

A machine learning based software
pipeline to pick the variable ordering for
algorithms with polynomial inputs

Florescu, D. & England, M.,

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Florescu, D & England, M 2020, A machine learning based software pipeline to pick
the variable ordering for algorithms with polynomial inputs. in Mathematical
Software - ICMS 2020. vol. (In-Press), Lecture Notes in Computational Science and
Engineering, Springer International Publishing, pp. (In-Press), International Congress
on Mathematical Software 2020, Braunschweig, Germany, 13/07/20.
DOI: 10.1007/978-3-030-52200-1_30

DOI 10.1007/978-3-030-52200-1_30
ISSN 0302-9743

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/ 10.1007/978-3-030-
52200-1_30

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

http:http://dx.doi.org

A machine learning based software pipeline to
pick the variable ordering for algorithms with

polynomial inputs

Dorian Florescu and Matthew England

Faculty of Engineering, Environment and Computing,
Coventry University, Coventry, CV1 5FB, UK

{Dorian.Florescu, Matthew.England}@coventry.ac.uk

Abstract. We are interested in the application of Machine Learning
(ML) technology to improve mathematical software. It may seem that the
probabilistic nature of ML tools would invalidate the exact results prized
by such software, however, the algorithms which underpin the software
often come with a range of choices which are good candidates for ML
application. We refer to choices which have no effect on the mathematical
correctness of the software, but do impact its performance.
In the past we experimented with one such choice: the variable ordering
to use when building a Cylindrical Algebraic Decomposition (CAD). We
used the Python library Scikit-Learn (sklearn) to experiment with dif-
ferent ML models, and developed new techniques for feature generation
and hyper-parameter selection.
These techniques could easily be adapted for making decisions other
than our immediate application of CAD variable ordering. Hence in this
paper we present a software pipeline to use sklearn to pick the variable
ordering for an algorithm that acts on a polynomial system. The code
described is freely available online.

Keywords: machine learning; scikit-learn; mathematical software;
cylindrical algebraic decomposition, variable ordering

1 Introduction and context

Mathematical Software, i.e. tools for effectively computing mathematical ob-
jects, is a broad discipline: the objects in question may be expressions such as
polynomials or logical formulae, algebraic structures such as groups, or even
mathematical theorems and their proofs. In recent years there have been ex-
amples of software that acts on such objects being improved through the use
of artificial intellegence techniques. For example, [21] uses a Monte-Carlo tree
search to find the representation of polynomials that are most efficient to evalu-
ate; [22] uses a machine learnt branching heuristic in a SAT-solver for formulae
in Boolean logic; [18] uses pattern matching to determine whether a pair of el-
ements from a specified group are conjugate; and [1] uses deep neural networks

mailto:Matthew.England}@coventry.ac.uk

2 D. Florescu and M. England

for premise selection in an automated theorem proving. See the survey article
[12] in the proceedings of ICMS 2018 for more examples.

Machine Learning (ML), that is statistical techniques to give computer sys-
tems the ability to learn rules from data, may seem unsuitable for use in mathe-
matical software since ML tools can only offer probabilistic guidance, when such
software prizes exactness. However, none of the examples above risked the cor-
rectness of the end-result in their software. They all used ML techniques to make
non-critical choices or guide searches: the decisions of the ML carried no risk to
correctness, but did offer substantial increases in computational efficiency. All
mathematical software, no matter the mathematical domain, will likely involve
such choices, and our thesis is that in many cases an ML technique could make
a better choice than a human user, so-called magic constants [6], or a traditional
human-designed heuristic.

Contribution and outline

In Section 2 we briefly survey our recent work applying ML to improve an al-
gorithm in a computer algebra system which acts on sets of polynomials. We
describe how we proposed a more appropriate definition of model accuracy and
used this to improve the selection of hyper-parameters for ML models; and a
new technique for identifying features of the input polynomials suitable for ML.

These advances can be applied beyond our immediate application: the fea-
ture identification to any situation where the input is a set of polynomials,
and the hyper-parameter selection to any situation where we are seeking to
take a choice that minimises a computation time. Hence we saw value in pack-
aging our techniques into a software pipeline so that they may be used more
widely. Here, by pipeline we refer to a succession of computing tasks that can
be run as one task. The software is freely available as a Zenodo repository here:
https://doi.org/10.5281/zenodo.3731703

We describe the software pipeline and its functionality in Section 3. Then in
Section 4 we describe its application on a dataset we had not previously studied.

2 Brief survey of our recent work

Our recent work has been using ML to select the variable ordering to use for
calculating a cylindrical algebraic decomposition relative to a set of polynomials.

2.1 Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered
Rn space into cells arranged cylindrically, meaning the projections of cells all
lie within cylinders over a CAD of a lower dimensional space. All these cells
are (semi)-algebraic meaning each can be described with a finite sequence of
polynomial constraints. A CAD is produced for either a set of polynomials, or
a logical formula whose atoms are polynomial constraints. It may be used to

https://doi.org/10.5281/zenodo.3731703

3 A pipeline to pick the variable ordering for algorithms with polynomial input

analyse these objects by finding a finite sample of points to query and thus
understand the behaviour over all Rn. The most important application of CAD
is to perform Quantifier Elimination (QE) over the reals. I.e. given a quantified
formula, a CAD may be used to find an equivalent quantifier free formula1 .

CAD was introduced in 1975 [10] and is still an active area of research. The
collection [7] summarises the work up to the mid-90s while the background sec-
tion of [13], for example, includes a summary of progress since. QE has numerous
applications in science [2], engineering [25], and even the social sciences [23].

CAD requires an ordering of the variables. QE imposes that the ordering
match the quantification of variables, but variables in blocks of the same quanti-
fier and the free variables can be swapped2. The ordering can have a great effect
on the time / memory use of CAD, the number of cells, and even the underly-
ing complexity [5]. Human designed heuristics have been developed to make the
choice [11], [4], [3], [14] and are used in most implementations.

The first application of ML to the problem was in 2014 when a support vector
machine was trained to choose which of these heuristics to follow [20], [19]. The
machine learned choice did significantly better than any one heuristic overall.

2.2 Recent work on ML for CAD variable ordering

The present authors revisited these experiments in [15] but this time using ML
to predict the ordering directly (because there were many problems where none
of the human-made heuristics made good choices and although the number of
orderings increases exponentially, the current scope of CAD application means
this is not restrictive). We also explored a more diverse selection of ML methods
available in the Python library scikit-learn (sklearn) [24]. All the models
tested outperformed the human made heuristics.

The ML models learn not from the polynomials directly, but from features:
properties which evaluate to a floating point number for a specific polynomial
set. In [20] and [15] only a handful of features were used (measures of degree
and frequency of occurrence for variables). In [16] we developed a new feature
generation procedure which used combinations of basic functions (average, sign,
maximum) evaluated on the degrees of the variables in either one polynomial
or the whole system. This allowed for substantially more features and improved
the performance of all ML models. The new features could be used for any ML
application where the input is a set of polynomials.

The natural metric for judging a CAD variable ordering is the corresponding
CAD runtime: in the work above models were trained to pick the ordering which
minimises this for a given input. However, this meant the training did not dis-
tinguish between any non-optimal ordering even though the difference between
these could be huge. This led us to a new definition of accuracy in [17]: to picking
an ordering which leads to a runtime within x% of the minimum possible.

1 E.g. QE would transform ∃x, ax 2 +bx+c = 0∧a = 0 into the equivalent 6 b2 −4ac ≥ 0.
2 In Footnote 1 we must decompose (x, a, b, c)-space with x last, but the other variables
can be in any order. Using a � b � c requires 27 cells but c � b � a requires 115.

4 D. Florescu and M. England

We then wrote a new version of the sklearn procedure which uses cross-
validation to select model hyper-parameters to minimise the total CAD runtime
of its choices, rather than maximise the number of times the minimal ordering is
chosen. This also improved the performance of all ML models in the experiments
of [17]. The new definition and procedure are suitable for any any situation where
we are seeking to take a choice that minimises a computation time.

3 Software pipeline

The input to our pipeline is given by two distinct datasets used for training and
testing, respectively. An individual entry in the data set is a set of polynomials
that represent an input to a symbolic computation algorithms, in our case CAD.
The output is a corresponding sequence of variable ordering suggestions for each
set of polynomials in the testing dataset.

The pipeline is fully automated: it generates and uses the CAD runtimes
for each set of polynomials under each admissible variable ordering; uses the
runtimes from the training dataset to select the hyper-parameters with cross-
validation and tune the parameters of the model; and evaluates the performance
of those classifiers (along with some other heuristics for the problem) for the sets
of polynomials in the testing dataset.

We describe these key steps in the pipeline below. Each of the numbered
stages can be individually marked for execution or not in a run of the pipeline
(avoiding duplication of existing computation). The code for this pipeline, writ-
ten all in Python, is freely available at: https://doi.org/10.5281/zenodo.3731703.

I. Generating a model using the training dataset

(a) Measuring the CAD runtimes: The CAD routine is run for each set
of polynomials in the training dataset. The runtimes for all possible variable
orderings are stored in a different file for each set of polynomials. If the runtime
exceeds a pre-defined timeout, the value of the timeout is stored instead.

(b) Polynomial data parsing: The training dataset is first converted to a
format that is easier to process into features. For this purpose, we chose the
format given by the terms() method from the Poly class located in the sympy
package for symbolic computation in Python.

Here, each monomial is defined by a tuple, containing another tuple with
the degrees of each variable, and a value defining the monomial coefficient. The
polynomials are then defined by lists of monomials given in this format, and a
point in the training dataset consists of a list of polynomials. For example, one

2 2entry in the dataset is the set {235x1 + 42x2, 2x1x3 − 1} which is represented as

[[((1, 0, 0), 235) , ((0, 2, 0), 42)] , [((2, 0, 1), 2) , ((0, 0, 0), −1)]] .

All the data points in the training dataset are then collected into a single
file called terms train.txt after being placed into this format. Subsequently,

https://doi.org/10.5281/zenodo.3731703

5 A pipeline to pick the variable ordering for algorithms with polynomial input

the file y train.txt is created storing the index of the variable ordering with
the minimum computing times for each set of polynomials, using the runtimes
measured in Step I(a).

(c) Feature generation: Here each set of polynomials in the training dataset is
processed into a fixed length sequence of floating point numbers, called features,
which are the actual data used to train the ML models in sklearn. This is done
with the following steps:

i. Raw feature generation
We systematically consider applying all meaningful combinations of the
functions average, sign, maximum, and sum to polynomials with a given
number of variables. This generates a large set of feature descriptions as
proposed in [16]. The new format used to store the data described above
allows for an easy evaluation of these features. An example of computing
such features is given in Figure 1. In [16] we described how the method
provides 1728 possible features for polynomials constructed with three vari-
ables for example. This step generates the full set of feature descriptions,
saved in a file called features descriptions.txt, and the correspond-
ing values of the features on the training dataset, saved in a file called
features train raw.txt.

Fig. 1. Generating feature avp (maxm (d
m,p
1)) from data stored in the format of Section

I(b). Here dm,p
1 denotes the degree of variable x1 in polynomial number p and monomial

number m, and avp denotes the average function computed for all polynomials [16].

ii. Feature simplification
After computing the numerical values of the features in Step I(c)i this step
will remove those features that are constant or repetitive for the dataset in
question, as described in [16]. The descriptions of the remaining features are
saved in a new file called features descriptions final.txt.

6 D. Florescu and M. England

iii. Final feature generation
The final set of features is computed by evaluating the descriptions in
features descriptions final.txt for the training dataset. Even though
these were already evaluated in Step I(c)i we repeat the evaluation for the
final set of feature descriptions. This is to allow the possibility of users en-
tering alternative features manually and skipping steps i and ii. As noted
above, any of the named steps in the pipeline can be selected or skipped for
execution in a given run. The final values of the features are saved in a new
file called features train.txt.

(d) Machine learning classifier training:

i. Fitting the model hyperparameters by cross-validation
The pipeline can apply four of the most commonly used deterministic ML
models (see [15] for details), using the implementations in sklearn [24].
– The K-Nearest Neighbors (KNN) classifier
– The Multi-Layer Perceptron (MLP) classifier
– The Decision Tree (DT) classifier
– The Support Vector Machine (SVM) classifier

Of course, additional models in sklearn and its extensions could be included
with relative ease. The pipeline can use two different methods for fitting the
hyperparameters via a cross-validation procedure on the training set, as
described in [17]:
– Standard cross-validation: maximizing the prediction accuracy (i.e. the

number of times the model picks the optimum variable ordering).
– Time-based cross-validation: minimizing the CAD runtime (i.e. the time

taken to compute CADs with the model’s choices).
Both methods tune the hyperparameterswith cross-validation using the rou-
tine RandomizedSearchCV from the sklearn package in Python (the latter
an adapted version we wrote). The cross-validation results (i.e. choice of
hyperparameters) are saved in a file hyperpar D** ** T** **.txt, where
D** ** is the date and T** ** denotes the time when the file was generated.

ii. Fitting the parameters
The parameters of each model are subsequently fitted using the standard
sklearn algorithms for each chosen set of hyperparameters. These are saved
in a file called par D** ** T** **.txt.

II. Predicting the CAD variable orderings using the testing dataset

The models in Step I are then evaluated according to their choices of variable
orderings for the sets of polynomials in the testing dataset. The steps below are
listed without detailed description as they are performed similarly to Step I for
the testing dataset.

(a) Polynomial data parsing: The values generated are saved in a new file
called terms test.txt.

7 A pipeline to pick the variable ordering for algorithms with polynomial input

(b) Feature generation: The final set of features is computed by evaluating
the descriptions in Step I(b)ii for the testing dataset. These values are saved in
a new file called features test.txt.

(c) Predictions using ML: Predictions on the testing dataset are generated
using the model computed in Step I(c). The model is run with the data in Step
II(a)ii, and the predictions are stored in a file called y D** ** T** ** test.txt.

(d) Predictions using human-made heuristics: In our prior papers [15],
[16], [17] we compared the performance of the ML models with the human-
designed heuristics in [4] and [11]. For details on how these are applied see [15].
Their choices are saved in two files entitled y brown test.txt and
y sotd test.txt, respectively.

(e) Comparative results: Finally, in order to compare the performance of
the proposed pipeline, we must measure the actual CAD runtimes on the testing
dataset. The results of the comparison is saved in a file with the template:
comparative results D** ** T** **.txt.

Adapting the pipeline to other algorithms

The pipeline above was developed for choosing the variable ordering for the CAD
implementation in Maple’s Regular Chains Library [8], [9]. But it could be used
to pick the variable ordering for other procedures which take sets of polynomials
as input by changing the calls to CAD in Steps I(a) and II(e) to that of another
implementation / algorithm. Step II(d) would also have to be edited to call an
appropriate competing heuristic.

4 Application of pipeline to new dataset

The pipeline described in the previous section makes it easy for us to repeat our
past experiments (described in Section 2) for a new dataset. All that is needed
to do is replace the files storing the polynomials and run the pipeline.

To demonstrate this we test the proposed pipeline on a new dataset of ran-
domly generated polynomials. We are not suggesting that it is appropriate to
test classifiers on random data: we simply mean to demonstrate the ease with
which the experiments in [15], [16], [17] that originally took many man-hours
can be repeated with just a single code execution.

The randomly generated parameters are: the degrees of the three variables
in each polynomial term, the coefficient of each term, the number of terms in a
polynomial and the number of polynomials in a set. The means and standard
deviations of these parameters were extracted from the problems in the nlsat
dataset3, which was used in our previous work [15] so that the dataset is of a

3 https://cs.nyu.edu/∼dejan/nonlinear/

https://cs.nyu.edu/~dejan/nonlinear/

8 D. Florescu and M. England

Table 1. The comparative performance of DT, KNN, MLP, SVM, the Brown and sotd
heuristics on the testing data for our randomly generated dataset. A random prediction,
and the virtual best (VB) and virtual worst (VW) predictions are also included.

DT KNN MLP SVM Brown sotd rand VB VW
Prediction time (s) −44.8 · e 0.68 −42.8 · e 0.99 53.01 15 819

Total time (s) 6 548 6 610 6 548 6 565 6 614 22 313 16 479 5 610 25 461

comparable scale. We generated 7500 sets of random polynomials, where 5000
were used for training, and the remaining 2500 for testing.

The results of the proposed processing pipeline, including the comparison
with the existing human-made heuristics are given in Table 1. The prediction
time is the time taken for the classifier or heuristic to make its predictions for
the problems in the training set. The total time adds to this the time for the
actual CAD computations using the suggested orderings. We do not report the
training time of the ML as this is a cost paid only once in advance. The virtual
solvers are those which always make the best/worst choice for a problem (in zero
prediction time) and are useful to show the range of possible outcomes. We note
that further details on our experimental methodology are given in [15], [16], [17].

As with the tests on the original dataset [15], [16] the ML classifiers outper-
formed the human made heuristics, but for this dataset the difference compared
to the Brown heuristic was marginal. We used a lower CAD timeout which
may benefit the Brown heuristic as past analysis shows that when it makes
sub-optimal choices these tend to much worse. We also note that the relative
performance of the Brown heuristic fell significantly when used on problems
with more than three variables in [17]. The results for the sotd heuristic are bad
because it had a particularly long prediction time on this random dataset. We
note that there is scope to parallelize sotd which may make it more competitive.

5 Conclusions

We presented our software pipeline for training and testing ML classifiers that
select the variable ordering to use for CAD, and described the results of an
experiment applying it to a new dataset.

The purpose of the experiment in Section 4 was to demonstrate that the
pipeline can easily train classifiers that are competitive on a new dataset with
almost no additional human effort, at least for a dataset of a similar scale (we
note that the code is designed to work on higher degree polynomials but has
only been testes on datasets of 3 and 4 variables so far). The pipeline makes it
possible for a user to easily tuning the CAD variable ordering choice classifiers
to their particular application area.

9 A pipeline to pick the variable ordering for algorithms with polynomial input

Further, with only a little modification, as noted at the end of Section 3, the
pipeline could be used to select the variable ordering for alternative algorithms
that act on sets of polynomials and require a variable ordering. We thus expect
the pipeline to be a useful basis for future research and plan to experiment with
its use on such alternative algorithms in the near future.

Acknowledgements This work is funded by EPSRC Project EP/R019622/1:
Embedding Machine Learning within Quantifier Elimination Procedures. We thank
the anonymous referees for their comments.

References

1. Alemi, A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: Deepmath −
Deep sequence models for premise selection. In: Proc. NIPS ’16, pp. 2243–2251.
(2016), https://dl.acm.org/doi/10.5555/3157096.3157347

2. Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D.,
Hoyt, C., Košta, M., Radulescu, O., Sturm, T., Weber, A.: Identifying the paramet-
ric occurrence of multiple steady states for some biological networks. J. Symbolic
Computation 98, pp. 84–119 (2020), https://doi.org/10.1016/j.jsc.2019.07.008

3. Bradford, R., Davenport, J., England, M., Wilson, D.: Optimising problem formu-
lations for cylindrical algebraic decomposition. In: Intelligent Computer Math-
ematics (LNCS 7961), pp. 19–34. Springer (2013), http://dx.doi.org/10.1007/
978-3-642-39320-4 2

4. Brown, C.: Companion to the tutorial: Cylindrical algebraic decomposition, pre-
sented at ISSAC ’04. URL http://www.usna.edu/Users/cs/wcbrown/research/
ISSAC04/handout.pdf (2004)

5. Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical
algebraic decomposition. In: Proc. ISSAC ’07, pp. 54–60. ACM (2007), https://
doi.org/10.1145/1277548.1277557

6. Carette, J.: Understanding expression simplification. In: Proc. ISSAC ’04, pp. 72–
79. ACM (2004), https://doi.org/10.1145/1005285.1005298

7. Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts & Monographs in Symbolic Computation, Springer-Verlag (1998),
https://doi.org/10.1007/978-3-7091-9459-1

8. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. ISSAC ’09, pp. 95–102. ACM
(2009), https://doi.org/10.1145/1576702.1576718

9. Chen, C. and Moreno Maza, M.: Quantifier elimination by cylindrical algebraic
decomposition based on regular chains. J. Symbolic Computation, 75, pp. 74–93
(2016), https://doi.org/10.1016/j.jsc.2015.11.008

10. Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proc. 2nd GI Conf. utomata Theory and Formal Languages.
pp. 134–183. (1975). Reprinted in [7] https://doi.org/10.1007/3-540-07407-4 17

11. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
ISSAC ’04, pp. 111–118. ACM (2004), https://doi.org/10.1145/1005285.1005303

12. England, M.: Machine learning for mathematical software. In: Mathematical
Software (LNCS 10931), pp. 165–174. Springer (2018), https://doi.org/10.1007/
978-3-319-96418-8 20

https://dl.acm.org/doi/10.5555/3157096.3157347
https://doi.org/10.1016/j.jsc.2019.07.008
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-319-96418-8_20
https://doi.org/10.1007/978-3-319-96418-8_20

10 D. Florescu and M. England

13. England, M., Bradford, R., Davenport, J.: Cylindrical algebraic decomposition with
equational constraints. J. Symbolic Computation 100, pp. 38–71 (2020), https:
//doi.org/10.1016/j.jsc.2019.07.019

14. England, M., Bradford, R., Davenport, J., Wilson, D.: Choosing a variable order-
ing for truth-table invariant cylindrical algebraic decomposition by incremental
triangular decomposition. In: Mathematical Software (LNCS 8592), pp. 450–457.
Springer (2014), http://dx.doi.org/10.1007/978-3-662-44199-2 68

15. England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: Intelligent Computer
Mathematics (LNCS 11617), pp. 93–108. Springer (2019), https://doi.org/10.1007/
978-3-030-23250-4 7

16. Florescu, D., England, M.: Algorithmically generating new algebraic features of
polynomial systems for machine learning. In: Proc. SC2 ’19. CEUR-WS 2460.
(2019), http://ceur-ws.org/Vol-2460/

17. Florescu, D., England, M.: Improved cross-validation for classifiers that make al-
gorithmic choices to minimise runtime without compromising output correctness.
In: Mathematical Aspects of Computer and Information Sciences (LNCS 11989),
pp. 341–356. Springer (2020), https://doi.org/10.1007/978-3-030-43120-4 27

18. Gryak, J., Haralick, R., Kahrobaei, D.: Solving the conjugacy decision problem
via machine learning. Experimental Mathematics, 29:1, pp. 66-78. (2020), https:
//doi.org/10.1080/10586458.2018.1434704

19. Huang, Z., England, M., Wilson, D., Bridge, J., Davenport, J., Paulson, L.:
Using machine learning to improve cylindrical algebraic decomposition. Math-
ematics in Computer Science 13(4), 461–488 (2019), https://doi.org/10.1007/
s11786-019-00394-8

20. Huang, Z., England, M., Wilson, D., Davenport, J., Paulson, L., Bridge, J.: Apply-
ing machine learning to the problem of choosing a heuristic to select the variable
ordering for cylindrical algebraic decomposition. In: Intelligent Computer Math-
ematics (LNAI 8543), pp. 92–107. Springer (2014), http://dx.doi.org/10.1007/
978-3-319-08434-3 8

21. Kuipers, J., Ueda, T., Vermaseren, J.: Code optimization in FORM. Comp. Phys.
Comm. 189, pp. 1–19 (2015), https://doi.org/10.1016/j.cpc.2014.08.008

22. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Proc. SAT ’16 (LNCS 9710), pp. 123–140. Springer
(2016)

23. Mulligan, C., Davenport, J., England, M.: TheoryGuru: A Mathematica pack-
age to apply quantifier elimination technology to economics. In: Mathematical
Software (LNCS 10931), pp. 369–378. Springer (2018), https://doi.org/10.1007/
978-3-319-96418-8 44

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. J. Machine Learning Research 12, pp. 2825–2830 (2011), http:
//www.jmlr.org/papers/v12/pedregosa11a.html

25. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V., Mayr,
E., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing (LNCS 4194),
pp. 295–301. Springer (2006), https://doi.org/10.1007/11870814 25

https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1016/j.jsc.2019.07.019
http://dx.doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-030-23250-4_7
https://doi.org/10.1007/978-3-030-23250-4_7
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-43120-4_27
https://doi.org/10.1080/10586458.2018.1434704
https://doi.org/10.1080/10586458.2018.1434704
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/s11786-019-00394-8
http://dx.doi.org/10.1007/978-3-319-08434-3_8
http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1007/978-3-319-96418-8_44
https://doi.org/10.1007/978-3-319-96418-8_44
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/11870814_25

	A machine learning based software cs
	A machine learning based software
	A machine learning based software pipeline to pick the variable ordering for algorithms with polynomial inputs

