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ABSTRACT: The electrodeposition of multifunctional composite coatings has rapidly 

emerged in the last decade due to the enhanced mechanical properties and corrosion 

resistance that such composite coatings exhibit compared to electroplated single metal 

and alloy deposits. Many studies have indicated that the implementation of ultrasound 

in composite electroplating processes can bring about many benefits, not only as a tool 

to improve the dispersion and de-agglomeration of particles in the electroplating bath, 

but also to enhance the incorporation of finely dispersed and uniformly distributed 

particles into the metal matrix. The present paper summarizes the fundamentals of the 

use of ultrasound and acoustic cavitation and how it may influence the 

electrodeposition of composite coatings with particles by commenting on some of the 

most significant works on this topic presented by the scientific community in the last 10 

years. This paper will review these investigations and discuss how the ultrasonic 

parameters may affect the dispersion of the particles in the electrolyte and its effect on 

the characteristics of the composite coatings, generally resulting in the enhancement of 

the mechanical properties and corrosion resistance of the composite coatings. In 

addition, this paper will review some of the issues that may arise when using 

ultrasound in such processes and the pros and cons of the different transducer systems 

available, highlighting the need for detailed information regarding the ultrasonic 

parameters and equipment used when utilizing sonication. 

KEYWORDS: Composite coatings, Electrodeposition, Electroplating, Ultrasound, 

Particles   

                                                             
* Mr. Ignacio Tudela, Tel: +44 7521160565, Email: ignacio.tudela@daidometal.com 
† Dr. Andrew J. Cobley, Tel: +44 7706955901, Email: a.cobley@coventry.ac.uk 



2 
 

1. INTRODUCTION 

Since Fink and Prince first studied the co-deposition of Cu and graphite [1], the electroplating of 

metal-based composites with inert particles has received a wide attention from the scientific 

community. Particles, when properly dispersed into an electroplated coating, may substantially 

improve certain operational properties of the coating such as hardness, wear or the resistance 

to corrosion, whilst imparting on them new properties (magnetic, catalytic, etc.) [2]. The 

importance of the development of such multifunctional electrodeposited composite coatings in 

the last decade can be seen in the fact that there have been several publications on the topic in 

recent years. Among them is a paper by Low et al. [3] focused on the different operational 

parameters utilized during the electrodeposition process and the use of different approaches to 

increase the particle content in the coating: i) high particle concentration in the plating bath, ii) 

use of particles with small size, iii) low concentration of electroactive species, iv) pulsed-plating 

techniques and v) employment of ultrasound. The first three approaches just mentioned may 

seem unsuitable for most of the electroplating industry due to different issues: i) high density, 

high viscosity and dispersion instability are expected at high particle concentrations, ii) increase 

in cost related to particles used, health and safety and effluent treatment is expected when using 

very small particles, and iii) problems related to poor mass transport and hydrogen evolution 

are predicted when electroplating form electrolytes with lower conductivity. However, the 

latter two present an enormous potential for industrial purposes. In this sense, pulsed-plating 

techniques are gaining more attention and there are many recent review papers available for 

such techniques [4,5] including its use for composite plating. However, no review papers on the 

use of ultrasound on the electrodeposition of composite coatings are available. This review 

paper aims to  introduce the use of ultrasound in the electrodeposition of composite coatings 

and how this technology not only enhances the dispersion of particles in the plating bath, but 

also how it can improve the incorporation of particles into electrodeposited metal coatings and 

the effect on the coating’s properties. 
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2. USE OF ULTRASOUND IN ELECTROPLATING 

When ultrasound is applied to a liquid media the phenomenon of acoustic cavitation [6] occurs. 

As with any mechanical wave, ultrasound is propagated through a liquid by a series of 

compression (positive pressure) and rarefaction (negative pressure) cycles induced in the 

molecules of the medium through which it passes. When the power is high enough, a cavity or 

‘bubble’ may form in the liquid during the cycles of negative pressure as the ‘expanding’ forces 

during the rarefaction cycle exceed the ‘attraction’ forces of the molecules of the liquid. When 

the bubble grows to a critical size, it becomes unstable and violently collapses, as shown in 

Figure 1 [7]. At this point, known as a ‘hot spot’, high temperatures and pressures (around 5000 

K and 1000 atm, respectively) can be achieved (depending on the frequency and power 

applied), involving heating and cooling rates of an order of magnitude above 1010 K/s and the 

formation of liquid jet streams of around 400 km/h [8]. The mechanical and chemical events 

which result as a consequence of the existence of these cavitating bubbles (Figure 2 [9]) are the 

basis for the application of ultrasound in several areas of Chemistry [10] in general and 

Electrochemistry [11] in particular. 

Diverse cavitation phenomena such as acoustic streaming and micro-jetting [12], shock waves 

[13], mass-transfer enhancement from/to the electrode [14] and surface cleaning [15] can be 

observed as a consequence of establishing an ultrasonic field in a liquid electrolyte, 

substantially improving many different electrochemical processes [16]. In this sense, the use of 

ultrasound in the electrodeposition of metals may present many benefits [17], not only in terms 

of the electrodeposition process itself (mass transfer enhancement in diffusion-controlled 

electroplating [18]. charge-transfer improvement [19], higher cathode current efficiency [20]), 

but also in terms of the final characteristics of the deposits such as the grain size [21]. This 

beneficial effect of ultrasound on refining the grain size was considered by Walker and Walker 

as the controlling factor in increasing the hardness and decreasing the porosity of electroplated 

coatings [22]. Regarding this, the increase in hardness of different ultrasonically-assisted 
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electrodeposited metals such as Cr [23-24], Cu [25-27] and Fe [10] has been extensively 

reported over the years. Other mechanical properties can also be improved by using ultrasound 

during the electrodeposition,  Ni coatings being the best example, as sonication during 

electrodeposition increased the hardness [28], decreased the residual stress [29], and enhanced 

the wear [30] and fatigue strength [31] of the Ni deposits. Other beneficial effects of the use of 

ultrasound in the electrodeposition of metals are the enhancement of corrosion resistance of Zn 

[32], increase in cathode current efficiency and reduction of crack formation and surface 

roughness of Ir [33,34] and the reduction of toxic mist in the electrodeposition of Cr [35]. 

3. USE OF ULTRASOUND ON THE ELECTRODEPOSITION OF 

COMPOSITE COATINGS WITH PARTICLES 

In the last decade, many different research groups have studied how ultrasound may assist the 

dispersion of particles in electroplating baths and the effect that sonication during the 

electrodeposition process may have on the characteristics of the resulting composite coatings. 

Table 1 gives some details on the effect of ultrasound on the dispersion of particles and/or 

during the electrodeposition stage and the properties of the subsequent composite coatings. Ni 

and its alloys are the main metal materials used and the most commonly employed electrolyte is 

the Watts solution. No surfactants were required in many of the works where particles where 

dispersed with ultrasound in Ni-based electrolytes demonstrating that the use of surfactants is 

not as critical when particles are dispersed with ultrasound. 
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Table 1. Composite coatings prepared with ultrasound assistance. Ultrasound was used during dispersion and/or during 1 

electrodeposition. 2 

Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni Al2O3 Sulphamate bath 

- System: horn 

- Frequency: 22.5 kHz 

- Power: 0.005 W/cm3 

- Ultrasonic irradiation of the electrolyte prior to 

electrodeposition significantly reduced particle 

agglomeration. 

- Both ultrasonic and chemical dispersion with a surfactant 

presented similar results, although particle content was 

slightly higher for the latter. 

- Decrease in Ni2+ concentration in electrolyte generally led 

to higher particle de-agglomeration and particle content in 

composites. 

[36] 

Ni Al2O3 Watts bath 

- System: horn 

- Frequency: not 

available (N/A) 

- Power: N/A 

- Ultrasound during deposition improved the incorporation 

of particles in both continuous and pulse-plating.  

- No significant difference in corrosion resistance between 

composites and pure Ni deposits was reported as particle 

agglomeration was not completely avoided by ultrasound. 

[37] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni Al2O3 Watts bath 

- System: horn 

- Frequency: 24 kHz 

- Power: 38 W/cm2 

- Ultrasonic irradiation of the electrolyte prior to 

electrodeposition minimized particle agglomeration, shifting 

peaks observed in particle size distribution curves towards 

smaller diameters. 

- Increasing particle concentration in bath increased particle 

incorporation into the metal matrix. Composites 

electrodeposited under ultrasound always presented higher 

particle content. 

- For both pure Ni and composite coatings, ultrasound during 

plating further enhanced grain refinement. 

- Ultrasound enhanced particle dispersion in coatings. 

- Higher hardness and wear resistance were observed when 

increasing particle content in composites. Composites 

electrodeposited under ultrasound always presented 

improved hardness and wear resistance. 

[38] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni 
Al2O3 

whiskers 
Sulphamate bath N/A 

- Ultrasound to prevent particle agglomeration prior to 

deposition. 

- Particle incorporation with/without ultrasound increased 

when decreasing pulse-plating frequency. 

- Composite coatings produced with ultrasound seemed to 

have  lower particle content than those without ultrasound, 

although the latter presented larger aggregates. 

[39] 

Ni CeO2 

Watts bath with 

sodium dodecyl-

sulphate (SDS, 

surfactant) 

- System: bath? 

- Frequency: 28 kHz 

- Power: 300 W 

- Incorporation of particles caused a significant increase in 

hardness and wear rate of coatings. Further improvement in 

both properties was observed when ultrasound was used 

during the electrodeposition. 

- The orientation of Ni crystals in composite coatings was 

strongly affected by ultrasound. 

[40] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni Nd2O3 
Hard Nickel bath with 

SDS 

- System: bath, horn and 

dual (combination of 

bath and horn) 

- Frequency: 100 kHz 

(bath), 20 kHz (horn) 

- Power: 0-300 W 

(bath), 0-45 W (horn) 

- Introduction of ultrasound during plating resulted in finer 

grain size and higher particle incorporation, especially under 

dual ultrasonic conditions (combination of bath and horn). 

- Composite coatings showed higher corrosion resistance 

than pure Ni deposits. Ultrasound further enhanced 

corrosion resistance of composite coatings, especially under 

dual ultrasonic conditions. 

- Particle content in the coating increased when increasing 

bath power in both ‘bath only’ and dual set-ups. Particle 

content in the coating increased when increasing horn 

power in both ‘horn only’ and dual set-ups up to 30 W of 

horn power, and then it significantly dropped at higher 

intensity values. 

[41,42] 

Ni TiO2 Watts bath with SDS 

- System: bath 

- Frequency: 28 kHz 

- Power: N/A 

- Ultrasound reduced the incorporation of agglomerated 

particles into the coatings. 

- Particle content in coating increased by increasing particle 

concentration in electrolyte. Hardness related to particle 

content in composites. 

[43] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni TiO2 Watts bath with SDS 

- System: bath/horn 

- Frequency: 35/30 kHz 

- Power: N/A 

- Nano-size particles well dispersed in the coating when 

ultrasound was used during the electrodeposition. 

- Application of ultrasound during plating of pure Ni coatings 

resulted in grain modification and refinement. The 

incorporation of TiO2 nano-size particles into the coating 

resulted in further refinement of the grain size. 

- Particle size affected final properties of the composite. 

[44,45] 

Ni ZrO2 
Sulphamate Hard 

Nickel bath with SDS 

- System: bath 

- Frequency: 28 kHz 

- Power: 120 W 

- Ultrasound during electrodeposition with/without 

agitation enhanced particle incorporation and grain refining 

of composite coatings. Combination of ultrasound and 

mechanical agitation yielded the composite coatings with 

smallest grain size and smoothest surface. 

- Composite coatings prepared under ultrasound always 

showed higher corrosion resistance than coatings prepared 

in silent (conventional agitation) conditions. Combination of 

ultrasound and mechanical agitation yielded the composite 

coatings with highest anti-corrosion properties. 

[46] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni SiC Watts bath with SDS 

- System: bath/horn 

- Frequency: 35/30 kHz 

- Power: N/A 

- Ultrasound used during the dispersion and 

electrodeposition stages to prevent particle agglomeration 

and incorporation of large agglomerated into the coatings. 

- Particle content and size affected final properties of the 

composite. 

[44,45] 

Ni SiC 

Watts bath with 

sodium dodecyl-glycol 

(surfactant), 1,4-

butynediol 

(brightener) and p-

toluene sulphonamide 

(carrier) 

N/A 

- Ultrasound employed to obtain a better dispersion of 

particles in the electrolyte. 

- Composites deposited under ultrasound presented finer 

grain size than those produced without ultrasound. 

- Incorporation of particles into Ni deposits changed the 

orientation of crystals. 

- Composites exhibited better corrosion resistance than pure 

Ni deposits. 

[47] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni SiC Watts bath 

- System: bath 

- Frequency: N/A 

- Power: N/A 

- Ultrasound drastically reduced particle agglomeration, 

especially at lower pH. 

- Ultrasound did not affect particle content for continuous 

plating, but significantly increased particle incorporation 

into pulse-plated coatings. 

- Composites plated in all conditions presented enhanced 

hardness compare to pure Ni deposits. Pure Ni and 

composite coatings deposited under ultrasound had an 

improved corrosion resistance by reducing the porosity of 

the deposits. 

[48] 

Ni SiC Watts bath 

- System: horn 

- Frequency: N/A 

- Power: N/A 

- Ultrasound to prevent particle agglomeration prior to 

deposition. 

- Ultrasound during deposition improved the incorporation 

of particles in both continuous and pulse-plating. 

- Composites exhibited improved corrosion resistance 

compared to pure Ni deposits. 

[37] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni SiC 

Sulphamate bath with 

SDS and cetyl-

trimethyl-ammonium 

bromide (CTAB, 

surfactant) 

- System: bath 

- Frequency: 38 kHz 

- Power: 200 W 

- Ultrasound improved the incorporation of finely de-

agglomerated particles into the coating, resulting in 

composite coatings with a homogeneous distribution of 

particles. 

- Corrosion resistance was improved, especially in those 

composites produced under ultrasound. 

- Synergic effect of ultrasound and particles on the 

mechanical properties of the coatings. 

[49] 

Ni WC 
Watts bath with SDS 

and CTAB 

- System: N/A 

- Frequency: 40 kHz 

- Power: 350 W 

- Ultrasound used to disperse particles in baths where no 

surfactant was used. 

- Composites exhibited higher hardness, elastic modulus and 

corrosion resistance. 

- Incorporation of particles strongly affected surface 

morphology of deposits. 

[50] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni TiN Watts bath  

- System: N/A 

- Frequency: N/A 

- Power: 0-300 W 

- Composite coatings with dispersed particles were obtained 

when ultrasound applied during deposition. Slightly less 

agglomerated particles were noticed at high ultrasonic 

powers. 

- Composite coatings electrodeposited with ultrasound 

exhibited smaller grain size and smoother surface finish, and 

lower XRD intensities for (111) crystal planes compared 

with (200) crystal planes. 

[51] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni WS2 Watts bath with CTAB 

- System: horn 

- Frequency: 24 kHz 

- Power: 0-40 W/cm2 

- Ultrasonic irradiation (20 W/cm2) of the electrolyte was 

applied 10 minutes prior to electrodeposition to avoid 

particle agglomeration. 

- Particle content in the coating increased with ultrasonic 

power up to 30 W cm−2, slightly decreased at higher intensity 

values. 

- More compact deposits with uniform thickness produced in 

the presence of ultrasound. 

- Composite coatings, especially those produced under 

ultrasound, presented better mechanical properties (i.e. 

hardness, reduced Young’s modulus, elastic strain to failure 

and elastic recovery). 

- Composite coatings, especially those produced under 

ultrasound, presented better tribological performance (i.e. 

lower coefficient of friction). 

[52] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni-Co Al2O3 
Sulphamate bath with 

cobalt sulphamate 

- System: bath 

- Frequency: 35 kHz 

- Power: 240 W 

- The presence of ultrasound during deposition increased 

particle incorporation of finely dispersed particles. 

- Composites produced with ultrasound exhibited higher 

particle content, plastic deformation and hardness, and 

lower elastic modulus. 

- The plating parameters also affected Co content in 

composites. 

[53] 

Ni-Co Al2O3 

Watts bath with cobalt 

sulphate and 

surfactant 

- System: N/A 

- Frequency: N/A 

- Power: 0-160 W 

- Increasing ultrasonic power led to lower incorporation of 

particles into the metal matrix, lower Co content in deposits, 

higher residual macrostress, finer grain size, promotion of 

(220) crystal planes and attenuation of (200) crystal planes. 

- Hardness gradually increased with increasing ultrasonic 

power during electrodeposition up to 90 W and then 

decreased. 

[54] 

Ni-Co SiC 
Watts bath with cobalt 

sulphate 

- System: N/A 

- Frequency: 40 kHz 

- Power: 350 W 

- Ultrasound to prevent particle agglomeration prior to 

deposition. 

- Higher particle incorporation by increasing particle 

concentration in electrolyte and current density. 

- Incorporation of particles leads to an increase in hardness 

and improved corrosion resistance (positive shift in 

corrosion potential and reduction in corrosion). 

[55] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Ni-P SiC 
Sulphamate bath with 

phosphoric acid 
N/A 

- Ultrasound to effectively disperse particles prior to plating. 

- Higher particle incorporation and lower P content by 

increasing particle concentration in electrolyte and current 

density. 

- Composites showed lower residual stress compares with 

pure alloys deposited at different current densities. 

Hardness affected by both particle and P content. 

[56] 

Ni-W Al2O3 

Alkaline bath: nickel 

sulphate, sodium 

tungstate and sodium 

citrate 

- System: N/A 

- Frequency: 35 and 130 

kHz 

- Power: N/A 

- Ultrasound during plating significantly reduced particle 

agglomeration, resulting in a more uniform dispersion of 

particles in composites. 

- Higher ultrasonic frequencies yielded composites with 

lower and less uniform particle content. 

- Differences in particle shape and size affected final 

properties of composites. 

[57,58] 

Ni-W WC 

Alkaline bath: nickel 

sulphate, sodium 

tungstate, sodium 

citrate, ammonium 

chloride and sodium 

bromide 

N/A 

- Ultrasound used to prevent particle agglomeration in 

electrolyte prior to plating. 

- Pulse-plating parameters affected the surface morphology, 

particle content and hardness of coatings. 

[59] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Cu Al2O3 Sulphate bath N/A 

- Ultrasound used to improve dispersion of particles in 

electrolyte prior to plating. 

- Composites coatings exhibited improved wear resistance 

and corrosion resistance than pure Cu deposits. Wear rate, 

corrosion rate and porosity decreased by increasing particle 

content in composites. 

[60] 

Cu 

Carbon 

nano-

fibres 

Sulphate bath with 

polyacrilic acid 
N/A 

- Ultrasound used to improve dispersion of particles in 

electrolyte prior to plating. 

- Surface morphology affected by the types of fibres 

incorporated. 

[61] 

Cu-Sn Graphite 

Cyanide bath with 

potassium stannate 

and poly-vinyl-

pyrrolidone 

(surfactant) 

- System: horn 

- Frequency: 20 kHz 

- Power: 70 W 

- Combination of ultrasound and surfactant improved 

dispersion of particles in electrolyte prior to deposition, 

resulting in effective embedding of particles in pulse-plated 

composites. 

[62] 
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Metal 

matrix 
Particle Electrolyte Ultrasonic parameters 

Effect of ultrasound/particles/plating parameters on 

final properties of coatings 
Ref 

Zn-Ni Al2O3 

Chloride bath (low 

ammonium) with 

sodium acetate 

- System: horn 

- Frequency: 20 kHz 

- Power: 0-1.2 W/cm2 

- Ultrasound during the deposition process improved the 

dispersion of particles in the alloy matrix. 

- Ultrasonic power strongly affected particle content in 

composites. 

- Hardness and corrosion potential increase with increasing 

particle content in coatings. 

- Corrosion current was related to both particle content and 

particle dispersion in the alloy matrix. 

[63,64] 

Cr 
Al2O3 + 

SiC 

Modified chromic acid 

bath with Fs-10 

(surfactant) 

- System: N/A 

- Frequency: N/A 

- Power: 2.8 W/cm3 

- Ultrasound used to disperse particles in electrolyte prior to 

plating. 

- Incorporation of particles into the metal matrix 

significantly improved the corrosion resistance of coatings. 

[65] 

Au Diamond Sulphite electrolyte  

- System: N/A 

- Frequency: 20 kHz 

- Power: N/A 

- Ultrasound used to improve dispersion of particles in 

electrolyte prior to plating. 

- Composites deposited from electrolytes where particles 

were dispersed with ultrasound presented a higher particle 

content and higher hardness values. 

[66] 

Au-Ni PTFE 

Commercial bath: 

- Au = 10 g/L 

- Ni = 1.5 g/L 

- System: bath 

- Frequency: 500 kHz 

- Power: 0-0.147 W/cm3 

- Ultrasound improves both plating rate and particle 

incorporation. 

- Composites deposited with ultrasound generally presented 

lower coefficients of friction after greater number of cycles. 

[67] 
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3.1. EFFECT OF ULTRASOUND ON THE DISPERSION OF PARTICLES 

The use of ultrasound for the dispersion of particles is widely employed due to the unique 

features that ultrasonic cavitation presents in order to de-agglomerate large agglomerates and 

aggregates in aqueous and non-aqueous suspensions. In the electrodeposition of composite 

coatings ultrasonic irradiation of the electrolyte is, in many cases, an essential step prior to the 

electrodeposition process itself in order to finely disperse the particles and reduce their 

agglomeration and in some studies is combined with the addition of a surfactant to further 

improve particle dispersion. The efficiency of ultrasound for particle de-agglomeration in 

surfactant-free electroplating baths was clearly demonstrated by García-Lecina et al. [38]. In 

their study, focused on the electrodeposition of Ni-based composite coatings with embedded 

Al2O3 particles, the authors reported that only ten minutes of ultrasonic irradiation were 

required to achieve a significantly better particle size distribution with smaller agglomerates in 

the Watts bath employed (Figure 3). Indeed it has been shown that ultrasound can be so 

effective in dispersing particles in the electrolyte that composite coatings produced from a 

plating bath which had been previously sonicated may present higher particle content even if 

ultrasound was not used during the electrodeposition process [66]. This improved dispersion 

and de-agglomeration effect of ultrasound is due to different reasons [68]: i) presence of micro-

turbulence caused by the oscillating acoustic pressure and cavitation fields, and ii) van der 

Waals forces broken by high speed particle collisions induced by acoustic streaming, 

microjetting and shockwaves. Nevertheless, although the presence of ultrasound improves the 

dispersion of particles in the plating bath, it may not be enough to completely avoid the 

agglomeration of particles to form large clusters in certain cases [56]. 

The use of ultrasound during the electrodeposition process also promotes the incorporation of 

well disperse, uniformly distributed particles into the electroplated coatings [38,41-

43,46,47,49,57,58,64]. A more uniform distribution of particles in the deposits was also 

observed by Dietrich et al. [53] when incorporating Al2O3 particles in electrodeposited Ni-Co 
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coatings under ultrasound. In earlier studies, the same research group had already observed the 

benefits of implementing ultrasound to achieve a more uniform distribution of particles in metal 

deposits where they added micro-scale and nano-scale particles of TiO2 and SiC to Ni coatings 

[44,45]. They observed that the use of ultrasound during the electrodeposition stage yielded a 

far more homogeneous coating with no large aggregates (Figure 4). 

Ultrasound has also been successful in increasing the amount of particles incorporated into 

electrodeposited coatings [37,38,41,42,49,53,67]. Zanella et al. [48] observed that, although 

ultrasound did not have a significant effect on particle content in Ni/SiC composites produced 

by continuous-current plating, it significantly increased particle incorporation into the coatings 

deposited by pulsed-plating methods. Nevertheless, the same authors also noted that, in some 

cases, a reduction in particle content in composite coatings electrodeposited with ultrasound 

may be expected due to the fact that large agglomerates are not incorporated into the deposits 

[48]. 

3.2. EFFECT OF ULTRASOUND ON THE MORPHOLOGY AND STRUCTURE 

The morphology and structure of electrodeposited composite coatings is not only affected by 

the incorporation of particles into the coatings but also by the presence of ultrasound during the 

electrodeposition process. Many works have reported a beneficial effect of ultrasound in 

refining the grain size of the composite coatings [38,41,42,44-46,49,53,54] achieving a 

smoother finish partly due to a much more uniform distribution of well-dispersed particles. For 

example, Cai et al. [47] found that a combination of mechanical agitation and sonication 

produced Ni/SiC composite coatings with a finer surface morphology (Figure 5) as the 

mechanical agitation avoided the sedimentation of the SiC particles while the ultrasound 

prevented their agglomeration. Xia et al. also [51] observed that when TiN nanoparticles were 

homogeneously dispersed with ultrasound and incorporated into Ni-based coatings extremely 

smooth coatings were achieved. 
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Regarding the crystal orientation of the deposits, although there are some cases where 

ultrasound does not really make a difference in terms of the preferred orientation of 

electrodeposited composite coatings [38,52] the growth mode of the crystals in the composite 

coating may be affected by ultrasound [49,54]. This effect was reported by Xue et al. on Ni/CeO2 

composite coatings [40]. The authors observed a free growth mode (more than 90 % of (200) 

crystal planes) in their pure Ni coatings while the addition of the 30 nm CeO2 particles to the 

Watts bath resulted in a significant modification of the crystal textures in the deposit: not only 

was the presence of (111) crystal planes increased and a similar proportion of (111) and (200) 

crystal planes were observed, but also it enhanced the electrocrystallization of Ni crystals 

showing (220), (311) and (222) planes. However, when ultrasound was used during the 

electrodeposition, it counteracted the effect of the particles in the dispersion as a high 

proportion of (200) textures was noticed again, followed by an increase in the number of (220) 

crystals and a significant decrease in the presence of (111) and (311) crystal planes. A similar 

effect of ultrasound on the crystal orientation was noticed by Xia et al. on their Ni/TiN 

composite coatings [51] as a relative decrease in the peak intensity associated with the 

presence of (111) crystal planes was observed in comparison with the peak intensity related to 

the presence of (200) crystal planes when ultrasound was used during the electrodeposition. 

3.3. EFFECT OF ULTRASOUND ON THE MECHANICAL PROPERTIES 

It is well known that the incorporation of hard particles into electrodeposited coatings generally 

results in an increase in hardness and the improvement of other mechanical properties such as 

wear resistance and/or the coefficient of friction. The use of ultrasound during the 

electroplating of composite coatings seems to further enhance this hardening effect [48-

50,54,64,66] as would be expected considering the effect of ultrasound on grain size and 

hardness of electrodeposited metals and alloys [22]. Xue et al. [40] not only observed an 

improvement in the hardness of their Ni deposits by adding CeO2 particles but also observed a 

further increase in hardness and enhancement of wear resistance in those composite coatings 
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that were electrodeposited under ultrasound. Similar results were obtained by García-Lecina et 

al. [38] on Ni/Al2O3 composite coatings where they found that both ultrasound and the 

concentration of particles in the electrolyte had an effect on the hardness of the coatings (Figure 

6). They proposed that the combination of two phenomena (as previously suggested by Lampke 

et al. [44]) could explain the increase in hardness of composite coatings plated under 

ultrasound: i) the presence of fine, well-dispersed Al2O3 nanoparticles in the Ni matrix that 

would act as strong obstacles for dislocation movement and ii) a finer grain size of the Ni 

crystals due to the grain refining effect of ultrasound. In this case, wear resistance was also 

enhanced when increasing the particle concentration in the electrolyte and the presence of 

ultrasound further improved the performance of the coatings. Similar results were observed by 

the same authors when incorporating WS2 particles into Ni deposits [52] where the composites 

produced under ultrasound exhibited a further enhancement in both hardness and tribological 

performance when compared with Ni/WS2 composite coatings produced in the absence of 

ultrasound. In the case of Ni-Co deposits with Al2O3 [53] the presence of ultrasound during 

deposition not only increased the hardness but also the plastic deformation of the coatings. 

3.4. EFFECT OF ULTRASOUND ON THE CORROSION RESISTANCE 

The incorporation of particles into electrodeposited metal coatings generally results in the 

improvement of the corrosion resistance of the coatings [3]. This effect is reported in many of 

the papers where ultrasound is used prior to the electrodeposition stage in order to achieve a 

better dispersion of particles in the plating electrolyte [50,55,60,65]. However few researchers 

have studied the effect that the use of ultrasound during the electrodeposition stage may have 

on the corrosion resistance of the resulting composite coatings as most studies are only focused 

on those composite coatings produced under the presence of ultrasound that exhibited the best 

surface finish and quality [45,47]. 

Gyawali et al. [49] studied the effect of ultrasound on the corrosion behaviour of Ni/SiC 

composite coatings. In their work, the measured corrosion currents, corrosion potentials, 
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anodic/cathodic Tafel slopes, corrosion resistance and corrosion rates indicated that, while 

Ni/SiC composite coatings electrodeposited under silent conditions showed better behaviour 

than pure Ni deposits, the introduction of ultrasound during the plating process resulted in a 

further enhancement of the corrosion resistance of the coatings. These measurements were in 

agreement with other results obtained by electrochemical impedance spectroscopy studies in 

the same investigation confirming the improvement in the corrosion resistance of the Ni/SiC 

composite coatings electrodeposited with ultrasound. Zanella et al. [48] also evaluated the 

influence of sonication during the electrodeposition of Ni/SiC composite coatings finding that 

pure Ni and Ni/SiC deposits were prone to pitting corrosion, whereas pure Ni and Ni/SiC 

deposits produced with ultrasound showed more stable behaviour. This improvement, 

observed in both Ni and Ni/SiC deposits electrodeposited in an ultrasonic field, was attributed 

to the lower porosity and higher compactness of the deposits produced under such conditions, 

and is in agreement with the idea that grain refinement by ultrasound results in lower porosity 

of electroplated coatings [22]. The enhancement of the corrosion resistance of composites 

coatings electrodeposited when ultrasound is implemented in the electrodeposition stage has 

also been reported for other composite coatings [41,42,46,64], where again a strong link 

between grain refinement, particle incorporation and corrosion behaviour was observed. 

However, the application of ultrasound during deposition will not always result in the 

improvement of the corrosion resistance. Zanella et al. [37] did not report any significant effect 

of ultrasound on the corrosion resistance of electrodeposited Ni/Al2O3, as the ultrasonic 

irradiation employed in this study was not enough to completely avoid the agglomeration of the 

particles.  
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4. INFLUENCE OF THE ULTRASONIC PARAMETERS ON THE 

ELECTRODEPOSITION OF COMPOSITE COATINGS WITH PARTICLES 

The previous section has shown how the introduction of ultrasound into composite plating 

processes may result in a better dispersion of particles in the electroplating bath, higher 

incorporation of well-dispersed and uniformly distributed particles, and hence, better 

mechanical properties and enhanced corrosion resistance. However, most of the studies found 

in the literature have only focused on the general use of ultrasound and extracting information 

from these papers on the exact ultrasonic conditions employed is difficult (e.g. the ultrasonic 

frequency and power employed, the ultrasonic equipment utilised and how the transducers are 

placed in the overall system, etc.). All this information, which may not be seem important in the 

first instance, is critical in order to optimize the beneficial effects of ultrasound in general 

sonochemistry and sonoelectrochemistry [69] and to understand how ultrasound may affect the 

electrodeposition of composite coatings. 

4.1. EFFECT OF ULTRASONIC FREQUENCY 

There are few studies on the effect of the ultrasonic frequency on the electrodeposition of 

composite coatings with particles. An exception is the work conducted by Indyka et al. focused 

on the electrodeposition of Ni-W alloys with Al2O3 particles under ultrasound [57,58]. In these 

papers the authors investigated the effect of two different frequencies (35 and 130 kHz) of 

ultrasound on the characteristics of the electroplated composites. Their results not only 

illustrated that the presence of ultrasound during plating significantly reduced particle 

agglomeration resulting in a more uniform dispersion of particles in composites, but also that 

composites produced at 130 kHz exhibited a lower particle content (and worse particle 

distribution) than those electrodeposited at 35 kHz. This finding is illustrated in Figure 7 for Ni-

W/Al2O3 composite coatings produced from baths with different particle concentrations. 

Similar results were obtained by Li et al. on their Ni composite coatings containing Nd2O3 
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particles [41,42], as they found that Ni/Nd2O3 coatings produced at a lower frequency (20 kHz) 

presented higher particle content and finer grain size than those electrodeposited at a higher 

frequency (100 kHz). This resulted in Ni/Nd2O3 composite coatings with higher corrosion 

resistance. Generally speaking, the formation and intensity of cavitation phenomena 

progressively decreases as the ultrasonic frequency is increased as rarefaction and compression 

cycles are shorter, resulting in bubbles with a smaller resonant size [10]. Larger bubbles 

undergo a more violent collapse, and therefore, mechanical effects caused by the presence of 

cavitation phenomena are predominant at lower frequencies, whereas chemical effects are 

more significant at higher frequencies [70-72]. Chemical effects, such as radical formation, are 

of great interest in many chemical reactions [7] and processes where mechanical effects have 

little influence [ 73 ]. However, mechanical effects are of great importance in the 

electrodeposition of composite coatings with embedded particles as mechanical events such as 

acoustic streaming, formation of microjetting and shockwaves significantly enhance the 

dispersion and de-agglomeration of particles in the electrolyte and the incorporation of well-

dispersed and uniformly distributed particles into the electrodeposited coating. 

4.2. EFFECT OF ULTRASONIC POWER 

Among the first works evaluating the effect of ultrasonic power is the study by Rezrazi et al. 

which focused on the ultrasound-assisted electrodeposition of Au-based composite coatings 

with PTFE particles [67] at high frequencies (500 kHz). In this investigation it was found that 

enhanced deposition and higher incorporation rates were obtained when ultrasound was 

applied. The authors also noticed that a higher ultrasonic power yielded a higher incorporation 

of particles to the coatings. Zheng et al. investigated the effect of ultrasonic power at low 

frequencies (a 20 kHz ultrasonic horn) [64] and they showed that using higher ultrasonic 

powers yielded an increase in the content of Al2O3 nanoparticles in Zn-Ni alloy coatings (Figure 

8 A). However, they also observed that there was a maximum value for the particle content 

versus ultrasonic power such that a further increase in the power would lead to a decrease in 
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the particle content in the coating. According to the authors, a possible explanation for this 

could be that the Al2O3 particles under high power sonication collide with the cathode and then 

break away from it which would result in a decrease in the content of Al2O3 in the coating. They 

observed the same trends when evaluating the corrosion and mechanical properties of the 

coatings: an increase in both the electropositive corrosion potential and the hardness was 

obtained when the particle content was increased by working at a certain ultrasonic power 

(Figures 8 B and C, respectively). Nevertheless, the authors also noticed that when particle 

content in the deposit was ‘too much’, the large number of particles within the alloy matrix 

could result in a porous composite coating which exhibited reduced corrosion resistance than 

other deposits with lower particle content. The same effect of the ultrasonic power on the 

particle content was observed by García-Lecina et al. who studied the incorporation of WS2 

particles into Ni deposits [52] and observed that the particle content in the coating increased 

when increasing the ultrasonic power up to 30 W cm−2, and then slightly decreased at 40 W cm−2 

(a 24 kHz horn was used in this case). Again, different properties of the composite coatings were 

strongly linked to the particle content in the coating (reduced Young modulus, elastic recovery), 

although other properties were both linked to particle content and the applied ultrasonic 

power. For example, the same hardness was observed in coatings produced at either 30 or 40 W 

cm−2 whilst the highest elastic strain to failure and lowest coefficient of friction were achieved in 

composite coatings produced at 40 W cm−2. Li et al. [41,42] observed the same effect of 

ultrasonic ‘horn’ power on the Nd2O3 particle content in their Ni-based composite coatings 

when working with either ‘horn only’ and dual (combination of 20 kHz horn and 100 kHz bath) 

set-ups. However, no maximum in particle content was achieved if the authors progressively 

increased the ultrasonic power on an ultrasonic bath system when working with both ‘bath 

only’ and dual set-ups.  
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4.3. EFFECT OF ULTRASONIC SYSTEM 

The latter results commented on in the previous section regarding the effect of the ultrasonic 

power on the incorporation of Ni/Nd2O3 particles into electrodeposited Ni coatings produced 

by Li et al. [41,42] may seem contradictory and might be misinterpreted as a consequence of the 

variety of set-ups used: ultrasonic source and configuration, electrolyte volume, etc. As noted by 

Mason et al. [71], a generally accepted method to account for all these differences in the 

experimental set-up is the calibration of the ultrasonic power by calorimetry [74,75] in watts 

(W), which is then converted into specific acoustic power by dividing the measured power by 

either the sonicated volume (W/cm3) or by the emitter surface area of the ultrasonic source 

(W/cm2). However, such calibration method, which is extensively used in sonochemistry in 

general and sonoelectrochemistry in particular, has not been used at all in the existing literature 

dealing with the implementation of ultrasound on the electrodeposition of composite coatings 

with particles, making the comparison of the results observed in different studies a lot more 

complicated. In this sense, the work from Li et al. [41,42] represents a good example of how 

results can appear contradictory when issues such as ultrasonic source and configuration, and 

the ‘real’ ultrasonic power introduced into the electrolyte, are not properly accounted for. As 

previously mentioned, the authors observed that, when increasing the ultrasonic power of the 

horn up to 40 W, the highest particle incorporation was observed at 30 W (maximum), whereas 

when increasing the ultrasonic power of the ultrasonic bath up to 300 W, particle content 

increased as the power was increased. One would find it hard to explain these results if it was 

not for the following facts [Error! Bookmark not defined.]:  

• Ultrasonic horns are high power systems where massive ultrasonic cavitation is 

achieved due to the very large vibration amplitudes that can be achieved at the emitter 

surface of such electromechanical systems, whereas in ultrasonic baths much lower 

vibration amplitudes are achieved by the transducers (see Figure 9 which roughly 

describes the main differences in terms of design between a horn and a ultrasonic bath 
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[16]). Therefore, the cavitation intensity that could be achieved with a horn operating at 

a certain electrical power will always be significantly higher than the cavitation intensity 

achieved in an ultrasonic bath. 

• Horns are used to directly irradiate the working electrolyte, whereas vessels containing 

the electrolyte are usually immersed intro ultrasonic baths (no direct contact between 

emitter surface and working electrolyte). Sound attenuation due to the vessel walls is 

expected in the latter resulting in a less effective transmission of sound into the 

electrolyte. 

• Whereas the horn used by Li et al. operated at 20 kHz, the ultrasonic bath employed by 

the same authors operated at 100 kHz [41,42]. As previously mentioned, the higher the 

ultrasonic frequency, the lower the resonance bubble size will be and this will generally 

result in less violent cavitation phenomena and lower cavitation activity. 

• The position of the vessel containing the electrolyte in the bath strongly affects the 

intensity of sonication. Very low cavitation activity will be measured in the electrolyte 

when the vessel is positioned a low-intensity ultrasound area within the bath even if the 

bath is operating at its highest power. 

Taking these comments into consideration, along with the results found in this review of studies 

dealing with the incorporation of ultrasound on the electrodeposition of composites currently 

available in the literature, it might be assumed that a horn system operating at an ultrasonic 

frequency as low as possible (around 20 kHz) would be the best method of achieving a high 

particle content in an electroplated composite. Nevertheless, these systems present some 

drawbacks as well: 

• Whereas ultrasonic cleaning baths are widely available and are a very cheap option, 

ultrasonic horns present a more complex design at a much higher cost. 

• Ultrasonic horns produce very violent cavitation phenomena that may have a negative 

effect on particle content in electrodeposited composite coatings as particles may collide 
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with the surface of the electrode under strong cavitation and then break away from it. 

Alternatively particles may even be removed from the surface of the cathode due to 

aggressive cavitation near the surface resulting in lower particle incorporation than 

expected, even though the particles would be uniformly distributed within the coating 

[41,42,52,54,64]. Violent cavitation could also result in the erosion of the 

electrodeposited coatings [76] which would not only affect the surface finish but also 

the performance of the deposits. 

• Very high ultrasonic pressures can be achieved with a horn which would obviously 

result in violent cavitation phenomena in the fluid. Nevertheless, most of the cavitation 

actually occurs near the emitter surface of the horn (the well-known cone-like shaped 

cavitation ‘cloud’ formed near the emitter surface [77]) as the highest pressures are 

achieved in this region. This massive formation of bubbles can have a rather negative 

effect, i.e. a strong attenuation of the ultrasonic field in the region near the emitter 

surface due to the presence of the cone-like shaped bubble ‘cloud’ [78,79]. This effect is 

much less significant in an ultrasonic bath where a fairly even distribution of energy 

through the bath walls results in a more homogeneous ultrasonic field where cavitation 

phenomena is not only observed near the emitter surface of the transducers but also 

further away. 

In order to truly understand the effect of ultrasound on electroplating in general and on the 

electrodeposition of composite coatings with particles in particular, it is critical to clearly know 

how ultrasound is introduced into the electrolyte and this has been poorly reported in the 

existing literature. In addition, without this information the scale-up of such processes to a 

production line would be challenging. In this case, where large plating tanks are usually 

involved, the introduction of ultrasound would be even more complex, as the nature and 

location of the ultrasonic source, their operating frequency and power, and the geometry of the 

tank and its building materials would have a strong influence on the resulting ultrasonic field 

and its final effect on the electrodeposited coatings. A similar issue is also faced in the design of 
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sonochemical reactors and processes, and if the methodologies employed by ‘sonochemists’ in 

order to characterise sonochemical reactors [80,81] were followed when recording the 

ultrasonic parameters utilized in the electrodeposition of composite coatings a better 

comparison of the various studies, and there suitability for scale-up could be made. 

5. CONCLUSIONS 

The introduction of ultrasound on the electrodeposition of composite coatings with embedded 

particles has been reviewed. Ultrasonic cavitation not only enhances the dispersion and de-

agglomeration of particles in the electrolyte, but also the incorporation of finely-dispersed and 

uniformly distributed particles into the electrodeposited coating. Composite coatings 

electrodeposited under ultrasound show a further enhancement of the mechanical properties 

(hardness, wear resistance, coefficient of friction, etc.) and the corrosion resistance. The 

experimental results observed by different authors indicate that the introduction of low-

frequency, high-power ultrasound into the plating bath promotes mechanical events such as 

acoustic streaming, microjetting and shockwaves caused by the presence of ultrasonic 

cavitation in the electrolyte and these phenomenon can bring many benefits in the 

electrodeposition of composite coatings with particles. This review has illustrated that there is a 

general lack of information regarding the ultrasonic parameters and equipment used in the 

various studies and this suggests that the advantages and disadvantages of the different 

ultrasonic systems commercially available have not been adequately considered. This 

information is not only essential if the studies are to be properly compared but it is also crucial 

for the understanding of sonochemical effects and to enable the optimisation of ultrasound in 

electroplating in general and in the electrodeposition of composite coatings in particular. 
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FIGURES 

 

Figure 1. Bubble growth and implosion in a liquid irradiated with ultrasound. Adapted from 

Ref. and [7], with permission from the Multidisciplinary Digital Publishing Institute. 

 

Figure 2. Schematic representation of the main effects of cavitation induced by ultrasound 

irradiation. Adapted from Ref. [9], with permission of The Royal Society of Chemistry. 
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Figure 3. Particle size distribution of Al2O3 particles (50 g L−1) dispersed in a Ni Watts bath. The 

experiments were carried out (a) after 24 h of magnetic stirring; (b) after 24 h of magnetic 

stirring+10 min of US treatment; (c) same as b after one hour. Adapted from Ref. [38], with 

permission from Elsevier. 

 

Figure 4. Well-dispersed TiO2 particles under ultrasound conditions (lower part from substrate 

up to the markers ><) and nano-particle agglomeration under silent conditions (upper part) in a 

Ni coating. Adapted from Ref. [44], with permission from Elsevier. 
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Figure 5. Surface morphologies of Ni/SiC composite films prepared under different conditions: 

(a) mechanical dispersion and (b) mechanical and ultrasonic dispersion. Adapted from Ref. [47], 

with permission from Elsevier. 
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Figure 6. Effect of Al2O3 concentration in the electrolyte on the hardness of Ni/Al2O3 composite 

coating obtained under mechanical stirring and ultrasound. Adapted from Ref. [38], with 

permission from Elsevier. 
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Figure 7. SEM (BSE) images of surface morphology of Ni–W/Al2O3 composite coatings 

electrodeposited at a rotating speed of 340 rpm under different ultrasonic frequencies. Adapted 

from Ref. [58], with permission from Elsevier. 
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Figure 8. (A) Influence of ultrasonic power on the Al2O3 and Ni content in Zn-Ni/Al2O3 

composite coatings. (B and C) Effect of Al2O3 content on (A) the corrosion potential and current 

and (B) hardness of Zn-Ni/Al2O3 composite coatings produced under different ultrasonic 

power: (a) 0 W/cm2, (b) 0.5 W/cm2, (c) 0.7 W/cm2, (d) 0.9 W/cm2, (e) 1.2 W/cm2 and on (f) Zn-

Ni alloy coating. Adapted from Ref. [64], with permission from Elsevier. 

 

Figure 9. Different ultrasonic transducer set-ups: (a) ultrasonic bath, and (b) ultrasonic horn. 

Adapted from Ref. [7], with permission from the Multidisciplinary Digital Publishing Institute.  



37 
 

REFERENCES 
 
[1] C.G. Fink, J.D. Prince, The codeposition of copper and graphite, Trans. Am. Electrochem. 

Soc. 54 (1928) 315-321. 

[2] V.N. Tselulkin, Composite electrochemical coatings: preparation, structure, properties, 
Prot. Met. Phys. Chem. Surf. 45 (2009) 312-326. 

[3] C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing 
nanoparticles in a metal deposit, Surf.Coat. Technol. 201 (2006) 371-383. 

[4] C. Larson, J.P.G. Farr, Recent advances in pulsed current electrodeposition: A brief review, 
Trans. Inst. Met. Finish. 88 (2010) 237-242. 

[5] C. Larson, J.P.G. Farr, Current research and potential applications for pulsed current 
electrodeposition - A review, Trans. Inst. Met. Finish. 90 (2012) 20-29. 

[6] O. Louisnard, J. González-García, Acoustic cavitation, in: H. Feng, G. Barbosa-Canovas, J. 
Weiss (Eds.), Ultrasound technologies for food and bioprocessing, Springer, New York-
Dordrecht-Heidelberg-London, 2011. 

[7] J. González-García, V. Sáez, I. Tudela, M.I. Díez-García, M.D. Esclapez, O. Louisnard, 
Sonochemical treatment of water polluted by chlorinated organocompounds. A review, 
Water 2 (2010) 28-74. 

[8] K.S. Suslick, Sonochemistry, in: Kirk-Othmer Encyclopedia of Chemical Technology, 4th 
edition, John Wiley & Sons, New York, 1998. 

[9] D. Fernandez Rivas, P. Cintas, H.J.G.E. Gardeniers, Merging microfluidics and 
sonochemistry: towards greener and more efficient micro-sono-reactors, Chem. Commun. 
48 (2012) 10935-10947. 

[10] T.J. Mason, J.P. Lorimer, Applied Sonochemistry: The use of power ultrasound in chemistry 
and processing, Wiley-VCH, Weinheim, 2002. 

[11] J. González-García, M.D. Esclapez, P. Bonete, Y. Vargas Hernández, L. Gaete-Garretón, V. 
Sáez, Current topics on sonoelectrochemistry, Ultrasonics 50 (2010) 318-322. 

[12] J. Klima, C. Bernard, Sonoassisted electrooxidative polymerisation of salicylic acid: Role of 
acoustic streaming and microjetting, J. Electroanal. Chem. 462 (1999) 181-180. 

[13] J.L. Hardcastle, J.C. Ball, Q. Hong, F. Marken, R.G. Compton, S.D. Bull, S.G. Davis, 
Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial 
cavitation induced by 20 kHz ultrasound, Ultrason. Sonochem. 7 (2000) 7-14. 

[14] D.J. Walton, S.S. Phull, A. Chyla, J.P. Lorimer, T.J. Mason, L. Burke, M. Murphy, R.G. 
Compton, J.C. Eklund, S.D. Page, Sonovoltammetry at platinum electrodes: surface 
phenomena and mass transport processes, J. Appl. Electrochem. 25 (1995) 1083-1090. 

[15] F. Marken, R.G. Compton, Sonoelectrochemically modified electrodes: Ultrasound assisted 
electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion 
systems. Electrochim. Acta 43 (1998) 2157-2165. 

[16] J. González-García, M.D. Esclapez, P. Bonete, Y. Vargas Hernández, L. Gaete-Garretón, V. 
Sáez, Current topics on sonoelectrochemistry, Ultrasonics 50 (2010) 318-322. 

 



38 
 

 
[17] A. Mallik, B.C. Ray, Evolution of principle and practice of electrodeposited thin film: a 

review on effect of temperature and sonication, Int. J. Electrochem. (2011), Article ID 
568023. 

[18] M.E. Hyde, R.G. Compton, How ultrasound influences the electrodeposition of metals, J. 
Electroanal. Chem. 531 (2002) 19-24. 

[19] K. Kobayasi, A. Chiba, N. Minami, Effects of ultrasound on both electrolytic and electroless 
nickel depositions, Ultrasonics 38 (2000) 676-681. 

[20] Application of the electrochemical quartz crystal microbalance technique to copper 
sonoelectrochemistry. Part 1. Sulfate-based electrolytes, O. Schneider, S. Matic, C. 
Argirusis, Electrochim. Acta 53 (2008) 5485-5495. 

[21] V. Sáez, M.D. Esclapez, A.J. Frías-Ferrer, P. Bonete, I. Tudela, M.I. Díez-García, J. González-
García, Lead dioxide film sonoelectrodeposition in acidic media: Preparation and 
performance of stable practical anodes, UItrason. Sonochem. 18 (2011) 873-880. 

[22] C.T. Walker, R. Walker, Effect of ultrasonic agitation on some properties of 
electrodeposits, Electrodepos. Surf. Treat. 1 (1973) 457-469. 

[23] J. Dereska, E. Yeager, F. Kovorka, Effects of acoustical waves on the electrodeposition of 
chromium, J. Acoust. Soc. Am. 29 (1957) 769. 

[24] E. Namgoong, J.S. Chun, The effect of ultrasonic vibration on hard chromium plating in a 
modified self-regulating high speed bath, Thin Solid Films 120 (1984) 153-159. 

[25] W.C. Wu, A. Chiba, K. Nakanishi, Effect of deposition in an ultrasonic field on the corrosion 
of electrode posited copper coatings, J. Mater. Sci. Lett. 12 (1993) 794-796. 

[26] P. Kristof, M. Pritzker, Improved copper plating through the use of current pulsing & 
ultrasonic agitation, Plat. Surf. Finish. 85 (1998) 237-240. 

[27] L. Martins, J.I. Martins, A.S. Romeira, M.E. Costa, J. Costa, M. Bazzaoui, Morphology of 
copper coatings electroplated in an ultrasonic field, Mater. Sci. Forum 455-456 (2004) 
844-848. 

[28] P.B.S.N.V. Prasad, R. Vasudevan, S.K. Seshadri, S. Ahila, The effect of ultrasonic vibration on 
nickel electrodeposition, Mater. Lett. 17 (1993) 357-359. 

[29] P.B.S.N.V. Prasad, R. Vasudevan, S.K. Seshadri, Residual stresses of nickel electrodeposits 
with ultrasonically agitated bath, J. Mater. Sci. Lett. 11 (1992) 1424-1425. 

[30] P.B.S.N.V. Prasad, R. Vasudevan, S.K. Seshadri, Wear characteristics of nickel 
electrodeposits in ultrasonically agitated bath, J. Mater. Sci. Lett. 12 (1993) 902-903. 

[31] P.B.S.N.V. Prasad, S. Ahila, R. Vasudevan, S.K. Seshadri, Fatigue strength of nickel 
electrodeposits prepared in ultrasonically agitated bath, J. Mater. Sci. Lett. 13 (1994) 15-
16. 

[32] P.B.S.N.V. Prasad, S. Ahila, R. Vasudevan, S.K. Seshadri, Corrosion resistance of zinc 
electrodeposits in an ultrasonically agitated bath, J. Mater. Sci. Lett. 12 (1993) 1752-1754. 

[33] T. Ohsaka, M. Isaka, K. Hirano, T. Oshishi, Effect of ultrasound sonication on electroplating 
of iridium, Ultrason. Sonochem. 15 (2008) 283-288. 

 



39 
 

 
[34] T. Ohsaka, Y. Goto, K. Sakamoto, M. Isaka, S. Imabayashi, K. Hirano, Effect of intensities of 

ultrasound sonication on reduction of crack formation and surface roughness in iridium 
electrodeposits, Trans. Inst. Met. Finish. 88 (2010) 204-208. 

[35] T.J. Mason, J.P. Lorimer, S. Saleem, L. Paniwnyk, Controlling emissions from electroplating 
by the application of ultrasound, Environ. Sci. Technol. 35 (2001) 3375-3377. 

[36] S.-L. Kuo, Y.-C. Chen, M.-D. Ger, W.-H. Hwu, Nano-particles dispersion effect on Ni/Al2O3 
composite coatings, Mater. Chem. Phys. 86 (2004) 5-10. 

[37] C. Zanella, M. Lekka, S. Rossi, F. Deflorian, Study of the influence of sonication during the 
electrodeposition of nickel matrix nanocomposite coatings on the protective properties, 
Corros. Rev. 29 (2011) 253-260. 

[38] E. García-Lecina, I. García-Urrutia, J.A. Díez, J. Morgiel, P. Indyka, A comparative study of 
the effect of mechanical and ultrasound agitation on the properties of electrodeposited 
Ni/Al2O3 nanocomposite coatings, Surf. Coat. Technol. 206 (2012) 2998-3005. 

[39] N.S. Qu, K.C. Chan, D. Zhu, Scripta Mater. Pulse co-electrodeposition of nano Al2O3 
whiskers nickel composite coating 50 (2004) 1131-1134. 

[40] Y.-J. Xue, J.-S. Li, W. Ma, M.-D. Duan, Fabrication and wear resistance of Ni-CeO2 
nanocomposite coatings by electrodeposition under ultrasound condition, in: J. Luo, Y. 
Meng, T. Shao, Q. Zhao (Eds.), Advanced Tribology - Proceedings of CIST2008 & ITS-
IFToMM2008, Tsinghua University Press (Beijing) and Springer (Dordrecht-Heidelberg-
London-New York), 2010, pp. 695-696. 

[41] X.-H. Li, Y.-J. Xue, D.-Y. Zhang, J.-S. Li, Effect of ultrasound action modes on the oxidation 
resistance of Ni-Nd2O3 nanocomposite coatings, Appl. Mech. Mater. 120 (2012) 280-283. 

[42] Z.-H. Ao, Y.-J. Xue, X.-H. Li, J.-S. Li, Preparation of Ni-Nd2O3 nanocomposite coatings by 
electrodeposition under dual-frequency ultrasound, Adv. Mater. Res. 591-593 (2012) 
1001-1005. 

[43] S.A. Lajevardi, T. Shahrabi, V. Hasannaeimi, Synthesis and mechanical properties of nickel-
titania composite coatings, Mater. Corros. 62 (2011) 29-34. 

[44] T. Lampke, D. Dietrich, A. Leopold, G. Alisch, B. Wielage, Cavitation erosion of 
electroplated nickel composite coatings, Surf. Coat. Technol. 202 (2008) 3967-3934. 

[45] B. Wielage, T. Lampke, M. Zacher, D. Dietrich, Electroplated nickel composites with 
micron- to nano-sized particles, Key Eng. Mater. 384 (2008) 283-309. 

[46] Y.-F. Tian, X.-H. Li, Z.-H. Ao, Y.-J. Xue, Corrosion resistance of Ni-ZrO2 nanocomposite 
coating prepared by pulse electrodeposition with rotating cathode in an ultrasonic field, 
Appl. Mech. Mater. 278-280 (2013) 422-425. 

[47] C. Cai, X.B. Zhu, G.Q. Zheng, Y.N. Yuan, X.Q. Huang, F.H. Cao, J.F. Yang, Z. Zhang, 
Electrodeposition and characterization of nano-structured Ni–SiC composite films, Surf. 
Coat. Technol. 205 (2011) 3448-3454. 

[48] C. Zanella, M. Lekka, P.L. Bonora, Effect of ultrasound vibration during electrodeposition 
of Ni-SiC nanocomposite coatings, Surf. Eng. 26 (2010) 511-518. 

 



40 
 

 
[49] G. Gyawali, S.H. Cho, D.J. Woo, S.W. Lee, Pulse electrodeposition and characterisation of 

Ni–SiC composite coatings in presence of ultrasound, Trans. Inst. Met. Finish. 90 (2012) 
274-281. 

[50] S. Mohajeri, A. Dolati, S. Rezagholibeiki, Electrodeposition of Ni/WC nano composite in 
sulfate solution, Mater. Chem. Phys. 129 (2011) 746-750. 

[51] F.-f. Xia, M.-h.Wu, F. Wang, Z.-y. Jia, A.-l. Wang, Nanocomposite Ni–TiN coatings prepared 
by ultrasonic electrodeposition, Curr. Appl. Phys. 9 (2009) 44-47. 

[52] E. García-Lecina, I. García-Urrutia, J.A. Díez, J. Fornell, E. Pellicer, J. Sort, Codeposition of 
inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the 
influence of ultrasonicagitation, Electrochim. Acta 114 (2013) 859-867. 

[53] D. Dietrich, I. Scharf, D. Nickel, L. Shi, T. Grund, T. Lampke, Ultrasound technique as a tool 
for high-rate incorporation of Al2O3 in NiCo layers, J. Solid State Electrochem. 15 (2011) 
1041-1048. 

[54] L.M. Chang, H.F. Guo, M.Z. An, Electrodeposition of Ni–Co/Al2O3 composite coating by 
pulse reverse method under ultrasonic condition, Mater. Lett. 62 (2008) 3313-3315. 

[55] B. Bahadormanesh, A. Dolati, M.R. Ahmadi, Electrodeposition and characterization of Ni–
Co/SiC nanocomposite coatings, J. Alloy. Compd. 509 (2011) 9406-9412. 

[56] M.-C. Chou, M.-D. Ger, S.-T. Ke, Y.-R. Huang, S.-T. Wu, The Ni–P–SiC composite produced by 
electro-codeposition, Mater. Chem. Phys. 92 (2005) 146-151. 

[57] P. Indyka, E. Beltowska-Lehman, M. Bieda, J. Morgiel, L. Tarkowski, Microstructure and 
Deposition Relations in Alumina Particle Strengthened Ni-W Matrix Composites, Sol. St. 
Phen. 186 (2012) 234-238. 

[58] E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot, L. Tarkowski, Electrodeposition of 
nanocrystalline Ni–W coatings strengthened by ultrafine alumina particles, Surf. Coat. 
Technol. 211 (2012) 62-64. 

[59] Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak, S. Sangsuk, Pulse co-
electrodeposition and characterization of NiW–WC composite coatings, J. Alloy. Compd. 
506 (2010) 151-154. 

[60] S.R. Allahkaram, S. Golroh, M. Mohammadalipour, Properties of Al2O3 nano-particle 
reinforced copper matrix composite coatings prepared by pulse and direct current 
electroplating, Mater. Des. 32 (2011) 4478-4484. 

[61] S. Arai, M. Endo, Various carbon nanofiber–copper composite films prepared by 
electrodeposition, Electrochem. Commun. 7 (2005) 19-22. 

[62] T. Nickchi, M. Ghorbani, A. Alfantazi, Z. Farhat, Fabrication of low friction bronze–graphite 
nano-composite coatings, Mater. Des. 32 (2011) 3548-3553. 

[63] H.-Y .Zheng, M.-Z. An, J.-f. Lu, Appl. Surface characterization of the Zn–Ni–Al2O3 
nanocomposite coating fabricated under ultrasound condition, Appl. Surf. Sci. 254 (2008) 
1644-1650. 

[64] H.-Y. Zheng, M.-Z. An, Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under 
ultrasound conditions, J. Alloy. Compd. 459 (2008) 548-552. 

 



41 
 

 
[65] J. Gao, J. Suo, Preparation and characterization of the electrodeposited Cr–Al2O3/SiC 

composite coating, Appl. Surf. Sci. 257 (2011) 9643-9648. 

[66] P. Cojocaru, A. Vicenzo, P.L. Cavallotti, Electrodeposition of Au/nanosized diamond 
composite coatings, J. Solid State Electrochem. 9 (2005) 850-858. 

[67] M. Rezrazi, M.L. Doche, P. Berçot, J.Y. Hihn, Au–PTFE composite coatings elaborated under 
ultrasonic stirring, Surf. Coat. Technol. 192 (2005) 124-130. 

[68] T. Hielscher, Ultrasonic production of nano-size dispersions and emulsions, European 
Nano Systems 2005, Paris, France, 14-16 December, 2005. 

[69] T.J. Mason, V. Sáez, An introduction to Sonoelectrochemistry, in: B.G. Pollet (Ed.), Power 
ultrasound in Electrochemistry: From versatile laboratory tool to engineering solution, 
John Wiley & Sons, Chichester, 2012. 

[70] G. Portenlänger, H. Heusinger, The influence of frequency on the mechanical and radical 
effects for the ultrasonic degradation of dextranes, Ultrason. Sonochem. 4 (1997) 127-
130. 

[71] T.J. Mason, A.J. Cobley, J.E. Graves, D. Morgan, New evidence for the inverse dependence of 
mechanical and chemical effects on the frequency of ultrasound, Ultrason. Sonochem. 18 
(2011) 226-230. 

[72] K.V.B. Tran, T. Kimura, T. Kondo, S. Koda, Quantification of frequency dependence of 
mechanical effects induced by ultrasound, Ultrason. Sonochem. 21 (2014) 716-721. 

[73] S. Koda, K. Taguchi, K. Futamura, Effects of frequency and a radical scavenger on 
ultrasonic degradation of water-soluble polymers, Ultrason. Sonochem. 18 (2011) 276-
281. 

[74] Ratoarinoro, F. Contamine, A.M. Wilhelm, J. Berlan, H. Delmas, Power measurement in 
sonochemistry, Ultrason. Sonochem. 2 (1995) S43-S47. 

[75] T. Kimura, T. Sakamoto, Jean-Marc Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, 
Standardization of ultrasonic power for sonochemical reaction, Ultrason. Sonochem. 3 
(1996) S157-S161. 

[76] C.T. Walker, R. Walker, New explanation for the hardening effect of ultrasound on 
electrodeposits, Nature 244 (1973) 141-142. 

[77] A. Moussatov, C. Granger, B. Dubus, Cone-like bubble formation in ultrasonic cavitation 
field, Ultrason. Sonochem. 10 (2003) 191-195. 

[78] O. Louisnard, A simple model of propagation in a cavitating liquid. Part I: Theory, 
nonlinear attenuation and traveling wave generation, Ultrason. Sonochem. 19 (2012) 56-
65. 

[79] O. Louisnard, A simple model of propagation in a cavitating liquid. Part II: Primary 
Bjerkness force and bubble structures, Ultrason. Sonochem. 19 (2012) 66-76. 

[80] V. Sáez, A. Frías-Ferrer, J. Iniesta, J. González-García, A. Aldaz, E. Riera, Chacterization of a 
20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical 
methods, Ultrason. Sonochem. 12 (2005) 59-65. 

[81] V.S. Sutkar, P.R. Gogate, Design aspects of sonochemical reactors: Techniques for 
understanding cavitational activity distribution and effect of operating parameters, Chem. 
Eng. J. 155 (2009) 26-36. 


	cover3
	manuscript - revised 03 - print
	1. Introduction
	2. Use of ultrasound in electroplating
	3. Use of ultrasound on the electrodeposition of composite coatings with particles
	3.1. Effect of ultrasound on the dispersion of particles
	3.2. Effect of ultrasound on the morphology and structure
	3.3. Effect of ultrasound on the mechanical properties
	3.4. Effect of ultrasound on the corrosion resistance

	4. Influence of the ultrasonic parameters on the electrodeposition of composite coatings with particles
	4.1. Effect of ultrasonic frequency
	4.2. Effect of ultrasonic power
	4.3. Effect of ultrasonic system

	5. Conclusions
	Figures
	References


