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In the literature, there are five distinct fragmented sets of analytic predictions for the scaling behavior at the
phase transition in the random-site Ising model in four dimensions. Here, the scaling relations for logarithmic
corrections are used to complete the scaling pictures for each set. A numerical approach is then used to confirm
the leading scaling picture coming from these predictions and to discriminate between them at the level of

logarithmic corrections.
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I. INTRODUCTION

One of the major achievements of statistical physics is the
fundamental explanation of critical behavior at continuous
phase transitions through Wilson’s renormalization-group
(RG) approach. While this has mostly provided a satisfying
picture for over 30 years, certain types of phase transitions
have resisted full treatment. Such stubborn cases, which have
been the subject of conflicting proposals and analyses, in-
clude systems with in-built disorder.

The Ising model with uncorrelated quenched random-site
or random-bond disorder is a classic example of such sys-
tems and has been controversial in both two and four dimen-
sions. In these dimensions, the leading exponent a which
characterizes the specific-heat critical behavior vanishes and
no Harris prediction for the consequences of quenched dis-
order can be made [1]. The Harris criterion indicates if the
specific heat of the pure system diverges—i.e., if a>0—
then the critical exponents may change as random quenched
disorder is added to a system. If &<<0 in the pure system,
then this type of disorder does not alter critical behavior and
the critical exponents are unchanged in the random system.
In the two-dimensional case, the controversy concerns the
strong universality hypothesis which maintains that the lead-
ing critical exponents remain the same as in the pure case
and the weak universality hypothesis, which favors dilution-
dependent leading critical exponents (see [2] and references
therein).

Since d=4 marks the upper critical dimensionality of the
model, the leading critical exponents there must be given by
mean-field theory and there is no weak universality hypoth-
esis. However, unusual corrections to scaling characterize
this model, and the precise nature of these corrections has
been debated. This debate motivates the work presented
herein: methods similar to those employed in [2], namely, a
high-statistics Monte Carlo approach coupled with finite-size
scaling (FSS), are used to progress our understanding of the
four-dimensional (4D) version of the random-site Ising
model (RSIM).

While not directly experimentally accessible, the four-
dimensional RSIM is of interest for the following reasons: (i)
it is closely related to the experimentally important dipolar
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Ising systems in three dimensions, (ii) it is an important test-
ing ground for the widespread applicability of the RG, (iii) it
presents unusual corrections to scaling, (iv) in high energy
physics, the establishment of a nontrivial Higgs sector [3] for
the standard model requires a non-Gaussian fixed point and a
new universality class which may, in principle, result from
site dilution, and (v) it is the subject of at least five analytical
papers which differ in the detail of the scaling behavior at the
phase transition.

In Sec. 11, the current status of the RSIM in four dimen-
sions is reviewed, paying particular attention to previous de-
tailed analytical predictions in the literature for its scaling
behavior. The scaling relations recently presented in [4,5] are
then used to construct full scaling descriptions based on ear-
lier partial theories [6—10]. In Sec. III the theoretical finite-
size scaling behavior of the model is presented. The details
of the extensive numerical simulations are given in Sec. IV,
the outcomes of which are analyzed in Sec. V. Our conclu-
sions are summarized in Sec. VI.

II. SCALING IN THE RSIM IN FOUR DIMENSIONS

The consensus in the literature is that the following struc-
ture characterizes the scaling behavior of the specific heat,
the susceptibility, and the correlation length at the second-
order phase transition in the RSIM in four dimensions (up to
higher-order correction to scaling terms) [6—11]:

6
C.(ty=A- B|t|_“exp<— 24/ §|ln|t||>|ln|t|
) = W esol ) Sl
53
1 /6 )
6.0~ s 1y il o

Here, the subscript indicates the size of the system, the re-
duced temperature r=(T-T,)/T, marks the distance of the
temperature 7 from its critical value 7. and A and B>0 are
constants. The correlation function at criticality decays as
[7.9]

@ (2.1)

¥, (2.2)

(2.3)
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Glx)= x_(d_2+”)|ln x|’7, (2.4)
where x measures distance across the lattice, the dimension-
ality of which is d. The correlation length for a system of
finite linear extent L also exhibits a logarithmic correction
and is of the form

&(1=0) ~ L(In L)7. (2.5)

The leading power-law behavior is believed to be mean field
because the fixed point is expected to be Gaussian and

7]:0, A=

N | W

(2.6)

Here, 8 and ¢ are, in standard notation, the critical exponents
for the magnetization out of field and in field, respectively,
while A is the gap exponent characterizing the Yang-Lee
edge. There is no dispute in the literature regarding these
leading exponents, some of which will be reverified in this
work. Nor is there any dispute regarding the details of the
unusual exponential correction terms in Egs. (2.1)—(2.3).
However there are at least five different sets of predictions
for the exponents of the logarithmic terms, which differ from
their counterparts in the pure model, and a principle aim of
this work is to investigate these predictions numerically.

Aharony used a two-loop renormalization-group analysis
to derive the unusual exponential terms in Egs. (2.1)—(2.3),
and also found [6]

, #=0, »=0. (2.7)

a=

N | —

In [7], Shalaev pointed out that Aharony’s results needed to
be refined and, by determining the beta function to three
loops, gave predictions for the specific heat and the suscep-
tibility which differ from those in [6] in the slowly varying
multiplicative logarithmic factors:

a=1.2368, y=-0.3684,

H7=0094.  (2.8)

Jug studied the a=0 line of n-component spin models in
(n,d) space where d is the system’s dimensionality and
thereby worked out the logarithmic corrections for the d=4
n-vector model [8]. For the case at hand (n=1), he obtained

a=1/2,

¥=1/212 = 0.0047. (2.9)

In [9], Geldart and De’Bell confirmed that to obtain the cor-
rect powers of [In|z|| the beta function has to be calculated to
three loops, but the results of [9] differ from those of [7] in
the powers of the logarithms which appear in the specific
heat and in the correlation function:

1
= ——=0.0047.

&= 1.2463,
212

y=-0.3684, (2.10)

Finally Ballesteros ef al. [10] extended and corrected Aha-
rony’s computation to give the correction exponents:
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”—l A—L~OOO94 =0, g= (2.11)
a—z, y—106 . , v=0, g=—-. (2.
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So the detailed analytic scaling predictions of at least five
groups of authors clash and a number of questions arise: (i)
are the predictions from within each author set self-
consistent, (ii) what are the full set of predictions (i.e., ex-
tended to all observables) coming from each set, (iii) can a
simulational approach yield numerical support for the shift in
the correction terms from their counterparts in the pure
model, and, further, (iv) can such a computational approach
support one or other of these five different sets of analytic
predictions? Here the scaling relation for logarithmic correc-
tions developed in [4,5] are used to accomplish (ii) and it is
shown that the answers to questions (i) and (iii) and to some
extent (iv) are in the affirmative. In particular, numerical
support for the broad scenarios presented in [6,8,10] is pre-
sented.

Modification of the self-consistent scaling theory for loga-
rithmic corrections of [4,5], to incorporate the exponential
terms, leads to the following forms for the behavior of the
magnetization in the 4D RSIM:

1 [6 .
L) =18 —=1/=]l t)l 1|8, 2.12
= Fesp( - S lil)n . @12
ma(h) = K" 1n k. (2.13)

From Eq. (15) of [4], we also write for the scaling of the
Yang-Lee edge

3 /6 N
ryp(0) ~ 12 exp(— 2 / §|ln|t||) nf®.  (2.14)

The scaling relations for logarithmic corrections in this 4D
model are [4,5]'

a=dg—db, (2.15)
2B-9=dg—db, (2.16)
B(5-1)=86- %, (2.17)
n=7-02-17), (2.18)

A=p-%. (2.19)

These scaling relations are now used to generate a complete
scaling picture from the fragments available in the literature
[6-10]. This complete picture is given in Table I, where the
exponents of the logarithmic correction terms are listed. Val-
ues for the exponents in boldface come directly from the
reference concerned and the remaining values are conse-
quences of the scaling relations (2.15)—(2.19). Each of the

'Relation (2.15) is modified to read &=1 +dg—dv when @=0 and
when the impact angle of Fisher zeros onto the real axis is any
value other than 7/4, which is not expected to be the case in this
4D model [5].
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TABLE I. Theoretical predictions for the exponents of the logarithmic corrections to scaling for the pure Ising model in four dimensions
and for its random-site counterpart. The latter exponents are listed in boldface if they come directly from the cited literature. The remaining
values are extended from those of the literature using the scaling relations (2.15)—(2.19).

Log exp. Pure model [10,12] Aharony [6] Shalaev [7] Jug [8] Geldart and De’Bell [9] Ballesteros er al. [10]
& 1/3 0.5 1.237 0.5 1.246 0.5

,é 1/3 0.25 0.434 0.252 0.439 0.255

b% 1/3 0 -0.368 0.005 —-0.368 0.009

5 1/3 0.167 0.167 0.170 0.170 0.173

1% 1/6 0 -0.189 -0.187 0

7 0 0 0.009 0.005 0.009

q 1/4 0.125 0.120 0.125 0.125

A 0 0.25 0.803 0.248 0.807 0.245

five papers [6—10] is self-consistent in that the exponents
given within do not violate logarithmic scaling relations.
However, there are clear discrepancies between each of the
five papers.

The presence of the special exponential corrections has
recently been verified by Hellmund and Janke in the case of
the susceptibility [11]. These exponential terms mask the
purely logarithmic corrections, so in order to detect and mea-
sure the latter one needs to cancel the former. Certain com-
binations of thermodynamic functions achieve this, but it
turns out that FSS does this also. FSS therefore offers an
ideal method to determine the exponents of the logarithmic
corrections numerically [2].

II1. FINITE-SIZE SCALING

Fixing the ratio of &.(7) in Eq. (2.3) and &,(0) in Eq. (2.5)
to x, one has

1 6 N .
v exp(E\/§|ln|t||>|ln|t||":xL(ln L) (3.1)

Taking logarithms of both sides, one obtains
1
Inj¢|| = —In L,
v

which reinserted into Eq. (3.1) gives

1~ L™""(In L)*9"exp L \/ illn LIN1+0 !
2v V53 v \r’m '
. 12 1
~L7%(In L)_”‘/2exp( 1/ —In L) 1+ O( ,—) ,
53 Vin

(3.4)

having used the mean-field value [Eq. (2.6)] for the leading
exponent v and the logarithmic scaling relation (2.15). If &
=1/2, this recovers a result in [10] for the FSS of the pseud-
ocritical point.

Inserting Eq. (3.4) into Eq. (2.3) recovers Eq. (2.5), as it
should. The FSS of the remaining functions are determined

by inserting Eq. (3.4) into Egs. (2.1)—(2.3) and (2.12)—(2.14).
One finds

C,(0) = A—B'LY" ex <2+£)\/ilnL
L P 20/ N'530

X (In L)&+Ma=»), (3.5)

where B’ «B is a positive constant [6—10]. Inserting the
mean-field values a=0, v=1/2, one obtains the simpler form

C,(0)=A-B' exp(— 24/ %m L)(ln L)% (3.6

Similarly, the FSS for the susceptibility is

x0(0) ~ LYY[in L|F7"D = 12|1n L)¢, (3.7)
where
« 1
(:7—2(V—q)=5a+ y. (3.8)
That for the Yang-Lee edge is
Fi(L) ~ LI LMD = 1S 1)p, (3.9
where
p=A+3(D-0) Lo Ls (3.10)
=A+3(p-§)=—-—-a--7. .
p v—q 4a B Y

Each of these also have subleading scaling corrections of
strength O(1/4In L) times the lead behavior. One notes,
however, that the unusual exponential terms, which swamp
the logarithmic corrections in the thermal scaling formulas
(2.2) and (2.14), drop out of their FSS counterparts [Egs.
(3.7) and (3.9)]. These are therefore ideal quantities to study
the logarithmic corrections. The theoretical analytical predic-
tions of each of the five sources in the literature are now used
to construct five possible FSS scenarios for the specific heat,
the susceptibility, and the Lee-Yang zeros. While Jug did not
calculate the critical correlator or correlation length in 4D,
the FSS picture corresponding to [8] can still be constructed
through the scaling relations for logarithmic corrections. The
FSS scenarios are listed in Table II.
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TABLE II. The exponents of the multiplicative logarithmic corrections to FSS for the magnetic susceptibility and for the Lee-Yang zeros

coming from the literature and compared to their equivalents in the pure case. The FSS exponents are 3 for the susceptibility and p for the

Yang-Lee edge.

Exponent Pure model Aharony [6] Shalaev [7] Jug [8] Geldart and De’Bell [9] Ballesteros et al. [10]
Susceptibility 3 172 0.25 0.25 0.255 0.255 0.259
Lee-Yang zeros p -1/4 -0.125 -0.125 -0.127 -0.127 -0.130

The remainder of this paper is concerned with Tables I
and II. The primary objective is to verify that the exponents
for the logarithmic-correction terms in the RSIM are indeed
different to those of the pure model. Once this is established,
one would like to determine which of the five sets of ana-
Iytical predictions are supported numerically. From Table II,
it is clear that present-day numerics cannot be sensitive
enough to distinguish between all five scenarios for the sus-
ceptibility or individual zeros. However, there are clear dif-
ferences between the predictions coming from [6,8,10] and
[7.9] for the specific heat (Table I), and it will turn out that
the numerical data is indeed sensitive enough to favor the
former over the latter.

IV. SIMULATION OF THE RSIM IN FOUR DIMENSIONS
AT VARIOUS DILUTION LEVELS

We have performed extensive simulations of the model
for linear lattice sizes from L=8 to L=48 at dilutions p=1,
p=0.8, and p=0.5. In each case, we have employed a Wolff
single-cluster algorithm [13] to update the spin variables us-
ing periodic boundary conditions. Thermalization tests in-
cluding the comparison between cold (all spins up) and hot
(all spins random) starts have been carried out. We found that
the plateau for the susceptibility is quickly reached by start-
ing from cold configurations, see Fig. 1. Indeed, the results
for the susceptibilities from hot and cold starts are fully com-
patible (and are less than two standard deviations away from
each other even at the level of logarithmic corrections). The
information about the numerical details is given in Table III.

5[ - hot start ——e— ]
10 ., cold start ———
10*F - :
Y
3 x 2 % % x 3 2 8 & 8
107k E
~
= 10°F ]
10tk . ° ]
] (]
of 3 ]
10 i3858t
lo—lr 1 1l 1 1l 1 1l 3
10 100 10 o0t 100 10°

Monte Carlo Sweep

FIG. 1. (Color online) Averaged behavior of the susceptibility
with the Monte Carlo time for 20 samples at L=32 and p=0.800.
After every Monte Carlo sweep (Wolff update) measurements were
performed. The plateau is reached more easily starting from a cold
configuration (triangles).

We have taken 1000 disorder realizations in all the cases
except for L=48, where only 800 samples were used. We
estimate that the total simulation time has been equivalent to
20 years of a single node of a Pentium Intel Core2 Quad 2.66
GHz processor. Since our aim is to estimate the scaling of
quantities right at the critical point, simulations must be per-
formed at the critical temperature of the model. We used the
estimates for the critical temperature given in [10]. In terms
of B=1/kT, where k is the Boltzmann constant, these are
B:.=0.149 695, 5.=0.188 864, and [B.=0.317 368, for p=1,
p=0.8, and p=0.5, respectively.

In addition we have simulated the dilution p=0.650 at
B.=0.235 049 [10] with the same statistics used for the other
dilutions but we have found that the behavior of the observ-
ables differs from that expected. In Fig. 2 is shown the de-
viation of the leading scaling behavior of the susceptibility.
We have rechecked this point starting from different initial
configurations and even using different random number gen-
erators. This is probably due to a biased estimation of the

TABLE III. Simulation details for each spin concentration p and
system size L. Here, Ny denotes the number of Wolff updates
between consecutive measures, Ny is the number of dropped mea-
surements at the beginning of the Monte Carlo history (in units of
10%), and N, is the total number of measurements performed after
thermalization in units of 10°.

Spin concentration L Nwolst Ny Np
p=1.000 8 200 2 2
(B.=0.149695) 12 400 8
16 1600 32 16
24 2000 128 20
32 3000 400 30
48 4000 1600 40
p=0.800 8 100 1 0.1
(B.=0.188864) 12 200 4 0.2
16 800 16 0.8
24 1000 64 1
32 1500 200 1.5
48 2000 1250 2
p=0.500 8 100 2 0.1
(B.=0.317368) 12 200 8 0.2
16 800 32 0.8
24 1000 128 1
32 1500 512 1.5
48 2000 1250 2
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FIG. 2. (Color online) Comparative behavior of the susceptibil-
ity for p=0.650 at 8,=0.235049 [10]. Note the strong deviation at
this dilution from the expected leading behavior (y ~ L?). The point
size is in every case bigger than the corresponding error bar.

critical temperature in [10]. For this reason we omit p
=0.650 from our analysis.

V. ANALYSIS OF THE NUMERICAL RESULTS

To establish confidence in the present approach, the pure
system is analyzed first to test whether the method employed
successfully quantitatively identifies the logarithmic correc-
tions which are well established there.

A. Pure case p=1

The scaling and FSS of the pure model (p=1) are well
understood [10,12]. The specific-heat FSS behavior is given
by

C;(0) ~ (In L)%~ (In L)', (5.1)

up to additive corrections. Fitting to this form for & over the
full data set 8 <L =48, one finds the estimate &=0.42(4)
with a goodness of fit given by a x?/d.o.f. (chi-squared per
degree of freedom) of 1.3. The estimate is two standard de-
viations away of the known value 1/3. As elsewhere in this
analysis, inclusion of subleading scaling correction terms in

PHYSICAL REVIEW E 80, 031135 (2009)

the fits does not ameliorate this result, which is similar to
that reported in [10].
The FSS for the susceptibility is given in Eq. (3.7) with

{=1/2. Fitting to the leading form
x.(0) ~ L (5.2)

gives y/v=2.16(1) for 8L =48 and y/v=2.13(2) for 12
=L =32, the difference from the theoretical value y/v=2
being ascribable to the presence of the logarithmic correction
term. Accepting this mean-field value for y/v and fitting to

x(0) ~ 12(n )¢ (5.3)

gives the estimate Z=0.48 *0.02 in the range 8 =L =48, al-
beit with x*/d.o.f.=4.1.

The FSS for the individual Lee-Yang zeros is given in Eq.
(3.9) with p=-1/4 in the pure case. Fitting to the leading
form

ri(L) ~ L8 (5.4)

gives A/v=3.074(5) for 8 =L =48, the difference from the
theoretical mean-field value A/»=3 being due to the correc-
tions. Accepting this value and fitting to

r(L) ~ L73(In L)? (5.5)

gives p=—0.22(2) in the range 8 =L =48. This estimate
is compatible with the known value p=—1/4. As one would
expect, the higher zeros yield less accurate estimates (as they
are further from the real simulation points) with p
=-0.18(3), p=-0.17(7), and p=-0.10(14) from the second,
third, and fourth zeros, respectively. These estimates are
listed in Table IV.

Having established that the numerics gives reasonable
agreement with the pure theory at the leading and the loga-
rithmic levels, we now perform a similar analysis in the pres-
ence of disorder.

B. Diluted cases p=0.8 and p=0.5

Since the ansatz (3.6) for the specific heat in the disor-
dered systems is rather more complex than that of the pure
case [Eq. (5.1)], we begin the p# 1 analyses with the sus-

TABLE IV. FSS estimates for the various dilution values, using a range of lattice sizes. The susceptibility
is expected to scale as y; ~L*(In L)¢ and the Lee-Yang zeros as r;~L(In L)?, where {~0.25-0.259 and
p=~-0.125 to —0.130. (For comparison, the pure theory with p=1 has {=1/2 and p=-1/4.)

P ¢ p

Theory (p=1)= 172 -1/4

Theory (p# 1)= 0.25 to 0.26 —-0.125 to -0.13

j=1 j=2 j=3 j=4

1 L=8-48 0.48(2) -0.22(2) -0.18(3) -0.17(7) -0.10(14)
0.8 L=8-48 0.39(3) -0.15(2) —-0.16(3) -0.20(3) -0.17(3)
0.8 L=12-48 0.42(4) —0.17(4) —-0.16(4) -0.17(5) —-0.18(4)
0.5 L=8-48 0.37(4) —-0.20(4) —-0.22(4) -0.21(4) -0.21(4)
0.5 L=12-48 0.40(6) —-0.16(5) —-0.20(5) -0.18(5) —-0.19(5)

031135-5
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1 1.2
In(In L)

FIG. 3. (Color online) (a) FSS plot for y; at p=0.8 (circles) and
p=0.5 (triangles) at the critical point. The slopes of the fitted solid
and dashed lines give estimates for y/v of 2.14(1) and 2.13(2),
respectively. (b) Plot of In ;-2 In L against In(In L) at p=0.8
(circles) and p=0.5 (triangles) giving slopes 0.39(3) and 0.37(4),
respectively, indicating slow crossover of multiplicative logarithmic
corrections from the pure case (where 2 =0.5) to the diluted case,

where the theoretical value is 2 =(0.13.

ceptibility and the Lee-Yang zeros. It will turn out that our
analyses will reinforce the analytical predictions that scaling
is governed by the Gaussian fixed point and that the logarith-
mic corrections in the RSIM differ from those in the pure
model. Indeed, the results for the zeros will be seen to be
broadly compatible with the analytic predictions contained in
[6-10].

For the weaker dilution value p=0.8, a fit using all lattice
sizes to the leading form (5.2) for the susceptibility yields the
estimate y/v=2.14%0.01.

Ascribing the difference from the Gaussian value y/v=2
as being due to the correction terms and, as in the pure case,
and fitting to Eq. (5.3), one finds an estimate for the correc-

tion exponent Z=O.39(3) for 8 =L =48. This values is be-
tween the pure value {=0.5 and the theoretical estimates for

the diluted value which give 2 ~(.25-0.26. Thus, while the
FSS for the susceptibility does not capture the theoretical
estimates for the diluted case, the fitted values have moved
away from the pure value and toward the lower value listed
in Table II. As elsewhere in this work, the inclusion of scal-
ing corrections does not alter these results significantly.

A similar analysis for the FSS of the susceptibility at the
stronger dilution value p=0.5 gives similar results: the lead-
ing form (5.2) yields an estimate y/v=2.13%0.02 with a
goodness of fit given by x*/d.o.f.=0.4. Ascribing the differ-
ence from the mean-field value y/v=2 as being due to the
logarithmic corrections and fitting to Eq. (5.3), one obtains

the estimate £=0.37(4) for 8 <L =48. Again this result is
between the theoretical predictions for the pure (2 =0.5) and

diluted (Z ~().25-0.26) cases. These results are summarized
in Table IV, together with results obtained from the same fits
with the smallest lattices removed. The best fits of the sus-
ceptibility can be seen in Fig. 3.

Since in each of the diluted cases, the results for suscep-
tibility lie between what is expected for the pure theory and
for the diluted theories, we appeal to the Lee-Yang zeros as
our collective experience indicates that they give a cleaner
signal.

The leading behavior is first examined by fitting each of
the first four Lee-Yang zeros to Eq. (5.4). For the weaker

PHYSICAL REVIEW E 80, 031135 (2009)

In ()

0.5F 1

In(r)+3InL

02k ‘ ‘ ]
1 1.2
In (In L)

FIG. 4. (Color online) (a) FSS plot for the Yang-Lee edge at p
=0.8 (circles) and p=0.5 (triangles). The slopes of the fitted solid
and dashed lines give estimates for A/v of 3.055(4) and 3.07(2),
respectively. (b) Plot of Inr+3 InL against In(In L) at p=0.8
(circles) and p=0.5 (triangles). Fits in the range L=12 to L=48
(plotted) give slopes —0.17(4) and —0.16(5), compatible with the
predictions ranging from p=-0.125 and p=—0.13 in the literature.
(For comparison, in the pure model, p=—1/4.)

dilution given by p=0.8, one obtains A/r=3.055(8),
3.056(9), 3.069(11), and 3.060(10) from fits to the first, sec-
ond, third, and fourth zeros, respectively, using all lattice
sizes. The equivalent results for the stronger dilution value
p=0.5 are A/v=3.068(13), 3.071(15), 3.072(12), and
3.071(11), respectively. All fits are of good quality with ac-
ceptable values of y*/d.o.f., which we refrain from detailing.
Again, these are interpreted as being supportive of the mean-
field leading behavior y/v=3 with logarithmic corrections.

The logarithmic-correction exponents are estimated by fit-
ting to Eq. (5.5), with the various theories indicating that p
=-0.125 to —0.13. The strongest evidence supporting this
comes, as it should, from the first zero (the Yang-Lee edge)
for p=0.8, which yields the estimate p=-0.15(2) (with
xX*/d.0.f.=0.6). As in the pure case and as expected, esti-
mates for p deteriorate as higher-index zeros are used. Drop-
ping the smallest lattices from the analysis, however, leads to
these estimates for p more compatible with [6-10]. These
results are summarized in Table IV.

The equivalent analysis for the stronger dilution value p
=0.5 is less clear, with an estimate p=—0.20(4) coming from
the first zero when all lattices are included in the fit (with
x°/d.o.f.=1.1). Dropping the smallest lattices, however,
gives p=—-0.16(5) (with y*/d.o.f.=0.9), closer to the values
coming from [6-10]. Similar results are obtained for the
higher zeros and these are also summarized in Table IV. The
best fits for the first zero are shown in Fig. 4.

As a final check of the reliability of our results we have
used the spectral energy method [14] to reweight the data
obtained at B, to B, A, (taken again from [10]) obtaining
that the extrapolated data sets are fully supportive of the
previous results.”

Having checked that the leading FSS behavior corre-
sponds to that originating in the Gaussian fixed point and

*When doing B extrapolations in a disordered model one should
be careful and take into account the bias induced by the finite num-
ber of measures (see the discussions in [10,15]). We have followed
the recipe provided in [10] to perform the extrapolation to infinite
number of measures per sample.
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FIG. 5. (Color online) The specific heat for p=0.8 (circles) and
p=0.5 (triangles). The error bars are in every case smaller than the
point size. The solid and dashed curves are best fits to ansatz (3.6),
with a=1/2.

that the logarithmic corrections to scaling are different to
those in the pure model and, moreover (at least in the case of
the Yang-Lee edge), are broadly compatible with the predic-
tions from the literature [6—10], we now attempt to distin-
guish between these broad predictions. To this end we turn to
the specific heat.

Having established confidence that the mean-field values
vy=1 and A=3/2 hold in the 4D RSIM, we may use the
scaling relation @=2-2A+vy to establish the mean-field
value =0 too. Ansatz (3.6) for the specific heat may now be
used. This contains information which can be used to dis-
criminate between some of the scenarios in the literature.
From Table I, there is a striking difference between the esti-
mates for the specific-heat logarithmic-correction exponent &
coming from [7,9] and from [6,8,10]. While the former have
relatively large values of &, the latter agree on a@=0.5. The
simulated values of the specific heat at p=0.8 and p=0.5 are
plotted in Fig. 5. The slope of the full specific-heat curve

[Eq. (3.6)] is

dCy_ry C(O)]\'12/53<1 &\53/12) 56
Ay vz )T

This vanishes when C;(0)=A and when VIn L=a53/12.
The first of these is the asymptote L— o0, from which A can
be determined for each dilution. The second occurrence of
zero slope is for quite small lattice sizes, i.e., beneath lattice
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size L=38. Therefore &< ~v53/12yln 8 =0.7, excluding the
values &=~ 1.237 and &= 1.246 given in [7,9]. In fact, a best
fit to ansatz (3.6) gives A=49(11), B'=66(22), and &
=0.46(18) for p=0.8 and A=10(5), B'=7(10), and &
=0.7(3) for p=0.5 with L>8. Fixing &=1/2 in each case
gives A=52(2),B'=72(5) for p=0.8 and A=9(3),B’=5(1)
for p=0.5, and these curves are plotted along with the
specific-heat measurements in Fig. 5. Fixing the correction
exponent & to the value given in [7,9], on the other hand,
yields a best-fit value of B’ which is negative in each case,
contradictory to [6,9]. Thus we can deem these values to be
unlikely.

VI. CONCLUSIONS

Numerical measurements of the leading critical exponents
in the 4D RSIM are presented, confirming that the phase
transition in this model is governed by the Gaussian fixed
point. We then turn to the corrections to scaling, for which
there exist five distinct sets of predictions in the literature
[6-10]. The scaling relations for logarithmic corrections are
used to render complete these sets and their counterparts for
finite-size systems are given.

The measured values of the susceptibility FSS correction

exponent gA“ for the site-diluted model, lie between the known
value for the pure model and the theoretical estimates com-
ing from [6-10] for the disordered system. While this result
illustrates slow crossover of the susceptibility, the lowest-
lying Lee-Yang zeros give a cleaner signal and the measured
value for their logarithmic correction exponents are indeed
compatible with the theories.

To discriminate between the five theories, the detailed
finite-size scaling behavior of the specific heat is also exam-
ined. The analysis is clearly in favor of the analytical predic-
tions of [6,8,10] over those of [7,9]. This is contrary to ex-
pectation as the former involve only two loops in the
perturbative RG expansion, while the latter take the expan-
sion to three loops in the beta function.
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