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Abstract 

This study aims to determine the mechanical behaviour of a stone arch bridge during the phase of the 

formwork removal. This operation is the most delicate during construction, because it puts in charge 

the arch which must work in compression for stability. On-site measurements of the displacement of 

the arch voussoirs during the process of the formwork removal were carried out. Then, some 

mechanical tests were performed with the stones used in the construction to determine the mechanical 

properties required for modeling the structure by a discrete element method. This numerical approach 

has the ability to find the specific pattern of the displacement field observed on-site that could not 

have been found with a finite element method. The key feature is the rotation of the voussoirs which 

changes the location of the zones of contact from one to another. Therefore, the contacts from one to 

another are restricted to a small zone for the voussoirs close to the keystone.  

Key Words: masonry bridge, arch, stone, dry joint, on site measurements, DEM. 

 

1. Introduction 

While steel or reinforced concrete bridges have been under development only over the last century, 

masonry bridges have kept their ability to cross valleys and rivers for centuries. The key element in 

these stone-structures is the arch that transfers both vertical and horizontal loadings toward its 

basement. The arch is composed of stones usually with dry thin joints kept into equilibrium by 

compressive forces, but also thanks to friction acting between the blocks. To resist to a high level of 

compressive stresses and to avoid the possibility of alteration over time, the stones must be chosen 

carefully.  

The durability of bridges is intimately related to the quality of the maintenance. But, the feedback 

shows that if the initial choice of the material was properly done, the stone bridges can be maintained 

over time without frequent intervention. This is not the case of steel or reinforced concrete bridges. 

The “pont du Gard,” a stone bridge that is actually an aqueduct, was built by the Romans during the 

first century in the south of France, and is an outstanding example of such durability. Actually, this 
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resistance over time was made possible by an over design of the structure, which compensates the use 

of a relatively weak material. 

The new interest of French authorities in stone bridges is due to the decades of neglect, though such 

structures represent 40% of highway-bridges on French high-traffic roads. The concern of the 

authorities in charge of this maintenance is the difficulty in making a decision when problems have 

appeared in such structures. Indeed, the precise forecast of their behaviour cannot be provided by 

usual numerical tools in critical loading situations due to the nature of the system. The hypothesis of a 

continuum system is broken due to the discrete nature of system, because large deformations can be 

generated by movements of blocks without jeopardizing the overall stability of the structure.  

Taking advantage of the construction of a new stone arch bridge in the Cévennes (south of France), 

some on-site measurements were performed at the stage of the wooden formwork removal. A 

simulation of this process was performed to evaluate the capacity to model and forecast the behaviour 

of such a complex system. This work is just a first-step before the modelling of this stone bridge 

behaviour against life service loadings and extreme loadings is able to trigger failure. 

This single span highway bridge called Chaldecoste Bridge was built in the district of Saint-Andéol-

de-Clerguemort, which belongs to the Natural Park of Cevennes. This type of bridge was chosen by 

the local authorities to replace an old crossing composed of a flume and cyclopean concrete that was 

destroyed during a flood in 2008. The concern was how to insert the new bridge without complications 

into the preserved scenery of the Natural Park. A building technology that had widely been used in the 

past was chosen for this task. In this region, many of the bridges that were built since the beginning of 

the 18
th
 century are stone bridges with weakly bound schist blocks that were extracted from local stone 

quarries.  

The span length of the arch bridge is 6 m and the width is 4.8 m. The blocks that vary in size and 

shape are bound by a lime mortar. This mortar plays a role of filling the voids within the joints 

between the blocks in contact. This mortar was recommended for preventing water flow between the 

blocks, which could alter the durability of the structure.  

Different approaches can be taken to model this kind of structure according to the level of complexity 

one may expect to solve the problem. In the literature and considering the nature of the system, there 

are mainly four methods that can be found. The first one is the rigid block limit analysis [1-3], which 

is suitable when the study focuses on the ultimate loading of a system at failure. There is no access to 

the deformation field. The second one is the finite element method where the whole structure is 

continuous [4-9]. This approach is usually suitable for a system composed of individual bodies when 

deformations are not too large. Nevertheless, the use of a damaging model (propagation of cracks 

possible) or joints in pre-identified zones allows the failure behaviour to be studied. Thus, a large 

strain field is reachable. The third method is the use of a discrete element method (DEM) involving 

specific contact laws between distinct objects [10-14]. This method allows the failure behaviour of the 

structure to be studied more accurately.  

In the case of loadings generating small deformations, a finite element method is suitable to address 

the problem since the global behaviour of the structure is supposed to remain in the elastic domain. 

This is the case for modelling the formwork removal, because only small deformations are expected. 

Nevertheless, a DEM approach is chosen for the overall study, because in a forthcoming study, the 

behaviour of the bridge will be simulated under service loadings and against loadings that are able to 

lead to failure where high dissipation energy can take place. 



Page 3 of 20 

 

In the first part, the measurements of the arch displacement field performed on-site during the 

formwork removal are presented. In a second part, the laboratory tests are presented. They were 

performed to identify the properties of the different materials that constituted the stone arch bridge and 

the spandrel walls. It will help for the determination of the mechanical parameters required for a DEM 

modelling of the structure. Finally, the modelling of the formwork removal and specially the resulting 

vertical displacements of the voussoirs are given and compared to the measurements performed on-

site.  

2. On-site measurement of displacements of the arch during the formwork removal  

2.1. Implementation of measurements 

The measurements are carried out by means of the laser ray device Leica Absolute Tracker AT401, 

which is a portable system tool distance measuring (CMM) with an accuracy of + /-10μm over a 

distance of 320 m. A computer with the Pilot Tracker software is also connected to the device, which 

enables control of both the measuring device and recording measurement. Twelve optical reflectors 

are positioned at the points where information is expected. Reflectors 1 to 10 are installed on the arch 

facing, while reflectors 11 and 12 are installed on the spandrel walls as reference points. Figure 1 

shows the positions of the reflectors on the structure. The position of reflectors 11 and 12 are not 

showed in this figure, but only in the figure 2. The position of the reflectors is measured before and 

after the formwork removal, twice each time for better accuracy. The results are three-dimensional 

coordinates of the reflectors, presented in the coordinate system of the laser measurement system. 

 

Figure 1 : Position of the reflectors from 1 to 10 on the arch voussoirs before the test. The picture was 

taken before the test (the formwork is not yet removed).  
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2.2. Reconstruction of the shape of the arch 

The on-site measurements obtained are performed with respect to the coordinate system of the 

measuring tool. Considering that the measuring points are in the plane of the spandrel walls where 

points 11 and 12 are located, we established a new coordinate system (Oxyz), where the origin ‘O’ 

represents the reference point 11 on the left hand spandrel wall (Figure 2). For each reflector (1 to 10), 

a point at the edge of the arch is measured while installing the reflectors. Considering the measuring 

points or reflector points as the center of a circle, small circles are plotted in such a way that the circle 

radius is equal to the distance between the reflector point and the edge of the arch (see Figure 2). The 

curve tangent to the small circles draws a large semi-circle, which is considered as the intrados of the 

vault. The extrados is very irregular as shown in Figure 1 and the imbrication of blocks with the 

spandrel wall does not facilitate the identification of this entity. At the location of the keystone, the 

position of the extrados is clear, which is not the case for the envelope closer to the haunches (Figure 

3). Then some hypotheses must be settled for the location of the extrados in the modelling. Given 

Figure 3, an estimate of the arch thickness at springing level is two to three times of that which is 

observed at the keystone. According to the arch reconstruction from observations, the diameter of the 

intrados semicircle is 5981 mm, while for construction it was considered to be 6000 mm. 

 

Figure 2: Shape of the rebuilt arch according to the measured points. 
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Figure 3: Focus on the haunches of Chaldecoste Bridge (Photo credit: P. Mc Combie) 

 

2.3.  Calculation of the displacements of the arch 

 After calculating the coordinate points in (Oxyz) coordinate system and neglecting the displacement 

in the direction perpendicular to the plane of the bridge, the displacement of the points due to the 

formwork removal is determined. Figure 4 depicts the position of the reflector points before and after 

the formwork removal. In this figure, the displacements are multiplied by 1000 for a better perception 

of the phenomena.  

 

Figure 4: Displacement profile of the reflectors– displacement amplification factor: 1000. 
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The results show only micro-displacements of the haunches, while millimetre displacements are found 

elsewhere. The maximum vertical displacement, which is obtained for the keystone voussoir, is on the 

order of 1 mm, while the displacement of the arch haunches is at maximum 0.1 mm. At the keystone 

voussoir, a small horizontal shift to the right of 0.06 mm was measured. It may be due to the 

asymmetric shape of the abutments on each side of the bridge. Finally, the overall movement of the 

bridge when removing the formwork can be considered as insignificant. Nevertheless, one can note the 

singular behaviour of the keystone voussoir respectively to the adjacent voussoirs, and may gain better 

insight into the bridge behaviour. 

3. DEM modelling  

3.1.  Numerical model 

A numerical modelling of the formwork removal is performed with the code UDEC [15], which works 

in plane-strain condition as standard mode. This code is a commercial software designed within the 

framework of the Discrete Element Method and has the ability to handle individual polygonal objects 

in interaction. The blocks can be considered either infinitely rigid or deformable, and the contact 

between two of them is supposed to be deformable. A mechanical law at contact is then defined. Here, 

a linear deformable contact is chosen and the possible slip between blocks is ruled by a Coulomb law. 

The influence of a mortar can be taken into account by means of cohesion within the contact law.  

The actual system that must be modelled is a single-span arch stone bridge with a semi-circular arch. 

The arch is stabilised by two lateral spandrel walls that are more rigid than the other elements of the 

structure. They maintain an infill composed of untreated compacted gravel. Then, the whole system 

clearly works as a 3D system. Nevertheless, a plane-strain analysis within the plane of the spandrel 

walls is performed as a first attempt to understand the features observed during the formwork removal.  

Geometry: Due to the symmetry of the system in the plane of the spandrel wall, just a half-bridge 

model is considered with the correct induced boundary conditions. The system then is composed of 

two different parts, the arch itself composed of well-adjusted wedged schist blocks (voussoirs) of good 

quality and the wall spandrel with schist blocks of lower mechanical strength. One can note in Figure 

1 the paramount interlocking between the blocks of the vault and the block of the spandrel wall at the 

bottom. The aim is to rigidify the arch haunches and to allow a better transfer of horizontal loadings to 

the abutments and to the foundation. Thus, it incites not to consider the arch as a mechanically 

constant thickness vault and the extrados is supposed to encompass blocks that could be considered as 

a part of the spandrel wall. An empirical but mechanically plausible location of the extrados is 

proposed in Figure 5(a). For the sake of simplicity, the blocks belonging to the spandrel walls are 

chosen to be rectangular and of equal size. The arch and the spandrel wall lay on bedrock composed of 

larger blocks, which can be seen in Figure 3.  

Meshing: The blocks are supposed to be deformable and a meshing must be associated to them. The 

density of meshes per voussoir is supposed to be large enough for a precise transfer of information 

from a voussoir to another one. Nevertheless, the average vault displacement field following the 

formwork removal was found little effect by the number of meshes (along the block height) chosen for 

the modelling. Nevertheless, in order to obtain a regular displacement field, the mesh number must be 

at least 3 along the considered contact height between two voussoirs. This contact height may be 

smaller than the total possible contact height, namely the total height of a voussoir. In this work, the 

typical number of meshes along the whole height of the keystone is equal to 20. The number of 
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meshes within the spandrel wall is chosen so that their density decreases according to the distance with 

respect to the closest voussoir 5(b)). 

Behaviour of blocks: For the sake of simplicity, the blocks are supposed to behave like an isotropic 

material even if a schistosity can be observed on actual blocks. The direction of stresses is mainly 

perpendicular to the schistosity on site, and therefore the properties will be identified in that direction 

for the numerical study. The rocky blocks are supposed to behave like a linear elastic material, and 

thus a Poisson coefficient and a Young modulus need to be identified. Plasticity is not required at this 

level, because the formwork removal is not supposed to induce large stresses as it can be the case with 

life service loadings. 

 

(a)       (b) 

 

(c) 

Figure 5: (a) Model of the half stone bridge, (b) Associated meshing, (c) Zoom of the keystone zone. 

 

Behaviour of the contact between blocks: The contact (joint) between blocks is composed of two 

materials working as a parallel system. On one hand, irregularly extended and randomly placed 

A 

x 
z 

keystone 
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asperities that belong to two different blocks make contact between two adjacent blocks. On the other 

hand, a lime mortar which does not play a structural role fills the voids in between the asperities. This 

mortar being far more deformable than the asperities of the blocks the stresses mainly flow between 

blocks through the asperities.  

The contact law between blocks involves a normal and a tangential stiffness. The possible influence of 

the mortar can nevertheless be taken into account. The Coulomb law requires the identification of the 

friction coefficient and the cohesion. The resistance of the contact to tension is supposed to be equal to 

zero.  

Boundary conditions: The bedrock base is supposed to be fixed in all directions. The points along the 

vertical limits (abutment and keystone) can only move vertically.  

 

3.2.  Determination of the mechanical characteristics of the blocks 

The schists used for the bridge construction were extracted from local stone quarries that supplied 

material for the bridge construction. Some compression tests on schist blocks have been carried out in 

order to identify the Young modulus and the compressive strength of the two types of schists. Further 

tests were performed on a triplet of schist (three blocks bound by a lime mortar) to deduce the average 

behaviour of the contact blocks.  

 

3.2.1. Tests on schist samples 

Some compression tests on blocks of schist were performed mainly in order to identify the Young 

modulus of the material. Two types of schists were studied: the schist used for the voussoirs (type 1) 

and the one used for the spandrel walls (type 2), which is of lower quality. Six samples of type 1 

denoted V1 to V6, and three samples of type 2 denoted W1 to W3 were tested. The samples of schist 

are solid cylinders with a diameter of about 60 mm. They were directly drilled on site within the stone 

quarries chosen for the bridge construction, and thus did not have exactly the same height. 

Extensometers were used to measure the strain in the central part of the sample (Figure 6(a)). The 

compression tests were performed in such a way that compression is directed perpendicularly to the 

schistosity planes, which also held true on site when the masons placed the different blocks. 

For the schist of type 1, an average Young modulus of 53 000MPa was found with a standard 

deviation of 9 800MPa. The Young modulus for sample V6 was not measured due to an unexpected 

slippage of extensometers during the test. As an illustration, the stress-strain curves for sample V1 is 

given in Figure 7. The Young Modulus is measured after a first cycle (dotted line). The average 

compression strength for type 1 schist is equal to 126MPa with a standard deviation of 32MPa. For 

type 2 schist the Young modulus was found equal to 21 000MPa with a standard deviation of  

7 300MPa and a compressive strength of 77MPa with a standard deviation of 8MPa. The mechanical 

properties of the schist stones are given in Table 1.  
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   (a)       (b) 

Figure 6: Compression test on a schist block: (a) test devices; (b) breaking mode of a sample. 

Table 1: Mechanical properties of the schist stones (standard deviation is given within parenthesises). 

Schist type  Sample Young modulus (MPa) Compressive Strength (MPa) 

Type 1 

 

V1 40 000 

53 000 

(9 800) 

177 

126 

(32) 

V2 50 000 141 

V3 46 000 X 

V4 63 000 140 

V5 68 000 87 

V6 X 142 

Type 2 

W1 32 000 
21 000 

(7 300) 

81 
77 

(8) 
W2 19 000 84 

W3 12 000 65 

 

3.2.2. Tests on masonry elements 

Some compression tests on triplets of schist were performed in order to identify average properties of 

the contact surface between blocks and the underlying normal stiffness. Actually, the behaviour of an 

assembly of blocks depends on the behaviour of each block, on the behaviour of the contact zone 

which has specific properties, and possibly on the mortar binding the blocks. Compression tests on 

triplets, involving three blocks of schist bound by a lime mortar that merely fill the gaps between the 

blocks were performed. On Figure 8, the thickness of the joint and the mortar that can easily be seen is 

due to the fact that the block faces in contact are cut the same way it is done on-site, contrary to the 

other faces of the blocks which are cut using a circular saw. The induced roughness of the faces in 

contact creates a joint of about 1-cm thickness. The triplets have a rectangular shape with a total height 

of 20c m and a width of 10 cm to avoid buckling effects. 

Since the average behaviour of the schist blocks was previously identified, these tests give the average 

behaviour of the contact zone between blocks and more specifically the normal stiffness of this zone. 
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Two triplets involving type 1 schist and one triplet with type 2 schist were tested (Figure 8). The 

results are given in Table 2. 

 

Figure 7: Loading and unloading compression tests on schist block of type 1.  

 

Figure 8: Sample of a schist triplet after failure. 

 

Table 2: Mechanical properties of the schist triplets (standard deviation is given within parentheses).  

Material Sample 
Average Young 

Modulus (MPa) 

Average Compressive 

Strength (MPa) 

Type 1 Schist VS1, VS2, VS3, VS4 4 400 (2 500) 54 (6) 

Type 2 Schist WS1, WS2, WS3 2 400 (1 200) 31(4) 

 

The triplet for which the average normal stiffness of the contact zone between blocks is deduced is 

presented in Figure 8 and 9.  

The three blocks were considered of the same properties and more specifically the same stiffness kb 

and that the normal stiffness kj of the two contact zones are equal. Actually with respect to 

compression, the triplet works as five materials of different stiffness placed in series.
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The total stiffness of the triplet is denoted keq. The equation ruling the global behaviour of the triplet is 

then:  

1 1 13 2eq b jk k k   
       (1) 

eqk  and bk  have the dimension of a stress by unit length and can be found separately. We note Et and 

Eb the global Young modulus of the triplet and of the schist material respectively. Then, /eq t tk E L  

and /b b bk E L . Finally, we obtain: 

   
2

3

b eq

j

b eq

k k
k

k k





       (2)  

From the experimental results for the triplet using type 1 schist, the following data are obtained: Eb = 

53000MPa; Lb = 0.062m, Et = 4400MPa, Lt = 0.186m. Therefore, the block stiffness (against 

compression), which is defined as the ratio between the Young modulus and the block length, can be 

derived. The stiffness of the triplet can be derived the same way. They are equal to 850GPa/m and 

24GPa/m, respectively. According to Equation 2, the normal stiffness kj of the contact zone between 

two blocks derived from the experiments, is equal to 52GPa/m. This equation is one-dimensional and 

does not take into account the transversal influence of the block deformation on the interface 

behaviour, which is known to be negligible. For example, a DEM simulation of this test taking into 

account two-dimensional effects provided a normal stiffness kj of the joint equal to 51.7GPa/m, which 

is very close to 52GPa/m. 

 

         

 

 

 

   

Figure 9: Actual triplet with the different entities.  

Considering the average mechanical properties of the schist (Type 1 and 2) blocks derived from Table 

1 as to the average size of the blocks, the average normal stiffness of the contact zone between two 

blocks are given in Table 4. The ratio between the tangential stiffness and the normal stiffness is taken 

equal to 0.8 [16]. A tilt test involving a schist block slipping on another schist block allowed the 

average friction coefficient of the contact zone of 20° to be obtained. The tensile strength of the 

contact is set to zero, whereas the cohesion is set to a very low value of 10Pa. 

The Young modulus was not identified and a Poisson ratio of 0.3 (typical measured for rocky stones) 

is considered.  

Contact zone 

Block 

Block 

Block 

Lb 
Lt 
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Table 4: Properties of the blocks and of the contact zones between blocks. 

  Type 1 Type 2 

Blocks 

Specific weight (kN/m
3
) 25 25 

Young modulus (MPa) 53 000 21 000 

Poisson ratio 0.3 0.3 

   

Contact 

zone 

Normal stiffness (GPa/m) 52
 

27 

Tangential stiffness (GPa/m) 41
 

21 

Friction coefficient (°) 20 20 

Cohesion (Pa) 10 10 

 

3.3. Modelling of the formwork removal  

Considering the properties defined previously and stating that the contact between the voussoirs 

involves the total lateral height of the voussoirs, the 2D simulation of the formwork removal was 

performed. The simulation does not consider the real process, but rather an approximated and simpler 

one. The gravity is imposed in successive stages from zero to the actual value of 9.81 m/s
2
 within five 

steps in order to ensure that the static equilibrium is obtained more quickly. The equilibrium is 

supposed to be obtained when the ratio of the average unbalanced mechanical force magnitude divided 

by the average applied mechanical force magnitude for all block centroids or gridpoints in the model 

reaches 10
-5

 at the end of each stage of gravitational acceleration increase. This ratio is eventually set 

to 10
-6

 for the achievement of the final equilibrium.  

The initial position of the arch (gravity equal to zero) is given in Figure 10 together with the arch 

vertical displacement field obtained by the simulation. In that figure, an amplification factor of 1000 is 

given for the vertical displacement field. The vertical displacement field obtained by measurements 

on-site during the actual formwork removal is also given. The magnitude of displacements found by 

the simulation is in the order of magnitude of the displacements found on site. Nevertheless, the 

peculiar displacements of the voussoirs within the keystone zone could not be obtained. In the 

proposed model, the stress flows from one voussoir to another one by the total voussoir height. It 

underlies that contact points or contact length zones between two voussoirs are uniformly distributed 

along the total lateral surface of the voussoir, which is not the case on site because the rubble masonry 

uses un-hewn building stones with a low strength mortar. The stress field found by the simulation is 

given in Figures 11(a) and (b). In these figures, a positive stress denotes tension. The materials mainly 

face compressive stresses, which was expected, but some blocks also face some tensile stresses. 
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 Figure 10: Vertical displacement field obtained by simulation and on site following the formwork 

removal; contact length involving the keystone: 100%. Amplification factor for displacements: 1000. 

Actually, the voussoirs are manually placed on the formwork without any other device except for the 

keystone voussoir. This latter is manually thrust with a sledge hammer between the two adjacent 

voussoirs. The gradual insertion of the keystone between the adjacent blocks is made possible by the 

progressive damage of the contact points and surfaces. It seems that before the formwork removal, the 

contact points or contact surfaces were not homogenously distributed along the total lateral surface of 

the keystone voussoir, but mainly in the bottom part of it (close to the arch intrados). It also seems that 

during the formwork removal, there is a change of the location for contact between the keystone 

voussoir and the adjacent voussoirs. The contact zone seems to shift towards the extrados.  

  

    (a)      (b)  

Figure 11: Stress field after the formwork removal, Model 1; (a): horizontal stress, (b): vertical stress. 
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Considering this observation, a new simulation is performed. Here, the contact zone of the keystone 

voussoir with the adjacent voussoirs is extended along the 20% of the total possible contact zone and 

at the bottom part of the lateral voussoir surface. This is performed by creating a crack extending 

along the 80% of the upper part of lateral voussoir surface, avoiding possibilities for contacts in that 

zone at the initial state (before formwork removal). This new model for the system is denoted “Model 

2” (Figure 12(b)). Model 1 is given in Figure 12(a) as a reference. During the formwork removal, 

contacts in that zone can eventually be created as the opposite sides of the cracks may get closer one to 

the other one. The result of the simulation is given in Figure 13. The vertical displacement field 

qualitatively shows the peculiar pattern observed on-site. which tends to validate the initial statement.  

  

   (a)      (b) 

Figure 12: Contact length of the keystone with the adjacent voussoir; (a): Model 1, full length, (b): 

Model 2: 20% total length  

Figure 14(a) and (b) give the local displacement field of each block. The linear displacements for each 

node within the blocks are given in Figure 14(a) while the rotation of a block is given by an angular 

sector with amplitude related to the magnitude of the rotation in Figure 13(b). The movement of the 

blocks does not take place by slippage between adjacent voussoirs, but merely by rotation around axis 

(Oy), behaviour well known for vault masonries. 

 

: contact length between blocks  

keystone 

keystone 
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Figure 13: Vertical displacement field obtained by simulation and on site following the formwork 

removal, contact length involving the keystone: 20%. Amplification factor for displacements: 1000. 

 

                                     

  

              (a)         (b) 

Figure 14: Local displacement fields within the keystone zone, Model 2; (a): linear displacement of 

nodes, (b) average rotation of blocks (maximum value 0.04°). 

Figures 15(a) and (b) give the stress field obtained after the formwork removal using Model 2. The 

scale of stress is the same as the one chosen in Figures 11(a) and (b) when using Model 1. The 

reduction of the contact length affects the distribution of stresses in a large number of the voussoirs 

close to keystone. The maximum stress which is nearly five times larger than for Model 1 within the 

keystone is not at the intrados, but at a point above the intrados and the contact length increased from 

20% to nearly 50% in Figure 15(a). Indeed, compressive stresses flow along this distance between the 

keystone and the adjacent voussoir after the formwork removal. One can note that the maximum 

compressive stress is equal to 800kPa, which is much smaller than the maximum compressive strength 

of the material (about 130MPa). It justifies the hypothesis of elastic behaviour taken in the 

simulations.  

  

 

(m) 



Page 16 of 20 

 

      

   (a)        (b)  

Figure 15: Stress field after the formwork removal, Model 2; (a): horizontal stress, (b): vertical stress. 

Finally, the sharp discontinuity of the simulated displacements (keystone compared to adjacent 

voussoirs) may be due to the fact that only the extent of the contact zone related to the keystone 

voussoir was changed. The reduction of the extent of the contact zone in the bottom lateral zone of the 

voussoir may also hold true for adjacent voussoirs. Consequently and in a same way, the extent of the 

contact zone for the contact surfaces involving all the contact zones of the voussoirs adjacent to the 

keystone voussoir was reduced. Therefore, Model 3 denotes the model where all the contact zones of 

the keystone and the voussoir adjacent to the keystone were affected by the surface reduction, Model 

4, when this reduction affects the two adjacent voussoirs (in the same half system). The significance of 

models i involved in the figures is illustrated in Figure 16 and summarized in Table 5 for convenience. 

The results for these new models are given in Figure 17. 

The reduction of the contact length for the voussoir adjacent to the keystone (Model 3) induces a slight 

downward shift of the latter one and equal shifts for the other voussoirs. Model 4 does not induce a 

further movement of the keystone, but slightly reduces the gap between the displacement magnitude of 

the keystone and the displacement of the adjacent voussoirs. Then a better forecast of actual 

displacements of the arch would encompass a modelling involving a reduction of the extent of the 

contact length for at least two voussoirs adjacent to the keystone.  

Actually, the precise forecast of the actual displacements is difficult to achieve since both the number 

of voussoirs involved in the reduction of contact length and the general extent of this reduction play 

the same role though the second one seems to be more critical. As an illustration of this statement, 

Figure 18 shows the displacement field of the voussoirs involving three different reductions of contact 

length for the keystone (Model 2). In this figure, if the surface of contact is only of 40% of the total 

keystone height, the displacement field is still close to the one observed when the total lateral voussoir 

height is considered for the transfer of stresses in the joint. Moreover, the reduction of the contact zone 

extent amplifies the gap between the displacement of the keystone and the displacement of the 

adjacent voussoirs. This gap is due to a larger rotation of the adjacent voussoirs with respect to the 

keystone which is facilitated if the contact length is reduced. Therefore, a reduction of 20% is a first 

proposal.  

 

Pa 
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   (a)      (b) 

Figure 16: Contact length between the voussoirs, by default full length; (a): Model 3, 20% total length 

for contacts involving the keystone and the voussoir next to the keystone (b): Model 4: 20% total 

length for contacts involving the keystone and the two voussoirs next to the keystone.  

 

Table 5: Type of model and significance. 

Modelling Significance 

 

1 

 

 

Contact length on the overall lateral surface for all the voussoirs 

 

 

2 

 

Contact length reduced to 20% for the keystone
 

 

3 

 

 

Contact length reduced to 20% for the keystone and for the adjacent voussoir 

 

 

4 

 

Contact length reduced to 20% for the keystone and for the two adjacent voussoirs 

 

The difficulty to obtain a precise forecast arises from the exact location of the contact zone, which 

may not start from the very intrados but nearby, and that can differ for each joint. One may also claim 

that the value for the reduction of contact length may be different for each joint. To conclude, at this 

point there is too little information to state which scenario is closer to what occurred on site. A further 

on-site measurement when loading the bridge to typical service life loadings is likely to help in this 

respect providing further information. 

: contact length between blocks  

keystone keystone 
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Figure 17: Vertical displacement field obtained by simulation and on site following the formwork 

removal; the significance of the different models is given in Table 5. Amplification factor for 

displacements: 1000. 

 

 

Figure 18: Vertical displacement field obtained by simulation following the formwork removal, 

influence of the extent of the contact zone. Amplification factor for displacements: 1000. 
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4. Conclusions 

On-site measurements of the displacements of a masonry bridge with blocks weakly bound by a lime 

mortar were performed at the stage of the formwork removal. The maximum displacement under its 

own weight was found on the order of 1 mm and took place at the keystone voussoir. The 

displacements field showed a singular profile with a singularity for voussoirs very close to the 

keystone. It seems that before the formwork removal, the contact points between the voussoirs did not 

extend uniformly on the whole geometrical lateral surfaces of the blocks, but just along a reduced zone 

located at the bottom part of them. When the formwork was removed, an upward shift of the contact 

zone may have occurred. The key mechanism here is the permitted rotation of a voussoir with respect 

to another one that would have not been triggered if the contact length would have involved the total 

lateral surface of the joints.  

A 2D numerical analysis of the formwork removal using a discrete element method was proposed to 

provide better insight on mechanisms that took place on site. The parameters of the mechanical laws 

were identified by experimental tests including compression tests on schists and triplets. A first model 

showed that if the contact zone between blocks involves the whole lateral height, the pattern observed 

on- site cannot be found.  

The reduction of the extent of the contact zone between the voussoirs enabled finding the peculiar 

displacement field observed on-site. This feature would not have been found using a finite element 

method, and even if the range is very small of involved displacements, it helps to have a better insight 

into the transfer of stresses within the arch. The reduction must be settled to a value close to 20%, 

which is important. It implies that larger-than-expected local stresses may exist within the voussoirs. 

This reduction must affect not only the contact zone between the keystone and the adjacent voussoirs, 

but at least two adjacent voussoirs on each side of the keystone. Moreover, the zone of contact may 

not be strictly located at the bottom part of the voussoir, but in a zone slightly above.  

The detailed forecast of the displacement field was beyond the scope of this study, but further on-site 

measurements involving loadings typical of the service life of this kind of bridge will help to precise 

this study that must be considered as a first attempt to understand the behaviour of Chaldecoste bridge. 
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