and interaction platform failure

(as CM for VF5) [47][48].
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CM Description of CM Targeted

failures

Automatic braking [49] Activate the vehicle’s brake system automatically when neces-

sary

IF1

Night-vision system [50] Uses a thermo-graphic camera to improve the visibility on the

things ahead of the vehicle especially in darkness and poor

weather

IF2, IF4

Adaptive headlamps [51] Adjust the headlamps’ angle automatically for better visibility

on the road

IF1,

IF2, IF4

Reverse sensors [52] Notify the driver when there is an obstacle behind the vehicle

during reversing

IF1

Backup camera [53] Improve rear visibility to avoid collision while reversing IF1

Adaptive cruise con-

trol [54]

Adjust surrounding vehicle’s speed and distance accordingly

to keep the vehicle at a safe distance from the traffic ahead and

neighboring

IF1

Lane departure warning

systems [55]

Alert the driver when the vehicle leaves the lane unintention-

ally

IF4

Automatic parking [56] Help maneuver the vehicle from a traffic lane into a parking

spot to perform parallel, perpendicular, or angle parking

IF1

Tire pressure monitor-

ing [57]

Notify the drive when the pneumatic tire of the vehicle is sig-

nificantly under-inflated

VF3

Anti-lock braking sys-

tem [58]

Avoid the vehicle from uncontrolled skidding by preventing its

wheel from locking up while braking

VF3

Table 1: Description of several driving assistance methods.

3.2.2. Passive countermeasures

Passive CMs aim to provide passive safety features, e.g., to keep the driver and pas-200

sengers protected within the vehicle from various crash forces [59]. Modern vehicles

contain what engineers sometimes refer to as a life space. The life space is a protected

area around vehicle users (i.e., driver or passengers) within which the chances of es-

caping a crash with minimal injuries are more likely [60]. Passive CMs work to ensure

that this life space is as safe as possible, and that vehicle users remain in this space205

throughout the crash. Crash-worthy system/device is one type of passive CMs. Crum-

ple zone, seat belt, airbag, headrest and laminated windshield are common examples of
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crash-worthy system/devices. Crumple zone help to absorb and distribute crash forces

before they reach the passenger and driver’s seat. Similarly, seat belts, airbags, and

headrests help keep the driver and passengers stationary within the life space of the210

vehicle. Laminated glass is strong enough to keep flying objects from penetrating a

vehicle’s windshield and hurting vehicle users.

Vehicle conspicuity, such as vehicle’s color, lights and reflectors, is another type

of passive CMs. The conspicuity can make other road users aware of the vehicle,

committed to reducing other road users’ error. Thus, conspicuity can be CM for IF1.215

Underwood et al. study how conspicuity influences drivers’ attention and manoeu-

vring decisions in a T-junction [61], and point out that high saliency vehicles make the

road users have higher percentage of decisions that it would be safety to pull into the

junction, and with less decision time.

3.3. Higher Level Insights into AV Safety220

From the overview of safety failures and corresponding safety countermeasures,

presented in this section, we can derive the following insights:

• current research focuses mostly on regular vehicles, while the safety of AV is not

adequately addressed yet. In particular, more effort should be paid on analysis

of AV software failures and possible consequences;225

• most of the currently available safety countermeasures are applicable to AVs.

However, there is a lack of information on their effectiveness. We were able

to find some information on the effectiveness of infrastructure safety counter-

measures (see Section 3.1.3), however the effectiveness of the countermeasures

applicable to AVs is not evaluated yet;230

• AV manufacturers are responsible for development of safety countermeasures

applicable to AVs. However, the development of countermeasures applicable to

infrastructure requires more effort from governments and regulators. Finally, as

the road users, the public should obey the traffic signs and rules, jointly main-

taining the traffic safety.235
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4. Potential Attacks on AVs and Available Security Countermeasures

In-vehicle communication and V2X communication are crucial to ensure the func-

tionality of AV. However, they are vulnerable to various security attacks.

Fig. 5 shows the channels by which the attacks could land on the AV. Apparently,

the attack surface increases as the network expands. In Fig. 5, all the connections to240

V2X network can be attacked. Regarding the in-vehicle communication, the connec-

tions under controller network (e.g., the connections between CAN Bus and ECUs, the

ECUs inter-connections, the connections between ECUs and actuators, and internal

sensors and actuators themselves) can be attacked. Moreover, the connections to on-

board computer, which include physical connections (e.g., Ethernet, USB to sensors,245

HMI and brought-in devices) and wireless connections (e.g., WiFi to other devices/in-

terfaces), cause a greater possibility of attack. Relevant attacks and corresponding

countermeasures are discussed in the following subsections.
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Figure 5: Potential attacks on AV and AV communication networks.

The main security requirements with respect to AVs, VANETs and ITS are as fol-

lows [62][63] [64][65]:250

1) Authenticity/identification. The user, source and location must be authentic.

User authentication is to prevent falsified entities attacks. Source authentication

is to ensure that the data are generated by legitimate entities. Location authenti-

cation is to ensure the integrity and relevance of the received information.

2) Availability. The exchanged or shared information must be processed and made255

available in real time.

3) Data integrity/data trust. The received data must be free from malicious or unau-

thorized modification, manipulation or deletion during transmission.
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4) Confidentiality/privacy. The exchanged data must not be disclosed to malicious

or unauthorized users.260

The attackers may be active or passive, external or internal, and malicious or ratio-

nal, as described in [66]. Active attacker sends malicious packets to harm other nodes

in the network, while passive attacker often eavesdrop on the communication inside the

network to obtain useful information. External attackers are usually not authenticated,

and and they mainly aim to compromise the confidentiality and availability of the sys-265

tem, whereas internal attackers are parts of the network and can perpetrate any kinds of

attacks. Malicious attackers seek no personal benefits but would employ any means to

jeopardize the network, while rational attackers seek personal benefit and their attack

means and targets are relatively predictable.

4.1. Security Attacks on AV Network and Corresponding Countermeasures270

The V2X communication technology enables the AVs to exchange/share informa-

tion among themselves and any compatible systems, but also introduce security vulner-

abilities. In this section, we discuss the attacks for AV communication networks and

corresponding countermeasures.

4.1.1. Authenticity/Identification Attacks and Related Countermeasures275

Authenticity is a prime requirement in AV networking to ensure the protection of

the legitimate in-network entities against several attacks, including spoofing and replay

attacks. The common countermeasure for such attacks is authentication and crypto-

graphic scheme. Any flaws in the process of authentication/identification may cause

serious consequences to the entire network. Cryptographic scheme allows the receivers280

to verify the origin of the exchanged data. Some examples of authenticity attacks and

their corresponding countermeasures (as shown in Fig. 6) are as follows:

• Sybil attack: In the context of VANETs, sybil attack [67][68][69] means that a

malicious vehicle transmits the various messages with multiple fake or stolen

source identities to other nodes (e.g., AVs, or RSUs) in the network. Therefore285

legitimate/authenticated nodes consider the malicious messages to be legitimate
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Figure 6: Security attacks on Authenticity/Identification and their corresponding countermeasures.

and cannot detect the real identities of the attackers. To overcome this attack,

the truth of an attribute of a single piece of message claimed true by any en-

tity, should be confirmed using cryptographic scheme [70][71]. Moreover, the

authentication process should be further strengthened [72][73][74][75][76][77].290

For example, in [77], public-key cryptography is introduced into the pseudonym

generation so that the legitimate third parts can obtain the vehicles’ real IDs.

• Falsified entities attack means that the attacker passes information to the legit-

imate nodes through a valid network identifier [92]. The network identifier is

the certificate of AV/RSU required for exchanging data in the network. Thus,295

the falsified entities construct a violation of the authentication process. This

attack can be prevented by using more powerful authentication schemes, such

as [78][79] [80][81][82]. In [78], the RSU is utilized in verifying the message

and notifying the results to the vehicle. [79] improves secure and privacy en-
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hancing communication schemes to achieve security and privacy together. [93]300

proposes that the vehicles within the VANET must provide the authentication

proofs and somewhat contribute to the cooperative authentication protocol be-

fore they are allowed to benefit from other vehicles’ information. [94] and [95]

present cooperative message authentication protocols to alleviate vehicle’s com-

putation burden.305

• Replication attack means one or more nodes claiming an legitimate identity with

duplicate keys/certificates [96]. Several key management schemes have been

proposed, such as [83][84][85][86]. Taking [83] as an example, the key is gener-

ated by pairing-free certificated-less hybrid subscription scheme, which supports

key update and revocation with forward and backward key secrecy.310

• GNSS spoofing and injection attack is to falsify the location information with

counterfeit signals. Moreover, successful GNSS spoofing attack can facilitate

other attacks. This type of attack can be prevented by using encryption-based

technology, signal-process based methods and authenticated location informa-

tion [87][88][89].315

• Timing attack is to delay the transmission of the message. A delayed message is

hazardous especially for time-critical applications [70][97]. This attack can be

prevented by using authenticated timing methods [90][91]. Based on the concept

of transitive trust relationships, [90] propose a lightweight authentication scheme

to mitigate timing attack.320

4.1.2. Availability Attacks and Related Countermeasures

The requirement of availability is mandatory to ensure the safety of the involved

drivers and vehicles. Due to the major impact on the network resources, DoS attacks

are commonly recognized as the most serious threat to the availability of vehicle-related

systems. Authentication, detection and cryptographic solutions are usually employed325

to counter such attacks. In the following, several attacks on availability (as shown in

Fig. 7) and their corresponding CMs are described.
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• Jamming attack is to emit an interference signal to disrupt the communication

channel [98].Countermeasures for this attack include channel switching, technol-

ogy switching, frequency hopping and utilizing multiple radio transceiver [89],330

and detection [99].

Security attacks

Availability

Jamming attack

Authentication [89]

Detection [99]

Flooding attack

Authentication [64]

Malware attack

Anti-malware/Firewall [100]

Spaming attack

Authentication + Detection [97]

Denial of Service (DoS) attack

Authentication + Filtering [101][102][103]

Wormhole attack

Authentication [104]

Figure 7: Security attacks on Availability and their corresponding countermeasures.

• Flooding attack is to impede the communication channel by flooding it with a

huge volume of dummy messages generated by malicious nodes [105]. Authen-

tication schemes are typically employed to fend off the malicious nodes, thereby

preventing the flooding attack [64].335

• Malware attack is to jeopardize the network or software components of the sys-

tem (e.g., AV and RSU) via any form of hostile or intrusive software like com-

puter viruses [106]. Such attack can be mitigated by using anti-malware software
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and firewall [100].

• Spamming attack is to send unsolicited message in bulk through the network,340

thereby increasing the transmission latency [106]. This attack can be mitigated

by using appropriate authentication and detection schemes [97].

• Denial of Service (DOS) attack: major purpose behind a DoS attack is to prevent

legitimate entities from accessing the network services and resources [107]. The

aforementioned spamming attack and flooding attack are example types of DoS345

attack. It can also be known as DDOS (Distributed Denial of Service), when

multiple computers and/or Internet connections are used to launch the attack.

Authentication and packet filtering can limit the effects of DoS attacks [101]. He

et al. propose a pre-authentication scheme, which taking advantage of the one-

way hash chain and a group re-keying method to mitigate DoS attack in [102].350

Verma et al. designs a data structure to filter packets and detect abrupt change,

thereby avoiding DoS attack in [103].

• Wormhole attack means that the packets captured at one region of the network

are transmitted to another region of the network. This would confuse the rout-

ing mechanisms where the accuracy of the distance between entities inside the355

network is crucial [108]. To counter such attack, Safi et al. [104] propose a way

to restrict the packet’s maximum allowed transmission distance, which would

ensure that the recipient of the packet is within reasonable range of the sender.

4.1.3. Data Integrity/Data Trust Attacks and Related Countermeasures

Data integrity refers to the fact that the data must be intact and unchanged through-360

out its lifecycle. The attackers especially those having authenticated entities could

easily alter the data or create false data. Thus, secure communication and information

encryption are necessary to prevent/mitigate the attacks on data integrity. In the fol-

lowing, several attacks on data integrity (shown in Fig. 8) and their corresponding CMs

are described.365
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Security attacks

Data Integrity/Data Trust

Masquerading attack

Detection of malicious component [109]

Replay attack

Time stamping/secure communication [110][80][82]

Data alteration attack

Information authentication [97]

Data tampering attack

Information verification [111][112]

Map database poisoning attack

Remove location spoofing anomalies [113]

Confidentiality/Privacy

Eavesdropping attack

Secure communication [114][115][116]

Data interception attack

Privacy preserving [117][118][119]

Figure 8: Security attacks on Data integrity/Data trust, Confidentiality/Privacy and their corresponding coun-

termeasures.

• Masquerading attack means any attack that uses a forged identity to gain unof-

ficial access to the system [120]. For example, a malicious node disguises itself

as an emergency vehicle, and so the surrounding vehicles are tricked into slow-

ing down, changing lane, etc. in order to give way to it. Effective detection of

malicious component and authentication can be CMs to such attacks [109].370

• Replay attack: aka Playback attack, means that the data is fraudulently repeated

or delayed [120]. Duplicated data can be prevented by making use of the se-

quence number, time-stamp and secure communication [110][80][82].
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• Data alteration attack: this type of attacks breaks the data integrity by modi-

fying, deleting or altering the contents, which may inject false messages [70].375

Ensuring the authentication between AVs and for signing in-network messages

can be used to overcome data alteration attack [97].

• Data tampering attack: legitimate node may perform this attack by fabricating

and broadcasting false messages [121]. The main countermeasure is to sign and

verify the transmitted messages [111][112]. In [112], RSUs are responsible for380

distributing private keys and managing vehicles in a localized manner, and a hash

message authentication code is used to ensure the integrity of message.

• Map database poisoning attack: in vehicle network, local map database is main-

tained by each AV. This type of attack is committed to sending malicious mes-

sage to impact the accuracy of the map database [122]. The main countermeasure385

is verifying the signatures of the received map database messages and detecting

and blacklisting the misbehaving nodes [113].

4.1.4. Confidentiality/Privacy Attacks and Related Countermeasures

The attacks on confidentiality/privacy may not affect safety as previous mentioned

attacks do. Nevertheless, the sensitive information exchanged in network, e.g., AVs’390

location, ITS safety messages and drivers’ personal information, should be protected.

Information encryption and secure communication can be used to avoid information

leak. Some examples of attacks on Confidentiality as well as their corresponding coun-

termeasures are as follows (as shown in Fig. 8):

• Eavesdropping attack is an attempt to steal information (e.g., location) by snoop-395

ing on the network communications [92]. Eavesdropping may not impact net-

work resources and availability, but the sensitive information (e.g., location in-

formation) is leaked. Secure communication can be used to against eavesdrop-

ping [114][115][116]. To maximize both security and privacy to VANETs, a

security credential management system is presented in [116]. It issues digital400

certificates to vehicles for establishing trust, and facilitate efficient revocation

while providing privacy against attacks from insiders.
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• Interception attack: this attack consists of listening to the network for a certain

duration and then tries to analyze the data to extract the useful information [123].

The privacy preserving methods can be adopted to mitigate data interception405

attack [117][118][119]. Chim et al. [118] provides a software-based solution

which makes use of two shared secrets to satisfy the privacy requirement, and

gives lower message overhead than previous solutions in the message verification

phase using the bloom filter and the binary search techniques (through simulation

study).410

4.2. Security Attacks on AV Itself and Available Countermeasures

In this section, we discuss the attacks that are specific for AV and the associated

countermeasures. Table 2 and Table 3 list some examples of attacks for AV on authen-

ticity, availability, data integrity and confidentiality/privacy.

GPS spoofing is a typical attack on authenticity, which aims to distort the loca-415

tion information of the AV [124][125]. Professional attacker may perform GPS spoof-

ing by replicating signals and providing false locations [126]. To detect this attack,

Meuer et al. [127] use Direction-Of-Arrival (DOA) measurement; [128] uses the cross-

correlation of unknown encrypted signals between two GPS receivers; [129] utilizes

spatial phase delay measurements; [130] considers the location information provided420

by the authenticated RSU. To prevent GPS spoofing, [131] develops a RF device that

connects between a GPS antenna and a legacy civil GPS receiver; [132] identifies the

minimal precision of signals needed to spoof the receivers; [133] uses Interacting Mul-

tiple Model Nonlinear filters to improve the GPS accuracy.

In terms of attacks on integrity, jamming attack cannot be ignored. The detec-425

tion of GPS jamming can be challenging because the GPS signals may be unavailable

owing to the environment constraints. Nonetheless, there exist some anti-jamming

techniques like [134] and [135]. As for mitigating the Radar/LiDAR jamming, filters

or other sources (e.g., camera data) could be used. Besides, some components of AV

like infotainment system and on-board computer are vulnerable to malware injection.430

Anti-virus/firewall could be used to prevent the malware [136]. In [137], the anomaly

is detected by observing an increased entropy. By training and testing of different sys-
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tem scenarios, Alheeti et al. compares the network status to the trained result to detect

whether there is intrusion in [138].

Attack Type Attack Countermeasure

Authenticity GPS spoofing

Detection

Montgomery et al.2009 [127]

Meuer et al.2012 [139]

Psiaki et al.2013 [128]

Magiera et al.2015 [129]

Anouar et al.2016 [130]

Anti-spoofing methods

Ledvina et al.2010 [131]

Tippenhauer et al.2011 [132]

Shepard et al.2012 [140]

Jafarnia et al.2012 [141]

Jwo et al.2013 [133]

stubberud et al.2014 [142]

Availability

GPS jamming Anti-jamming technique
Dixon et al.2012 [134]

Hancke et al.2014 [135]

Radar/LiDAR jamming Filtering data/ using other

source of data

Petit et al.2015 [143]

Malware injection

Separate infotainment sys-

tem

Zhang et al.2014 [144]

Intrusion detection

Müter et al.2010. [145]

Müter et al.2011 [137]

Alheeti et al.2015 [146]

Alheeti et al.2016 [138]

Installing anti-virus /fire-

wall

Cui et al.2018 [7]

Table 2: Specific authenticity and availability attacks on AV and their corresponding countermeasures.

Some example of attacks on data integrity are listed in Table 3. Replay attack and435

Radar/LiDAR Confusion (using reflective material interfere Radar/LiDAR) can be mit-

igated by using some filters, alternative data sources (e.g, camera images) [143], and

multi-sensor fusion (a safety countermeasure presented in Section 3.2) [18]. The intru-

sion on CAN bus can detected by analyzing the time intervals of CAN message [147].

In [148], anomalies are identified based on the metrics derived from inter-arrival curves440

of normal set of CAN messages. In [149], when an DOS attack is detected, the ECU
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shall use a set of alternative IDs so that the malicious frame (sent by the attacker) is

rendered ineffective. For secure CAN Bus, [150] propose a broadcast authentication

protocol to ensure the security of CAN message. Lin et al. [151] proposes a software-

based security mechanism that can be used to retro-fit the CAN protocol to protect445

CAN from replay attacks. A lightweight authentication scheme [152] for automotive

networks is used to guarantee CAN security. [153] demonstrates an replay attack model

using a malicious smart phone app in the connected car environment, and designs a se-

curity protocol to mitigate such attack. Map server poisoning should also be concerned

since location is of crucial for AVs. Authenticated map server can be used to mitigate450

map poisoning, as described in Section 4.1.3.

Attack Type Attack Countermeasure

Data Integrity

Replay attack on Radar /L-

iDAR

Filtering data/ Using other

source of data

Petit et al.2015 [143]

Radar/LiDAR confusion Filtering data/ Using other

source of data

Petit et al.2015 [143]

Inject CAN message

Intrusion detection

Song et al.2016 [147]

Salem et al.2016 [148]

Hymayed et al.2017 [149]

CAN security

Van et al.2011 [150]

Wolf et al.2011 [154]

Groza et al.2012 [155]

Hartkopp et al.2012 [156]

Lin et al.2012 [151]

Mundhenk et al.2015 [152]

Woo et al.2015 [153]

Map server poisoning Authenticated map server Yan et al.2014 [122]

Confidentiality

/Privacy
Eavesdropping In-vehicle security

Schweppe et al.2012 [157]

Maurer et al.2016 [158]

Pan et al.2017 [159]

Table 3: Specific integrity and privacy attacks on AV and corresponding countermeasures. CAN, Controller

Area Network.

Eavesdropping is an attack on confidentiality/privacy not only for vehicle network-

ing, but also for AV itself. For example, eavesdropping tire pressure, Bluetooth, or
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CAN message are examples of attacks on confidentiality for AVs. [159] and [160]

point out the importance of confidentiality/privacy for modern vehicular systems. In-455

vehicle security can be a CM for eavesdropping on AV, as shown in Table 3. Schweppe

et al. [157] uses taint tracking tools into vehicle communication system to monitor data

and to elevate security and privacy.

4.3. Higher Level Insights into AV Security

The following insights can be derived from the material, presented in this section:460

• there are numerous AV security vulnerabilities and possible attacks. However,

few security countermeasures are currently available for detecting and mitigating

each type of attacks;

• there is a lack of research into security countermeasure effectiveness;

• security and safety are inter-related, e.g., security attacks could lead to AV fail-465

ures. Thus, the consequences of security attacks with respect to AV safety have

to be analyzed. This would help in developing appropriate safety and security

countermeasures to simultaneously improve AV safety and security.

5. Open Issues, Challenges, and Future Research Direction

Are AVs safe and secure? Not yet. Unfortunately, the first fatal crash of an AV in-470

cluding pedestrian has been reported in March 2018 (Ref1). This increased the world-

wide attention on the urgent need to assure AV safety and security to prevent such

accidents from reoccurring.

AV development is an emerging area, and most of information on AVs is confiden-

tial. Furthermore, there are no international standards for AV development, safety, and475

security available yet. This makes the research into AV safety and security extremely

difficult.

Alongside the development of AVs, more personal devices and infrastructures will

be introduced into the AV network, which potentially will expose AVs to more vulner-

abilities.480

The following are several open issues, which should be addressed in the future.
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1. In-vehicle security. In-vehicle security is still a big challenge for AVs. A car hack-

ing experiment, reported in [161], demonstrated that electric vehicles could be easily

remotely controlled by mobile applications, forcing the vehicles to go forward of back-

ward, limiting the speed, etc. In addition, the battery state, location and other private485

readings of the vehicle could be obtained by attackers. Future research should focus on

protecting AV in-vehicle systems from outside attacks.

2. Security challenges in smart cities. Versatile connections in smart cities provide

more services to AVs, but at the same time introduce more challenges. Ensuring V2X

communication security is extremely important. Attacks on AVs could spread to smart490

infrastructures and vice versa. For example, an attack on electric vehicle could spread

to the power grid infrastructure through the electric charging equipment up to the utility

system. Developing secure communications [162] and defense mechanisms [163] are

examples of future research in this area.

3. Safety and security countermeasure consistency. Vehicle safety analysis and secu-495

rity analysis are often performed separately, consequently, safety and security counter-

measures are designed and developed independently. In most cases, safety and security

countermeasures complement or strengthen each other. For example, runtime monitor-

ing (safety CM, described in Sec. 3.2) checks the system properties, and can help to

detect the intrusion (security CM, described in Sec. 4.2). However, there is a possibility500

of antagonism between countermeasures, as described in [164]. Thus, there is a need

of future research into the inter-relationships and consistency between AV safety and

security countermeasures.

4. Safe and secure mixed traffic systems. On public roads, AVs need to interact and co-

operate with other automated and non-automated road users, such as regular vehicles,505

cyclists, and pedestrians, in order to reach an agreement about safe future motion plans

(Ref2). Furthermore, AVs have to communicate with on-board users. Future research

into safe and secure integration of AVs into mixed traffic environments and human-AV

interaction is urgently needed.
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6. Conclusions510

The development of AVs is largely driven by the desire to produce quicker, more

reliable, and safer vehicles. However, AVs still have numerous unsolved safety and

security challenges.

This paper presents an introductory study into the issues and solutions related to

safety and security of AVs. It includes an overview of current research on AV failures,515

attack, and safety and security countermeasures. Furthermore, it identifies open issues

and future research directions.
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[137] M. Müter, N. Asaj, Entropy-based anomaly detection for in-vehicle networks,970

in: Intelligent Vehicles Symposium (IV), 2011 IEEE, IEEE, Baden-Baden, Ger-

many, 2011, pp. 1110–1115. doi:10.1109/IVS.2011.5940552.

43

10.1109/CIST.2016.7805006
10.1145/2046707.2046719
10.1109/IVS.2011.5940552


[138] K. M. A. Alheeti, K. McDonald-Maier, Hybrid intrusion detection in connected

self-driving vehicles, in: International Conference on Automation and Com-

puting (ICAC), IEEE, Colchester,UK, 2016, pp. 456–461. doi:10.1109/975

IConAC.2016.7604962.

[139] M. Meuer, A. Konovaltsev, M. Cuntz, C. Hättich, Robust joint multi-antenna

spoofing detection and attitude estimation using direction assisted multiple hy-

potheses raim, in: Proceedings of the 25th International Technical Meeting of

the Satellite Division of The Institute of Navigation (ION GNSS), American980

Institute of Navigation (ion. org), Nashville, TN, USA, 2012.

[140] D. P. Shepard, T. E. Humphreys, A. A. Fansler, Evaluation of the vulnerability

of phasor measurement units to gps spoofing attacks, International Journal of

Critical Infrastructure Protection 5 (3) (2012) 146 – 153. doi:10.1016/j.

ijcip.2012.09.003.985

[141] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, G. Lachapelle, Gps vulner-

ability to spoofing threats and a review of antispoofing techniques, Interna-

tional Journal of Navigation and Observation 2012. doi:10.1155/2012/

127072.

[142] S. C. Stubberud, K. A. Kramer, Analysis of fuzzy evidence accrual security990

approach to gps systems, in: 10th International Conference on Communica-

tions (COMM), IEEE, Bucharest, Romania, 2014, pp. 1–6. doi:10.1109/

ICComm.2014.6866695.

[143] J. Petit, B. Stottelaar, M. Feiri, F. Kargl, Remote attacks on automated vehicles

sensors: Experiments on camera and lidar, Black Hat Europe 11 (2015) 2015.995

[144] T. Zhang, H. Antunes, S. Aggarwal, Defending connected vehicles against mal-

ware: Challenges and a solution framework., IEEE Internet of Things journal

1 (1) (2014) 10–21.
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