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Bare necessities—Knowledge-driven WSN design

Elena I. Gaura, James Brusey and Ross Wilkins
Cogent Computing, Coventry University
Priory Lane, Coventry CV1 5FB
{e.gaura,j.brusey,wilkin24 } @coventry.ac.uk

Abstract—The viability of wireless sensor applications often
hinges on minimising power consumption whilst maximising the
informational output. Although many low-level platform-oriented
energy saving mechanisms have been developed, considerable
savings are possible at application level. This work presents
an approach to pushing the calculation of application-level
state closer to the information source. The context in which
this approach is evaluated is a residential building monitoring
application. Combined with the Spanish Inquisition Protocol
(SIP), this is shown, based on deployment data, to reduce the
average transmission period for temperature data from once
every 5 minutes to an average of once every 38 days for an allowed
error threshold of 10% on any component of the application-level
state. For combined sensing of temperature, relative humidity
and CO2, the average transmission period drops to 13 days. This
transmission reduction should considerably extend network life
while having minimal effect on the usefulness of the information
gathered. Most importantly, the underlying approach generalises
to a wide variety of applications.

Index Terms—Wireless Sensor Networks

I. INTRODUCTION

Tiny, low power, wireless computing platforms (motes)
are moving from their research roots to encapsulation in
useful products. As consumer products, they will shed their
developer-oriented capabilities, provide processed information
instead of raw data, and become highly tuned to the specific
application. Central to this tuning is consideration of which
information is both relevant and unexpected.

Research in the area of Wireless Sensor Networks (WSNs)
is evolving. Initially, the focus was on the device: computation
and communication were only just possible and tended to be
unreliable. Next, the focus was on the network: careful design
of communication strategies were needed to extend lifetime
and thus to make the systems usable in the real world. These
systems are now usable and focus is now moving towards
the application. There is becoming less of a need to monitor
metrics unrelated to the application, such as signal strength
or network tree structure. Furthermore, there is greater trust
in processing on the node. It is no longer assumed that every
unprocessed sensor reading must be transmitted to a back-end
store to allow checking of any processed output.

A key factor in WSN design is network longevity. The
additional maintenance cost associated with replacing batteries
is a significant incentive to optimise the design in this respect.
Even so, it is rare for systems to achieve longer than a 1 year
lifetime. For example, the Torre Aquila project [1] deployed a
WSN to monitor the structural integrity of a heritage building
to better plan maintenance. The deployment consisted of a

number of node types measuring temperature, relative humid-
ity, light, acceleration and fibre optic sensors all sampling at a
rate of 10 minutes. Using two pairs of size C batteries, Ceriotti
et al. estimate a node lifetime of one year. SensorScope [2] is a
system for an indoor environmental monitoring network, built
around the Telosb platform (measuring temperature, relative
humidity and light) and uses the B-mac networking protocol.
With the nodes sampling at 2 minutes, Schmid and Dubois
estimate that the system will run for 61 days on a pair of
AA batteries. The WISE-MUSE project [3] developed a WSN
which monitors temperature, relative humidity and light in an
art gallery for the preservation of collections. At a sampling
rate of 10 minutes a life time of 2 months was achieved
using a pair of AA batteries. The above three examples
demonstrate the limited expected battery longevity of WSN
systems monitoring simple measurands such as temperature
and humidity and relatively low sample frequencies.

This paper builds on prior work [5] that developed the
Spanish Inquisition Protocol (SIP), a generic, model-based
approach to WSN transmission reduction. In SIP, little is
assumed about the type or frequency of sensor measurement
or the overall application. In contrast, the main contribution
of this paper is to demonstrate how, building on the basic
approach of SIP, one can take into account the information
requirements of the application and that there are considerable
performance benefits to be gained from doing so. As with SIP,
this is a fimely protocol in the sense that, unlike a simple
reduction in transmission frequency, the approach presented
here will transmit when a significant change occurs in the
environment.

The paper continues, in Section II, with introducing the ap-
plication of residential building monitoring and the associated
information requirements. Section III presents the algorithmic
approach, building on SIP. The performance of this system is
further analysed in Section IV followed by concluding remarks
in Section V.

II. TOWARDS APPLICATION-LEVEL STATE IN BUILDINGS
MONITORING

Given the context of a specific application, raw sensor
measurement data is often highly compressible. Although,
while in initial stages of WSN development it is usually
necessary to deploy additional sensors and gather much more
data, once the key application “metrics” become established,
fewer sensors and less frequent transmissions are sufficient. In
this paper, this compact form is termed application-level state



since it is both at an application-level (in terms of context)
and referring to the condition of the monitored environment
at a point in time.

A specific application used as a case study throughout this
paper is that of residential building monitoring, which involved
monitoring per room temperature, humidity, and air quality
as well as energy usage for the whole house. The end-users
of the data were social housing landlords. Their main aim
was to be able to objectively assess home comfort versus
energy expenditure. In consultation with the end-users, three
key metrics were found that enabled them to understand the
data and to make decisions based on it. These were:

e Per room exposure by band for temperature, relative

humidity and air quality (see Fig. 2)

« Per house probability of “reasonable” comfort and expec-

ted comfort based on likely occupancy distribution,

o Opverall energy usage per unit area per degree days.
Exposure bands primarily represent comfort but also hint at
likely health impact. For example, cold can negatively affect
the immune system; humidity can lead to toxic levels of mould
growth; and poor air quality can lead to higher rates of lung-
related illness. Prior work [4] explores the development of
these metrics in more detail.

The second metric (comfort) combines probability of room
occupancy with the probability of being comfortable in that
room. Actual occupancy is not directly measured. Instead, an
estimate of the occupancy distribution is made for day and
night. For example, probability of being in a bedroom at night
is high, while probability of being in the living room is lower.
This relationship swaps over during daytime.

The third (energy) compares the overall (externally
provided) energy usage (combining gas and electricity) with
the number of heating (or cooling) degree days for the same
period. Heating degree days (HDD) are defined as the integral
over time of the difference between the external temperature
and a base temperature. Typically 15.5 °C is used as the base
temperature. Roughly speaking, the ratio of heat energy used
to HDD is proportional to the specific heat loss of the building.

The number of unprocessed bits provided to obtain these
three key measures from a year of monitoring temperature,
humidity, and air quality (16 bits each) at 5 minute intervals
in 11 locations around a house is 365 x 288 x 16 x 3 x 11 ~
5.6x107 bits. Gas and electricity energy information is ignored
(and is usually minimal).

After processing of the room-by-room measurement, we
have a combination of exposure per room over 5 bands
10 x 32 x 5 = 1600, plus comfort summary 32 x 2 = 64,
plus degree day and energy summary 32 X 2 = 64, or a
total of 1728 bits. If this summary information is transferred
only once per year, the information reduction would be of the
order of 1/32000. A considerable saving is still possible if
the information is transferred monthly or weekly.

Interestingly, the key metrics defined above tend to be stable
over time. For example, the ratio of energy to degree day,
being in rough correspondence to the building heat loss, will
tend to remain the same season after season, year after year.

events

application-

level state user

feedback

Figure 1. Summary of information flow. Pink shaded processes are performed
per node.

Furthermore, any significant change in the value may be of
importance. Has a refurbishment improved the insulation?
Are new tenants adjusting the heating system parameters?
Identifying when key metrics change can be insightful.
Given that transmission of bits is the main energy cost for
wireless nodes, the above analysis suggests that performing
at least some of the processing on the node will substantially
extend the battery life and this is explored in the next section.

III. BARE NECESSITIES AS A NODE-BASED, ON-LINE
ALGORITHM

The overall method proposed here is summarised in Fig. 1.
Each node senses the environment and converts the meas-
ured values into application-level state. Following the SIP
algorithm, an event filter checks for changes in the state
beyond some threshold compared to the last transmitted state.
When a significant event is detected, a packet is transmitted to
the database. Note the calculation of state is online and thus
before the full time series is available. An example online
calculation for exposure bands is given below.

A. Encoding exposure bands

Exposure bands for temperature, relative humidity and air
quality can be thought of as a discrete form of probability dis-
tribution. For each room, when a measurement of temperature,
relative humidity and air quality is made, a per-band count
is incremented if the measurement falls into that band. Let
br (i,t),bm (i,t) ,ba (i,t) — {0,1} be predicate functions
for temperature, humidity and air quality, respectively, giving 1
if the measurement at time ¢ is in the ith band and 0 otherwise.
For a finite deployment period (say 1 year) involving k time
intervals, the probability that the band is ¢ is simply the

average,
1 .
E E b (7,7 t) .
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Figure 2. Sample exposure metric for room temperature shown as a stacked bar chart based on monitoring for a two week period.

Table I
BN TEMPERATURE INFORMATION PACKETS TRANSMITTED ON AVERAGE FOR 9 ROOMS.

Average Transmissions

Half-life One Week  Two Weeks  One Month  Six Months Year

One Day 333 (£3) 833 (x5) 13.44 (= 6) 63 (£ 13) 208.22 (= 12.5)
One Week 333 (£ 3) 622 (£ 4) 7 (£ 4.5) 13.44 (+ 6) 37.56 (= 10.5)
One Month ~ 3.33 ( 3) 578 (£ 4) 6.22 (£ 4) 833 (£ 5) 15.11 (= 6.5)
Six Months ~ 3.33 (x 3) 578 (£ 4) 6.11 (£ 4) 7.56 (£ 4.5) 944 (£5)

However, given that the house will change over time and that
the end-user is more interested in current behaviour over past
behaviour, a decay can be applied to older measurements based
on an exponential decay constant 0 < v < 1, giving,

1
Bp(i)=— Y b(i,t)y*"
k (4) an 2=, (5, 8)7"

where the normalising value oy is chosen such that
> i Br (i) = 1. Note that the decay half-life is t,/, =
Tln2/ (1 —~) where T is the sensing period.

A recursive estimate at time k can be obtained by maintain-
ing an intermediate sum,

B™ (i)« ~yB~ (i) + b(i, k)
for all 4, thus giving the distribution,

By (i) < B~ (i)/ZB_ (i).

The resulting vector can then be used as the application-level
state, which is considered eventful if any element changes by
some threshold (e.g., 10%). The above algorithm is referred to
here as the BN algorithm and is summarised in Algorithm 1.

IV. RESULTS

An example temperature exposure metric graph is shown in
Fig. 2. In this graph, rooms that are comfortable for the two
week sample period are clearly distinct from those that are
too cold or too hot. Longer sampling periods are required to
build a more accurate estimate of the likelihood of exposure

Algorithm 1 Online BN algorithm for estimating exposure
band distribution B.

1) (update band counr)
B~ (i) <~ ~yB~ (i) + b (i, k),
for each measurand and for all <.
The predicate function b (i, k) gives 1 if the current read-
ing k is in band 7 and zero otherwise. The update decays
the current count estimate by decay constant v and then
increments the currently active band. The decay half-life is
ti/2 =TIn2/ (1 —~) where T is the sensing period.
(update distribution)
B(i) B~ (i) /3, B~ (i),
for each measurand and for all <.
This converts the counts to a distribution that sums to 1.
(event detect)
if, for any i, |B (i) — B’ (i)| > € then

a) transmit B and

b) update last transmitted state B’ <— B

2)

3)

to the different temperature bands and a full year (at least) is
required to obtain an estimate for all seasons.

Figure 3 shows how a single temperature band (‘“comfort”)
evolves over a year for a single room. The standard temper-
ature exposure (Std. T. exp.) percentages for this band are
calculated on a non-overlapping two week window. During
Summer months, the “comfort” band drops away as the
“warm” band takes over. The smoothed estimate of this band
(BN) lags the standard two week estimate but provides a better
long term estimate for the band. The “BN reconstructed” line
shows what the sink will estimate as the value for this band.
In this example, a message is transmitted (shown as a vertical
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Figure 3. Annual evolution for a single band showing how the BN algorithm reduces transmissions.
Table IT Table III
RMSE OF TEMPERATURE BN FOR A 1 YEAR DEPLOYMENT COMPARING THE PERFORMANCE OF BN (t1/2 = 1 MONTH) WITH SIP
FOR ONE YEAR OF TEMPERATURE DATA.

Half-life RMS error in band estimate (%)

One Day 19+1 Transmissions % of raw ~ RMSE in band %
One Week 13+£3 Raw 102236 100.000% n/a
One Month 12+4 BN 15+6.5 0.015% 12+4
Six Months 93+9 Linear SIP 2900 + 700 2.809% 0.9 +0.2

dashed line) when at least one band varies from the sink’s
estimate by more than 10%.

As shown in Table I, the performance of BN in terms of
reducing packets depends on the half-life smoothing parameter
and the deployment period. These results are based on a 5
minute sensing cycle (or 288 per day). For longer deploy-
ment periods, a larger half-life reduces transmissions more.
The error margins shown are based on assuming a Poisson
distribution and estimating the 5%- and 95%-iles.

It might be expected for the error to increase with larger
half-life smoothing values. However, it was found that the
RMSE tended to decrease and this is shown in Table II.
The RMSE is calculated based on the difference between
temperature exposure band percentages for each two-week
non-overlapping window and the reconstructed BN estimate
at the same time point. This approach to calculating the
error might be slightly unfair to the BN approach as the BN
algorithm aims to give an estimate of the long-term band
percentage rather than the short term one.

Since the BN algorithm is essentially a derivative of SIP, it

is interesting to compare the relative performance of the two
algorithms. The performance is shown in Table III and it is
clear from this that BN gives a considerable saving in terms
of total number of transmissions both over a simplistic sense-
and-send approach and the more sophisticated SIP algorithm.
In this case, SIP performance was estimated based on a linear
model of temperature and assuming that only temperature and
rate of change of temperature were transmitted.

A natural extension to BN is to support additional sensing
modalities, such as humidity and CO2. Table IV shows that
performance is slightly worse than the single modality case
but the overall benefit is still considerable. Alongside this, the
error, as shown in Table V is no worse and possibly slightly
better in some cases. A slight reduction in error might be
expected since the algorithm may need to transmit more often
for one modality yielding a slightly better estimate for the
other modalities at the sink.

V. CONCLUSIONS

This paper presents an extension to the Spanish Inquisition
Protocol (SIP) that focuses the WSN system on transmitting



Table IV
AVERAGE INFORMATION PACKETS TRANSMITTED FOR MULTI-MODAL (TEMPERATURE, HUMIDITY AND CO2) BN

Average Sends

Half-life One Week Two Weeks One Month Six Months Year
One Day 501 (x4) 19.67 (£7.5) 39.56 (£ 10.5) 19344 (£ 12) 556.44 (+ 20)
One Week 511 (x4) 1411 (£ 6.5) 17.33 (= 7) 4522 (= 11) 105.89 (= 17)
One Month ~ 5.11 (= 4) 13 (£ 6) 15.11 (= 7) 24.11 (= 8) 4522 (= 11)
Six Months ~ 5.13 (= 4) 12.75 (= 6) 14.5 (£ 6.5) 20.25 (= 7) 26.75 (+ 8.5)
Table V
RMSE FOR MULTI-MODAL BN [3] L.M.R. Peralta, L. M. P. L. de Brito, B. A. T. Gouveia, D. J. G. de Sousa,
and C. D. S. Alves, “The wise-muse project: Environmental monitoring
RMS error in band estimate (%) and controlling of museums based on wireless sensors networks,” in
Half-life Temperature ~ Humidity CO2 Electronic Journal of Structural Engineering, 2009.
One Day 7+ 1 92 5<10 [4] E.I Gaura, J. Brusey, R. Wilkins, and J. Barnham, “Inferring knowledge
One Week 91 +1 10+ 1 11+ 10 from building monitoring systems: The case for wireless sensing in
One Month 92+ 1 10 + 3 13+ 6 residential buildings,” in Proc. Conf. Clean Technology. NSTI, June
Six Months 10 £ 5 12£4  14%5 2011.

the “bare necessities”—the few bits of information that are
needed for the end-user to gain an understanding of the
phenomena under study. As with SIP, a key benefit of the
approach is that it is timely—transmissions occur when the
environment changes significantly. The resulting performance
gain is significant. While SIP is remarkable in reducing
transmitted packets to about 3%, BN improves this further
by a factor of over 100 times (to about 0.02%). As with SIP,
BN imposes some penalties, such as the need for calculation
to occur on the node and a slight loss in the accuracy
of the resulting information, however in the context of the
application, these penalties are slight. Furthermore, the saving
in terms of transmission reduction is multiplied in a multi-hop
network due to the need to forward packets for other nodes.

While the BN algorithm is an important contribution in
itself, the overall aim of this paper is to demonstrate a general
approach to building application-specific knowledge-driven
systems that derive application-level state at the node. If there
is a key roadblock to wider adoption of this approach, it
is that end-users and developers still do not have sufficient
trust in WSN systems to allow them to go beyond sense-and-
send. When WSN hardware and software become more proven
and trustworthy, knowledge-driven WSN design will not only
improve performance for existing applications but also enable
many new ones that were previously unfeasible.
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