
CURVE is the Institutional Repository for Coventry University 
 

 

Effect of moisture content on the 
mechanical characteristics of rammed 
earth 
 
Bui, Q. B. , Morel, J. C. , Hans, S. and Walker, P. 

Author post-print (accepted) deposited in CURVE February 2016 
 
Original citation & hyperlink:  
Bui, Q. B. , Morel, J. C. , Hans, S. and Walker, P. (2014) Effect of moisture content on the 
mechanical characteristics of rammed earth. Construction and Building Materials, volume 54 
: 163-169 
http://dx.doi.org/10.1016/j.conbuildmat.2013.12.067 
 
 
ISSN 0950-0618 
DOI 10.1016/j.conbuildmat.2013.12.067 
 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 
 
 
 
 
 

http://dx.doi.org/10.1016/j.engstruct.2014.05.048


1 

 

Effect of moisture content on the mechanical characteristics of 1 

rammed earth 2 

 3 

Quoc-Bao Bui 
1
*, Jean-Claude Morel 

2
, Stéphane Hans 

2
, Peter Walker 

3 
4 

1 
Université de Savoie, Polytech Annecy-Chambéry, LOCIE - UMR5271, 73376 Le Bourget du Lac, France. 5 

2 
Université de Lyon, ENTPE, LTDS, UMR 5513, 69120 Vaulx-en-Velin, France. 6 

3 
BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK 7 

* Corresponding author:  8 

Tel.: +33 4 79  75 94 70; Email:Quoc-Bao.Bui@univ-savoie.fr  9 

Abstract 10 

In this paper, influence of moisture content on the mechanical characteristics of rammed-earth has 11 

been studied. Samples from different soils (sandy, clayey, stabilized) were manufactured and tested 12 

in unconfined compression at several moisture contents. Compressive strength, elastic modulus and 13 

Poison’s ratio were determined. A simplified method to measure the suction within rammed earth 14 

samples has been developed and validated. The variation of mechanical characteristics related to 15 

moisture content and suction are presented. This paper shows that a slight increase in the moisture 16 

content of dry rammed-earth is not followed by sudden drop in wall strength. Qualitative 17 

explanations at the nano-scale are presented. 18 

Keywords: Rammed earth, cohesion, suction, compressive strength, Young modulus, Poisson’s 19 

ratio. 20 

1 Introduction 21 

In the context of sustainable building, modern interest in earth as a building material is largely 22 

derived from its low embodied energy (Morel et al. 2001) and also because the material has good 23 

natural moisture buffering of indoor environments (Allinson and Hall 2010). On one hand, to act as 24 

a RH buffer, the material must be capable of adsorbing and desorbing moisture. However, if the 25 

moisture content of unstabilised earthen materials increases excessively, the material loses its 26 
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strength. Therefore the question is remains: what is the moisture buffering limit for a material 27 

without detrimental loss of mechanical strength?  28 

On the other hand, the greatest difficulty for the application of earthen material in practice is the 29 

variability of soil characteristics. Indeed, because earth is not an industrial material, its mechanical 30 

characteristics vary from one site to another. The questions before every earth construction are: is it 31 

necessary to use a stabiliser, which type of stabiliser and how much to use? Although some 32 

empirical techniques exist (Walker et al. 2005, Burroughs 2001), to our knowledge, there are not 33 

yet scientific base for a fundamental understanding.  34 

To answer these questions, it is necessary to study the source of the cohesion in rammed earth, to 35 

understand why earthen material is sensitive to water. The knowledge about fundamental 36 

phenomena will be useful to formulate material’s composition. This paper deals with the 37 

quantification of suction inside rammed earth samples and a study of the limiting moisture values to 38 

maintain mechanical strength. The role of clay and hydraulic binder are also discussed. The 39 

experiments were carried out on rammed earth materials, but the analysis presented can be extended 40 

to other earthen materials such as adobe and cob for example. 41 

2 Rammed earth material 42 

Rammed earth materials are ideally sandy-clayey gravels. The materials are prepared to their 43 

optimum moisture content and compacted inside temporary formwork to form walls. The earth 44 

composition varies greatly and always contains clay but should not include any organic 45 

components. Clay acts as the binder between the grains, a mixture of silt, sand, gravel up to a few 46 

centimetres diameter. Compaction is undertaken on material prepared to its optimum moisture that 47 

provides the highest dry density for the given compactive energy (Mesbah et al. 1999). The rammed 48 

earth wall is composed of several layers of earth. The earth is poured loose in layers about 10-15 cm 49 

thick into a timber or metal formwork, which is then rammed with a rammer (manual or 50 

pneumatic). After compaction, the thickness of each layer is typically 6–10 cm. The procedure is 51 
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repeated until completion of the wall. Detailed presentation of rammed earth construction can be 52 

found in Walker et al. (2005). 53 

For traditional rammed earth construction, referred to as “rammed earth” or “unstabilized rammed 54 

earth,” the only binder is clay. Other binders can also be added such as cement, hydraulic or 55 

calcium lime. This is often called “stabilized rammed earth” (SRE). The main advantage of 56 

stabilization is the increase in durability and mechanical performance. However, stabilization 57 

increases the construction cost and environmental impact. 58 

Unstabilised rammed-earth is the focus of scientific research for two main reasons. Firstly, the 59 

heritage of rammed-earth buildings in Europe and the world is still important (Fodde 2009). The 60 

maintenance of this heritage needs scientific knowledge on the material to assess appropriate 61 

renovations. Secondly, the use of unstabilised rammed-earth in new constructions is possible in 62 

several countries, particularly in the current context of sustainable development (Bui et al. 2009a). 63 

The question "which conditions (soil suitability, weather) are suitable for the use of unstabilised 64 

rammed-earth?" awaits scientific answers. This question has a relation to the influence of moisture 65 

on rammed-earth wall behaviour, because moisture plays a role in the cohesion of earthen material, 66 

but it can also decrease the strength of the last one. 67 

Concerning the influence of moisture content on characteristics of rammed-earth, Olivier and 68 

Mesbah (1995) first initiated the idea to use the suction concept to study the role of moisture in the 69 

compacted earth material. They showed that increasing the moisture content accompanied a 70 

decrease in the suction of compacted soil material. In a more recent study, Jaquin et al. (2009) 71 

studied the influence of suction on mechanical characteristics of rammed-earth material. This study 72 

found that suction was a source of strength in unstabilised rammed-earth, and that the strength 73 

increased as moisture content reduced. However, in that study, the moisture content only varied 74 

between 5.5% and 10.2% (by mass), while the moisture content of an unstabilised rammed-earth 75 

wall in normal conditions is around 1 to 2% (Bui et al.2009b). In addition, in that study, only one 76 

soil was tested and the mechanical strengths obtained were relatively low (fc ~ 0.5 MPa) compared 77 
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to current values (1-2MPa, Walker et al. 2005). Hence, in this paper, the influence of moisture on 78 

the mechanical characteristics of rammed-earth material was studied, on several different soils and 79 

with a greater range of moisture contents: from the wet state just after manufacturing (11%) to 80 

“dry” state in normal atmospheric conditions (1-2%). Samples in this study were manufactured and 81 

tested in unconfined compression at different moisture contents which correspond to different 82 

values of suction. A simplified method to measure suction was also developed and validated. 83 

3 Influence of moisture content on the mechanical characteristics of rammed-earth material 84 

3.1 Laboratory manufacturing process 85 

3.1.1 Soils 86 

Five different soils were used in this study which were taken from sites of rammed earth 87 

construction. Table 1 presents the composition of these soils that were obtained by sieving (for 88 

elements >80µm) and the sedimentometric (for elements <80µm). The clay contents of these soils 89 

were close to the interval proposed by Walker et al. (2005), 5-10%. The methylene blue tests were 90 

carried out following French Standard (NF P 94-068) to obtain methylene blue values. The clay 91 

activity index ACB was calculated from the methylene blue values. That index enables to identify the 92 

soil’s mineralogical composition (Table 2) following an abaqus given by Lautrine (1989) which 93 

was reused by Chiappone et al. (2004). 94 

In order to investigate the role of hydraulic binder, soils B and E were stabilized at 2% and 8% of 95 

natural hydraulic lime (NHL 3.5) by weight, respectively. Natural hydraulic lime is produced by 96 

heating calcining limestone which contains clay without adding. Number 3.5 indicates the minimum 97 

compressive strength at 28 days (which can vary from 3.5 to 10 MPa). Calcium reacts in the kiln 98 

with the clay minerals to produce silicates that enable the lime to set without exposure to air. Any 99 

unreacted calcium is slaked to calcium hydroxide. Hydraulic lime is used for providing a faster 100 

initial set than ordinary lime (calcium lime). Eight percent of lime was chosen because it was the 101 

http://en.wikipedia.org/wiki/Clay
http://en.wikipedia.org/wiki/Belite
http://en.wikipedia.org/wiki/Calcium_hydroxide
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maximum quantity observed in practice for stablized rammed earth; beyond this limit, stabilized 102 

rammed earth lost its interest of “green material”. 103 

Table 1 : Soils used in this study 104 

Soil Clay content 

(by weight) 

Silt Sand Gravel 

Soil A 5% 30% 49% 16% 

Soil B 4% 35% 59% 2% 

Soil C 

Soil D 

9% 

10% 

38% 

30% 

50% 

12% 

3% 

48% 

Soil E 10% 22% 43% 25% 

 105 

Table 2 : Clay’s mineralogical composition of the soils used 106 

Soil Kaolinite 

(%) 

Illite 

(%) 

Montmorillonite 

(%) 

Soil A 35 0 65 

Soil B 15 0 85 

Soil C 

Soil D 

0 

18 

65 

18 

35 

64 

Soil E 18 0 82 

 107 

3.1.2 Sample manufacturing 108 

In the present study, to investigate the influence of moisture on the characteristics of rammed-earth 109 

material, reproducing the dynamic compaction and the layer superposition of rammed-earth 110 

technique was essential without regard the sample size effect. To achieve this, an automatic Proctor 111 

machine was adopted. The standard mold of the Proctor test was replaced by a mold 16 cm in 112 

diameter and 32 cm high. To obtain the dry density of in-situ rammed earth material (~1920 kg/m
3
; 113 

Bui et al. 2009b), a series of preliminary tests were conducted to determine the manufacturing 114 

moisture content and the amount of soil to be poured into the mold for each layer. An 11% moisture 115 

content was chosen as the compaction moisture content and 2.2 kg of moist soil was weighed out 116 
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for each layer. Each layer received the Proctor energy (E = 0.6 kJ/dm
3
). There were six compaction 117 

layers in each specimen prepared. The final height of the cylinder after the release was 30 cm giving 118 

to the sample an aspect ratio of 2. It is very important to avoid smaller aspect ratio (Aubert et al. 119 

2013). Prior to mixing, the soil was sieved through a 2-cm screen.  120 

The compacted layer thickness in in-situ rammed earth walls is around 10 cm. Due to nature of 121 

compaction there is a density gradient in each layer, as the upper part of each layer is more 122 

compacted and therefore denser than the bottom (Bui et al. 2009b). The layer thickness of the 123 

laboratory samples is about 5 cm, meaning that the material is more evenly compacted over the 124 

entire layer thickness. The clear disadvantage of this laboratory manufacturing strategy is that the 125 

sample is not representative of typical in-situ material. Therefore, to correlate the results obtained 126 

from laboratory-fabricated cylindrical samples to the performance of in-situ walls, a calibration is 127 

necessary. This can be found by using a homogenisation process, presented in a previous study (Bui 128 

et al. 2009b).  129 

After the compaction process, the samples were removed from the mould. The bottom surface of 130 

the sample, as it has been in contact with the bottom face of the mould during compaction is smooth 131 

and did not require any further treatment before strength testing. However, the more uneven upper 132 

surface was capped with a mortar (2 lime : 3 sand by weight) to provide a flat smooth surface 133 

parallel with the bottom face. During drying, the sample was left in normal atmosphere until the 134 

moisture content obtained the desired value for the test. This moisture content was verified by 135 

weighing the specimen. Then, the specimen was covered in a plastic film for at least a week to 136 

maintain the desired moisture content. Within this time, as the moisture could circulate within the 137 

sample, the sample moisture content was considered to be more homogeneous. The sample was 138 

considered “air-dry” when moisture content remained constant, although there was still a residual 139 

moisture content which was around 2%. This “air-dry” state is the ambient condition of in-situ 140 

walls in service (Bui et al. 2009b). 141 



7 

 

3.2 Unconfined compressive strength test  142 

3.2.1 Test set-up  143 

The cylinders were tested in compression between two hardened steel platens. Three samples were 144 

tested for each series. To measure strains, extensometers were placed in the central part of the 145 

cylinders to minimize edge effects on strain measurement. To determine the Poisson’s ratio, lateral 146 

strain measurements as well as vertical measurements were carried out. Figure 1 shows the 147 

configuration of a uniaxial compression strength test: extensometers measured the longitudinal 148 

strains and horizontal displacement sensors measure lateral displacements which help to calculate 149 

the lateral strains. 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

      159 

Figure 1 : Measurement device on a sample 160 

For each test, three extensometers and three displacement sensors, fixed at an interval of 120° on 161 

the radial plan, were used to verify the repeatability of results. An extensometer measures the strain 162 

between two points: one point at the center of a layer and the other point at the center of the upper 163 

layer. The distance between two points of extensometer is 6.2cm while the thickness of a layer of 164 

the sample is about 5cm. The cylinders were loaded by displacement control at a constant rate 165 

0.1mm/min until failure. 166 
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Some tests were under force control (3 kN/s) to observe the difference between failure modes of the 167 

two approaches, both of which are used for testing. For samples controlled by force, the failure 168 

plane was inclined whilst for samples controlled by displacement, fracture cracks were vertical. 169 

However, the maximum loads and stresses did not differ between two control modes. Indeed, in the 170 

case of force control, failure was brutal because sample reached quickly ultimate load, so the edge 171 

effect (friction between sample and press’s metal plateau) played an important role, that caused the 172 

inclined failure. In the case of displacement control, loading rate was constant following imposed 173 

displacement, so the deformation of sample was more homogeneous. That was why sample could 174 

deform more uniformly in lateral direction. Sample’s failure in this case was effectively due to the 175 

Poisson’s effect which caused the vertical cracks. It is interesting to note that this difference in 176 

failure mode is well known for concrete cylinder tests (Eurocode 2). 177 

3.2.2 Elasto-plastic behaviour  178 

At the beginning of each test, a preload corresponding to 0.02MPa was applied to assure that entire 179 

upper face of sample was in contact with the press’s plateau. Several unloading-reloading cycles 180 

were performed to observe the elasto-plastic behaviour of the material and the variation of the 181 

modulus following stress levels of the cycles (Figure 2). 182 

  183 

Figure 2 : Elasto-plastic behaviour of a soil A sample, at 9% in moisture content. On the right: a 184 

zoom of unloading-reloading cycles. 185 



9 

 

 186 

Fig 2 shows that for stresses below 15% of maximum stress and strain below 10
-4

, the material is 187 

close to linear elastic behavior. Beyond this limit, the plastic (non recoverable) strain component 188 

increases and the linearity is also lost. In general, the elastic domain is considered when modulus 189 

does not decrease more than 20% of the initial strain (Eurocode 2, 2005).  For example, the 190 

concrete’s modulus usually used is the secant which is measured from the 0 stress level to 40% of 191 

the maximum compressive stress, because it represents approximately the elastic part of that 192 

material. However, in the case of rammed earth, the elastic part is shorter: when the stress is more 193 

than 20% of the maximum stress, the decrease of modulus is more than 20% of the initial modulus 194 

(Fig 2 right). That is why the secant modulus is calculated for stress levels between 0 and 20% of 195 

the maximum stress (Fig 2 left). 196 

3.2.3 Variation of mechanical characteristics with moisture content 197 

Figures 3, 4 and 6 show variation of the compressive strength, the elastic secant modulus and 198 

Poisson ratio with moisture content of the samples. The presented results are the mean values of 199 

three samples. For the measurements of the elastic modulus, Poisson’s ratio and suction, only three 200 

soil types A, B and C were investigated in detail. 201 

 202 

Figure 3 : Variation of compressive strength fc with moisture content w of all soils studied. 203 
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 204 

Figure 3 presents the variation of compressive strength with moisture content of all soils studied. 205 

Following these results, compressive strength decreases with increasing moisture content that is 206 

logical. However, when moisture content is below 4% (close to air dry), the variation of 207 

compressive strength was not significant: compressive strength was quasi-constant for sandy soil A 208 

(classified following French Standard NF P 11-300) and stabilized soils B and E, it decreased about 209 

10% for clayey soils C and D (classified following French Standard NF P 11-300). When moisture 210 

content is greater 4%, the compressive strength decrease quickly for all studied soils, except soil E 211 

stabilized by 8% NHL. It is noted that the stabilization by hydraulic lime can decrease the 212 

sensibility to water of RE material but it does not always accompany an increase in compressive 213 

strength. Here the compressive strengths of stabilized samples (soils B and E) were lower than that 214 

of other unstabilized samples (at the same moisture contents). Soils B and E have important 215 

presence of Montmorillonite (85% and 82% of elements <2µm, respectively), that may play an 216 

unfavorable role for compressive strength of samples. In addition, specific curing of lime stabilized 217 

samples could give better results. 218 

 219 

Figure 4 : Variation of secant modulus E with moisture content w. 220 
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 221 

For elastic modulus (Figure 4), there is only a slight variation for samples with moisture content up 222 

to 5% for the cases of sandy soil (A) and stabilized soil (B). Modulus decreased with increasing 223 

moisture contents above 5%. For the clayey soil C, the elastic modulus is more sensitive to moisture 224 

content where a decrease of 15% can be observed at 4% of moisture content. 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

Figure 5 : Measurement of Poisson’s ratio from vertical and lateral strains 235 

 236 

The Poisson’s ratio was calculated by devising the vertical strain by the lateral strain (Figure 5). 237 

The last one is the ratio between the lateral dilatation (measured by horizontal displacement 238 

sensors) and the sample’s radius. The Poisson’s ratio was calculated in the “elastic part” like Young 239 

modulus. 240 
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 241 

Figure 6 : Variation of Poisson’s ratio with moisture content w. 242 

In Figure 6, Poisson’s ratio values were about 0.2  0.02 for the dry samples (moisture content 243 

<4%), then increased with the moisture content increasing to 0.37  0.01 for the wet samples. This 244 

variation is logical because when the material approaches the saturated state, the Poisson ratio 245 

approaches the value of 0.5.  246 

4 Study of suction 247 

Olivier and Mesbah (1995) found that suction could be a parameter that determined the mechanical 248 

characteristics of compacted earth material. In the present study, a simplified method to measure the 249 

suction was developed and the effect of suction on rammed earth was studied for three soil types 250 

over a large moisture content range. 251 

4.1 Suction 252 

Suction was first defined in soils as a potential energy (Delage 2002). The suction s is linked to the 253 

relative humidity (RH) of the pore air through Kelvin’s equation, which can be expressed as: 254 

 255 
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with: uw the pore water pressure; ua the pore air pressure; RH relative humidity, which is the ratio of 256 

partial vapour pressure P in the considered atmosphere and the saturation vapour pressure P0 which 257 

depends on the temperature; wv is the molecular mass of water vapour; g is the acceleration due to 258 

gravity (g=9.81m/s
2
); R is the universal gas constant; T is the absolute temperature. Evaporation of 259 

pore water is affected by the RH of the pore air compared with that of the adjacent air outside the 260 

wall. In practice, drying of the wall will continue until the pore air humidity equals the humidity of 261 

the surrounding air. 262 

4.2 Simplified method to measure the suction 263 

There are several techniques to measure suction in unsaturated soils. A review of these techniques 264 

can be found in Delage (2002). A technique using filter paper was developed.  First, a triple layer of 265 

Whatman n°42 filter paper was placed on the surface of the sample at the desired moisture content. 266 

Whatman n°42 filter paper is frequently used for suction studies and its calibration curves are well 267 

known (Delage 2002). Then, the specimen was covered with plastic film to prevent any further 268 

evaporation. Samples were then stored for two weeks, so the moisture equilibrium was established 269 

between the sample and the filter paper. Then the filter paper was extracted and the moisture 270 

content of the middle sheet - which was not contaminated thanks to its non-contact with the 271 

specimen surface - was determined. Using the calibration curve of the Whatman n°42 filter paper -  272 

which define a relation between  suction and moisture content - the suction of the paper was 273 

determined and therefore the suction of the sample, which is the same, was established . 274 
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 275 

Figure 7 : Variation of suction s following moisture content w 276 

Figure 7 shows the variation of samples' suction following samples' moisture content (desiccation 277 

phase). The variation of suction is slight for the case of dry samples (w < 4%). Then the suction 278 

steeply decreases following the increase of moisture content. 279 

4.3 Validation of the simplified method and discussions 280 

Figure 8 presents all of the data for this study as well as results from Jaquin et al. (2009), who used 281 

tensiometers to directly measure suction at the top of their specimens. For suction and 282 

corresponding compressive strength, the data are well correlated, showing that the simplified 283 

method is reliable. In fact, the suction may depend also on type of soil (percentage of clay, type of 284 

clay). But following these results (on four soils), the variation following soil’s type was low (a 285 

correlation R
2
=0.923 was obtained). It will be interesting to check this point with a number more 286 

important of soil’s type.    287 

Figure 8 shows also that suction (when presented logarithmically) is linearly correlated to the 288 

compressive strength for unstabilised rammed earth, even though the composition of the fourth 289 
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materials is quite different from the three others. Figure 9 presents the variation of secant modulus 290 

following suction which shows the elastic modulus is dependent on the suction too.  291 

 292 

Figure 8 : Variation of compressive strength fc following suction s  293 

 294 

Figure 9 : Variation of secant modulus E following suction s. Note: Jaquin et al. (2009) did not 295 

present their elastic modulus values. 296 
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5 Discussions – Microscopic behaviour of earthen materials 297 

5.1 Sandy soil 298 

The cohesion of low clayey soil material was primarily provided by the capillary force between 299 

particles. Fisher and Israelachvili (1981), Halsey and Levine (1998) showed that there was a range 300 

of moisture content in which the capillary force was constant (independent of the amount of 301 

moisture in the material). The attractive force due to the capillary condensation bridge between two 302 

spherical particles with a rough surface has four phases. In phase 1 (asperity phase), the 303 

condensation takes place between two asperities in contact with each other and the cohesive force 304 

increases non-linearly with the amount of moisture. In phase 2 (roughness phase) the force 305 

increases linearly with the amount of moisture due to the lateral spreading of the liquid bridge over 306 

several asperities. However, in this phase, the meniscus is not yet sensitive to the average spherical 307 

curvature of the particles. In phase 3 (classical phase), the meniscus is no longer sensitive to the 308 

roughness and the cohesive force is independent to the amount of moisture, as between two smooth 309 

spheres. For the samples whose moisture content is between 2 and 4%, its moisture contents fall in 310 

this third phase, which explains the constancy of the attractive force. When the moisture content 311 

increases, the samples are in phase 4 (saturation phase), neighbouring liquid bridges merge, the 312 

cohesion decreases. Our specimens were dried naturally and so do not fall within phases 1 or 2 313 

because there was a balance with the atmospheric pressure. 314 

5.2 Clayey soil  315 

The cohesion of clayey soil material was provided not only by the capillary force between particles 316 

but also by attraction forces of clay particles. Attraction between clay particles (plate  shape) due to 317 

Van der Waals force whose radius is constant. The double layers (proposed by Gouy in 1910 and 318 

complemented by Chapman in 1913) surrounding each plate has a mutual action of electrical 319 

repulsion due to their positive charge. When the thickness of the double layer is low (high 320 

concentration and high valence of the cations), the attraction prevails, plates attract, so there is the 321 

http://publish.aps.org/search/field/author/Levine_Alex_J
http://en.wikipedia.org/wiki/Louis_Georges_Gouy
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cohesion. Otherwise, the thickness of the double layer is low (due to a decrease of the concentration 322 

and of valence of the cations, which is the consequence of a significant amount of water), the 323 

particles push one to the others, so clay loses its cohesion. This explains the sensibility to moisture 324 

of clayey material. 325 

5.3 Stabilized soil  326 

In unstabilized earthen material, clay is the sole binder. In the case of stabilised earthen material (by 327 

lime or cement), pozzolanic material is also present due to hydraulic binder. The main element of 328 

the pozzolanic cohesion is C-S-H sheets which are not sensitive to water. 329 

However, if hydraulic binders are not sufficient, as they can not coat all particles (including sand, 330 

silt, clay), and as such the soil remains water sensitive (case of soil B stabilised at 2% NHL). 331 

Beyond an amount of hydraulic binder which is sufficient to coat all grains, material can become 332 

few sensitive to water (case of soil E stabilised at 8% NHL). In concrete, this binder threshold can 333 

be determined by empirical formulas (Eurocode 2). For rammed earth material, an equivalent 334 

empirical formula is interesting but it should take into account the clay amount and the clay type. 335 

The way is complex and requires several future experimental results. 336 

6 Conclusions and prospects 337 

In this paper, the influence of moisture on the mechanical characteristics of rammed-earth material 338 

has been studied, on different soils (sandy, clayey, stabilized) and with a great variation of moisture 339 

content: from the wet state directly after manufacturing (11-13%) to “dry” state in atmospheric 340 

conditions (1-2%). Samples in this study were manufactured and tested in unconfined compression 341 

at different moisture contents which correspond to different values of suction.  342 

In this study, the Poisson’s ratio was determined, it varied from about 0.2 for the “dry” samples to 343 

0.37 for the wet samples. This coefficient can be used in modeling structures, in static or dynamic. 344 
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A simplified method to measure the suction of rammed earth samples has been developed and 345 

validated. This simplified method can be used for studies on suction of RE material. The suction 346 

studies were taken in the cases of a sandy soil, a clayey soil and a clayey soil stabilised by 2% NHL. 347 

The evolutions of mechanical characteristics following moisture content and following suction were 348 

presented. The results confirmed that suction was an important factor of the mechanical 349 

characteristics of the studied samples. Indeed, the suction may depend also on type of soil 350 

(percentage of clay, type of clay). But following the results in this study, the variation following 351 

soil’s type was low. It will be interesting to check this point with a number more important of soils.    352 

The water sensitivity of the rammed-earth material and other earthen materials is a widely perceived 353 

weakness. However, this paper showed that a slight increase in moisture content of dry rammed-354 

earth walls (moisture content not exceeding 4% by weight, e.g. due to rain fall or change of RH in 355 

the atmosphere) did not accompany a sudden drop in the wall’s strength. Indeed, in this domain, the 356 

compressive strength was quasi-constant for sandy soil and stabilized soils and a decrease about 357 

10% for the clayey soil. Qualitative explanations at the microscopic level have been proposed to 358 

analyse the results, for all cases: sandy soil, clayey soil and stabilized soil. These interpretations are 359 

the fruit of the experiences of the authors and their Universities from 20 years (ENTPE Lyon, 360 

France and University of Bath, UK), accompanied by classical theories. The information presented 361 

in this paper will be useful to understand the behaviour at nano-scale of earthen material.  362 

 363 
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