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Abstract

We present several domain decomposition algorithms for se-
quential and parallel minimization of functionals formed by
a discrepancy term with respect to data and total variation
constraints. The convergence properties of the algorithms are
analyzed. We provide several numerical experiments, showing
the successful application of the algorithms for the restora-
tion 1D and 2D signals in interpolation/inpainting problems
respectively, and in a compressed sensing problem, for re-
covering piecewise constant medical-type images from partial
Fourier ensembles.

1 Introduction

In concrete applications for image processing, one might be
interested to recover at best a digital image provided only
partial linear or nonlinear measurements, possibly corrupted
by noise. Given the observation that natural and man-made
images are characterized by a relatively small number of edges
and extensive relatively uniform parts, one may want to help
the reconstruction by imposing that the interesting solution
is the one which matches the given data and has also a few
discontinuities localized on sets of lower dimension.

In the context of compressed sensing [2, 8], it has been clar-
ified the fundamental role of minimizing ℓ1-norms in order to
promote sparse solutions. This understanding furnishes an
important interpretation of total variation minimization, i.e.,
the minimization of the ℓ1-norm of derivatives [13], as a regu-
larization technique for image restoration. Several numerical
strategies to perform efficiently total variation minimization
have been proposed in the literature. We list a few of the
relevant ones, ordered by their chronological appearance:

(i) the approach of Chambolle and Lions [4] by re-weighted
least squares, see also [6] for generalizations and refinements
in the context of compressed sensing;
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(ii) variational approximation via local quadratic function-
als as in the work of Vese et al. [14, 1];

(iii) iterative thresholding algorithms based on projections
onto convex sets as in the work of Chambolle [3] as well as in
the work of Combettes-Wajs [5] and Daubechies et al. [7];

(iv) iterative minimization of the Bregman distance as in
the work of Osher et al. [12];

(v) the approach proposed by Nesterov [11] and its modifi-
cations by Weiss et al. [15].

These approaches differ significantly, and it seems that the
ones collected in the groups iv) and v) do show presently the
best performances in practice. However, none of the men-
tioned methods is able to address in real-time, or at least in
an acceptable computational time, extremely large problems,
such as 4D imaging (spatial plus temporal dimensions) from
functional magnetic-resonance in nuclear medical imaging, as-
tronomical imaging or global terrestrial seismic tomography.
For such large scale simulations we need to address methods
which allow us to reduce the problem to a finite sequence of
sub-problems of more manageable size, perhaps by one of the
methods listed above. With this aim we introduced subspace
correction and domain decomposition methods both for ℓ1-
norm and total variation minimizations [9, 10]. Due to the
nonadditivity of the total variation with respect to a domain
decomposition (the total variation of a function on the whole
domain equals the sum of the total variations on the sub-
domains plus the size of the jumps at the interfaces), one
encounters additional difficulties in showing convergence of
such decomposition strategies to global minimizers.

In this paper we review concisely both nonoverlapping and
overlapping domain decomposition methods for total varia-
tion minimization and we provide their properties of conver-
gence to global minimizers. Moreover, we show numerical
applications in classical problems of signal and image pro-
cessing, such as signal interpolation and image inpainting.
We further include applications in the context of compressed
sensing for recovering piecewise constant medical-type images
from partial Fourier ensembles [2].

2 Notations and preliminaries

Since we are interested to a discrete setting, we define the
domain of our multivariate digital signal Ω = {x1

1 < . . . <
x1
N1

} × . . . × {xd
1 < . . . < xd

Nd
} ⊂ R

d, d ∈ N and we con-

sider the signal space H = R
N1×N2×...×Nd , where Ni ∈ N
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for i = 1, . . . , d. For u ∈ H we write u = u(xi)i∈I with in-

dex set I :=
∏d

k=1{1, . . . , Nk} and u(xi) = u(x1
i1
, . . . , xd

id
)

where ik ∈ {1, . . . , Nk} and xi ∈ Ω. Then, for g ∈ R
N ,

the ℓp-norm is given by ‖g‖p =
(

∑N
k=1 |gk|

p
)1/p

, 1 ≤

p < ∞, and for u ∈ H the discrete gradient ∇u is given
by (∇u)(xi) = ((∇u)1(xi), . . . , (∇u)d(xi)) with (∇u)j(xi) =
u(x1

i1 , . . . , x
j
ij+1, . . . , x

d
id
) − u(x1

i1 , . . . , x
j
ij
, . . . , xd

id
) if ij < Nj,

and (∇u)j(xi) = 0 if ij = Nj , for all j = 1, . . . , d and for
all i = (i1, . . . , id) ∈ I. The total variation of u ∈ H in the
discrete setting is then defined as |D(u)| (Ω) =

∑

i∈I

|(∇u)(xi)|,

with |y| =
√

y21 + . . .+ y2d for every y = (y1, . . . , yd) ∈ R
d.

We define the scalar product of u, v ∈ H as usual, 〈u, v〉H =
∑

i∈I u(xi)v(xi), and the scalar product of p, q ∈ Hd as

〈p, q〉Hd =
∑

i∈I p
1(xi)q

1(xi) + . . . + pd(xi)q
d(xi). Further

we introduce a discrete divergence div : Hd → H defined, by
analogy with the continuous setting, by div = −∇∗ (∇∗ is the
adjoint of the gradient ∇). In the following we denote with
πK the orthogonal projection onto a closed convex set K.

2.1 Projections onto convex sets

With these notation, we define the closed convex set

K :=
{

div p : p ∈ Hd, |pi| ≤ 1 for all i ∈ I
}

.

We briefly recall here an algorithm proposed by Chambolle
in [3] in order to compute the projection onto αK. The fol-
lowing semi-implicit gradient descent algorithm is given to
approximate παK(g): Choose τ > 0, let p(0) = 0 and, for any
n ≥ 0, iterate

p
(n+1)
i

=
p
(n)
i

+ τ(∇(div p(n) − g/α))i

1 + τ
∣

∣(∇(div p(n) − g/α))i
∣

∣

. (1)

For τ > 0 sufficiently small, the iteration α div p(n) converges
to παK(g) as n → ∞ (compare [3, Theorem 3.1]).

2.2 Setting of the problem

Given a model linear operator T : H → R
K , we are consider-

ing the following discrete minimization problem

argmin
u∈H

{

J (u) := ‖Tu− g‖22 + 2α|Du|(Ω)
}

(2)

where g ∈ R
K is a given datum and α > 0 is a fixed regu-

larization parameter. Note that, up to rescaling the param-
eter α and the datum g, we can always assume ‖T ‖ < 1.
Moreover, in order to ensure existence of solutions, we as-
sume 1 /∈ ker(T ). For both nonoverlapping and overlap-
ping domain decompositions, we will consider a linear sum
H = V1 + V2 with respect to two subspaces V1, V2 defined
by a suitable decomposition of the physical domain Ω. We
restrict our discussion to two subspaces, but the analysis can
be extended in a straightforward way to multiple subspaces.
With this splitting we want to minimize J by suitable in-
stances of the following alternating algorithm: Pick an initial

V1 + V2 ∋ u
(0)
1 + u

(0)
2 := u(0) ∈ H, for example u(0) = 0, and

iterate










u
(n+1)
1 ≈ argminv1∈V1 J (v1 + u

(n)
2 )

u
(n+1)
2 ≈ argminv2∈V2 J (u

(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

3 Nonoverlapping domain decompo-

sition methods

Let us consider the disjoint domain decomposition Ω = Ω1 ∪
Ω2 and Ω1 ∩Ω2 = ∅ and the corresponding spaces Vj = {u ∈
H : supp(u) ⊂ Ωj}, for j = 1, 2. Note that H = V1 ⊕ V2. It is
useful to us to introduce an auxiliary functional J s

1 , called the
surrogate functional of J : For j ∈ {1, 2} and ǰ ∈ {1, 2} \ {j},
assume a, uj ∈ Vj and uǰ ∈ Vǰ and define

J s
j (uj+uǰ, a) := J (uj+uǰ)+‖uj−a‖2H−‖T (uj−a)‖2H. (3)

As it will be clarified later, the minimization of J s
j (uj+uǰ, a)

with respect to uj and for fixed uǰ, a is an operation which
can be realized more easily than the direct minimization of
the parent functional J (uj + uǰ) for the sole uǰ fixed.

3.1 Sequential algorithm

In the following we denote uj = πVj
u the orthogonal projec-

tion onto Vj , for j = 1, 2. Let us explicitely express the algo-

rithm as follows: Pick an initial V1 ⊕ V2 ∋ u
(0,L)
1 + u

(0,M)
2 :=

u(0) ∈ H, for example u(0) = 0, and iterate






























{

u
(n+1,0)
1 = u

(n,L)
1 and for ℓ = 0, . . . , L− 1

u
(n+1,ℓ+1)
1 = argminu1∈V1 J

s
1 (u1 + u

(n,M)
2 , u

(n+1,ℓ)
1 )

{

u
(n+1,0)
2 = u

(n,M)
2 and for m = 0, . . . ,M − 1

u
(n+1,m+1)
2 = argminu2∈V2 J

s
2 (u

(n+1,L)
1 + u2, u

(n+1,m)
2 )

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2 .

(4)
Note that we do prescribe a finite number L and M of inner
iterations for each subspace respectively.

3.2 Parallel algorithm

The parallel version of the previous algorithm reads as follows:

Pick an initial V1 ⊕ V2 ∋ u
(0,L)
1 + u

(0,M)
2 := u(0) ∈ H, for

example u(0) = 0, and iterate































{

u
(n+1,0)
1 = u

(n,L)
1 and for ℓ = 0, . . . , L− 1

u
(n+1,ℓ+1)
1 = argminu1∈V1 J

s
1 (u1 + u

(n,M)
2 , u

(n+1,ℓ)
1 )

{

u
(n+1,0)
2 = u

(n,M)
2 and for m = 0, . . . ,M − 1

u
(n+1,m+1)
2 = argminu2∈V2 J

s
2 (u

(n,L)
1 + u2, u

(n+1,m)
2 )

u(n+1) :=
u
(n+1,L)
1 +u

(n+1,M)
2 +u(n)

2 .
(5)

Note that u(n+1) is the average of the current iteration and
the previous one as it is the case for successive overrelaxation
methods (SOR) in classical numerical linear algebra.
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4 Overlapping domain decomposi-

tion methods

Let us consider the overlapping domain decomposition Ω =
Ω1 ∪Ω2 and Ω1 ∩ Ω2 6= ∅ and the corresponding spaces Vj =
{u ∈ H : supp(u) ⊂ Ωj}, for j = 1, 2. Note that now H =
V1 + V2 is not anymore a direct sum of V1 and V2, but just
a linear sum of subspaces. We define the internal boundaries
Γj = ∂Ωj ∩ Ωǰ , j ∈ {1, 2} and ǰ ∈ {1, 2} \ {j} (see Figure 1).

Ω2

Γ2
❞ ❞

Γ1

Ω1

Figure 1: Overlapping domain decomposition and internal bound-
aries.

4.1 Sequential algorithm

Associated to the decomposition {Ωj : j = 1, 2} let us fix a
partition of unity {χj : j = 1, 2}, i.e., χ1+χ2 = 1, supp(χj) ⊂
Ωj , and χj |Γj

= 0. Let us explicitely express the algorithm

now as follows: Pick an initial V1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈

H, for example u(0) = 0, and iterate
































































u
(n+1,0)
1 = ũ

(n)
1 and for ℓ = 0, . . . , L− 1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

u1|Γ1=0
J s
1 (u1 + ũ

(n)
2 , u

(n+1,ℓ)
1 )







u
(n+1,0)
2 = ũ

(n)
2 and for m = 0, . . . ,M − 1

u
(n+1,m+1)
2 = argmin u2∈V2

u2|Γ2=0
J s
2 (u

(n+1,L)
1 + u2, u

(n+1,m)
2 )

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1)

(6)
A few technical tricks are additionally required for the

boundedness of the iterations in algorithm (6) with respect to
the nonoverlapping version. First of all the local minimiza-
tions are restricted to functions which vanish on the internal
boundaries. Moreover since u(n) is formed as a sum of local
components u

(n)
1 , u

(n)
2 which are not uniquely determined on

the overlapping part, we introduced a suitable correction by
means of the partition of unity {χj : j = 1, 2} in order to
enforce the uniform boundedness of the sequences of the lo-

cal iterations u
(n)
1 , u

(n)
2 . With similar minor modifications, we

can analogously formulate a parallel version of this algorithm
as in (5).

4.2 The solution of the local iterations

The inner iterations

u
(n+1,ℓ+1)
j = argmin uj∈Vj

Γjuj=0

J s
j (uj + u

(n)

ǰ
, u

(n+1,ℓ)
j ),

where Γjuj = 0 is some linear constraint, are crucial for the
concrete realizability of the algorithm. (Note that in the case
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Figure 2: Here we present two numerical experiments related to
the interpolation of a 1D signal by total variation minimization,
provided only information only out of an interval (indicated in
green color in the figures). On the left we show an application
of algorithm (6) when no correction with the partition of unity is

provided. In this case, the sequence of the local iterations u
(n)
1 , u

(n)
2

is unbounded. On the right we show an application of algorithm
(6) with the use of the partition of unity which enforces also the

uniform boundedness of the local iterations u
(n)
1 , u

(n)
2 .

of the nonoverlapping decomposition there is no additional
linear constraint, whereas for the overlapping case we ask for
the trace condition Γjuj = uj |Γj

= 0.) Such iteration can be
explicitely computed

u
(n+1,ℓ+1)
j = [I − παK ]

(

u
(n+1,ℓ)
j + πVj

T ∗(g − Tuǰ − Tu
(n+1,ℓ)
j )

+ uǰ − η(n+1,ℓ)
)

− uǰ ,

for a suitable Lagrange multiplier η(n+1,ℓ) which has the role
of enforcing the linear constraints uj ∈ Vj and Γjuj = 0;
η(n+1,ℓ) can be approximated by an iterative algorithm, see
[10, Proposition 4.6] for details. Note that we have to im-
plement repeatedly the projection παK for which the Cham-
bolle’s algorithm (1) is used. More efficient algorithms can
also be used such as iterative Bregman distance methods [12]
or Nesterov’s algorithm [11].

5 Convergence properties

These algorithms share common convergence properties,
which are listed in the following theorem.
Theorem. (Convergence properties)The algorithms (4), (5),
and (6) produce a sequence (u(n))n∈N in H with the following
properties:
(i)J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) =

u(n+1));
(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;
(iii) the sequence (u(n))n∈N has subsequences which con-

verge in H; if (u(nk))k∈N is a converging subsequence, and
u(∞) is its limit, then u(∞) is always a minimizer of J in the
case of algorithm (6) (overlapping case), whereas for algo-
rithms (4), (5) (sequential and parallel nonoverlapping cases)
this can be ensured under certain sufficient technical condi-
tions, see [10, Theorem 5.1 and Theorem 6.1] for details.
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6 Numerical experiments

In the Figure 2, Figure 3, and Figure 4 we illustrate the re-
sults of several numerical experiments, showing the successful
application of algorithms (4) and (6), for the restoration of
1D and 2D signals in interpolation/inpainting problems re-
spectively, and for a compressed sensing problem.

Initial Picture

(a)

146 iterations  

(b)

Figure 3: This figure shows an application of algorithm (6) for an
inpainting problem. In this simulation the problem was split via
decomposition into four overlapping subdomains.

Sampling domain in the frequency plane

(a) (b)

68 iterations

(c)

1401 iterations

(d)

Figure 4: We show an application of algorithm (4) in a classi-
cal compressed sensing problem for recovering piecewise constant
medical-type images from given partial Fourier data. In this simu-
lation the problem was split via decomposition into four nonover-
lapping subdomains. On the top-left figure, we show the sampling
data of the image in the Fourier domain. On the top-right we
show the back-projection provided by the sampled frequency data
together with the highlighted partition of the physical domain into
four subdomains. The bottom figures present intermediate itera-
tions of the algorithm.
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[15] P. Weiss, L. Blanc-Féraud, and G. Aubert, Efficient schemes
for total variation minimization under constraints in image
processing, SIAM J. Sci. Comput., (2009) to appear.

http://arxiv.org/abs/0807.0575
http://arxiv.org/abs/0712.2258

	Introduction
	Notations and preliminaries
	Projections onto convex sets
	Setting of the problem

	Nonoverlapping domain decomposition methods
	Sequential algorithm
	Parallel algorithm

	Overlapping domain decomposition methods
	Sequential algorithm
	The solution of the local iterations

	Convergence properties
	Numerical experiments

