

REED: Flexible rule based
programming of wireless sensor
networks at runtime.
Fei, X. and Magill, E.

Author post-print (accepted) deposited in CURVE April 2013

Original citation & hyperlink:
Fei, X. and Magill, E. (2012) REED: Flexible rule based programming of wireless sensor
networks at runtime. Computer Networks, volume 56 (14): 3287–3299.
http://dx.doi.org/10.1016/j.comnet.2012.06.004

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version of the journal article,
incorporating any revisions agreed during the peer-review process. Some differences
between the published version and this version may remain and you are advised to
consult the published version if you wish to cite from it.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

http://dx.doi.org/10.1016/j.comnet.2012.06.004
http://curve.coventry.ac.uk/open

REED: Flexible Rule Based Programming of
Wireless Sensor Networks at Runtime

Xiang Fei
Department of Computing

Coventry University
Coventry, UK

x.fei@coventry.ac.uk

Evan Magill
Department of Computing Science and

Mathematics,
University of Stirling, UK.

ehm@cs.stir.ac.uk

Abstract

Wireless Sensor Networks (WSN) have emerged as an enabling technology for a

variety of distributed applications. WSN middleware eases the development of these

applications by providing a uniform programming environment. In this paper we

present a rule based approach called REED (Rule Execution and Event Distribution)

and describe how it supports flexible programming of WSNs at runtime. Indeed REED

is required by the nature of its project setting to allow runtime programming. We

demonstrate that by combining this runtime programmability with rules in an event,

condition, action format we can support a range of paradigms, including Publish-

subscribe and data aggregation algorithms. Current WSN middleware solutions have

limited on-line programmability support so the applications cannot re-configure their

WSNs while operational. Yet the runtime nature of the prototype requires both the

distribution of rules and the events that trigger them so we also describe the rule

management approach used to support the rule distribution; in particular a novel rule

merging and filtering algorithm is described. The paper reports on the results gained

from a REED prototype system constructed in our laboratory using Gumstix.

Keywords: wireless sensor networks, rules, programmability, middleware, pub-sub,

aggregation

1 Introduction
Progress in sensor technology, wireless communications, and micro-processors, has

provided a strong research interest in Wireless Sensor Networks (WSNs). Typically

such networks consist of distributed sensor nodes interconnected via wireless links.

WSNs feature a number of embedded sensor devices, each of which has constrained

processing power, memory, and energy. The error-prone wireless links, over which

devices communicate, often lead to message loss. In addition, the number of sensors

can be very large and they can be heterogeneous in nature. This is a challenging

environment for WSN software applications development
[5]-[7]

. To support the

collection, delivery and querying of data; WSN middleware is often introduced to

shield the application (developer) from the complexities arising from a WSN. The

PROSEN
[1]

(PROactive SENsing) research project employed a wind farm setting to

develop a proactive wind farm condition monitoring system; the research contribution

being the proactive nature of the approach. A major aspect in PROSEN, was the

combination of high-quality filtered data from the sensor nodes and AI based data

analysis, to provide proactive goal-driven configuration management. This proactive

approach adds new challenges to the WSN middleware: it requires the WSN

middleware solution to support programmability, especially when the system was

operational. This paper focuses on the run-time programmability aspect of the WSN

middleware, and describes the Rule Execution and Event Distribution (REED)

middleware used in the PROSEN project. In particular the paper highlights the

programming flexibility provide by the rule-based approach. While the paper

describes the broader project to provide a context, in particular where it influences the

implementation of the REED prototype, the paper aims to focus on the REED

middleware proper rather than this wider context. This middleware supports both the

distribution of rules and the events that trigger them. REED employs a rule-based

paradigm to allow sensor networks to be programmed at run time. This provides a

flexible environment where applications and users can program the sensor nodes to

allow their behaviour to adapt to the applications’ goals and the changing

environment [8]. Also later in section 3.5 and 4.1 we describe how the REED

middleware is also lightweight and energy-conservative. In Section 2, the REED

middleware architecture is described, followed by the definition of the formal

language for REED. The REED middleware is evaluated in section 3. The rule

management is also discussed in this section. A REED prototype for PROSEN-WSN

has been implemented and two WSN services provided via REED rules are described

in section 4 to highlight the breadth of programming permitted by REED. Related

work is discussed in Section 5, followed by the conclusions.

2 REED middleware architecture
To clearly describe the REED middleware architecture, the system architecture for the

PROSEN is introduced first in section 2.1. In addition, the core definitions of the

REED language are provided in section 2.3.

2.1 PROSEN architecture

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

SetEvent/
NtfEvent

Sensor Rule-Engine

Sensor …
Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

SetEvent/
NtfEvent

Sensor Rule-Engine

Sensor …
Sensor Sensor

PN REED
Middware

Policy
Store

User/

Operator

Policy

Policy

Server

SetEvent/
NtfEvent

Processing Nodes

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

SetEvent/
NtfEvent

Sensor Rule-Engine

Sensor …
Sensor Sensor

PN REED
Middware

Figure 1: PROSEN system architecture

Figure 1 shows the system architecture for PROSEN, which consists of a Policy

Server (PS)
[29]

, a Processing Node (PN) for each wind-turbine, and sensors to measure

parameters such as temperature, wind-speed, wind-direction, battery-level, and

gearbox temperature. The PS wirelessly interconnects with the PNs via GSM; the PNs

are wirelessly interconnected via VHF (174 MHz wireless links). Two

communication primitives are both event based: SetEvent describes an event of setting

a rule or a configuration parameter, etc.; NtfEvent describes an event notifying data or

a timeout, etc. The PS interacts with users and operators to obtain the goals for the

system. Such goals might describe a desirable power output or response to poor

weather conditions. The PS converts the goals to a set of policies. These policies are

stored in the Policy Store, and then converted to low-level rules and distributed to the

PNs via SetEvent. These rules describe the behaviour of individual PNs. The

PROSEN REED manages and executes these low-level rules within each PN. It is

also possible to transfer these rules between PNs.

In addition to distributing rules, the REED middleware also transfers NtfEvents

between the system components. It is these events that trigger the rules.

Conceptually, a rule takes the form of <event, condition, action> where:

• an event is received from any other system component. This event often contains

data values, but events such as a timeout, a sleep or wake-up can also occur.

• a condition is a Boolean expression that will be evaluated when the event occurs.

• an action is executed if the above condition is true when the event is received. The

action may manipulate or store data. It may also generate another event to other

components in the system, such as an event to trigger other rules.

2.2 REED architecture

To implement REED, a rule-engine has been designed and implemented. The

functionality of the rule-engine includes:

• managing a rule-base to add, remove, and override REED rules

• verifying rule consistency, and

• executing the rules in response to received events.

Figure 2 shows the general architecture of the REED middleware. This echoes typical

structures given in the literature
 [16]

. The middleware must record certain aspects of

the state of the node and the events that have occurred. These are recorded in the

Fact-Base. Here we borrow the term Fact from a separate rule-based WSN approach
[17]

. In our architecture the Event-Manager is responsible for receiving events, passing

them to the Rule-Engine where the engine executes any matching rules, and

distributes any resulting events. The Rule-Base stores all the rules used by the engine.

Event

Manager

Rule

Engine

Application

Sensor Platform

Fact

Base

Rule

Base

Figure 2: REED architecture

The REED middleware actually has two levels of rule-engine within a PN. Figure 1

illustrates the two-level REED architecture for PROSEN, where the sensor rule-

engine is responsible for local sensor data collecting and processing
[9]

, while the PN

REED middleware is employed for wider event processing; such as data event

correlation between processing nodes. The former is always on while the latter is only

on when required, so it can offer more computational power when necessary while

limiting its overall power demands. While the latter provides more powerful rule

processing, it does require a limited Java Virtual Machine to operate; so the full two-

level approach does require the computational power of say a Gumstix. In summary,

PROSEN rule based paradigm consists of three-level hierarchy: policy server,

processing node REED, and sensor rule engine. In this paper we shall focus on the PN

level REED middleware and this is discussed further in Section 3.

2.3 Language definition

To provide a clear description of the REED middleware, we use a formal notation

using a variance of BNF described in Ref. [15] to define the REED language. To save

space, only the core definitions of REED are given in Table 1. The full definitions can

be viewed on [20]. As a result some minor items in Table 1 are not defined but are

self-explanatory; for example sc for semi-colon, cls_sqr_brckt for close square

bracket, gte for greater than or equal to, and prprt for property.

Table 1: Core language definition for REED

<reedRuleSet> ::= <rule>+

<rule> ::= <rule_id> <equals> <event_id> event_handler>

<event_handler> ::= (<opn_sqr_brckt> <cond_set> <sc>

<actions> <sc>

<priority> <cls_sqr_brckt>)+

<cond_set> ::= <cond> (<logic_op> <cond>)*

<cond> ::= <true>

 | <exist_op> <fact_id> <dot> <prprt_name>

 | <fact_id> <dot> <prprt _name> <comp_op> <value>

 | <fact_id> <dot> <prprt_name>

<comp_op>

<fact_id> <dot> <prprt_name>

<logic_op> ::= <and_op> | <or_op> | <not_op>

<comp_op> ::= <equals> | <gt> | <lt> | <gte> | <lte> | <ne>

<fact> ::= <state> | <event>

<fact_id> ::= <state_id> | <event_id>

<event> ::= <event_id>

<opn_crl _brckt>

<prprt> (<sc> <prprt>)*

<cls_crl_brckt>

<state> ::= <state_id>

<opn_crl _brckt> <prprt> (<sc> <prprt>)* <cls_crl_brckt>

<prprt> ::= < prprt _name > <equals> <value>

<actions> ::= <action> (<comma> <action>)*

3 Properties of REED

3.1 Programming at run-time

Rule-based middleware, such as to FACTS
 [16]

, enable individual WSN nodes to be

programmed. The stored rules define a node’s behaviour in response to a series of

events. However the rules are not changeable once they have been deployed and

stored. (Although rule parameters can be changed at run time.) In contrast, PROSEN

requires that the PS be able to alter the low-level rules after its deployment. In other

words, it is required that the system can be programmed at run time. REED enables

the rules stored within the PN to be updated at any point in time.

Another advantage of providing a dynamic rule-set is the ability to easily apply REED

to other applications without the need to re-flash the static rule-set within a PN.

However to support dynamic updates of the rule-base, rule management is required

and Section 3.4 will discuss this in more detail.

To demonstrate the flexibility of this approach we describe two distinct programming

regimes that we have implemented using REED. Firstly we show how our rules can

implement the publish-subscribe (pub-sub) paradigm (and a reliable variant), and

secondly we implement a WSN aggregation algorithm selected from the literature.

3.2 Support for pub-sub service

Programming a PN with REED rules allows a broad and flexible approach. For

example, an application may require event publish-subscribe services from REED.

Here we show that this can be constructed using REED rules. Typically the events

originate from sources such as sensors, internal timers, and peer PNs. The event

subscription is equivalent to the subscriber sending REED a rule in which the event

and the condition describe the subscribed event, and the action is set to send the

received event back to the subscriber
1
. Crucially, this is possible because the rules can

be updated dynamically by peer nodes. Thus, the event notification is published as the

result of executing the action part of such a rule. Consider an example where a

subscriber, say a PS, wishes to receive wind speed values when the wind speed is

greater than 60 kph; the PS subscribes to a PN REED middleware by sending a rule to

the PN in the form:

Rule 1 = wind_speed
2

[wind_speed.Value >> 60; Send(PS, WindSpeed)]

 (For simplicity, the Priority field is not shown in the EventHandler.)

Assume that later on the REED receives a WindSpeed event from a sensor via a

sensor rule-engine in the form of:

Event 1 = wind_speed {Value = 67; ID = 2; Time = 23:14:12; Date = 26-08-10}

This event will trigger the execution of the Rule 1, and as a consequence, this event

will be notified to the PS. There can of course be more than one subscriber; and so a

single event can result in a number of notifications. Also the threshold value can be

set low to allow all events of a particular type to be published.

3.3 Extended functionality

Section 3.2 describes a basic sub-pub functionality. This is given to emphasise the

flexibility that the approach gives a programmer. However the programmer may, for

example, wish to extend the pub-sub functionality to ensure it is more reliable. One

approach that could be employed is when either a subscriber plans to reliably send a

rule or a publisher to send a notification, the node can simply execute the following

Rule 1-0, as shown in Table 2 to its rule base, and send itself a ReliableMsgEvent to

trigger this rule.

1
 To do so is the choice of the source of the rule; our approach does not require that any generated

event returns to the rule source.
2
 WindSpeed represents a wind speed Event while wind_speed represents the EventID of the

WindSpeed. These formats of representing Event and EventID are used throughout this paper.

Table 2: rule for reliable transmission

Rule 1-0 = reliable_msg_event

[TRUE;

 ReliableMsgEvent.Id = ReliableMsgEvent.CRC32()

 Add_rule (Rule 1-1), Add_rule (Rule 1-2),

 Send (Receiver, ReliableMsgEvent),

 Start (send_timer)]

where

Rule 1-1 = ack_event

[AckEvent.Id == ReliableMsgEvent.Id;

 Clear (send_timer) Delete (Rule 1-1, Rule 1-2)]

Rule 1-2 = send_timeout

[TRUE;

 Send (Receiver, ReliableMsgEvent),

 Start (send_timer)]

On the receiver side, the following rule will be executed.

Rule 1-3 = reliable_msg_event

[ReliableMsgEvent.CRC32() == ReliableMsgEvent.Id;

 AckEvent.Id = ReliableMsgEvent.Id,

 Send (Sender, AckEvent)]

where ReliableMsgEvent.CRC32() is the CRC32 value of the received message.

By comparing the calculated CRC32 value with the received ReliableMsgEvent.Id

which is the CRC32 value of the message sent, the transmission errors can be

detected.

For the message sender, when the local rule engine executes Rule 1-0 triggered by the

local ReliableMsgEvent, it will carry out the four actions shown in Table 2. Firstly it

will add two rules to its own rule base: Rule 1-1 is to respond to the

acknowledgement from the receiver showing the message has been successfully

received; Rule 1-2 is to respond to the timeout event, which indicates either the

message or the acknowledgement doesn’t reach the other end successfully, by sending

the ReliableMsgEvent again. In action 3, the sender sends the message to its receiver

with its identifier (CRC32 value); and in the meanwhile starts the timer during which

the sender waits for the acknowledgement from its receiver. Note that in the actions

the node will substitute the concrete value obtained from the trigger to Rule 1-0, Rule

1-1 and Rule 1-2.

By using Rule 1-0 and Rule 1-3, the messages can be reliably transmitted, and no

duplicated messages will be received.

In the implementation of the REED, some general rules, such as those for the reliable

transmission (Rule 1-0 and Rule 1-3), can be preset as default rules and thus are

loaded to the rule set at boot time. At run time, new rules, when needed, are added

one by one via those preset rules for the reliable transmission.

3.4 Rule base management

In REED middleware, the rule base is used to store the rules for the rule-engine, and

as a consequence rule base management is required. In addition to handling the

adding, removing, and updating of the rules, the rule engine must be able to:

• Maintain the consistency of the rule base.

• Merge the rules from various sources.

• Filter the rules to its sensors rule engine.

The rules are updated dynamically at runtime; indeed the pub-sub example described

above would not be possible without this capability. Therefore it is important that the

rule management too is dynamic and can manage rule changes at runtime. To the

authors’ knowledge, this work is the first to employ a rule merging and filtering

mechanism supporting rule changes at runtime.

3.4.1 Rule base consistency. Consistency is required because the rule engine can

receive rules from various sources. In PROSEN, the PN level REED middleware may

receive the rules from the policy server, its own application entities, or from its peers.

To maintain the consistency of the rule base, the rule engine should detect and

resolve any conflicting rules. These conflicts arise as an event may trigger more than

two rules and generate conflicting actions, e.g. one rule setting a sensor on and

another rule setting the same sensor off. Normally, the way to resolve this is to set

different priorities so only the rule with the highest priority will be triggered. In

PROSEN, the core responsibility of the rules quality is taken by the top-level of the

hierarchy: the Policy Server. This is because firstly, the Policy Server is the main

source of the rules. It provides the interfaces to the operators for domain knowledge

based policies, maintains the consistency of the policies using meta-policies
[21]

, and

then transforms those policies to the rules for the REED. Secondly, the Policy Server

runs on a resource rich device powered by the mains electricity. To make sure no

conflicts among the rules running on the REED, the REED accepts control or

configuration related rules from the Policy Server only. The rules from its own

application entities or from its peers are all data acquisition and data processing

related rules such as publish-subscribe service and data aggregation service that will

not cause conflicts in control or configuration of the system. However it has been

noticed that a stronger mechanism is required on the REED to ensure the quality of

the rules from other sources, such as rules authentication etc. This is a subject for

further work and indeed while aspects of rule conflict can be addressed by

middleware alone, the broader issue of rule quality requires domain guards.

3.4.2 Rules merging. Rules for the same event but from various sources may be

merged. For example, should the REED on a PN receive a rule from another PN

(denoted as PNx) in the form of:

Rule 2 = wind_speed

[wind_speed.Value >> 50; Send(PNx, WindSpeed)]

and also receives a rule from the PS saying:

Rule 3 = wind_speed

[wind_speed.Value >> 70; Send(PS, WindSpeed)]

instead of storing two separate rules in the rule engine, they can be merged into a

single rule as:

Rule 4 = wind_speed

[wind_speed.Value >> 70; Send(PS, WindSpeed)]

 → [wind_speed.Value >> 50; Send(PNx, WindSpeed)]

where the symbol “→” means a coverage link which will be explained in Table 3.

Rule merging not only reduces the number of rules in the rule base, but also supports

the rule filtering described in section 3.4.3.

3.4.3 Rules filtering. In PROSEN, a hierarchical rule-engine structure is adopted

such that the PN-level rule engine accepts rules, and forwards any sensor-level rules

to the sensor rule engine. As the sensor rule engine runs on a more resource-limited

processor, its rule set should be concise and free of any redundant rules. Hence REED

filters out any redundant rules before forwarding them to the sensor rule engine. For

example, should the REED on a PN receive Rule 2, as shown in section 3.4.2, from a

peer node (say PNx), and then receives Rule 3, as shown in section 3.4.2, from the PS,

instead of sending two corresponding rules to the sensor rule-engine, REED sends

only one rule:

Rule 5 = wind_speed

[wind_speed.Value >> 50; Send (REED, WindSpeed)]

to its sensor rule engine with another one being filtered out. When a WindSpeed event

is sent from the sensor rule engine to the REED, the rules for this event are executed

as follows: first check whether the wind speed (wind_speed. Value) is greater than 70

kph, and then check whether the wind speed is greater than 50 mph, to determine

where to send the notification: to both the PS and PNx if the reading is over 70, or to

PNx only if the reading is between 50 and 70.

For space considerations we give a brief description of the rule merging and filtering

algorithm in Table 3, and suppose the ConditionSet contains one Condition.

Table 3: Algorithm for rule merging and filtering

Definition 1: Given a Condition1 and a Condition2,

 ∀ event, if in meeting Condition1 means it also meets Condition2, then we say

Condition1 is covered by Condition2, denoted as

 Condition1 ⊆ Condition2.

Definition 2: Given

 rule1 = eventID [Condition1, Action1] and

rule2 = eventID [Condition2, Action2] are triggered by the same event,

 if Condition1 ⊆ Conditiont2, then we say rule1 is covered by rule2, denoted by

rule1 ⊆ rule2, which means that if the rule1 is triggered by the Event, the rule2

must be triggered too.

Algorithm for rule merging and filtering:

When the PN REED rule engine receives a rule in the form:

 R1 = event_ID [Condition1, Action1]

 IF there is no other rule in the current rule base that has coverage relationship

with R1, THEN:

 Save this rule to the rule base;

 Initialize the counter for node [Condition1, Action1] as 1;

 Construct a rule:

 r1 = event_ID [Condition1, send(REED, event)];

 Forward r1 to the sensor rule engine;

Later on, when the rule engine receives another rule in the form:

 R2 =event_ID [Conditions2, Action2]

 IF R2 is covered by R1, THEN:

 Change the R1 originally saved in the rule base to

 R1 = event_ID [Condition1, Action1] → [Condition2, Action2];

 /* where the symbol “→” means a coverage link with [Condition1,

ActionSet1] being the head and [Condition2, ActionSet2] being the

tail of the link (rule filtering). */

 Initialize the counter for node [Condition2, Action2] as 1;

 IF R2 covers R1, THEN:

 Change the R1 originally saved in the rule-base to

 R1 = event_ID, [Condition2, Action2] → [Condition1, Action1];

 Initialize the counter for node [Condition2, Action2] as 1;

 Construct a new rule:

 r2 = event_ID [Condition2, send(REED, event)];

 Forward r2 to the sensor rule engine to replace the original one (rule

merging);

 IF [Conditions2, Action2] already exists, THEN::

 Increases the counter for [Conditions2, Action2] node by 1 (rule

merging);

When the rule engine later receives a rule in the form:

 R3 = event_ID [Condition3, Action3]

 IF the current coverage link for Event is

[Condition1, Action1] → [Condition2, Action2], THEN:

 Insert [Condition3, Action3] into this coverage link (rule merging);

 Initialize the counter for node [Condition3, Action3] as 1;

 IF [Condition3, Action3] becomes the new head of this coverage link,

THEN:

 Updates the rule to the sensor rule-engine;

When a Remove(R1) is received:

 Decrements the counter for [Condition1, Action1] by 1;

 IF the result reaches 0, THEN:

 IF [Condition1, ActionSet1] is NOT at the head of the covering link,

THEN:

 Remove [Condition1, Action1] from the link;

 ELSE IF [Condition1, ActionSet1] is at the head of the covering link,

THEN:

 Remove [Condition1, Action1] from the link;

 IF [Condition1, Action1] has NO child node, THEN:

 Send a command to the sensor rule-engine to delete the rule:

 r3 = event_ID [Condition1, send(REED, event)];

 ELSE IF [Condition1, Action1] has a child node &&

[ConditionSet2, Action2] is the child node, THEN:

 Make [ConditionSet2, Action2] the head of the coverage link;

 Construct a new rule:

 r4= event_ID [Condition2, send(REED, event)];

 Forward r4 to the sensor rule engine to replace the original one.

3.5 Performance considerations

REED is lightweight in terms of the energy and memory consumption. This is

because first of all, it is event triggered instead of continuously polling and this saves

wireless bandwidth and energy. Secondly, unlike JESS
[26]

 where all the facts are

stored in its working memory before the execution of their rules, REED filters the

received data events using its rules and only those needing further processing will be

saved to the fact-base. This makes the overhead for memory consumption much

lower. Thirdly, the pub-sub service (or indeed any rules only generating a data

anomaly) ensures that data events are only handled by those components that require

them. This is in contrast to LIME
[10]

 and TinyLIME
[11]

 middleware which are Tuple

Space-based where the data sharing and synchronization across the network is both

bandwidth and CPU consuming.

For real applications, some rules can be set as default rules and are embedded within

the REED rule base locally during the initiation. The rules are updated at run time

only when necessary. This will further save the power for rule distribution and rule

management.

As REED is event based, it can go into a sleep state in order to save the battery energy

when there is no event for processing. It returns to the work state either by a

scheduled timeout or a triggered event. In PROSEN, the signals for sleep and wake-up

are triggered by the sensor rule engine which is always in a working state. When the

sleep event is received, the REED writes the unsaved rules and necessary facts to the

flash memory before it exits. When the REED is initiated as the result of a wake-up

event, it will, before processing any event, restore those rules and facts back from the

flash memory.

Although the two rule engines could be replaced by one that simply had an effective

sleep mode, the project adopted this dual processor approach as it allows continuous

monitoring of sensors. Certain quantities such as wind speeds (for gusting) and

vibration require frequent monitoring and so the dual approach allows continuous

monitoring without the higher power consumption associated with processors capable

of supporting Java. This is pertinent as the rule execution within the MSP430 allows

the Gumstix to remain off over much longer periods of time than the MSP430.

When REED is executing rules, laboratory measurements show a power consumption

of 1.4W. Clearly the ratio between the wakeup and sleep states is important and will

be determined by particular applications (rule-sets). The ratio of activity states is a

function of event traffic and the number of rules per event. The goal of such in-node

processing is to drastically reduce such traffic. When the REED rule engine is off the

remaining sensor engine uses the order of 750 µW.

Section 4.1 discusses REED resource requirements in more detail.

4 Prototype implementation

4.1 Prototype implementation architecture

Figure 3: Prototype implementation architecture

Figure 3 shows the prototype implementation architecture. The software structure for

REED middleware is illustrated in Figure 4. REED sends and receives external

messages via the interfaces provided by the UCM. The UCM (Unified

Communications Manager), developed by other partners in the PROSEN project,

provides a platform to communicate to the PS via GSM, to peer PNs via VHF, or to

its sensor rule engine via a UART. The Event Constructor constructs events with the

received messages. It classifies them either as SetEvents containing rules, or as

NtfEvents (e.g. data events), and then puts them onto their corresponding queues.

These two queues may have different priorities. In our implementation, the queue for

NtfEvents has higher priority in order to respond to the data events as quickly as

possible. When any event is to be distributed, the Msg Constructor will transform it to

the corresponding message format before delivering it to the UCM.

REED is running on a Gumstix
TM[24]

 GS400K-XM, which is a miniature full function

Linux motherboard based on low power Intel XScale® technology. GS400K-XM has

16MB flash memory which can accommodate JamVM
[25]

, which is a compact JVM

(Java Virtual Machine), and so REED is developed using Java. Hence REED can

easily be ported to other Java based platforms. Indeed we have used Gumstix as a

realistic testing environment, rather than advocating Gumstix as an ideal setting for

REED.

At the time of writing, the core functionality of REED has been implemented: that is,

functions for adding and updating rules; executing rules triggered by events; merging

and filtering rules based on the same event; and rule base and fact base store/recovery

in response to sleep and wake-up events. Although a sensor rule engine has been

built, for experimentation purposes we employed a simple event generator to emulate

the sensor rule engine.

Before running REED, 11760 KB memory (RAM) on the Gumstix is used, including

the memory for running UCM. When REED is running, the memory used is 16624

KB. So the memory footprint for REED is 4864 KB. As the GS400K-XM used in our

system has 128MB RAM, the REED footprint takes around 3.8% of the total

available RAM. Other Linux measurements show that when waiting for events REED

uses less than 1% of CPU processor time.

UCM

Event

Manager Rule Engine

SetEvent

SetEvent

…
NtfEvent

…
NtfEvent

AnyEvent

AnyEvent

…

Event

Constructor
Msg

Constructor

RcvdMsg SntMsg

Rule

Base

Fact

Base

Figure 4: REED Software Structure

4.2 Sensor data pub-sub service

The sensor data pub-sub service has been implemented in REED. The system (see

Figure 5) consists of one PS, one Gateway and one PN. As this service does not

include any cooperation between peer nodes, one PN is sufficient for experimental

purposes. The PS and the Gateway are connected via the Internet, and the Gateway

and the PN are connected via a 174MHz wireless link. Each 174MHz wireless board

shown in Figure 5 consists of a Radiometrix BiM1-173.250-10 10mW NBFM

Transceiver and an in-house extension board with RS-232 Universal Asynchronous

Receiver/Transmitter (UART) interface to the Gumstix. For testing purposes the

sensor reading is simulated via a random number generator with uniform distribution

between 0 and 100. Taking the example given in section 3.2, where the event

manager on a PN receives Rule 1 from the PS and stores this rule in its rule base,

converting it to a rule understandable to its sensor rule engine, before forwarding the

converted rule to the sensor rule engine via the UCM. The converted Rule 1,

expressed in REED notation, is:

Rule 6 = wind_speed

[wind_speed.Value >> 60; Send(REED, WindSpeed)]

Compared to Rule 1, Rule 6 asks the sensor rule engine to send the WindSpeed event

to the REED instead to the PS. This is because the REED may do some further

processing on the WindSpeed, such as composite condition checking, or merged

condition checking.

In this scenario, the sensor data filtering is actually carried out by the sensor rule

engine instead of the REED. This is to save the energy of both the raw data transfer

from the sensor rule engine to the REED, and the power consumption of the REED

rule engine.

A snapshot of the PS is shown in Figure 6 where Event 1 is received in response to

Rule 1.

Gumstix

174MHZ

Wless board

Figure 5: PROSEN prototype system

Figure 6: a snapshot on the PS

4.3 Sensor data aggregation over wireless links with
message loss

Increasing computational power within the wireless network components offers the

opportunity to aggregate data within the network; so rather than each sensor simply

report values to a central point, the network can calculate an aggregate value. Indeed

data aggregation reduces communications cost and increases the reliability of data

transfer. This is most pronounced for WSN applications which have large amount of

data to send across the network
[5]

. In PROSEN, for example, the administrator may

want to know the average wind speed experienced by the turbines across a wind farm;

if the average wind speed is over or under a certain value, the administrator may

decide to shut down the wind farm. A centralised approach to obtaining the average

wind speed is to ask the sensor nodes to send their wind speed readings to the PS, and

then average all those readings on the PS. However, in this setting this solution is

energy consuming
3
. So the solution of averaging the sensor data in a distributed

manner within the network was investigated. A simple approach might require each

3
 In PROSEN, when a PN transmit data to the PS via GSM, the average current drawn is 110 mA with

the instantaneous current drawn being as high as 2.5 amps; when a PN transmit data locally via low

power 174 MHz radio, the average current drawn is 10 mA.

PN to broadcast its reading to some PN within radio range elected as the data

collector to collect and average the data. However with unreliable wireless

communication it is important that any loss of data is managed effectively.

To illustrate the ability of REED to implement such algorithms we chose an algorithm

from the literature. Chen et. al. [27] propose an algorithm to calculate an accurate

aggregation of data within a WSN environment. This algorithm assumes that not all

nodes are in range of each other. A node can declare itself a leader if it has not been

forced to be a slave by another leader node. As a partially connected network will

form a set of overlapping clusters (each with its own leader), the algorithm’s

concurrency allows the sensed data and the resulting mean to ripple through the

network. To demonstrate how some simple rules in each node can implement such a

strategy we implement a simplified test bed that assumes all the PNs are one-hop

away among one another. Hence, while the testbed supports message loss it is in

practice implying a single cluster. This simplified implementation has been

transformed into the REED rules that were executed by the rule engine on the PNs.

The algorithm works in the following manner. Any node can declare itself as a leader;

and does so with a random probability. Once an individual node declares itself a

leader it sends a signal to all of the other nodes (that happen to be in range) informing

them that it is a leader. Each node that receives this signal responds by sending back

their current value. Such nodes are denoted as active nodes. The algorithm accepts

that not all nodes will respond and the leader calculates the mean using the data

returned. The leader then sends this new mean back to the active nodes, and resigns.

This cycle continues when a node declares itself a leader. The first time a node

becomes an active node it returns a measured value, but on all subsequent occasions it

returns the last mean value it received from a leader. It is assumed in our experiments

that all nodes are in range of a leader, and where messages are lost they do not cause a

PN to become isolated. In other words we assume one cluster.

Based on the algorithm, the rules were constructed as shown in Table 4. The rules

employ the state of the node on which they execute. So, each node creates and

maintains a state called My_State.

Table 5 lists the properties of the state My_State and includes a brief description.

This work is described in more detail in Ref. [28]. The aim is to show that the REED

rules can capture a data aggregation algorithm and operate successfully by way of an

exemplar. It is not the intention to verify the efficacy of the aggregation algorithm per

se. Hence the experimental design is deliberately simple and straightforward.

The system to test the execution of these rules consists of nine Java applications

running on PCs simulating nine PNs, and one running on the Gumstix. The gumstix is

connected to the PS via USBnet. The sensed data is simulated via a random number

generator with a uniform distribution between 0 and 100. In order to simulate 10

percent loss rate, another uniform random number ranged from zero to one is

generated, and the value greater than 0.9 indicates a message loss. The tests were

carried out in four message-loss settings respectively. In the first setting, there was no

message loss, and an accurate mean was obtained after only one iteration; in the

second setting, the message loss was 10 percent throughout the test, and an answer

accurate to one decimal point was obtained after four iterations, as shown in Figure 7;

in the third setting, the message loss was 20 percent throughout the test, and an

answer with the same precision was obtained after 7 iterations, as shown in Table 6;

in the fourth setting, previous three settings occurred sporadically, and an accurate

mean was calculated if the leader received full connectivity before 7 iterations.

Table 4: rules for the sensor data aggregation

Rule 1 is triggered by the WindSpeed event to start the algorithm.

R-1 = wind_speed

[TRUE; Send (self, AggregationStart)]

Rule 2 is for leader election.

R-2 = aggregation_start

[(!∃(My_State.Identity)); Set (My_State.Identity, “leader”),

 Send (Neighbour, LeaderSignal)]

Rule3 is in response to LeaderSignal event: the non-leader either sets itself as a slave and

sends its sensed data to the current leader, or sends its stored mean to the current leader.

R-3 = leader_signal

[(!∃(My_State.Identity)); Set (My_State.Identity, “slave”),

 Send (Leader, SensedData)]

[(My_State.Identity == “slave”) && ∃ (My_State.Mean);

 Send (Leader, My_State.Mean)]

[(My_State.Identity == “slave”) && (!∃ (My_State.Mean));

 Send (Leader, SensedData)]

Rule 4 is for leaders: it calculates the average and sends it to itself for further processing.

R-4 = data_set

[My_State.Identity == “leader”; Average (DataSet, Mean),

 Send (self, Mean)]
4

Rule 5 is in response to the Mean event: for the leader, it sends the final result to the PS if the

algorithm completes; otherwise, it sends the Mean event back to its members, designates a

new, and sets itself as a slave; for the slave, it simply stores the mean value.

R-5 = mean

[(My_State.Identity == “leader”) &&

(My_State.Active_Node_Set == Node_Set);

 Send (PS, My_State.Mean)]

[(My_State.Identity == “leader”) &&

(My_State.Iteration_No == Iteration_No_Threshold);

 Send (PS, My_State.Mean)]

[My_State.Identity == “leader”) &&

!(My_State.Active_Node_Set == Node_Set) &&

 (My_State.Iteration_No << Iteration_No_Threshold);

 Set (My_State.Mean, Mean),

 Send (Active_Node_Set, Mean), Send (new_leader, BeLeader),

 Set (My_State.Identity, “slave”)]

[My_State.Identity == “slave”; Set (My_State.Mean, Mean)]

Rule 6 is for new leader to start another iteration.

R-6 = be_leader

[My_State.Address == new_leader; Set (My_State.Identity, leader),

 Send (Neighbour, LeaderSignal)]

4
 DataSet is received from the neighbours. It can be either previous mean or the sensed data.

Table 5: properties of the object My_State

Property name Description

Identity Three values: “Null” (initial value), “leader” or “slave”

Mean Current calculated mean value

Active_Node_Set Set of nodes from which the data is received, the property

maintained by the leader.

Iteration_No Number of iterations carried out so far to calculate the

current mean value

Address The address of the node

Figure 7: Averaging iteration with 10% loss

Table 6: Averaging iteration with 20% loss

NODE

ID

ORIGINAL

READINGS
ITERATION 1

ITERATION 2 FINAL

AFTER 7

ITERATIONS
Node 1 18.0 17.5 17.56 17.29

Node 2 17.0 17.5 17.56 17.29

Node 3 16.0 17.5 17.56 17.29

Node 4 18.0 17.5 17.56 17.29

Node 5 15.0 15(MISSED) 15(MISSED) 17.29

Node 6 18.0 18(MISSED) 17.56 17.29

Node 7 18.0 17.5 17.56 17.29

Node 8 17.0 17.5 17.56 17.29

Node 9 17.0 17.5 17.5(MISSED) 17.29

Node 10 19.0 17.5 17.56 17.29

It should be noted that all these rules were run by the REED. The only rule for the

sensor rule engine is:

R-7 = wind_speed

[TRUE; send (REED, WindSpeed)]

4.4 Rules merging and filtering for data pub-sub and data
aggregation

This section demonstrates the application of the rule merging and filtering

mechanisms described in section 3.4. The description considers the rules employed

for both the data pub-sub service, and the data aggregation service.

Initially in the experiments, the WSN system is deployed to carry out the data

aggregation task. On checking the size of the Hashtable created for storing the rules

on the Gumstix, six is shown. This is because six rules, R-1 to R-6, as described in

section 4.3 are executed by each PN level run engine; likewise, checking the size of

the rule table maintained by the sensor rule engine gives the result of one as only one

rule, R-7, as described in section 4.3, is executed by each sensor rule engine.

A second stage of the experimentation captures the situation where a user (e.g. the

wind farm operator) wants to employ the pub-sub mechanism in addition to the data

aggregation rules. The experiment assumes a user plans to subscribe to wind_speed

events by sending Rule 1 to the PNs, as described in section 3.2.

4.4.1 Rules merging

Without the rules merging mechanism in place, checking the current size of the rules

Hashtable on the Gumstix gives a result of seven. This is because the PN level rule

engine, upon receiving Rule 1, simply adds Rule 1 to its rule base. This results in a

total of seven rules, of which six rules are for data aggregation and one for the sub-

pub service being stored in the Rule-Base.

When the rules merging mechanism is applied, the size of the rules Hashtable on the

Gumstix remains at six, and in the meanwhile both data pub-sub service and the data

aggregation service are provided. This is because the PN rule engine, upon receiving

Rule 1, carries out the rule merging explained as follows:

As “wind_speed.Value >> 60” (condition part in Rule 1) ⊆ “TRUE” (condition part

in R-1), by using the rule merging algorithm described in Table 3, Rule 1 and R-7 are

merged as:

R-8 = wind_speed

[wind_speed.Value >> 60; Send(PS, WindSpeed)]

 → [TRUE; Send (self, AggregationStart)]

As a result, the PN level rule engine replaces R-1, which has already been stored in its

rule base, with R-8. Due to this rule merging, the number of the rules in the rule base

is kept at six, and both data pub-sub service and data aggregation service are provided

after the rules are merged.

4.4.2 Rules filtering

The rule filtering experimentation took a similar pattern. Without the rule filtering

mechanism in place; to provide both data pub-sub service and data aggregation

service, two rules which are Rule 6 (as described in section 4.2) and R-7 (as described

in section 4.3) were running on the sensor rule engine.

In contrast when the rules filtering mechanism is applied, the size of the rule table on

the sensor rule engine remains at one. This is because Rule 6 is filtered out by the PN

level rule engine as described in section 3.4.3, and thus the rule is not sent to the

sensor rule engine. This results in only one rule, R-7, instead of two, being stored and

executed by the sensor rule engine. Again both data pub-sub service and data

aggregation service are provided after the rule filtering.

In conclusion, by using rules merging and rules filtering algorithms, both the memory

space for storing the rules, and the computing load (and thus the power consumption)

of the sensor rule engines for executing rules are reduced without compromising the

overall functionality. In other words, the overhead of filtering and merging once for

each additional rule, is less than the repeated processing of events by the rule engine.

5 Related work
[3], [6] and [7] provided surveys across a broad array of WSNs and middleware. Well

established mechanisms in the literature are LIME
[10]

 (Linda in a Mobile

Environment) and TinyLIME
[11]

. LIME and TinyLIME provide a Tuple Space based

middleware. However, LIME is heavy-weight in that mobility management and data

synchronisation are bandwidth and CPU consuming. TinyLIME is the extension of

LIME, but it cannot be employed directly on currently available sensor processing

nodes such as Tmote. A special interface has to be provided to bridge TinyLIME

running on the base station and applications running on sensor nodes.

[13] proposed an event-based distributed middleware architecture, Hermes, that

follows a type- and attribute-based pub-sub model. In [12], SIENA, an event

notification service consisting of notification selection service and notification

delivery service has been presented. SIENA exhibit both expressiveness and

scalability. However, both Hermes and SIENA are for IP based Internet.

[14] proposes an ECA (Event, Condition and Action) rules based middleware model

for WSN. In [16], a rule-based middleware architecture for WSN, called FACTS,

was proposed, and [17] described its programming primitives and implementation

using the Haskell programming language. While drawing inspiration from FACTS,

our proposal is distinctive in that the rule set in FACTS is static while the rule-base in

REED is dynamic as the rules for REED middleware can be updated at run time.

FACTS does support changes of rule parameters at run-time but not the rules

proper
[18]

. This limits run-time flexibility.

Snlog
[2], [3]

 is also a rule based approach however it does not support run-time rule

updates.

Mate
[19]

 is a small virtual machine that enables sensor network programming at run

time. However, it is important to stress that, compared to Mate, this paper is

addressing run-time reprogrammability in terms of rules rather than low level

programming constructs. More generally, run-time programmability has been

addressed in terms of configuration data which although efficient is rather inflexible.

It has also been addressed in terms of complete binary images which while flexible is

very demanding of resources
[19]

. However virtual machines have been employed to

give efficient reprogrammability
[19]

. This approach is for a limited number of events.

In addition, the programs for running on this virtual machine are of an assembler

language style. In contrast our programming paradigm is that of rules. We believe this

to be a more powerful notation. While reprogrammability at run-time for rule-based

systems has been achieved through configuration data
[18]

, we are not aware of any

systems that address rule changes at run-time.

[22] and [23], written by S. L. Keoh, N. Dulay, E. Lupu, et. al, proposed a policy

based middleware architecture for managing body sensor networks, in which the

policies take on the same form (<event, condition, action>) used in REED. Indeed

[23] concludes that the policy based middleware provides flexibility to reprogram the

sensor with new adaptation strategies without requiring installation of new code.

However, they do not demonstrate such reprogramming scenarios, nor do they

provide dynamic policy management such as rule consistency, and rule merging and

filtering during the reprogramming.

JESS is a rule-engine written entirely in Sun's Java language
[26]

. It is for general

purpose and not dedicated for a WSN environment. As a consequence, the memory

usage is not optimized
 [16]

for running on sensor nodes. In addition, in JESS, all the

facts are stored in its working memory before executing the rules while in REED, any

received data event will be filtered by rules first and only those needing further

processing will be saved to the fact-base. As a result, the overhead for memory

consumption is expected to be lower than using JESS.

6 Conclusion
In this paper, the REED middleware is described. It supports both the distribution of

rules and the events that trigger them. REED employs a rule-based paradigm to allow

sensor networks to be programmed at run time, so that applications and users can

programme the sensor nodes to allow their behaviour to be changed at run time. Such

a rule-based approach allows, among others, data pub-sub service and data

aggregation service to be constructed. To support this programmability, the rule

management is also discussed, especially, a rule merging and filtering algorithm is

proposed. The prototype implementation demonstrates the REED middleware

functionality. By the time the PROSEN project was finished, REED middleware has

been integrated with other components in the system, such as the PS, the UCM, and

the sensor rule engine. The sensor data pub-sub service has been tested on the real

system. The sensor data aggregation service has been tested on the prototype

implementation.

In the future, REED is intended to be extended to other applications such as health

care or other condition monitoring systems. Their domain knowledge will be collected

and then expressed via rules for REED to provide data processing, filtering and

collating services.

7 Acknowledgements
The authors would like to thank EPSRC (Engineering and Physical Sciences Research

Council) for the funding the PROSEN project. We are also indebted to our PROSEN

research colleagues and Graeme Ballie for their support.

References
[1] PROSEN: http://www.prosen.org.uk/

[2] D.Chu, L. Popa, A. Tavakoli, J.Hellerstein, P. Levis, S. Shenker, and I. Stoica.

“The design and implementation of a declarative sensor network system”, In

Proceedings of the 5th International Conference on Embedded Networked Sensor

Systems (SenSys), 2007.

[3] L. Mottola, and G. P. Picco. “Programming Wireless Sensor Networks:

Fundamental Concepts and State of the Art”, ACM Computing Surveys (CSUR)

Volume 43 Issue 3, April 2011

[4] K. Römer, O. Kasten, and F. Mattern, “Middleware Challenges for Wireless

Sensor Networks”, ACM SIGMOBILE Mobile Computing and Communications

Review, Vol. 6, Issue 4, 2002

[5] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey”,

Computer Networks,Volume 52 , Issue 12, pp: 2292-2330, 2008

[6] M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen, “A Survey of

Application Distribution in Wireless Sensor Networks”, Journal on Wireless

Communications and Networking 2005:5, 774–788

[7] E. Yoneki, and J. Bacon, “A Survey of Wireless Sensor Network

Technologies: research trends and middleware’s role”, Technical Report

www.cl.cam.ac.uk/techreports/ UCAM-CL-TR-646.html, 2005

[8] Fei, X., and Magill, E. (2008) ‘Rule Execution and Event Distribution

Middleware for PROSEN-WSN’, Second International Conference on Sensor

Technologies and Applications (SENSORCOMM), 580-585

[9] H. Li, M.C. Price, J. Stott, and I.W. Marshall, "The Development of a

Wireless Sensor Network Sensing Node Utilising Adaptive Self-diagnostics", in Proc.

IWSOS, 2007, pp.30-43.

[10] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman, LIME: A

coordination model and middleware supporting mobility of hosts and agents: Vol 15 ,

Issue 3, pp: 279 – 328, July 2006

[11] A. L. Murphy and G. P. Picco. “TinyLIME: Bridging Mobile and Sensor

Networks through Middleware”, PERCOM (Proceedings of the Third IEEE

International Conference on Pervasive Computing and Communications), pp: 61 – 72,

2005

[12] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and Evaluation of a

Wide-Area Event Notication Service”, ACM Trans. on Computer Systems, 19(3):332-

383, Aug. 2001.

[13] P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed Event-Based

Middleware Architecture”, In Proc. of the 1st Int. Workshop on Distributed Event-

Based Systems (DEBS'02), pages 611-618, Vienna, Austria, July 2002.

[14] C. Zhang, M. Li and Q. Pan, “An ECA Rules Based Middleware Architecture

for Wireless Sensor Networks”, Proceedings of the Sixth International Conference on

Parallel and Distributed Computing Applications and Technologies (PDCAT), Pages:

586 – 588, 2005

[15] BNF: http://en.wikipedia.org/wiki/Backus-Naur_Form

 [16] K. Terfloth, G. Wittenburg, and J.Schiller, “FACTS - A Rule-Based

Middleware Architecture for Wireless Sensor Networks”, First IEEE International

Conference on Communication System Software and Middleware (COMSWARE

2006), New Delhi, India, January 2006

[17] K. Terfloth, G. Wittenburg; and J.Schiller, “Rule-oriented Programming for

Wireless Sensor Networks”, International Conference on Distributed Computing in

Sensor Networks (DCOSS) / EAWMS Workshop, San Francisco, USA, June 2006

[18] K. Terfloth. “Doctoral Dissertation: A Rule-Based Programming Model

for Wireless Sensor Networks”, Freie Universitat, Berlin. June 2009.

[19] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor Networks”,

International Conference on Architectural Support for Programming Languages and

Operating Systems, San Jose, CA, USA, October 2002.

[20] X. Fei and E. H. Magill Language Definition for REED,

http://www.cs.stir.ac.uk/research/publications/techreps/pdf/TR189.pdf, May 2011

[21] G. A. Campbell and K. J. Turner. “Policy Conflict Filtering for Call Control, in

Lydie du Bousquet and Jean-Luc Richier (eds.)”, Proc. 9th Int. Conf. on Feature

Interactions in Software and Communications Systems, pp. 83-98, IOS Press,

Amsterdam, May 2008.

[22] S. L. Keoh, N. Dulay, E. Lupu, et. al, “Self-Managed Cell: A Middleware for

Managing Body-Sensor Networks”, Fourth Annual International Conference on

Mobile and Ubiquitous Systems: Networking & Services, Aug. 2007.

[23] S.L. Keoh, et. al. “Policy-based Management for Body-Sensor Networks”, 4th

International Workshop on Wearable and Implantable Body Sensor Networks (BSN),

26 – 28 Mar 2006.

[24] Gumstix: http://gumstix.com/

[25] JamVM: http://jamvm.sourceforge.net/

[26] JESS, the Rule-Engine for the Java platform,

http://www.jessrules.com/jess/index.shtml

[27] J. Y, Chen, G. Pandurangan, and D. Xu, Robust computation of aggregates in

wireless sensor networks: distributed randomized algorithms and analysis, Fourth

International Symposium on Information Processing in Sensor Networks, pp: 348 –

355, April 2005.

[28] G. Baillie, Data Aggregation within a Rule-Controlled Wireless Sensor

Network, Honours Dissertation, University of Stirling, 2008.

[29] G. A. Campbell and K. J. Turner. “Goals and Policies for Sensor Network

Management”, Proc. 2nd Int. Conf. on Sensor Technologies and Applications, pp.

354-359, IEEE Press, August 2008.

	cover1
	REED_COMNET_final_XFei

