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ABSTRACT

The ability to monitor posture is essential to many
application areas, including virtual reality, health, and
sports applications. The work here focuses on the use
of postural monitoring in safety critical missions such as
explosive ordnance disposal (EOD) missions. The oper-
atives undertaking these missions are commonly placed
under a high level of physical and psychological strain
due to the weight of the protective armoured suit and
the potential risk of their work. Remote monitoring of
posture may allow a better understanding of the oper-
ative’s status. When combined with additional health
information, posture can enhance the accuracy of oper-
ative’s global state estimation. Previously, a Body Sen-
sor Network - based (BSN) posture monitoring system
consisting of nine accelerometers was designed and im-
plemented by the authors here. The system was able to
recognise six specific postures (sitting, kneeling, crawl-
ing, and three variations of laying on the ground) with
high accuracy. However, the system was unable to con-
sistently distinguish between a subject standing, walk-
ing or running. In order to counteract this limitation, a
new prototype utilising additional sensors and an aug-
mented data processing method has been implemented
and evaluated and is reported here.

Keywords: Body Sensor Networks, posture, accelera-
tion

1 INTRODUCTION AND RELATED
WORK

The work reported on here is part of a larger project
aimed at enabling detailed physiological measurement
and insight into the body’s physiological responses when
exposed to enclosed and harsh environments. The harsh
environment in the application at hand is that induced
by heavily armoured suits. Prior research showed that
for manned safety critical missions taking place in hot
environments, the production of on-line, real-time, ac-
curate human thermal state estimates alongside moni-
toring of subjects’ physical activity is necessary. Such
monitoring will enable rapid assessment of hazardous
situations at a remote monitoring station and delivery of

thermal remedies through control and actuation of cool-
ing systems commonly integrated with armoured suits.

Towards this aim, the authors proposed to use ad-
vances in Body Sensor Networks technologies to develop
and deploy wearable real-time monitoring instrumenta-
tion and enable decision making and actuation. The fo-
cus in this paper is the assessment of physical activities
such as standing, running, crawling, walking, kneeling,
laying on the back, front or sides, in real-time through
the use of networked internal devices.

Several attempts have been reported in the litera-
ture towards tracking the movement or position of hu-
man subjects [5]. The system developed by Biswas and
Quwaider [4] for example is the closest to the system
proposed here, but differs in implementation and de-
sign perspective. Biswas and Quwaider’s system uses, as
hardware basis, the Mica2Dot wireless node with an in-
tegrated two-axis piezoelectric accelerometer. The sys-
tem is capable of identifying, through off-line process-
ing and post-analysis a limited set of postures (sitting,
standing, walking and running). Using five triaxial ac-
celerometers sampling at 30Hz and a wireless heart rate
monitor, Tapia [23] obtained a recognition accuracy of
94.6% and 56.3% using subject-dependent training and
subject-independent training respectively, for three ac-
tivity categories: (1) postures (e.g. lying down, stand-
ing, and sitting), (2) activities with multiple intensities
(walking, rowing/arm ergometry, and cycling), (3) and
other activities (running, calisthenics, move weight, and
using stairs). Identifying human posture with inertial
(accelerometer and rate gyroscope) and magnetic (mag-
netometer) sensors was also attempted by Fontaine et
al. [9], Farella et al. [8], [7].

Working towards similar monitoring aims as the above,
Jovanov et al. [13] developed the ActiS sensor node, de-
signed to be used as part of a wireless body area net-
work. This node incorporates a bio-amplifier and two
accelerometers, allowing the monitoring of heart activ-
ity as well as the position and activity of body segments.
The main application for their system is monitoring the
activity of physiotherapy patients. Other systems exist
which detect posture-related events, such as steps while
walking (see Ying et al. [26]).

The variety of systems and applications reported shows
that posture tracking is a relatively well covered research



subject with a number of branches and applications:
from activity detection [14], [19], to position recognition
[15], [6], [4], to real time movement recognition tasks for
martial arts [12] and manufacturing environments [21],
added to gait measurement [1]. The systems reported,
although by and large application specific, often share a
common sensor placement on the body in order to ac-
curately detect the subject’s movement and limb posi-
tions [27],[10], [16] but require different degrees of move-
ment sensing accuracy to fulfil the specific application.
Systems such as those above have provided a starting
point for the work here.

The remainder of the paper is structured as follows:
Section 2 describes the system design and implementa-
tion, Section 3 evaluates the prototype produced and
Section 4 concludes the paper.

2 SYSTEM DESING AND
IMPLEMENTATION

The system design for the posture assessment instru-
ment has been driven by a mixture of constraints largely
falling into the following categories:

e Suit related constraints, such as its modular struc-
ture, the need to avoid running wires between the
various garment components, and, the overall wear-
ability of the instrument.

e Safety critical concerns, such as the need for in-
suit decision making and alerting the operative
and mission control of unsafe conditions.

e Scope of the instrument, such as its dual use as a
field deployable system as well its use in labora-
tory trials for both physiological research and suit
design analysis.

In response to the suit related constraints, the overall de-
sign of the system is structured around a mix of wired
and wireless communication. Multiple inertial sensing
packages are wired to each BSN node. Although wireless
communication from each sensor package might seem
feasible, this would both increase the size and weight of
the sensor packages and require additional batteries or
power harvesting devices, hence decreasing the weara-
bility of the system. Since there is a need to sense body
segment acceleration at a number of points, such an ap-
proach would be unwieldy. Wireless communication will
allow communication within the components of the in-
strument given that the instrumentation for the jacket
and trousers needs to be physically separate to ease rob-
ing and disrobing. This mix of wired / wireless commu-
nication is similar to that of the Xsens Moven inertial
tracking system [25]. Hence the system here is designed
as a three node body sensor network with three tiers
of communication: sensor package to processing nodes
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Figure 1: Prototype System Design

(wired); node to node within the suit (wireless); and
node to base station / remote monitoring unit (wire-
less).

The prototype developed processes the acquired 3D
acceleration data locally, in-network, at one of the nodes
that are worn within the suit (denoted here the APN in
order to differentiate from the AN; see figure 1), rather
than at a remote base station, thus enabling local de-
cisions. Furthermore, buffering information on the evo-
lution of the operative’s physical activity rather than
acceleration data removes the burden on the network
to store large amounts of data. The high data rate for
accelerometers further justifies both the extraction and
buffering of information only and a framework that al-
lows in-network processing is needed to support the sen-
sor type used here [20].

A C4.5 (Weka J48) decision tree learning approach [24]
is used to infer posture based on the accelerometer read-
ings. This approach was primarily chosen as decision
trees are readily generated using available tools and are
easily converted into a set of rules for real-time pro-
cessing. Moreover, previous reported work has demon-
strated their successful use for similar activity recogni-
tion reseach [2], [3], [17].

Certain activities such as walking and running imply
a regular rhythmic motion (particularly of the legs). In
order to account for this, the RMS of the data for each
of the sensors and each axis is used as a parameter in the
tree generation process. The RMS is performed over a
sliding 50 sample window, with each value offset by the
mean of the window contents.

The BSN prototyped consists of two body mounted
nodes (AN and APN) and a base station. The Gumstix
Verdex XM4-bt devices [11] are used as the main pro-
cessing and communications platform. The Gumstix are
fully functional single board computers with a footprint
of 80 x 20 x 6.3 mm?® and a weight of 8 grams. They
contain a 400MHz Marvell PXA270 XScale CPU and
integrated Bluetooth communications. This processor
board is considerably in excess of the computational re-
quirements for evaluating a decision tree but the added
computational power simplifies the prototyping process,
allowing, for example, the Linux environment to be used
for most of the software development. At the same time,
the boards are small and light enough to be easily car-



Figure 2: Nodes implementation (packaging open for
demonstration purposes)

Figure 3: Sample visualisation

ried in a pouch or pocket.

Several bespoke acceleration sensor boards are con-
nected to each Gumstix device via an expansion board.
Each sensor board consists of a microcontroller, a tem-
perature sensor, a triaxial accelerometer, and an 12C
bus extender. The microcontroller is a Microchip PIC
24FJ64GA002 [18], while the accelerometer used is a
STMicroelectronics LIS3LV02DQ [22] (see figure 2 for
nodes implementation). The Gumstix devices communi-
cate via Bluetooth, node-to-node and node-to-base sta-
tion. The base station (mission control PC) receives and
displays posture information (in Mission Mode Func-
tionality) or posture information and acceleration data
(in Analysis Mode Functionality) depending on the field
or lab use of the instrument.

The sensors were positioned on the subject’s body
(chest, biceps, forearms, calf’s, hip, ankle and thighs).
The five sensors used for the upper body are connected
to one node (AN), whilst the six sensors fitted on the
lower body are connected to the second network node
(APN) (see figure 1). At the remote monitoring point,
postural information is delivered for real-time visualisa-
tion using stick figures (see figure 3 for a sample visual-
isation).

3 EVALUATION

Several volunteers of different builds were used for
acquiring tree training and testing data. The volun-

teers group was mixed males and females with heights
between 1.6m and 1.83m and weights between 60kg and
89kg. Experiments were conducted with both skin taped
sensors and sensors fitted over light clothing. Accelera-
tion readings were taken at a rate of 10Hz, and postural
activity was also assessed and displayed at this rate.
Three activity regimes were studied (Regime 1, Regime
2 and Regime3). Over all, the subjects undertook sit-
ting, standing, walking, kneeling, crawling, lying on one
side, lying down on their front, lying down on their back,
and running. Each posture was maintained for either 1
minute or 3 minutes depending on the particular pos-
ture and regime. In Regime 1 the subjects were asked
to maintain exactly each posture described for 1 minute.
For Regime 2 the subjects maintained each posture in
the context of a mission-like protocol (for instance kneel-
ing while putting weights into and out of a rucksack,
or standing while performing arm exercise). Regime &
expanded on this by adding natural movements to the
activities performed (such as lifting weights while stand-
ing, packing things into a box while kneeling or sort-
ing cutery from one bowl to another). This progression
from strictly controlled postures to natural movements
allowed a variety of data to be used for tree training
and a thorough evaluation of the prototype. Data from
seven volunteers performing the regimes described was
gathered. Four data sets were used for tree training and
three data sets for tree testing. Time-constraining each
activity simplified annotation of the data set.

The accuracy of postural activity information pro-
duced by the prototype is evaluated below according
to the precision and recall per posture type. Precision
represents the percentage of instances that the classifier
identifies a posture correctly out of all instances that
were identified as that posture. Conversely, recall rep-
resents the percentage of instances a posture is classified
correctly over all instances which should have been iden-
tified as that posture.

A tree (denoted Trms_l) was trained on the data from
the 11 accelerometers coupled with RMS values. The
precision and recall as shown in figure 4 (averaged over
the set of 3 test volunteers) are sufficiently high for all
9 postures to confirm the accurate performance of the
prototype over a variety of body builds and hence its
suitability for the application at hand. An average cor-
rect classification of 97% to 100% for all postures was
achieved. This improves considerably on previous re-
sults (averaging 69.7% accuracy over a set of 4 volun-
teers and all postures) obtained by using only 9 sensors
(as per Figure 1 but without hip and ankle sensors) and
only instantaneous data.

While the evaluation discussed above was performed
with subjects not wearing the bomb disposal suit, addi-
tional trials with the suit being worn showed that tree
Trms_l produced comparable results, averaging 95% ac-
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Figure 4: Overall precision versus recall for Trms_l tree

curacy for one test volunteer, over a 15 minutes bomb
disposal like protocol. This means that training of the
system can be performed without the bomb disposal
suit, hence avoiding strain on the subjects. The error
observed was entirely for periods when the subject was
moving from one posture to another. For these tran-
sition, the system tends to output a succession of dif-
ferent unstable classifications in a very short space of
time. This effect will be further quantified and studied
and may be resolved using some form of smoothing or
by implementing a simple rule to display posture only
when a certain number of consecutive classifications of
the same posture have been produced.

4 CONCLUSION

The paper reported on the design, implementation
and evaluation of a posture monitoring prototype for
manned safety critical missions. Based on inertial de-
vices and exploiting wireless networking, the prototype
is able to differentiate between nine activities commonly
undertaken by operatives in bomb disposal missions.
The postural information is infered locally, within the
worn network of devices, and relayed in real-time to a
remote mission control unit. Both instantaneous and
historical acceleration data is taken as input to the deci-
sion tree running on one of the worn nodes. Experimen-
tal evaluation with several volunteers has shown that
the prototype is robust, can be worn within the protec-
tive suit over light clothing or directly on the skin, and
maintains the correctness of postural information deliv-
ered for a wide range of subjects undergoing mission like
activities.
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