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Abstract: Water distribution systems (WDS) are complex pipe networks with looped and branching
topologies that often comprise of thousands of links and nodes. This work presents a generic frame-
work for improved analysis and management of WDS by partitioning the system into smaller (almost)
independent sub-systems with balanced loads and minimal number of interconnections. This paper
compares the performance of three classes of unsupervised learning algorithms from graph theory for
practical sub-zoning of WDS: (1) Graph clustering — a bottom-up algorithm for clustering n objects with
respect to a similarity function, (2) Community structure — a bottom-up algorithm based on network
modularity property, which is a measure of the quality of network partition to clusters versus randomly
generated graph with respect to the same nodal degree, and (3) Graph partitioning — a flat partitioning
algorithm for dividing a network with » nodes into & clusters, such that the total weight of edges cross-
ing between clusters is minimized and the loads of all the clusters are balanced. The algorithms are
adapted to WDS to provide a decision support tool for water utilities. The proposed methods are ap-
plied and results are demonstrated for a large-scale water distribution system serving heavily populated
areas in Singapore.
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1 INTRODUCTION

Network sub-zoning is one of the tools for leakage and pressure management for water loss control.
The requirement of sub-zoning is to define the properties of the sub-zones within a network (e.g. size
limit, total demand), to identify their boundaries (i.e. pipes or valves), and to monitor these boundaries
for leakage and/or pressure control (with a limited number of meters). For example, the management of
district metered areas (DMAs), has proven highly successful for leakage management [Thornton et al.,
2008; Kunkel, 2003]. The layout of WDS is typically looped having multiple flow paths from the water
sources to consumers. The looped layout of WDS, which provides a high level of reliability to the system
supply in the event of mechanical failures (e.g. pipe breaks, valves malfunctions), imposes difficulties
on water loss control. Due to the complexity of WDS, the re-design of an existing network can impair
water supply, system reliability, and water quality [Grayman et al., 2009]. A number of methods for
re-designing existing WDS into independent areas, by the closure of existing valves or disconnection of
pipes, have been suggested. These vary from manual trial and error approaches, involving identification
of water mains, manual division into districts, and hydraulic simulations [Murray et al., 2010], to highly
sophisticated automated tools integrating network analysis, graph theory and optimization methods.
The partition of the network is typically achieved by using graph algorithms, e.g. breadth first search
and depth first search [Deuerlein, 2008; Perelman and Ostfeld, 2011; Ferrari et al., 2013; Di Nardo
et al., 2013a], multilevel partitioning [Di Nardo et al., 2013b], community structure [Diao et al., 2013],
and spectral approach [Herrera et al., 2010]. The selection of pipes that need to be disconnected is
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found by iterative procedures [Ferrari et al., 2013; Diao et al., 2013] or genetic algorithms [Di Nardo
et al., 2013a, b].

This work presents a generic framework for simplifying the full-scale WDS by partitioning the system
into smaller, balanced sub-zones with a minimum number of inter-connecting pipes/valves without the
need to re-design the system. This study compares three types of unsupervised learning algorithms:
clustering — representing a more naive approach given limited information about the WDS, community
structure — adopted from social studies with similar previous application to WDS sub-zoning [Diao et al.,
2013], and network partitioning — adopted from distributed computed and previous similar application
[Di Nardo et al., 2013b]. The three methods were applied and tested on a large-scale water distribution
system serving heavily populated areas in Singapore and their performance was compared based on
different qualitative and quantitative measures.

2 METHODS

Many of the processes in physical, cyber, and social systems are described by complex networks or
graphs. Clustering, community structure, and partitioning are closely related methods for understand-
ing and analyzing complex systems, which have been extensively studied by a broad interdisciplinary
research community over the past few years [Schaeffer, 2007; Fortunato, 2010]. Generally, given a data
set, the goal of these methods is to divide the data set into clusters such that the elements assigned to
a particular cluster are similar or connected in some predefined sense.

2.1 Graph clustering

Global clustering is one of the traditional algorithms for clustering n objects with respect to a similarity
function. It produces a multi-level or an hierarchical structure of the graph, where each level of the
clustering hierarchy defines a different subset and each top-level cluster is composed of sub-clusters. A
bottom-up hierarchical algorithm starts with each node forming a unique cluster, followed by a sequential
grouping of the two most similar clusters and computation of the centroid of the newly formed cluster.
This procedure is repeated until all nodes are grouped into a single cluster. The basic similarity measure
of nodes in a physical network is their geographical position. More details can be found in Hastie et al.
[2009].

In water distribution systems, distant nodes are not expected to be connected, hence the Euclidean
distance between a pair of nodes can be used as a measure of their similarity, i.e. similar nodes will
be close to each other. In application to WDS, the number of clusters in which to group the nodes is
not known priori, hence knowing the entire hierarchy of the network can be very informative. However,
an additional procedure is required to decide how to partition the network. The attained hierarchical
clustering of the graph is traversed in a top-down direction. The size (or load) of each top-level cluster
is compared to a desired upper bound. If the size of the cluster does not satisfy the size constraint, the
traverse continues to attain smaller sub-clusters. Additionally, since the Euclidean distance measure
does not consider the connectivity of nodes, the intra and inter-connectivity of each cluster is verified.
Finally, to satisfy the lower bound constraint on cluster size, small connected clusters are grouped
together.

2.2 Community structure

Community structure is also a bottom-up hierarchical algorithm exploiting the network modularity prop-
erty as the quality measure of the partition. Modularity, a very popular [Fortunato, 2010] measure of
the quality of network partition into clusters, was first introduced by Newman [2004]. It is based on
comparing the density of edges in the underlying sub-graphs to the density of edges in a random sub-
graph with respect to the same nodal degree (i.e. number of incident edges). Since a random graph is
not expected to have a cluster structure, a good community structure would have a higher modularity
value. Modularity is always less than one (and can have negative value). Modularity can be computed

Page 1644



L. Sela Perelman et al. / Multi-level automated sub-zoning of water distribution systems
according to:

Q(G.C) = ﬁ > (Ai = Py)d(circy) (1)
)
where m is the number of edges of the graph, A is the adjacency matrix, A;; and P;; is the actual and
the expected number of links between nodes i and j, respectively, and 6(c; = ¢;) = 1,8(c; # ¢;) =0
indicating whether nodes i and j belong to the same cluster ¢ (i.e. Kronecker delta). The expected
number of edges in a random graph between nodes i and j with respect to the same node degrees, k;
and k;, respectively, is P;; = k;k;/2m.

A greedy algorithm [Newman, 2004] for maximizing modularity involves successive merging of two
clusters that result in the highest increase in modularity until all nodes are grouped into one cluster.
The main steps of the algorithm can be found in Newman [2004]; Clauset et al. [2004]. As in graph
clustering, community structure method results in a hierarchical clustering of the network. The exact
partition of the graph is again selected by traversing the hierarchical structure from top to bottom and
sequentially checking the upper bounds of the created clusters.

2.3 Graph partitioning

The problem of graph partitioning consists of dividing n nodes of the graph into a predefined number &
of roughly equal sized clusters such that the number of edges connecting the clusters is minimal and
typically it is desired that the cluster have equal size. Graph partitioning is a fundamental approach
used in parallel computing, for allocating tasks to multiple processors so as to minimize the communi-
cations and equally distribute the computational burden among them. A multi-level graph partitioning
approach generalized by Karypis and Kumar [1998] is used in the current work. The problem is solved
by performing three main steps: (1) Coarsening — the original graph is reduced into a sequence of
smaller graphs by aggregating its nodes and edges based on heavy edge matching. (2) Partitioning —
a sequence of bisections of the network until a k-way partition of the graph is attained. (3) Recovering
and refining — the original graph is recovered from the k-way partition. During each recovery level, a
local refinement heuristics is used to improve the partition by iteratively swapping nodes between two
clusters that reduce the weight of the cut edges. The main steps of the graph partition method can be
found in more detail in Karypis and Kumar [1998]. The graph partitioning algorithm results in a single
partition of the WDS with balanced sub-zones connected by a minimal number of links between the
sub-zones. The implementation of the partitioning algorithm to WDS requires the definition of network
graph, weights for nodes and links of the graph, and the number of desired sub-zones. The number of
sub-zones can be inferred from the desired size of the sub-zones.

2.4 Quality measures

Several qualitative and quantitative measures exist to evaluate the quality of the clustering [Schaeffer,
2007]. The measures for evaluating the sub-zoning of WDS used herein are:

1. Adjacency matrix — visualization of the adjacency matrix is a graphical measure for evaluating the
quality of the clustering. When the nodes of a graph are ordered randomly, there is no apparent
structure in the adjacency matrix. Re-ordering of the nodes according to their clusters should
reveal a tight block-diagonal structure of the adjacency matrix.

2. Cluster diagram — the layout of the clustering of the original graph can qualitatively assist in the
evaluation of the clustering of the WDS.

3. Total cut-size — the total number of links connecting the different clusters implies the number of
links that need to be monitored for water loss control i.e. this constraint defines the number (and
cost) of sensors that need to be installed across the network. Naturally, this number grows with
the number of desired sub-zones and should be minimized.
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4. Worst cut-size — this measure amounts the total number of links that need to be monitored for
a specific cluster. This number should also be minimized to limit the dependencies between the
different zones of the WDS.

5. Cluster size — for better control of the WDS it is desired that the load of each sub-zone will be
roughly equal. The load is ultimately specified by the water utility and can be measured in terms
of the estimated demand, population served, and/or number of connections.

6. Recurrence of inter-cluster edges — this measure can be used to evaluate the suitability of the
clustering for investment strategy, for example, a long-term flexible design versus here-and-now
design.

3 APPLICATION

The three classes of graph clustering algorithms described above were applied to a real large scale
network in Singapore. The network consists of 2440 nodes, 1932 pipes, 592 valves, one reservoir, one
tank, six pumps, and serves the population of approximately 120,000 people. The required input is
network topology, geographic coordinates, weights of nodes and links and sub-zones size constraints.
The network was partitioned according to six demand loading constraints for each sub-zone, i.e. 20,
10, 8, 4, 3, 2% of the total daily demand of the network. The result of the clustering of the network are
presented in a tabular and graphical schemes, providing statistics for each sub-zone, e.g., the number
of nodes, number of intra and inter cluster edges, and the daily demand.

g aggeseo e ‘

"

Figure 1. Network partitioning to 20 sub-zones: (a) Block diagram and (b) Map view

Next we compare and evaluate quality measures of the performance of the graph partitioning algorithms.
Figure 1(a) demonstrates the structure of the network after division to 20 sub-zones, using the graph
partitioning algorithm, and the connections between the different zones and the network sources. The
number on the edges shows the number of inter-cluster connecting links and the direction is shown for
a representative daily flow pattern of the distribution system. Figure 1(b) graphically shows map view of
the network.

Figure 2 shows the adjacency matrices for the network — (a) original network and (b) — (d) network
divided into 5, 10, and 25 sub-zones, respectively. The columns and rows of the matrix are reordered
corresponding to the sub-zones represented by the blocks of the matrix. A clear cluster structure of the
network can be observed from Figure 2(b)-(d) compared to the original structure Figure 2(a).

Figure 3 demonstrates the performance of the three algorithms: graph clustering (blue), community
structure (red), and graph partitioning (black), for six different divisions based on four suggested quan-
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Figure 2. Connectivity matrix: (a) original network and (b)-(d) network divided into 5, 10, and 25 sub-
zones, respectively.

titative measures. From the results it can be seen, that, as expected, the total number of inter-cluster
connecting links grows with the number of sub-zones (Figure 3(a)). The maximum number of inter-
cluster connecting links for a single sub-zone varies around 11, 9, and 8, for the graph clustering,
community structure, and graph partitioning methods, respectively (Figure 3(b)). As the number of sub-
zones grows, the demand load of each sub-zone decreases (Figure 3(c)). Figure 3(d) shows the fraction
of inter-cluster edges that appear more than once during different sub-zoning levels. For example, ap-
proximately 16 % of all inter-cluster edges appeared more than once in divisions to 10, 15, 25, and
35 sub-zones based on clustering and community structure approches. The recurrence of inter-cluster
connecting edges is similar and higher for the hierarchical methods, i.e. clustering and community
structure, compared to the flat partitioning approach. This behavior remains similar for all the partitions.

Figure 4 compares the total cut-size and worst case cut-size for graph partitioning algorithm when pipes
and valves are treated: (1) similarly (black), i.e. pipes and valves are allowed on boundary edges of the
sub-zones, which is represented by uniform weights of network links, and (2) differently (blue), i.e. only
valves are allowed on boundary edges of the sub-zones, which is represented by a adjusted weights
on network links. It can be seen, that when considering the actual location of valves, the number of
inter-connecting edges is slightly higher, as valves are not installed on every pipe.

4 CONCLUSIONS

The partition of water distribution systems into sub-zones is an important tool for leakage and pressure
management and for water loss control. This work explores the application of graph-theory approach
to the WDS sub-zoning problem. Three classes of algorithms were explored in this work — graph clus-
tering, community structure, and graph partitioning. It was shown that the methods are compatible and
applicable for large-scale WDS. The community structure and graph partitioning methods were shown
to be more flexible than the graph clustering method, in terms of adaptivity to design constraint by in-
corporating connectivity of the network and associated weights. The suggested methods can provide a
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decision support tool to water utilities for network sectorization and the sub-zone design will depend on
investment strategies for monitoring and controlling the WDS.
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