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Abstract. We are interested in the application of Machine Learning 
(ML) technology to improve mathematical software. It may seem that the 
probabilistic nature of ML tools would invalidate the exact results prized 
by such software, however, the algorithms which underpin the software 
often come with a range of choices which are good candidates for ML 
application. We refer to choices which have no effect on the mathematical 
correctness of the software, but do impact its performance. 
In the past we experimented with one such choice: the variable ordering 
to use when building a Cylindrical Algebraic Decomposition (CAD). We 
used the Python library Scikit-Learn (sklearn) to experiment with dif-
ferent ML models, and developed new techniques for feature generation 
and hyper-parameter selection. 
These techniques could easily be adapted for making decisions other 
than our immediate application of CAD variable ordering. Hence in this 
paper we present a software pipeline to use sklearn to pick the variable 
ordering for an algorithm that acts on a polynomial system. The code 
described is freely available online. 

Keywords: machine learning; scikit-learn; mathematical software; 
cylindrical algebraic decomposition, variable ordering 

1 Introduction and context 

Mathematical Software, i.e. tools for effectively computing mathematical ob-
jects, is a broad discipline: the objects in question may be expressions such as 
polynomials or logical formulae, algebraic structures such as groups, or even 
mathematical theorems and their proofs. In recent years there have been ex-
amples of software that acts on such objects being improved through the use 
of artificial intellegence techniques. For example, [21] uses a Monte-Carlo tree 
search to find the representation of polynomials that are most efficient to evalu-
ate; [22] uses a machine learnt branching heuristic in a SAT-solver for formulae 
in Boolean logic; [18] uses pattern matching to determine whether a pair of el-
ements from a specified group are conjugate; and [1] uses deep neural networks 
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for premise selection in an automated theorem proving. See the survey article 
[12] in the proceedings of ICMS 2018 for more examples. 

Machine Learning (ML), that is statistical techniques to give computer sys-
tems the ability to learn rules from data, may seem unsuitable for use in mathe-
matical software since ML tools can only offer probabilistic guidance, when such 
software prizes exactness. However, none of the examples above risked the cor-
rectness of the end-result in their software. They all used ML techniques to make 
non-critical choices or guide searches: the decisions of the ML carried no risk to 
correctness, but did offer substantial increases in computational efficiency. All 
mathematical software, no matter the mathematical domain, will likely involve 
such choices, and our thesis is that in many cases an ML technique could make 
a better choice than a human user, so-called magic constants [6], or a traditional 
human-designed heuristic. 

Contribution and outline 

In Section 2 we briefly survey our recent work applying ML to improve an al-
gorithm in a computer algebra system which acts on sets of polynomials. We 
describe how we proposed a more appropriate definition of model accuracy and 
used this to improve the selection of hyper-parameters for ML models; and a 
new technique for identifying features of the input polynomials suitable for ML. 

These advances can be applied beyond our immediate application: the fea-
ture identification to any situation where the input is a set of polynomials, 
and the hyper-parameter selection to any situation where we are seeking to 
take a choice that minimises a computation time. Hence we saw value in pack-
aging our techniques into a software pipeline so that they may be used more 
widely. Here, by pipeline we refer to a succession of computing tasks that can 
be run as one task. The software is freely available as a Zenodo repository here: 
https://doi.org/10.5281/zenodo.3731703 

We describe the software pipeline and its functionality in Section 3. Then in 
Section 4 we describe its application on a dataset we had not previously studied. 

2 Brief survey of our recent work 

Our recent work has been using ML to select the variable ordering to use for 
calculating a cylindrical algebraic decomposition relative to a set of polynomials. 

2.1 Cylindrical algebraic decomposition 

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered 
Rn space into cells arranged cylindrically, meaning the projections of cells all 
lie within cylinders over a CAD of a lower dimensional space. All these cells 
are (semi)-algebraic meaning each can be described with a finite sequence of 
polynomial constraints. A CAD is produced for either a set of polynomials, or 
a logical formula whose atoms are polynomial constraints. It may be used to 
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analyse these objects by finding a finite sample of points to query and thus 
understand the behaviour over all Rn. The most important application of CAD 
is to perform Quantifier Elimination (QE) over the reals. I.e. given a quantified 
formula, a CAD may be used to find an equivalent quantifier free formula1 . 

CAD was introduced in 1975 [10] and is still an active area of research. The 
collection [7] summarises the work up to the mid-90s while the background sec-
tion of [13], for example, includes a summary of progress since. QE has numerous 
applications in science [2], engineering [25], and even the social sciences [23]. 

CAD requires an ordering of the variables. QE imposes that the ordering 
match the quantification of variables, but variables in blocks of the same quanti-
fier and the free variables can be swapped2. The ordering can have a great effect 
on the time / memory use of CAD, the number of cells, and even the underly-
ing complexity [5]. Human designed heuristics have been developed to make the 
choice [11], [4], [3], [14] and are used in most implementations. 

The first application of ML to the problem was in 2014 when a support vector 
machine was trained to choose which of these heuristics to follow [20], [19]. The 
machine learned choice did significantly better than any one heuristic overall. 

2.2 Recent work on ML for CAD variable ordering 

The present authors revisited these experiments in [15] but this time using ML 
to predict the ordering directly (because there were many problems where none 
of the human-made heuristics made good choices and although the number of 
orderings increases exponentially, the current scope of CAD application means 
this is not restrictive). We also explored a more diverse selection of ML methods 
available in the Python library scikit-learn (sklearn) [24]. All the models 
tested outperformed the human made heuristics. 

The ML models learn not from the polynomials directly, but from features: 
properties which evaluate to a floating point number for a specific polynomial 
set. In [20] and [15] only a handful of features were used (measures of degree 
and frequency of occurrence for variables). In [16] we developed a new feature 
generation procedure which used combinations of basic functions (average, sign, 
maximum) evaluated on the degrees of the variables in either one polynomial 
or the whole system. This allowed for substantially more features and improved 
the performance of all ML models. The new features could be used for any ML 
application where the input is a set of polynomials. 

The natural metric for judging a CAD variable ordering is the corresponding 
CAD runtime: in the work above models were trained to pick the ordering which 
minimises this for a given input. However, this meant the training did not dis-
tinguish between any non-optimal ordering even though the difference between 
these could be huge. This led us to a new definition of accuracy in [17]: to picking 
an ordering which leads to a runtime within x% of the minimum possible. 

1 E.g. QE would transform ∃x, ax 2 +bx+c = 0∧a = 0 into the equivalent 6 b2 −4ac ≥ 0. 
2 In Footnote 1 we must decompose (x, a, b, c)-space with x last, but the other variables 
can be in any order. Using a � b � c requires 27 cells but c � b � a requires 115. 
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We then wrote a new version of the sklearn procedure which uses cross-
validation to select model hyper-parameters to minimise the total CAD runtime 
of its choices, rather than maximise the number of times the minimal ordering is 
chosen. This also improved the performance of all ML models in the experiments 
of [17]. The new definition and procedure are suitable for any any situation where 
we are seeking to take a choice that minimises a computation time. 

3 Software pipeline 

The input to our pipeline is given by two distinct datasets used for training and 
testing, respectively. An individual entry in the data set is a set of polynomials 
that represent an input to a symbolic computation algorithms, in our case CAD. 
The output is a corresponding sequence of variable ordering suggestions for each 
set of polynomials in the testing dataset. 

The pipeline is fully automated: it generates and uses the CAD runtimes 
for each set of polynomials under each admissible variable ordering; uses the 
runtimes from the training dataset to select the hyper-parameters with cross-
validation and tune the parameters of the model; and evaluates the performance 
of those classifiers (along with some other heuristics for the problem) for the sets 
of polynomials in the testing dataset. 

We describe these key steps in the pipeline below. Each of the numbered 
stages can be individually marked for execution or not in a run of the pipeline 
(avoiding duplication of existing computation). The code for this pipeline, writ-
ten all in Python, is freely available at: https://doi.org/10.5281/zenodo.3731703. 

I. Generating a model using the training dataset 

(a) Measuring the CAD runtimes: The CAD routine is run for each set 
of polynomials in the training dataset. The runtimes for all possible variable 
orderings are stored in a different file for each set of polynomials. If the runtime 
exceeds a pre-defined timeout, the value of the timeout is stored instead. 

(b) Polynomial data parsing: The training dataset is first converted to a 
format that is easier to process into features. For this purpose, we chose the 
format given by the terms() method from the Poly class located in the sympy 
package for symbolic computation in Python. 

Here, each monomial is defined by a tuple, containing another tuple with 
the degrees of each variable, and a value defining the monomial coefficient. The 
polynomials are then defined by lists of monomials given in this format, and a 
point in the training dataset consists of a list of polynomials. For example, one 

2 2entry in the dataset is the set {235x1 + 42x2, 2x1x3 − 1} which is represented as 

[[((1, 0, 0), 235) , ((0, 2, 0), 42)] , [((2, 0, 1), 2) , ((0, 0, 0), −1)]] . 

All the data points in the training dataset are then collected into a single 
file called terms train.txt after being placed into this format. Subsequently, 
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the file y train.txt is created storing the index of the variable ordering with 
the minimum computing times for each set of polynomials, using the runtimes 
measured in Step I(a). 

(c) Feature generation: Here each set of polynomials in the training dataset is 
processed into a fixed length sequence of floating point numbers, called features, 
which are the actual data used to train the ML models in sklearn. This is done 
with the following steps: 

i. Raw feature generation 
We systematically consider applying all meaningful combinations of the 
functions average, sign, maximum, and sum to polynomials with a given 
number of variables. This generates a large set of feature descriptions as 
proposed in [16]. The new format used to store the data described above 
allows for an easy evaluation of these features. An example of computing 
such features is given in Figure 1. In [16] we described how the method 
provides 1728 possible features for polynomials constructed with three vari-
ables for example. This step generates the full set of feature descriptions, 
saved in a file called features descriptions.txt, and the correspond-
ing values of the features on the training dataset, saved in a file called 
features train raw.txt. 

Fig. 1. Generating feature avp (maxm (d
m,p 
1 )) from data stored in the format of Section 

I(b). Here dm,p 
1 denotes the degree of variable x1 in polynomial number p and monomial 

number m, and avp denotes the average function computed for all polynomials [16]. 

ii. Feature simplification 
After computing the numerical values of the features in Step I(c)i this step 
will remove those features that are constant or repetitive for the dataset in 
question, as described in [16]. The descriptions of the remaining features are 
saved in a new file called features descriptions final.txt. 
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iii. Final feature generation 
The final set of features is computed by evaluating the descriptions in 
features descriptions final.txt for the training dataset. Even though 
these were already evaluated in Step I(c)i we repeat the evaluation for the 
final set of feature descriptions. This is to allow the possibility of users en-
tering alternative features manually and skipping steps i and ii. As noted 
above, any of the named steps in the pipeline can be selected or skipped for 
execution in a given run. The final values of the features are saved in a new 
file called features train.txt. 

(d) Machine learning classifier training: 

i. Fitting the model hyperparameters by cross-validation 
The pipeline can apply four of the most commonly used deterministic ML 
models (see [15] for details), using the implementations in sklearn [24]. 
– The K-Nearest Neighbors (KNN) classifier 
– The Multi-Layer Perceptron (MLP) classifier 
– The Decision Tree (DT) classifier 
– The Support Vector Machine (SVM) classifier 

Of course, additional models in sklearn and its extensions could be included 
with relative ease. The pipeline can use two different methods for fitting the 
hyperparameters via a cross-validation procedure on the training set, as 
described in [17]: 
– Standard cross-validation: maximizing the prediction accuracy (i.e. the 

number of times the model picks the optimum variable ordering). 
– Time-based cross-validation: minimizing the CAD runtime (i.e. the time 

taken to compute CADs with the model’s choices). 
Both methods tune the hyperparameterswith cross-validation using the rou-
tine RandomizedSearchCV from the sklearn package in Python (the latter 
an adapted version we wrote). The cross-validation results (i.e. choice of 
hyperparameters) are saved in a file hyperpar D** ** T** **.txt, where 
D** ** is the date and T** ** denotes the time when the file was generated. 

ii. Fitting the parameters 
The parameters of each model are subsequently fitted using the standard 
sklearn algorithms for each chosen set of hyperparameters. These are saved 
in a file called par D** ** T** **.txt. 

II. Predicting the CAD variable orderings using the testing dataset 

The models in Step I are then evaluated according to their choices of variable 
orderings for the sets of polynomials in the testing dataset. The steps below are 
listed without detailed description as they are performed similarly to Step I for 
the testing dataset. 

(a) Polynomial data parsing: The values generated are saved in a new file 
called terms test.txt. 
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(b) Feature generation: The final set of features is computed by evaluating 
the descriptions in Step I(b)ii for the testing dataset. These values are saved in 
a new file called features test.txt. 

(c) Predictions using ML: Predictions on the testing dataset are generated 
using the model computed in Step I(c). The model is run with the data in Step 
II(a)ii, and the predictions are stored in a file called y D** ** T** ** test.txt. 

(d) Predictions using human-made heuristics: In our prior papers [15], 
[16], [17] we compared the performance of the ML models with the human-
designed heuristics in [4] and [11]. For details on how these are applied see [15]. 
Their choices are saved in two files entitled y brown test.txt and 
y sotd test.txt, respectively. 

(e) Comparative results: Finally, in order to compare the performance of 
the proposed pipeline, we must measure the actual CAD runtimes on the testing 
dataset. The results of the comparison is saved in a file with the template: 
comparative results D** ** T** **.txt. 

Adapting the pipeline to other algorithms 

The pipeline above was developed for choosing the variable ordering for the CAD 
implementation in Maple’s Regular Chains Library [8], [9]. But it could be used 
to pick the variable ordering for other procedures which take sets of polynomials 
as input by changing the calls to CAD in Steps I(a) and II(e) to that of another 
implementation / algorithm. Step II(d) would also have to be edited to call an 
appropriate competing heuristic. 

4 Application of pipeline to new dataset 

The pipeline described in the previous section makes it easy for us to repeat our 
past experiments (described in Section 2) for a new dataset. All that is needed 
to do is replace the files storing the polynomials and run the pipeline. 

To demonstrate this we test the proposed pipeline on a new dataset of ran-
domly generated polynomials. We are not suggesting that it is appropriate to 
test classifiers on random data: we simply mean to demonstrate the ease with 
which the experiments in [15], [16], [17] that originally took many man-hours 
can be repeated with just a single code execution. 

The randomly generated parameters are: the degrees of the three variables 
in each polynomial term, the coefficient of each term, the number of terms in a 
polynomial and the number of polynomials in a set. The means and standard 
deviations of these parameters were extracted from the problems in the nlsat 
dataset3, which was used in our previous work [15] so that the dataset is of a 

3 https://cs.nyu.edu/∼dejan/nonlinear/ 
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Table 1. The comparative performance of DT, KNN, MLP, SVM, the Brown and sotd 
heuristics on the testing data for our randomly generated dataset. A random prediction, 
and the virtual best (VB) and virtual worst (VW) predictions are also included. 

DT KNN MLP SVM Brown sotd rand VB VW 
Prediction time (s) −44.8 · e 0.68 −42.8 · e 0.99 53.01 15 819 

Total time (s) 6 548 6 610 6 548 6 565 6 614 22 313 16 479 5 610 25 461 

comparable scale. We generated 7500 sets of random polynomials, where 5000 
were used for training, and the remaining 2500 for testing. 

The results of the proposed processing pipeline, including the comparison 
with the existing human-made heuristics are given in Table 1. The prediction 
time is the time taken for the classifier or heuristic to make its predictions for 
the problems in the training set. The total time adds to this the time for the 
actual CAD computations using the suggested orderings. We do not report the 
training time of the ML as this is a cost paid only once in advance. The virtual 
solvers are those which always make the best/worst choice for a problem (in zero 
prediction time) and are useful to show the range of possible outcomes. We note 
that further details on our experimental methodology are given in [15], [16], [17]. 

As with the tests on the original dataset [15], [16] the ML classifiers outper-
formed the human made heuristics, but for this dataset the difference compared 
to the Brown heuristic was marginal. We used a lower CAD timeout which 
may benefit the Brown heuristic as past analysis shows that when it makes 
sub-optimal choices these tend to much worse. We also note that the relative 
performance of the Brown heuristic fell significantly when used on problems 
with more than three variables in [17]. The results for the sotd heuristic are bad 
because it had a particularly long prediction time on this random dataset. We 
note that there is scope to parallelize sotd which may make it more competitive. 

5 Conclusions 

We presented our software pipeline for training and testing ML classifiers that 
select the variable ordering to use for CAD, and described the results of an 
experiment applying it to a new dataset. 

The purpose of the experiment in Section 4 was to demonstrate that the 
pipeline can easily train classifiers that are competitive on a new dataset with 
almost no additional human effort, at least for a dataset of a similar scale (we 
note that the code is designed to work on higher degree polynomials but has 
only been testes on datasets of 3 and 4 variables so far). The pipeline makes it 
possible for a user to easily tuning the CAD variable ordering choice classifiers 
to their particular application area. 
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Further, with only a little modification, as noted at the end of Section 3, the 
pipeline could be used to select the variable ordering for alternative algorithms 
that act on sets of polynomials and require a variable ordering. We thus expect 
the pipeline to be a useful basis for future research and plan to experiment with 
its use on such alternative algorithms in the near future. 

Acknowledgements This work is funded by EPSRC Project EP/R019622/1: 
Embedding Machine Learning within Quantifier Elimination Procedures. We thank 
the anonymous referees for their comments. 
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