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Abstract—Vehicular Ad-hoc NETwork (VANET), a novel tech­
nology holds a paramount importance within the transportation 
domain due to its abilities to increase traffic efficiency and 
safety. Connected vehicles propagate sensitive information which 
must be shared with the neighbors in a secure environment. 
However, VANET may also include dishonest nodes such as 
Man-in-the-Middle (MiTM) attackers aiming to distribute and 
share malicious content with the vehicles, thus polluting the 
network with compromised information. In this regard, estab­
lishing trust among connected vehicles can increase security as 
every participating vehicle will generate and propagate authentic, 
accurate and trusted content within the network. In this paper, 
we propose a novel trust model, namely, Man-in-the-middle 
Attack Resistance trust model IN connEcted vehicles (MARINE), 
which identifies dishonest nodes performing MiTM attacks in an 
efficient way as well as revokes their credentials. Every node 
running MARINE system first establishes trust for the sender 
by performing multi-dimensional plausibility checks. Once the 
receiver verifies the trustworthiness of the sender, the received 
data is then evaluated both directly and indirectly. Extensive 
simulations are carried out to evaluate the performance and 
accuracy of MARINE rigorously across three MiTM attacker 
models and the bench-marked trust model. Simulation results 
show that for a network containing 35% MiTM attackers, 
MARINE outperforms the state of the art trust model by 15%, 
18%, and 17% improvements in precision, recall and F-score, 
respectively. 

Keywords—Connected Vehicles, Trust Management, Trust 
Model, Smart Cities, Man-in-the-middle Attack, VANET 

I. INTRODUCTION 

Vehicular Ad-hoc NETwork (VANET) has emerged as a 
promising solution to address the current challenges faced 
by the transportation systems and vehicles. VANET increases 
traffic safety as well as offers other infotainment services to 
passengers. In VANET, the connected vehicles equipped with 
numerous sensors share critical information such as traffic 
accident-avoidance or black-ice warnings through different 
modes of communications, i.e., Vehicle-to-Vehicle (V2V), 
Vehicle-to-Roadside Unit (V2R) and hybrid [1]–[3]. Fig. 1 
highlights the realization of VANET within a smart city. 
The data generated by the vehicular nodes is usually shared 
with central servers (depending on the service provider) to 
generate traffic management-related messages as well as with 
the neighbors to generate short-range traffic view [4]. 

Traffic Management 

Center

RSU

RSU

RSU

RSU

RSU

Roadside 

Unit (RSU)

RSU

RSU

RSU

RSU

RSU

Vehicle-to-Vehicle Communication

RSU-to-RSU Communication
Vehicle-to-RSU Communication

Fig. 1: Realization of VANET in Smart City 

Abstractly, VANET constitutes safety messages, therefore, 
ensuring security of both communication and content is essen­
tial. Due to the intermittent communication among vehicles in 
VANET, providing such secure environment for message prop­
agation is challenging in the presence of possibly dishonest 
nodes with the aim to launch a wide range of attacks including 
Man-in-the-Middle (MiTM), black-hole, Sybil, malware injec­
tions and Denial-of-Service (DoS) etc [5]–[7]. These dishonest 
nodes pollute the network with compromised messages which 
are then shared with other neighbors. The high mobility of the 
connected vehicles further increases the network complexity. 
Over the past decade, VANET security was the main theme 
of various notable projects including EVITA [8], PRESERVE 
[9], CONVERGE [10], and UKCITE [11] etc., to name a few, 
where various solutions are suggested to secure VANET. 

Most of the current security solutions rely on traditional 
cryptography and Public Key Infrastructure (PKI). These 
solutions address most of the security challenges to some 
extent, for instance, they can easily identify outsider attackers. 
However, PKI-based solutions fail to detect attacks launched 
by insider attackers due to the fact that they are legitimate 
members as they possess valid credentials. 

In order to address the shortcoming of the PKI-based 
security solutions, the concept of trust is introduced as a 
security parameter in VANET which has the ability to identify 

mailto:fatima.hussain@rbc.com
mailto:r.hussain@innopolis.ru
mailto:a.adnane@lboro.ac.uk
mailto:f.kurugollu}@derby.ac.uk


2 

insider attackers by mutually evaluating the shared messages. 
In the context of VANET, trust is defined as the faith which 
one vehicle places in other vehicle(s) for sharing reliable, 
trusted, accurate, and authentic messages [12], [13]. However, 
evaluating trust on the basis of the received information in a 
limited time among vehicles is extremely challenging as the 
vehicles only communicate for a short period of time. 

Trust models are generally categorized into entity-centric, 
data-centric, and combined models based on their revocation 
targets. To secure VANET from trust perspective, a wide 
range of metrics are introduced including mutual interac­
tion evaluations, neighbour recommendations and messages 
scrutiny, to name a few. Further, current trust management 
solutions rely on different similarity measurement techniques, 
which add a considerable amount of undesired overhead to the 
original shared messages, to compare the generated messages. 
In addition, the focus of most of these solutions are on 
revoking dishonest vehicles or their malicious content based 
on either identity related or messages analysis metrics. Even 
combined trust models consider only one category of metrics, 
where, a genuine node generates fake or malicious message 
due to compromised sensor, and an attacker generates true 
messages about an occurring event. Therefore, both nodes 
honesty and true messages are pre-requisite for an efficient 
trust management scheme for these solutions. 

To fill the security gaps in VANET, in this paper, we propose 
an efficient and light-weight trust management model that 
enables the vehicular nodes to evaluate the entity (sender) 
trust and content (the shared information) trust in an intelligent 
manner. The main contributions of this paper are summarized 
below: 

•	 A new trust management model (MARINE), that evalu­
ates and manages trust among the communicating vehi­
cles in VANET, is proposed. 

•	 In MARINE, we incorporate both entity trust and content 
trust where entity trust is evaluated through extensive 
plausibility checks and the content trust is evaluated 
through neighbors recommendation. This two-step trust 
management solution helps eradicating the problem of 
insiders attacks where one solution is not enough to 
mitigate the attacks. 

•	 We propose a Man-in-The-Middle (MiTM)-resistant trust 
framework to stop the dishonest nodes from sharing 
malicious information. 

•	 We carry out extensive simulations to validate the pro­
posed scheme and evaluate the efficiency of MARINE 
from accuracy and trust standpoints. 

The remainder of this paper is organized as follows: In 
Section II, we present related work on trust management in 
VANET. Next, Section III provides details of our proposed 
MARINE scheme. Afterwards, the simulation environment 
is explained in Section IV including simulation results of 
MARINE. Finally, we conclude the paper in Section V. 

II. RELATED WORK 

The main motivation of the trust models in VANET is to 
disseminate accurate, authentic and up-to-date trusted content 

among the network entities. However, due to the highly inter­
mittent and mobile nature of vehicular nodes, establishing and 
evaluating trust for the received information is a challenging 
task. [14], [15]. 

VANET involves two revocation targets, i.e., (1) partici­
pating network entities, and (2) data exchanged among these 
nodes, resulting in fully distributed trust management schemes 
[16]. Further, the data can be exchanged through connected 
infrastructure (i.e., Road-Side Unit - RSU) adjacent to the 
road with the aim to disseminate trusted content to a large geo­
graphical location. The RSU-based trust management schemes 
are the centralized trust models. Based on this information, 
the resultant trust models can further be categorized into three 
classes, i.e., (1) entity-centric trust models, (2) data-centric 
trust models, and (3) combined trust ( hybrid) models [17]– 
[19] as shown in Fig. 2. 
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Fig. 2: Categories of Trust Models in VANET 

A. Entity-centric Trust Models (ECTM) 

The major aim of entity-trust is to identify the presence of 
dishonest nodes within the pool of legitimate vehicles. These 
trust models rely on the opinions provided by its neighbours 
where a reputation-based trust evaluation methodology is em­
ployed to evaluate the trustworthiness of the sender. Currently, 
various ECTMs are proposed in the literature. Marmol et al. 
[20], proposed a centralized entity-centric trust model where 
vehicular reputation is evaluated by the message evaluator 
(MEval) with the help of adjacent RSU. Upon reception of 
the messages, a fuzzy-based trust score is generated by the 
MEval which depends on the information received via three 
sources, i.e., recommendation shared by RSU, recommenda­
tion provided by nearby vehicles, and previous reputation of 
the sender. Once, the trust-score is generated, MEval takes 
one of the following decision, i.e., (1) drop the message if 
not trustworthy, (2) MEval accepts the message but do not 
forward it, and (3) accept and forward the message. The main 
drawback of this trust model is the extra overhead generated by 
multiple sources in order to provide reputation of the sender. 

Another approach for revoking dishonest nodes from the 
network was proposed by Khan et al. [21], where a cluster-
based mechanism is introduced in the network. First, a cluster 
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head (CH) is selected by the nodes, which employs a watch­
dog mechanism in its neighbourhood. Honest nodes report 
to CH by providing its recommendation about the presence 
of misbehaving entity in its vicinity. Once, the dishonest 
nodes are detected, CH informs the central trusted authority 
(CTA) which eliminates them from the pool of trusted nodes. 
However, this approach requires high amount of overheads 
generation due to continuous reports exchange between nodes 
which reduces the overall network efficiency. 

A similar cluster-oriented trust model was presented by 
Jesudoss et al. [22], where every node follows a truth-telling 
approach to disseminate true content to get better reputation. 
Further, these nodes must participate in the election of CH 
in the network, which provides incentives in the form of 
weights to these nodes. CH only trusts the information if the 
participating node gains sufficient weights in CH election. 
This solution fails in a highly mobile and rural scenario due 
to limited number of neighbouring vehicles. As a result, the 
presence of dishonest nodes in such location may result in the 
biased selection of CH . 

A centralized entity-centric trust model namely Reputation-
based Global Trust Establishment (RGTE) was proposed by 
Li et al. [23]. In this model, the vehicles compute reputation 
of the vehicles in theirs close vicinity and share their opinions 
with the centralized Reputation Management Center (RMC) 
via RSUs. RSUs are responsible to calculate the overall trust 
of the sender. Further, RMC updates the node reputation, 
and shares the updated list with the neighbouring vehicles 
after a short interval of time. The major limitation of this 
model are: (1) the overheads caused by the neighbouring 
vehicles by sharing their opinions with RMC, and (2) the delay 
which RMC takes to inform participating vehicles about the 
trustworthiness of the sender node. 

Haddadou et al. [24], on the other hand, adapted a different 
approach where an economic incentive model was introduced 
to exclude dishonest nodes from the network. Every partici­
pating node is bootstrapped with a specific credit value, which 
is incremented and decremented based on the behaviour of the 
node. For a good behaviour, credit of the node is incremented 
by the MEval, while, in case of an attack, it is decreased for 
its misconduct in the network. If the credit of the node falls 
to 0, the node is classified as malicious and is revoked from 
the network. The major constraint of this trust model is its 
inability to differentiate between direct or indirect trust. 

B. Data-centric Trust Models (DCTM) 

Data-centric trust mechanism evaluates the trustworthiness 
of the received messages, rather than the evaluating the trust 
of the message sender. To date, various data-centric trust 
solutions have been proposed in the literature. For instance, 
Lo et al. [25] proposed a trust evaluation mechanism namely 
Event-based Reputation System (ERS) to prevent the vehicles 
to disseminate compromised and malicious warning messages 
in the network. In this method, a cooperative event observation 
mechanism and reputation scheme is employed to share the 
event confidence and reputation thresholds with the MEval. 
Based on the evaluation results, MEval determines whether 

to broadcast and disseminate traffic warning messages or not. 
The main limitation of this approach is the time taken by the 
MEval to decide and share the trusted information with the 
neighbors in time. 

To assess the information generated by malicious nodes, 
Shaikh et al. proposed an intrusion-aware data trust model, 
where four distinct sources including location closeness, time 
closeness, location verification, and time-stamp verification are 
utilized to compute a confidence value for every received mes­
sage [26]. While preserving identity of vehicle, this scheme 
suffers from a wide number of geographical problems includ­
ing the generation of high number of messages describing 
the same event. Further, safety-related messages are delay-
sensitive, therefore, processing time to compute confidence 
value can lead to unwanted situations such as late accident 
notification. 

Unlike [26], Rawat et al. [27] introduced combined op­
portunistic/deterministic approaches, where MEval computes 
the similarity between the messages representing same events. 
Thus, this trust model filters out the different minority of 
messages from the pool of the received messages. Next, 
a deterministic approach based on coordinates of vehicles 
position and received signal strength estimation is ensured by 
comparing malicious vehicles and their transmitted messages. 
Similar to [26], this proposal is also time consuming and as a 
result, it fails to provide expected level of security in critical 
and extreme cases. Further, this trust model requires a large 
number of communicating vehicles, thus it fails to operate in 
rural scenarios. 

To address the dynamics (high mobility and random dis­
tribution) of VANET, Liu et al. presented a lightweight 
data-centric trust model, namely LSOT which operates in a 
fully distributed manner [28]. To accurately determine the 
overall trust evaluations, three factors (number weight, time 
decay weight and context weight) are integrated for the trust-
based evaluations. On the other hand, LSOT also relied on 
recommendation-based evaluations to identify and maintain 
its neighbourhood by creating a trusted environment. The 
main shortcoming of this scheme is its failure to distinguish 
among the trust of node and the message. If any sensor of the 
legitimate vehicle is faulty or impersonated by an attacker, then 
compromised messages will be transmitted from that vehicle, 
which ultimately pollutes the network with wrong information. 

C. Combined Trust Models (CTM) 

Combine trust models aggregate the properties of both 
entity-centric and data-centric trust management schemes, 
where node trust is calculated based on the trust evaluations of 
the received messages. Recently, different studies have been 
conducted where trust is established based on the characteris­
tics of both data and entity. For instance, Ahmed et al. pro­
posed a logistic-based trust computation technique to quickly 
identify the nodes transmitting compromised and malicious 
messages [29]. In this technique, MEval closely observes the 
events occurring within its vicinity, thus information shared 
by neighbouring vehicles directly depicts the behaviour of 
the sender which is calculated through weighted voting and 
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Fig. 3: Operation of the Proposed Trust Model 

logistic trust function. Since the trust is evaluated based on 
weighted voting, the trust computation can be biased if MEval 

is surrounded by dishonest nodes. 
Li et al. introduced an attack-resistant combined trust model, 

where MEval estimates the trust on the received information 
by evaluating both node and data-centric trust [30]. The data 
trustworthiness is calculated based on Bayesian Inference (BI), 
where MEval relies on the information received from multiple 
neighbours. Furthermore, MEval integrates Functional Trust 
(FT) and Recommendation Trust (RT) to evaluate node-centric 
trustworthiness. FT ensures that the participating node behaves 
properly while communicating with MEval, while RT main­
tains a certain level of trust before the node can be trusted. 
This scheme does not take data sparsity into account, which 
is pervasive in VANET. 

To quickly revoke the malicious nodes from the network, 
Chen et al. proposed a novel evidence-based trust management 
scheme which integrates both direct and indirect trust [31]. 
MEval establishes direct trust at a local level, while indirect 
trust is computed using BI to filter out the malicious informa­
tion received from the neighbouring vehicles. This approach 
aims to compute a global trust value on the received infor­
mation, which is then shared with the neighbouring vehicles 
directly and via RSU. Although this trust model is efficient 
as it evaluates the trust on the received information in a small 
interval of time; however, a high number of neighbours are 
required around MEval to compute indirect trust. 

Recently, Mahmood et al. presented a novel combined trust 
model which relies on traditional clustering mechanism to 
evaluate trust of the network nodes [32]. In this trust model, 
cluster head (CH) is elected in the network based on the 
trust of the participating nodes and their available resources. 

CH is responsible for transmitting trusted messages within the 
network. However, the main drawback of this approach is the 
biased election of CH , if majority of the nodes are dishonest 
in the network. 

In a nutshell, various trust models have been proposed in 
VANET that ensure the propagation of trusted content in the 
network. According to our literature review, most of these trust 
models operate only at the application layer, arising technical 
challenges including higher network delays. In this paper, we 
propose a novel combined trust model which operates at the 
two layers, i.e., network and application layers. Further, RSU 
is utilized to compute the global trust value with the aim to 
share trusted content with neighbouring vehicles at a large 
geographical location. 

In the next section, we provide explanations of our proposed 
trust model. 

III. PROPOSED MARINE TRUST MANAGEMENT MODEL 

In this section, we provide the details of our proposed 
trust model, i.e, MARINE. First, we abstractly describe MA­
RINE, followed by its operation and trust evaluation. The 
detailed proposal is highlighted in Fig. 3, suggesting that 
MARINE involves various steps in order to trusts the in­
formation from sender by evaluating it in two dimensions 
including, node-centric trust computation and data-centric trust 
computation. Further, MARINE integrates both inter-vehicular 
and infrastructure-based trust computation in order to provide 
higher accuracy of detecting malicious content in large geo­
graphical locations. 
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A. Baseline of MARINE 

The MARINE is a novel and efficient mechanism to evaluate 
the trust in VANET, which not only integrates the information 
and opinion shared by vehicles, but also takes the sugges­
tions provided by nearby RSU. MARINE is a lightweight 
trust model that operates in two stages to evaluate inter-
vehicular trust. First, it evaluates the sender node to identify its 
trustworthiness. This is achieved via previous interactions and 
the recommendations provided by the neighbouring vehicles. 
Second, once node-centric trust is calculated, the received data 
is evaluated in three distinct dimensions, i.e., (1) information 
quality, (2) node’s message forwarding capability, and (3) 
opinions from neighbours. Data from the sender node is 
accepted only if both node and data-centric trust is computed 
successfully. Otherwise the evaluator node will drop the data. 

MARINE relies on both vehicles (inter-vehicular trust com­
putation) and RSU (infrastructure-based trust computation) 
to compute the overall trust on the sender and the received 
information. 

B. Inter-vehicular Trust Computation 

In order to trust the received information, MARINE involves 
the following two steps, i.e., (1) node-centric trust computa­
tion, and (2) data-centric trust computation. 

1) Step 1: Node-centric trust computation: In the first 
step, MARINE evaluates trust on sender transmitting the 
safety messages. The communication module embedded in the 
vehicles enables them to share messages with the neighbouring 
vehicles in a specific range, which directly depends on the 
height and position of the antenna on the transmitting vehicle 
[33], [34]. A slight change in the antenna position and height 
can distort the signal strength, which ultimately results in 
a signal loss. This impacts the message transmission range 
and the neighbouring vehicles may be unable to receive the 
transmitted messages. In this regard, we define “MRange” as a 
function of (1) distance (DMS <−>MR ) between MS and MR, 
(2) sender antenna height (ASender), and (3) receiver antenna 
height (AReceiver) as follows. 

 
2

MRange = (DMS <−>MR ) + (ASender + AReceiver)2 

(1) 
MR upon receiving message, performs various plausibility 

checks that depend solely on the MRange. MR classifies mes­
sage as malicious if it is received outside its range. However, 
if the message is received from the vehicle located within 
its MRange, then MR first checks its existing database for 
previous interactions. For every encounter, the vehicles keep 
track of each other (i.e., V ehID) along with its trust values. 
The existence of non-zero entry within the database of MR 

depicts that the sender vehicle has been encountered previously 
as vehicles in the network are assigned with unique identities 
(IDs). In case the vehicles are communicating with each other 
for the first time, the database will have no entry within its 
database. Next, MR checks the trust value of the encountered 
vehicle. Every vehicle assigns two trust ratings for every 
encountered vehicle, i.e., (1) positive trust rating (RatingP os) 

for sharing true and trusted message, and (2) negative trust 
rating (RatingNeg ) for malicious messages. MR will trust 
the node only, if the resultant trust level (TL) is higher than 
the pre-defined trust threshold (TRT hreshold). In this case, 
MR assigns partial reward (α1) to the MS and forwards the 
message to Step 2 for evaluating the content of the received 
message. However, if TL is less than TRT hreshold, MR 

discards the received message directly and provides penalty 
(β) to the MS . 

In order to allow the communication among vehicles for 
the very first time, MR creates an entry within its database 
along with the default minimum (TLMin). To gain the trust 
of (MR), the new vehicle must ensure to provide true content, 
otherwise, the messages shared from such vehicles are classi­
fied as malicious. We summarize the checks performed in this 
step in Algorithm 1. 

Algorithm 1: Step 1: Node-centric trust computation 
Input: Vehicle ID (IDNode); Trust level (TL); Minimum 

trust level (TLmin); Trust threshold (TRT hreshold); 
Message threshold range (MRange); Partial Reward 
(α1); Penalty (β) 

if (Message ∈ MRange) then 
Check Vehicle ID (V ehID); 
if (V ehID ∈ Database) then 

Check TL; 
if (TL ≥ TRT hreshold) then 

TL = TL + α1;
 
(Goto Step 2: Data-centric trust computation);
 

else 
Classify as dishonest vehicle;
 
TL = TL - β;
 
Update Database;
 

end 
else 

Insert V ehID to Database for new vehicles; 
TL = TLmin; 

end 
else 

Discard M ;
 
Insert IDNode to Database;
 
TL = TMin;
 

end 

2) Step 2: Data-centric trust computation: Once node-
centric trust is calculated in Step 1, MR evaluates trust on 
the content of the received message. Since, messages can be 
delivered at the MR either directly or through intermediate 
neighbours, therefore, two methods of trust computation are 
performed in this step: 

Direct Trust Computation: MR computes trust on the 
received message directly based on two important factors: (1) 
quality of the received message (MQuality), and (2) ability of 
the node to disseminate message. 

According to ETSI, MQuality depends directly on the 
distance of the received message [35]. The greater the distance 
between MS and MR, the higher is the probability that 
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message is generated from dishonest vehicle. To this end, we 
divide the geographical location between sender and receiver 
into 4 tiers (µ), i.e., 

⎧ 
1 if 0 < DMS <−>MR ≤ µ1⎪⎪⎪⎪⎪⎪0.75 if µ1 < DMS <−>MR ≤ µ2⎨ 

MQuality = 0.5 if µ2 < DMS <−>MR ≤ µ3 (2) 
0.25 if µ3 < DMS <−>MR ≤ µ4 

⎪⎪⎪⎪⎪⎪⎩0 if DMS <−>MR > µ4 

Tier-1

Tier-2

Tier-3

RMessage

Tier-4

Tier-4
Tier-3

Tier-1
Tier-2

µ4 

µ3 

µ2 

µ1 

MR 

Ms1 

Ms2 

Ms3 Message received from outside RMessage 

Message received from within RMessage 

Fig. 4: Tier-based Threshold Approach 

In equation 2, µ1, µ2, µ3, µ4 are respective boundaries of 
the tiers between MS and MR as depicted in Fig. 4. In this 
paper, we followed a tier-based approach due to the fact that 
MR is unable to distinguish between legitimate and malicious 
messages generated from MS , if the distance is very large 
between them. As an illustration, MR receives messages from 
three vehicles MS1, MS2 and MS3, which are located in 
different tiers of MR. MS1 and MS2 are located within tier 
2 and tier 3, therefore, the respective values of MQuality 

assigned by MR are 0.75 and 0.5. However, MR assigns 0 
to vehicle 3 as it is received from outside of the range of MR. 

Next, we also take into account the ability of the vehicle 
to disseminate and share information with the neighboring 
vehicles. To this end, we define a “Message Disseminate Ratio 
(MDR)” as follows: 

MDR = 
nt 

i=1 

α × P T R 
(α × P T R) + (β × P DR) 

(3) 

In equation 3, PTR is the packet transmit ratio, depicting 
the ability of the vehicle to transmit messages with its n 
neighbors. α is the reward awarded for their honesty and 
transmitting messages towards other nodes. PDR, on the other 
hand, indicates the class of the dropped messages at the 
vehicle. PTR for the legitimate vehicles will be high as the 
number of messages dropped at the node are very limited. 
However, for MiTM attackers, this ratio will be low, as high 
number of messages are dropped at the node. Similarly, β 
represents the penalty given to malicious vehicles, failing to 
transmit and share messages. As a result, MDR is mostly low 

for malicious nodes. Once MQuality and MDR are identified, 
MR calculates direct trust (DT R) according to equation 4. 

nt   1 MQuality × MDR 
DT R = (4)

2 MQuality + MDR
i=1

Indirect Trust Computation: MARINE also takes into 
account the opinions generated by the intermediate vehicles. 
Specifically, the proposed system categorizes opinions pro­
vided by ‘n’ neighbor vehicles into two distinct classes, i.e., 
(1) positive opinions (PO), and (2) negative opinions (NO). 
Upon receiving an indirect message, MR computes indirect 
trust (ITR) as follows: 

  1  n   n  nt tα β 
ITR = × PO + × NO (5)

α + β α + β 
i=1 i=1 

In equation 5, α and β are the respective reward and 
penalty factors as explained earlier, n represents the 1-hop 
direct neighbours of MR which provides respective positive 
opinions (PO) and negative opinions (NO) about the received 
messages. 

Once, DTR and ITR are computed at the MR, the overall 
inter-vehicular trust (T rustInter) is computed according to: 

DistT rustInter = RO × (DT R + ITR) 
n 

(6) 

In equation 6, RO represents the opinions and the infor­
mation provided by role-oriented vehicles (vehRole), which 
are regarded as highly trusted vehicles, including law-
enforcement, ambulances, public buses, taxis etc. due to the 
fact that they are regulated and authorized by a central 
authority or specific department such as local councils [36], 
[37]. On the other hand, the major portion of the network 
constitutes such vehicles which have no role in the network, 
i.e., traditional vehicles (V ehT rad). Messages generated by 
these vehicles must be evaluated for their trustworthiness. In 
this paper, we modeled RO according to equation 7. Further, 
algorithm 2 summarizes the process of choosing values for 
RO.  

0.8 ≤ RO ≤ 1.0 if veh = vehRole
RO = (7)

RO = 0.5 if veh = V ehT rad 

Algorithm 2: RO computation 
Required: Message (M ); vehicle type (veh); 

Role-oriented vehicles (vehRole); Traditional vehicles 
(vehT rad); 

Get vehicle type (veh); 
if ((veh) == vehRole) then 

0.8 ≤ RO ≤ 1.0; 
else 

RO = 0.5; 
end 

Fig. 5 depicts the high-level flow chart of inter-vehicular 
trust computation in MARINE. 
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Fig. 5: Flow Chart of Inter-vehicular trust computation 

C. Infrastructure-based Trust Computation 

Deploying infrastructure (such as RSU) along the road in 
both urban and rural areas is extremely challenging task due 
to (1) high cost, and (2) presence of different obstacles, thus 
affecting the coverage of RSU [38], [39]. However, RSU 
can be useful in disseminating messages by increasing the 
coverage area and providing the quasi global view of the 
overall network [40]. Therefore, from the trust management 
perspective, RSU can be helpful in broadcasting and sharing 
trusted information with large number of vehicles. 

In MARINE, vehicles manages two reports about the en­
countered vehicles, i.e., (1) positive reports (PR) contain 
information about vehicles with positive ratings, and (2) 
negative reports (NR) represent vehicles which are classified 
as malicious by the vehicles. Whenever these vehicles ap­
proach within the coverage of certain RSU, they share these 
reports with RSU. RSU upon receiving messages, computes 
Infrastructure-based trust (T rustIntra) on the received reports 
using equation 8. 

n nt tα β 
T rustIntra = × PR + × NR (8)

α + β α + β 
i=1 i=1 

Factors α and β are the same reward and penalty factors as 
described previously. RSU shares the updated report about the 
trusted and dishonest vehicles with the neighboring vehicles 
periodically to maintain the trusted environment in the net­
work. We summarize the data-centric trust computation within 
MARINE in Algorithm 3. 

D. Global Trust Computation 

MARINE facilitates the vehicles to quickly identify MiTM 
attackers. In MARINE, every vehicle establishes a quasi global 
view of the network, which enables them to evaluate trust in 
both the presence and absence of the RSU. Let n represents 

Algorithm 3: Data-centric Trust Computation in MARINE
 
Required: Message (M ); Message Range (MRange),
 

Positive reports (PR), Negative reports (NR), Positive
 
opinions (PO), Negative opinions (NO), Direct trust
 
ratio (DTR), Indirect trust ratio (ITR), Message
 
dissemination ratio (MDR), Message receiver (MR),
 
Infrastructure-based vehicular trust (T rustIntra),
 
Inter-vehicular trust (T rustInter);
 

Message dissemination across the network;
 
if (RSU present within MRange of MR) then 

Compute PR; 
Compute NR; 
Calculate T rustIntra using equation 8; 

else 
Compute T rustInter; 
if (M directly received at MR) then 

Calculate MQuality via equation 2; 
Identify MDR using equation 3; 
Compute DT R using equation 4 

else 
if (M indirectly received at MR) then 

Compute PO; 
Compute NO; 
Calculate ITR using equation 5; 

else 
end 

end 
end 

the neighboring vehicles within the vicinity of the RSU, then 
global trust (GT C) can be computed as follows: 

1 
n 

GT C = T rustInter + T rustIntra (9) 

If there is no RSU in the vicinity, MARINE still enables the 
vehicles to evaluate trust on the received information through 
T rustInter. 

IV. PERFORMANCE EVALUATION 

In this section, we perform extensive simulations to evaluate 
our proposed scheme. First we discuss the simulation model 
followed by discussion on the obtained results. 

A. Simulation Model 

To evaluate the performance of MARINE, we exploit 
VEINS, an open-source simulator, designed specifically to 
evaluate the performance of the vehicular networks [41]. To 
validate MARINE, a real map from the city of Derby, United 
Kingdom has been extracted from OpenStreetMap [42]. Fur­
ther, a real mobility trace of 100 vehicles has been generated 
on the extracted map using SUMO [43], which is considered 
enough for various urban scenarios [44]. Furthermore, ten 
RSUs are randomly deployed at a fixed locations across the 
map as shown in Fig. 6. 
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Fig. 6: Extracted Map of Derby, United Kingdom 

Moreover, a safety-related event (i.e., accident) is generated 
at a random location within the network. The first vehicle 
located within the close proximity of accident generates a 
message regarding this event and share with its neighbours. 
Every vehicle within the network validates the authenticity 
and accuracy of the received message as they are equipped 
with MARINE trust model. Next, MiTM nodes are introduced 
within this network, whose sole aim is to either drop the 
received message or share the compromised message with the 
neighbours. Further, the quantity of these malicious nodes are 
increased from 5% to 40% in order to validate the efficiency 
of MARINE in terms of identifying malicious nodes and their 
compromised data. 

Finally, every simulation scenario is carried out twenty-five 
with random seed value every time to ensure unique initial ve­
hicle assignment within the network. Moreover, experimental 
results are generated by averaging over twenty-five runs. The 
details of the simulations are provided in Table I. 

TABLE I: Simulation Parameters 

Parameters Value 

Simulation Time (secs) 600 secs 
Simulation Area (km × km) 2.5km × 2.5km 
Vehicles Distribution Random 
Total Number of Vehicles 25, 50, 75, 100 
Role-oriented Vehicles (%) 5 
Total Number of RSUs 10 
Total MiTM attackers (%) 5, 10, 15, 20, 25, 30, 35, 40 
MAC Protocol IEEE 802.11p 
Network Protocol WAVE 
Radio Propagation Model Two-Ray Interference 
Packet Data Size 1024 bits 
Packet Header Size 256 bits 
T rustInitial 0.5 
T rustT hreshold 0.5 
α 0.01 
α1 (α1 = 0.1 × α) 0.001 
β (β = 10 × α) 0.1 

B. MiTM Attacker Models 

The main motivation of the trust model is to disseminate 
trusted information within the network. Therefore, to evaluate 

the performance of MARINE, we defined following three 
variants of MiTM attackers: 

1) Attacker Model 1: In this model, we equipped the MiTM 
with the ability to tamper the legitimate messages and share 
compromised messages with the network nodes. Further, these 
nodes also intelligently share bogus trust values with the 
vehicles in order to gain the trust of the honest vehicles. This 
attacker model misleads the vehicles by sharing malicious and 
compromised content, thus, it is very important to evaluate the 
trust model under this attacker model. 

2) Attacker Model 2: This attacker model considers a 
selfish MiTM attacker who deliberately drops and delay the 
safety messages. The attacker acts as a sink where messages 
are dropped or delayed intentionally, thus prohibiting the 
legitimate vehicles to receive safety messages in time. Drop­
ping safety messages can have drastic impact on the network 
due to the sensitive nature of the messages involved within 
vehicular environment. Therefore, we defined this attacker 
model to evaluate the efficiency of MARINE in identifying 
true information in presence of such MiTM attackers within 
the network. In this attacker model, half attackers are dropping 
the messages, while the other half are delaying the safety 
messages with a factor of ‘d’ before broadcasting it. 

3) Attacker Model 3: Next, an advanced version of the 
MiTM attackers is defined where the attackers behaves in­
telligently by adopting a random pattern within the network. 
The attacker initially behaves as a legitimate node for short 
span of time to gain the trust of the vehicles within the 
network. The attacker starts behaving maliciously only after 
becoming part of the legitimate network by gaining trust of 
the participating vehicles. In this defined model, the attacker 
specifically shares compromised messages and ratings with 
the neighbouring vehicles during its attack mode. Moreover, 
some of the attacker nodes are dropping the safety messages 
apart from sharing misleading compromised messages and 
trust ratings. 

C. Performance Evaluation Metrics 

We evaluated MARINE from accuracy point of view due 
to the fact that the trust model aim to disseminate trusted, 
accurate and authentic information within the network. To this 
end, we considered following metrics which are categorized 
into two distinct classes for the evaluation of our trust model. 

1) Trust Model Accuracy: This class of evaluation metrics 
is defined specifically to evaluate the accuracy of MARINE 
in presence of MiTM attackers. Therefore, following three 
metrics are used which are considered as one of the most im­
portant trust evaluation criteria within highly mobile networks 
like VANET [45]. 
(a)	 Precision (Prec) – depicts that ability of the trust model 

to correctly predict the trustworthy event. Let PD|H 

illustrates the probability of the node to detect as mali­
cious, given the legitimate node and PD|D represents the 
probability to detect node as malicious, given malicious 
node, then Prec can be given as: 

PD|D
Prec =	 (10)

PD|H + PD|D 
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Fig. 7: Accuracy of Proposed Trust Model under Attacker Model 1 (a) Precision (b) Recall (c) F-Score
 

(b)	 Recall (Rec) – depicts the trust model capability to cor­
rectly detect the nodes disseminating malicious content. 
Let PD|D presents the probability of trust model to 
detect node as malicious, given node is malicious and 
PH|D resents probability of detecting malicious node as 
legitimate node, given the node is malicious, then Recall 
can be mathematically expressed as: 

PD|D
Rec =	 (11)

PH|D + PD|D 

(c)	 F-Score – A weighted average of Prec and Rec, depicting 
the accuracy of the trust model [46]. Higher the F-Score, 
the more accurate is the trust model. F-Score is given as: 

Prec × Rec
F − Score = 2 × (12)

Prec + Rec 

2) Impact of Trust: We also considered trust model related 
metrics, illustrating the ability and efficiency of the trust model 
to detect true events within the network [47]. To do so, 
following three metrics are defined: 
(a)	 Trust – A significant evaluation metric which portray 

the capability of the trust model to detect and classify 
received messages either as legitimate or malicious. 

(b)	 Trust Metric Variation for Legitimate Nodes – Illustrates 
the behaviour of the trust metric within honest nodes 
in presence of MiTM attackers sharing compromised 
messages and trust ratings. 

(c)	 Trust Metric Variation for Malicious Nodes – Depicts the 
ability of the trust model to enforce the minimum trust 
level of MiTM attackers. 

D. Simulation Results 

This section discusses the performance of MARINE trust 
model in VANET in presence of three variants of MiTM 
attacker. Further, the efficiency of MARINE is computed 
against a baseline trust model which evaluates trust on the 
received information from the vehicles via weighted voting 
method. We chose this method as a baseline trust model as it 
has been used widely in various trust management methods, 
such as [31], [48]–[52]. 

E. Accuracy of MARINE in Presence of Attacker Model 1 

Fig. 7 shows the accuracy of MARINE under attacker model 
1, where the adversary is changing the content of safety 
messages and tampering trust ratings before sharing it with 
neighbouring vehicles within its vicinity. Fig. 7a and Fig. 
7b illustrates the precision and recall of our proposed trust 
model, depicting that the network achieves high precision and 
recall for low number of MiTM attackers. However, as the 
number of MiTM attackers with message tampering ability 
is increased from 5% to 40%, the corresponding precision 
and recall decreases. This is due to the fact that increasing 
MiTM attackers will result in the generation of high number of 
compromised messages. This limits the ability of the legitimate 
vehicles to classify between trusted and malicious content as 
the network is polluted with high number of malicious content. 
However, MARINE performs better in terms of identifying 
and classifying trusted and malicious data due to the fact that 
dishonest nodes are identified quickly at the lower layers, thus, 
enabling the vehicles to limit and revoke the data generated 
from malicious nodes. Next, MARINE also integrates role-
oriented vehicles, thus enabling the legitimate vehicles to 
receive trusted information, even in presence of high number 
of attackers. On the other hand, baseline trust model is built 
upon weighted voting, which can be compromised if the le­
gitimate vehicles are surrounded by high number of malicious 
nodes. Therefore, for high number of malicious nodes, baseline 
trust model achieves lower precision and recall values. As an 
illustration, precision for MARINE falls from 99% to 87% 
if the number of adversaries are increased from 5% to 40%, 
while precision for baseline trust model falls drastically from 
90.5% to approximately 75%. This depicts that MARINE is 
efficient in dealing with MiTM attackers which are dealing 
with message alteration ability. 

Further, comparing to baseline trust model, MARINE 
achieves high accuracy in terms of F-score as shown in Fig. 7c. 
For instance, MARINE ensures accuracy over 91.5%, while F-
score for baseline trust model falls below 80% for a network 
with 25% MiTM adversaries, highlighting that MARINE is 
more accurate in identifying MiTM attackers with content 
alteration ability. 
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Fig. 8: Accuracy of Proposed Trust Model under Attacker Model 2 (a) Precision (b) Recall (c) F-Score
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Fig. 9: Accuracy of Proposed Trust Model under Attacker Model 3 (a) Precision (b) Recall (c) F-Score 

F.	 Accuracy of MARINE in Presence of Attacker Model 2 accuracy, thus outperforming the baseline trust model. When 
the number of malicious nodes are increased from 5% to Fig. 8 depicts the accuracy of MARINE in terms of 
40%, accuracy of MARINE is decreased from approximately precision, recall and F-score in presence attacker model 2, 
95.5% to about 81%, comparing to baseline trust model, where where the attackers are deliberately dropping and delaying the 
accuracy falls from 87.7% to about 66%. This depicts that messages to be shared with legitimate vehicles. Dropping or 
MARINE is an attack-resistant to MiTM attacks, where it delaying safety messages by the malicious nodes results in 
ensures to propagate trusted information, even in presence of drastic impact on the network as the legitimate vehicles fails 
high number of malicious nodes. to receive significant information in time. This phenomenon 

is clearly highlighted in Fig 8, where the precision, recall and 
G. Accuracy of MARINE in Presence of Attacker Model 3 F-score are decreased as more and more MiTM attackers are 

introduced in the network. However, MARINE is efficient in We also conducted a set of experiments in Fig. 9 for an 
detecting such malicious nodes due to the fact that the lower advanced version of MITM attackers, which are behaving 
layers of the vehicle quickly detects the nodes implementing intelligently within the network to deceive legitimate nodes 
MiTM attacks. For a network containing high number of and pollute the network with compromised and tampered mes-
MiTM attackers (30 %), MARINE ensures high precision (88 sages. Fig. 9a and Fig. 9b depicts that introducing such MiTM 
%) and recall (84.5 %) values, concluding that MARINE is attackers with zig-zag attack pattern have severe impact on 
efficient in identifying malicious nodes in VANET. On the the network, where introducing such malicious attack activity 
other hand, baseline trust model relies on weighted voting, reduces precision and recall of the network. As the attackers 
thus the presence of malicious nodes prohibit the legitimate are behaving and launching attacks in the network intelligently, 
nodes to receive information in time. Similarly, it fails to detect therefore, it is very difficult for legitimate vehicles to identify 
the messages dropped by the MiTM attackers. Fig. 8a and Fig. such MiTM attackers. However, MARINE enables the vehicles 
8b interprets that for a network with 30% MiTM attackers, the to detect such MiTM attackers with random attack pattern, 
precision and recall falls below 75% and 70% respectively for which is depicted clearly in Fig. 9a and Fig. 9b. This is due to 
baseline trust model. the following reasons: (1) The node-centric trust establishment 

Next, the accuracy of MARINE in terms of F-score is at the lower layers results in the early identification of MiTM 
shown in Fig. 8c, suggesting that MARINE ensures high attackers, (2) The inter-vehicular trust module where trust is 
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Fig. 10: Impact of Trust (a) Trust Metric (b) Trust Variation for Legitimate Nodes (c) Trust Variation for Malicious Nodes 

established based on the message quality enables the legitimate content at the lower layers, thus, enabling the evaluator node to 
vehicles to verify the received messages from MiTM attacker, quickly distinguish between legitimate vehicle and an attacker. 
and (3) the presence of role-based trust vehicles ensures For a network containing 40% MiTM attackers, MARINE 
the propagation of trusted information in the network, thus achieves 79% trust level, while, this level falls below 50% 
enabling the legitimate vehicles to receive trusted information. for baseline trust model. 
For a network with 30% MiTM attackers, MARINE achieves Next, Fig. 10b and Fig. 10c depicts the variation of trust 
approximately 85% precision and 80% recall, while it falls within legitimate and malicious nodes respectively. These 
below 70% and 60% respectively for baseline trust model, metrics are very important as they depicts that how efficient 
highlighting that MARINE is efficient in disseminating trusted the trust model is evaluating trust on the received information. 
information in presence of MiTM attackers with zig-zag attack Fig. 10b illustrates that trust within the legitimate nodes never 
pattern. falls below trust threshold, i.e., 0.5, even in presence of high 

Finally, Fig. 9c highlights the F-score of MARINE which number of MiTM attackers. This ensures that MARINE trust 
is one of the significant metric to measure the accuracy of model experience very few false positives in the network. 
the trust model. As shown in Fig. 9a and Fig. 9b, varying the On the other hand, trust among the MiTM nodes is always 
MiTM nodes with random attack pattern affects the overall below the considered threshold level as shown in Fig. 10c, 
performance of VANET, where the precision and recall falls thus assuming that very limited false negatives are generated 
drastically. Therefore, F-score can depict that how accurate is via our proposal. 
the trust model in detecting MiTM attackers and malicious V. CONCLUSION 
content. The results suggest that compared to baseline trust 

In this paper, we presented MARINE, a novel trust model model, our proposal achieves high accuracy in terms of F-
to increase network security by quickly detecting and revok­score, i.e., in presence of 35% malicious nodes, our trust model 
ing dishonest vehicles and their generated content. MARINE ensures accuracy over 80%, while the baseline trust model 
operates in two steps: First step involves early detectionachieve accuracy approximately 60%. 
of malicious nodes where entity-centric trust evaluations is 
performed by introducing several plausibility checks within 

H. Impact of Trust on MARINE the network. Node is classified as malicious if it fails to 
Figure 10 shows the efficiency of MARINE to identify satisfy all the evaluation criteria. Once, legitimate node is 

and classify malicious content in terms of trust perspective. identified via step 1, the next phase involves the data-centric 
Specifically, we calculated the behaviour of trust metric for trust evaluation, where the trustworthiness of the data is 
MARINE in presence of MiTM attackers in Fig. 10a. It performed. This mechanism enables the vehicles to quickly 
illustrates that when the network is polluted with MiTM identify misbehaving vehicle along with its malicious content, 
attackers, generating malicious content, trust of the network which is then revoked from the pool of trusted vehicles. 
decreases. This is due to the fact that higher malicious nodes Extensive simulations are carried out to the efficiency of 
results in limiting the ability of the legitimate nodes to identify MARINE in presence of three different flavors of MiTM at-
true events as the network is polluted with high number of tackers. Simulations results suggest that MARINE is an attack-
malicious content. However, comparing to the baseline trust resistant trust model which provides high accuracy in detecting 
model, MARINE ensures higher trust value, depicting that trusted content in presence of MiTM attacks. Moreover, the 
MARINE is efficient in identifying and classifying the true performance of MARINE is bench-marked against a baseline 
events in presence of adversaries. This is due to the following trust model, which clearly shows that MARINE performs 
reasons: (1) The presence of role-oriented vehicles enable the better in terms of achieving high precision, recall and F-
legitimate vehicles to receive true events in the network, (2) score in presence of three MiTM attacker models. This is due 
MARINE intelligently identifies node transmitting malicious to the fact that MARINE enables the participating nodes to 
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quickly identify dishonest nodes and prevent them to pollute 
the network from malicious content. 

Our future step includes the integration of social networks 
with MARINE, which is one significant source of providing 
information for connected vehicles within VANET. 
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