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Abstract: The safety of vulnerable road users is of paramount importance as transport moves 
towards fully automated driving. The richness of real-world data required for testing autonomous 
vehicles is limited and furthermore, available data do not present a fair representation of different 
scenarios and rare events. Before deploying autonomous vehicles publicly, their abilities must reach a 
safety threshold, not least with regards to vulnerable road users, such as pedestrians. In this paper, we 
present a novel Generative Adversarial Networks named the Ped-Cross GAN. Ped-Cross GAN is able 
to generate crossing sequences of pedestrians in the form of human pose sequences. The Ped-Cross 
GAN is trained with the Pedestrian Scenario dataset. The novel Pedestrian Scenario dataset, derived 
from existing datasets, enables training on richer pedestrian scenarios. We demonstrate an example 
of its use through training and testing the Ped-Cross GAN. The results show that the Ped-Cross GAN 
is able to generate new crossing scenarios that are of the same distribution from those contained in 
the Pedestrian Scenario dataset. Having a method with these capabilities is important for the future 
of transport, as it will allow for the adequate testing of Connected and Autonomous Vehicles on how 
they correctly perceive the intention of pedestrians crossing the street, ultimately leading to fewer 
pedestrian casualties on our roads. 

Keywords: CAV; automotive; autonomous; pedestrian; dataset; human pose; GAN; machine learning 

1. Introduction 

According to the World Health Organisation, approximately 1.35 million people die 
each year due to road traffc crashes with more than half of these deaths being among 
vulnerable road users (including pedestrians) [1]. With the advent of connected and 
autonomous vehicles (CAV) being introduced on roads, the issue of pedestrian safety has 
never been more critical. 

National Highway Traffc Safety Administration (NHTSA) (2015) report that, of just 
over 4 million vehicle crashes in the USA between 2005 and 2007, 94% of the collisions had a 
critical reason of the collision assigned to the driver [2]. Knowing this, the development and 
eventual adoption of CAVs is expected to have a major impact on the number of pedestrian 
casualties on the road and at least one study has indicated that pedestrian fatalities could 
be reduced by 30% to 90% based on CAV sensor technology alone [3]. However, to be able 
to achieve widespread and public deployment, the CAV needs to be suffciently trained 
using datasets that refect the reality of how pedestrians act and interact on the road. 

The progress yet to be made with regard to pedestrian safety in CAVs is highlighted by 
the recent death of a pedestrian in an Uber autonomous driving trial. This created a signif-
cant negative impact on public perception and acceptance of such 
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technology [4–6]. This is proof that there is more work to be done in the area of CAVs and 
pedestrian protection in particular. 

Using pedestrian datasets captured from a naturalistic driving video is not unique 
and has been used for machine vision tasks for many years. However, for CAVs to be able 
to perform as well as (if not better than) a human driver, they need to not only identify 
the presence of a pedestrian, but also need be able to judge a pedestrian’s actions. To do 
this, the richness of data that can be acquired from real world driving scenarios is needed. 
This has traditionally been done using dash board mounted cameras where pedestrians 
have been assigned ground truth bounding boxes. The dataset has then been published in 
a video format with ground truth pedestrian labels [7]. The issue with datasets like these, 
is that the driving video does not cover all scenarios, such as rare and unexpected events. 
The dataset may contain such an event, but that would be entirely coincidental. 

In this research, video data captured from three naturalistic driving datasets are 
used to form the Pedestrian Scenario dataset. The video footage from this dataset is 
simplifed by using human pose estimation. Human pose estimation is an active area of 
research, which has the aim of simplifying a human into a set of keypoints. When this 
has happened, you are left with a simplifed representation of a human with all the rich 
data corresponding to the main points and shape of the body. Human pose estimation 
is used for numerous research activities as outlined in Section 2.3, however for the task 
at hand in this research, it enables video data to be simplifed into a form where the rich 
pedestrian data is extracted and then used in a novel Generative Adversarial Network 
(GAN) to generate new pedestrian scenarios. 

We present two contributions in this paper. Firstly, a novel Generative Adversarial 
Network (GAN) is introduced for the purposes of generating entirely new pedestrian 
crossing scenarios, based on those learned from a dataset introduced in this paper. This 
GAN, named Ped-Cross GAN, when combined with the pedestrian scenario dataset is 
capable of generating pedestrian crossing scenarios, not simply based on the primary 
movement characteristic, but is able to generate scenarios based on the behavior, speed, 
and age of the prospective pedestrian. This work can have far reaching implications for the 
training, testing, and validation of future autonomous vehicles. This is due to the ability to 
generate a plethora of pedestrian scenarios either by generating a random combination of 
parameters or by allowing engineers to tightly defne and test a specifc scenario. This has 
the advantage of an engineer being able to generate and test a specifc rare case scenario or 
to remove any kind of hard coded bias entirely if conducting random testing. 

The second contribution is the development of a novel dataset for pedestrian scenarios, 
derived from existing datasets, but with extensive relabeling to ensure that data about 
pedestrian movements and actions is present. We also provide pedestrian sequences not 
only in image format, but also human pose format. This change in format signifcantly 
reduces the amount of data required for training and testing systems on CAVs, while also 
maintaining the richness of scenario data captured from the original images. 

The remainder of this paper is structured as follows: Section 2 outlines the related 
work to this research. This is then followed by Section 3 where the Pedestrian Scenario 
Dataset is outlined and introduced. Generative Adversarial Networks are introduced in 
Section 4, while the Ped-Cross GAN is presented in Section 5. Section 6 highlights the 
results from Ped-Cross GAN, and the discussion is in Section 7. Finally, the Conclusions 
and Future work are presented in Section 8. 

2. Related Work 
2.1. Pedestrian Deaths and CAVs 

When considering world crash statistics, it is clear that the fatalities of pedestrians 
make up a large proportion of all road deaths. Table 1 shows the global distribution of 
road traffc deaths and it can be seen that in the more developed regions of the world, 
pedestrian deaths account for between 22% and 27% of all road deaths, with 22% as the 
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global average [8]. Further to this, recent trends in road deaths show that pedestrian 
fatalities are decreasing at a slower rate when compared to all other types of road users [9]. 

Table 1. Proportion of pedestrian deaths per world region [8]. 

World Region Proportion 

Africa 39% 
Eastern Mediterranean 27% 

Europe 26% 
Western Pacifc 23% 
The Americas 22% 

South-East Asia 13% 

World 22% 

The United States has seen a rise in pedestrian fatalities, with a 9% rise in deaths 
between 2015 and 2016 [10]. 2016 saw the overall proportion of pedestrian deaths rise to 
16% as a national average in the US compared to 11% in 2007, however, when considering 
highly populated urban areas, this proportion is signifcantly higher, as seen in Table 2. 
The European Commission (2015) also comment that 69% of all pedestrian fatalities occur 
in urban areas [9]. 

Table 2. Proportion of pedestrian deaths from total road deaths in selected US cities—2016 [10]. 

City, State Proportion Total Road Deaths 

New York, NY 
San Francisco, CA 

Boston, MA 
Fresno, CA 

San Diego, CA 
Philadelphia, PA 
Los Angeles, CA 

59.6% 
50.0% 
48.1% 
46.2% 
43.8% 
42.6% 
41.3% 

230 
28 
27 
13 
96 
101 
315 

The Reported Road Casualties Great Britain reported that 25% of all road fatalities 
in 2016 were pedestrians and that 18% of all road accidents in urban areas included a 
pedestrian. It is also reported that the vast majority of pedestrian to vehicle interactions 
occur in urban area; unsurprisingly, four wheeled motor vehicles are the most frequently 
involved vehicle [11]. 

A total number of 448 pedestrians lost their lives on UK roads in 2016 and interestingly, 
61.6% of these fatalities were in non-occluded scenarios, meaning that the pedestrian was 
in full view at the time of collision. A total of 12.5% of pedestrian deaths occured on a 
pedestrian crossing facility at the time of collision. When considering all severities of injury 
to pedestrians on crossings, the most frequently involved crossing type is a Pelican crossing 
(34.3%), closely followed by a light controlled junction (31.6%), and Zebra crossing (28.6%). 
With this information, it is clear that collecting relevant scenarios is crucially important [11]. 

All of these statistics can offer valuable insight into scenarios, junctions, and situa-
tions which will be of higher interest for automated vehicles when training, testing, and 
validating their pedestrian safety. This information gives a macroscopic view of the work 
currently being done to reduce pedestrian fatalities on the road. With pedestrian deaths 
reducing at a slower rate, and in some areas actually increasing, it is clear that pedestrian 
safety is an issue that needs to remain at the forefront of research. This allows developers 
and engineers to better concentrate on areas of interest where interactions are more likely 
to occur and to train their systems to have a better knowledge of these scenarios. 
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2.2. Pedestrian Datasets 

Pedestrian datasets have been an area of interest for more than 15 years. One of the frst 
examples was published by Dalal and Triggs (2004) [12]. Their INRIA dataset contained 
1805 64 × 128 images of people in various orientations. However, this dataset contained 
only individual images of people, and not sequences/videos, and therefore is not capable 
of understanding the context of a pedestrian’s movements, such as intention to cross or 
looking at the ego vehicle. 

The datasets used in this work are the Caltech pedestrian dataset [7], the Joint At-
tention for Autonomous Driving (JAAD) [13], and the Daimler pedestrian dataset [14]. 
Caltech was one of the earliest comprehensive pedestrian datasets aimed to improve the 
detection of pedestrians. Subsequently, it has been used extensively as a benchmark for 
machine vision tasks and pedestrian detection [15–17]. It comprises approximately 10 h of 
640 × 480 30 fps driving footage. A total of 250,000 frames were annotated, with more than 
350,000 bounding boxes and 2300 unique pedestrians. 

JAAD is a relatively new pedestrian dataset and is different from others as it goes a 
step beyond simply labeling the pedestrian [13]. This dataset labels the behavior of the 
pedestrian, such as ‘Looking’, and their speed. JAAD has been used to instantaneously 
predict if a pedestrian is about to cross the road [18]. However, what the dataset lacks is 
specifc information regarding the movement action, such as their movement direction or 
their speed. What is presented in Section 3.2, shows that this research solves this issue. 
The JAAD dataset contains 346 videos between 5 and 10 s in length, their ground truth 
contains approximately 82,000 frames and 2200 unique pedestrians, resulting in 337,000 
bounding boxes. 

The fnal dataset used was the Daimler pedestrian dataset which was collected from 
moving or stationary vehicles [14]. The 68 video clips contain 4 key movement types, 
which were crossing, stopping, starting to walk, and bending-in. Of these 68 video clips, 
there were more than 12,000 images containing pedestrians. 

2.3. Human Pose Estimation 

Another area of related research to both the dataset presented in this paper as well 
as pedestrian detection is that of human pose estimation. Human pose estimation takes 
an image or video, identifes any humans in the image, and overlays a skeleton type 
structure over the image. This skeleton type structure is built up by estimating keypoints 
on the body. Human pose estimation is an active area of research, with several different 
methods published in recent years. One of the most well-used pose estimators is known 
as OpenPose [19], which was one of the frst pose estimators to be able to make pose 
predictions in real time. OpenPose is able to score an average precision on keypoint 
predictions of 84.9% at 50% confdence. 

The pose estimator used in this research is known as Alpha Pose [20]. This pose 
estimator was selected for its improved results versus other state-of-the-art pose estimators. 
When compared to Openpose, Alphapose is able to score an average precision of 89.2% at 
a 50% confdence, therefore scoring higher than OpenPose. 

Human pose estimation conventionally works in a two step method. Firstly, an image 
is processed to scan for humans through a human proposal network. This network is 
usually a pretrained human identifcation network. Following this, the regions of the 
image where it is thought a human might be present are passed to a second part of the 
network. This is where the human pose estimation occurs. If the confdence in the human 
pose is too low, then the human pose is not output, and the region suggested is therefore 
considered to be a false positive. 

Following the proposal of the human, the image goes through 3 stages in order to 
extract the human pose: A Semantic Spacial Transformer Network (SSTN), a Single Person 
Pose Estimator (SPPE), and a Spacial De-Transformer Network (SDTN). In summary, the 
SSTN identifes regions on the human which could be body parts, the SPPE uses a Recurrent 
Convolutional Neural Network to estimate the human pose in the segment of the image, 
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while the SDTN enables the translation for the human pose to be remapped on the image. 
Further details can be found in their paper [20]. 

The human pose estimation network is trained using annotated human pose datasets. 
In the case of this paper, Alpha Pose was trained on the COCO dataset [21] and MPII 
Human Pose dataset [22]. 

Human pose estimation is not without its drawbacks and limitations, and such limita-
tions will trickle down into the results presented in this research. Alpha Pose reports that 
their human pose estimator can struggle to correctly estimate the pose of two humans who 
are overlapping. This will obviously have connotations in this research when pedestrians 
are observed to be crossing each other’s path. We outline methods of how we mitigate this 
in Section 3.1.2. 

Pose estimation is especially relevant due to how greatly it reduces the size and 
dimensionality of the data given to it. For example, a pose estimator will take an image 
of a person of size 200 × 180 × 3 data points, and predict keypoints, reducing the data 
sample size from 108,000 to just 34 (17 keypoints in x and y). In the context of training 
CAVs and any type of machine learning, this will greatly reduce the time taken to train, 
the complexity of the model (due to having fewer dimensions/features), and computer 
hardware required, while maintaining rich data of the human body frame extracted from 
the original image. 

For this research, Alphapose was used as an off-the-shelf pose estimator, and while 
it was not within scope to develop our own pose estimator, it allows other researchers to 
build on our results when newer pose estimators are released in the future. 

3. Pedestrian Scenario Dataset 
3.1. Dataset Curation 

The selection of appropriate datasets was based on availability with regards to the 
quality of video and variety of scenarios. In this paper, we used the Caltech Pedestrian 
dataset [7], the JAAD dataset [13], and the Daimler Pedestrian Dataset [14] as the base 
datasets. These were chosen due to the length of the datasets, in terms of videos available as 
well as video length, but also due to the camera quality of the recorded videos. All videos 
used in the datasets are captured from the perspective of an ego vehicle, and captured 
using a dashboard mounted camera, such that all pedestrians were presented from an 
equivalent perspective. 

Using the ground truths from each dataset, each pedestrian was cropped from each 
frame for each video. A simple naming convention was developed for each image so that 
they could be easily traced back to the original source video if required. The convention 
is DatasetName_VideoNumber_PedestrianNumber_Frame. This resulted in each pedestrian 
having a sequence of cropped images containing only themselves. 

The fnal step in this section was to remove any cropped frames that were below 3kB 
in size. This decision was made as it was judged that these images were far too small to be 
able to extract any tangible meaning. 

3.1.1. Additional Labeling 

The subsequent task forms the majority of our contribution towards the novel dataset. 
Each sequence of cropped pedestrian frames was viewed and assigned 23 labels, 

describing three main classes: Primary movement, secondary behavior, and tertiary de-
scriptive classes, as seen in Table 3–5, respectively. Details of the primary movement class 
were captured using the schematic in Figure 1 and specifc labels can be seen in Table 3. 
All of the labels were assigned manually by the authors after viewing the videos. 

These 10 primary classes are those that describe the primary movement of a pedestrian 
in a crossing scenario. It was also noted whether the pedestrian exhibited irregular behavior 
and whether or not the primary movement occurred at a crossing. 

It was also necessary to collect situational and descriptive labels for the pedestrian 
themselves. The labels for the secondary and tertiary class can be seen in Table 4 and 5, 
respectively. 

http:observedtobecrossingeachother�spath.We
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Table 3. Pedestrian movement classes. 

Number Label 

1 Crossing from the left 
2 Diagonal towards cross left 
3 Diagonal adjacent cross left 
4 Crossing from the right 
5 Diagonal towards cross right 
6 Diagonal adjacent cross right 
7 Walk towards traffc, no cross 
8 Walk adjacent to traffc, no cross 
9 Stand left 
10 Stand right 

Figure 1. Pedestrian movement classes. 

Table 4. Secondary behavior classes. 

Action Label 

Speed No Movement, Slow walk, 
Walk, Jog, Run 

Hesitation Yes, No 
Peeking Yes, No 
Looking Yes, No 

Distraction Yes, No 
Waiting Yes, No 
Waving Yes, No 

Jump back Yes, No 
Intoxicated Yes, No 

Freeze Yes, No 
Trip Yes, No 

Other mobility Skateboard, Rollerblade, 
Scooter, Other, N/A 
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Table 5. Tertiary descriptive classes. 

Desciptive Label 

Age Range 0–15, 15–60, 60+ 
Gender Male, Female, Unknown 

Ethnicity White, Asian, Black, 
Mixed race, Unknown 

Occluded Yes, No 
Occluded by ped Yes, No 

Full body Yes, No 
Hunched over Yes, No 

With object Shopping, Dog, Pram, 
Crutches, Walking frame, 

Suitcase, Other 

The labels for the second classes were for context, which is also useful for training 
machine vision for use in autonomous vehicles. Innate human behaviors such as looking 
and hesitating will be crucial for practitioners to include, so that when on-board systems 
are trained, they are aware of the likely events that follow when a pedestrian looks at an 
approaching vehicle. 

The tertiary classes collected relate to human descriptives, such as age range, whether 
or not the pedestrian is occluded at any point in the scene, or whether whether their full 
body was viewable (for example, if the pedestrian is close to the ego vehicle, only their 
torso might be visible). These classes can be seen in Table 5. 

3.1.2. Pose Dataset 

Following the labeling of all the cropped image sequences in the dataset, all of the 
images were translated to a human pose format, using an off-the-shelf pose estimator. The 
pose estimator used was Alpha Pose [20]. The same methodologies, as applied in this paper, 
could also be used with an improved future pose estimator, thus allowing practitioners to 
create more accurate pose estimations. Creating new or improving on the pose estimation 
methods themselves are out of the scope of this paper. 

The reason for translating the image data into pose data is to simplify the images 
from an approximate size of 3 kB or greater, to just 17 coordinate points in the image. By 
reducing the size and dimensionality of the data, we reduce the computing power required 
for machine learning tasks (Section 5.3). An example of an original cropped image with the 
pose estimation results overlayed can be seen in Figure 2. 

Figure 2. Cropped pedestrian example with pose (from JAAD). 

http:coordinatepointsintheimage.By
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As AlphaPose pose estimator comes with its own errors [20], every pose prediction 
made would refect these errors. To mitigate this, we set the confdence of the pose estimator 
to be at least 50% confdent in a prediction in order to retain the prediction. Alpha Pose 
reported an average precision on pose predictions of 89.2% at 50% confdence. 

It was also necessary to check that the output poses were anatomically viable. Having 
labeled the whole dataset, it was known that all the pedestrians in the dataset were 
standing. As such, a set of rules were developed to flter for poses that did not conform, as 
listed below: 

• Keypoints for the shoulders to be in the top 30% of the prediction; 
• Keypoints for the hips should be within the 40% to 60% range in the prediction; 
• Keypoints for the feet should be in the bottom 40%; 
• Keypoints for the feet should not be above the knee; and 
• Keypoints for both knees should be within 10% height of each other. 

These rules were applied to the entire dataset of poses. Where non-conformant poses 
were detected (for example due to occlusion in the individual sequences), we interpolated 
points between the nearest acceptable poses to replace those that were incorrect. The 
exception to this process was where poses were non-conformant in more than 10 sequential 
frames, which resulted in the pose sequence being cut to before and after the failed poses. 
Sequences processed thus were then re-assessed against the original video to check if any 
relabeling was required. A total of 8 sequences required relabeling, and 2 sequences were 
removed entirely due to not having enough good frames in succession. 

In summary, this activity ensured that all pose sequences were anatomically plausible. 

3.2. Dataset Results 

In this section, the results are presented for the image and pose datasets in relation 
to the labels collected for each class. We present the statistics of the dataset, as well as 
drawing out some comparisons between labels. This shows the diversity of the scenarios 
collected in the dataset. 

3.2.1. Image and Pose datasets 

The curated dataset contains a hybrid from the Caltech pedestrian dataset [7], JAAD [13], 
and the Daimler pedestrian dataset [14]. As the dataset is presented in two forms, it 
is useful to highlight the statistics of the data with respect to both the raw frames and 
processed pose estimation. 

From the cropped pedestrian image sequences, there are a total of 102,388 individual 
frames across the 932 pedestrian sequences. These sequences vary in length, with the 
average number of frames per sequence being 109 frames. The distribution of sequence 
length, as well as which dataset they occurred from can be seen in Figure 3. From Figure 3, 
it is clear that the vast majority of sequences are between 0 and 200 frames in length, thus 
showing the variety and diversity of sequence length available. The videos used to form 
this dataset were all captured at 30 frames per second. 

All frames were passed through Alpha Pose. Due to the rules imposed (see Section 3.1.2), 
the size of the dataset reduced after pose estimation. This is due to the size and quality of 
the images available. Where the pose estimator was not able to make a prediction, there 
would be no pose generated. For particularly poor image sequences, Alpha Pose was 
unable to make a prediction on any of the frames, while other sequences saw the pose 
output drastically reduce the number of poses produced when compared to the original 
image sequence. 

Subsequently, the resulting pose sequence dataset contains the same 932 sequences, 
however the total number of poses was reduced to 88,577, creating an average sequence 
length of 94 poses. As a result, this means that the size of the pose dataset, in terms of 
number of samples, was reduced by 13.4%. However, it is clear the distribution remains 
very similar to the distribution of the image sequences (Figure 4), again with the vast 
majority of sequences being between 0 and 200 poses in length. 
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Figure 3. Distribution of sequence length on cropped pedestrian images. 

Figure 4. Distribution of sequence length on pedestrian poses. 

3.2.2. Labels and Classes 

From the extensive labeling and classes collected on this dataset, some useful and 
interesting statistics emerge. All of the labels were collected by viewing the sequences of 
images, therefore the quoted numbers below will refect those of the image dataset. The 
labels are also valid for the pose sequences, as the the pose dataset is derived directly from 
the image dataset. 

The frst comparison that can be drawn is seen in Table 6. In this table, the comparison 
is between the type of movement observed and the speed at which the pedestrian did the 
movement. It is clear that crossing from the left (movement class 1) and crossing from the 
right (movement class 4) are the most common movement types. Normal walking speed 
(speed class 2) is the most common speed observed. 

The labels collected in the dataset also allows us to learn from the types of things 
pedestrians are carrying or manoeuvring around the roadside. It was most common for a 
pedestrian to not be carrying anything with 611 samples, however of the cases where the 
pedestrian is carrying something, shopping is the most common, with 218 samples. In this 
dataset, we have 22 examples of pedestrians pulling a suitcase at a crossing scenario. 

This information is important as pedestrian posture, body shape, and movement style 
can change extensively depending on the object being maneuvered. For example, someone 
will move very differently when pulling a suitcase when compared to someone who is not 
(see Table 5 for objects labeled). 
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Table 6. Movement class compared to speed. 

Speed 

0 1 2 3 4 Total 

1 0 14 170 22 0 206 
2 0 3 42 3 0 48 
3ss 0 5 28 4 2 39 
4 0 18 226 21 6 271C

la
5 0 6 28 5 0 39nt

m
e 6 0 5 54 4 0 63 

ve 7 0 8 64 0 1 73 

M
o 8 0 20 56 1 0 77 

9 20 11 1 0 0 32 
10 50 31 3 0 0 84 

Total 70 121 672 60 9 932 

4. Generative Adversarial Networks 

Generative Adversarial Networks have been gaining popularity in recent years, since 
their inception in 2014 [23]. The GAN, in its most basic form, is two neural networks that 
are trained simultaneously, a Discriminator and a Generator. The Generator, G, captures 
the data distribution by testing the generated samples on the Discriminator, and the 
Discriminator, D, estimates whether the sample came from the training data, or from G. 

When training the GAN, G has the objective of maximizing the probability that D 
will make a mistake, while D has the objective of maximizing the probability that it can 
identify a generated, fake sample from G. Thus, this creates a minimax, two-player game. 
GANs are designed so that they reach a Nash equilibrium [24] where each player cannot 
reduce their cost without changing the other players’ parameters [25]. In practice, a GAN is 
successfully trained once G has adequately recovered the training data distribution, while 
D outputs a confdence result of 50% when presented with either a training data sample, or 
a sample from G. 

In this work, the majority of training methods are based on the Wasserstein GAN [26]. 
This is a method that changes the loss function from that of a Jansen–Shannon function 
to a Wasserstein function. By doing this, the risk of experiencing ‘exploding’ gradients is 
negated. ‘Exploding’ gradients occur in GANs during training and causes the gradients 
in both the discriminator and generator to diverge and tend towards infnite values, thus 
rendering training a fruitless task. 

5. Ped-Cross GAN 

This section introduces the second contribution of this paper. Building upon the 
foundations of GANs outlined in Section 4, a novel GAN architecture is defned. This 
novel GAN, named Ped-Cross GAN, is used to generate human pose crossing sequences 
in sequence lengths of 5 at a time. These sequences can either be from entirely newly 
generated human pose sequences, or the pose sequence can be generated from a given 
starting and end pose extracted from the original pedestrian scenario dataset. 

The GAN itself is formed of a Discriminator and Generator. The novelty of the Ped-
Cross GAN comes from the architecture from within the Generator. This is defned in 
Section 5.1. The training and decisions around training are outlined in Section 5.2, and the 
hyperparameters are then defned in Section 5.3 to allow reproducibility of the results. 

5.1. Network Architecture 

Traditionally, the Generator, G, in a GAN is provided with random noise, Z, which is 
then passed through the generator to put the data points in the order or orientation that 
the Discriminator, D, can understand. In this task, G has two requirements: It needs to 
generate human like pose structures and to make sure sequential human pose structures 
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are plausible for generating the movement of a human being. These are two diffcult tasks 
for the GAN to succeed at, therefore, a method was devised that approached this challenge. 

Instead of completing both tasks at the same time, that of generating a human pose 
and putting those poses in a plausible sequence, it was decided to segment the task of 
generating the human pose, and to do this in a previously trained GAN. Using the GAN 
created by Spooner et al. (2019) [27], a human pose generator was trained as per the training 
criteria outlined in that paper. 

A single generated pose then formed the input data for G in the Ped-Cross GAN. The 
same pose was duplicated the number of times for the desired sequence required from 
the GAN. For instance, the results in this paper are based upon the generation of a pose 
sequence of fve poses, therefore, the starting generated pose would be duplicated so that 
the starting input in G was fve of the same poses. 

Before the poses were passed from the pretrained pose generator to G in the Ped-Cross 
GAN, they were checked for anatomical accuracy, such that the generated poses were 
human like. If they were not, then samples were generated until a suitable set of poses 
were generated. This ensured that every human pose that G and D saw was human-like, 
and thus, signifcantly simplifying the training required in G. 

For G in Ped-Cross GAN, the network architecture is a fully connected, feed-forward 
four layer network, which takes input as a sequence of fve human poses and outputs at 
the same dimension. The total number of neurons in the network was 6996. Due to feeding 
in already generated human poses, the task of the generator is to learn the distribution 
of the training data, which the discriminator learns. The task for G is more of a task of 
adjusting and reordering the generated poses into an order that will fool D. 

For D in Ped-Cross GAN, the network architecture was based around a Long-Short 
Term Memory (LSTM) network. The LSTM has been well used in similar sequential, 
time-based machine learning problems. It is well regarded for its ability to retain relevant 
information over a period of time steps. Introduced for the frst time in 1997 [28], they have 
been used extensively in machine vision tasks and more recently in GANs [29]. The LSTM 
used as D in Ped-Cross GAN was a single layer LSTM with 400 hidden units, with a fully 
connected output layer to extract the classifcation score. A diagram of Ped-Cross GAN 
can be seen in Figure 5. 

Figure 5. Schematic of Ped-Cross Generative Adversarial Networks (GAN). 

5.2. Training 

For training and testing of the Ped-Cross GAN, a simplifed version of the dataset was 
selected. The reasoning behind this was to frst prove the concept of generating new pose 
sequences based on a main movement, before extra classes we added. Extra classes, such 
as those outlined in Table 4 and 5 fall out of scope for the results presented in this paper 
however they will form the basis of future research. 

For this research, it was decided that a sequence length of fve frames would be 
adequate for training the GAN and generating samples. The reasoning for this was that 
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after every fve frames, if a practitioner was to want a longer sequence, they would be 
able to use the fnal frame of the fve as a starting point for the next fve frames, and so on. 
Therefore, subsequent generated poses could, in theory, be generated indefnitely until the 
desired sequence length was achieved. 

As a result, the only class labels that were used were from the primary movement 
class. From inside this primary movement class, we used Class 1 (Crossing from the left) 
and Class 4 (Crossing from the right), as seen in Table 3 and Figure 1. This resulted in a 
sample size of 206 sequences for crossing from the left and 271 sequences for crossing from 
the right. The sequences are all of varying lengths, as can be seen in Figure 4. Therefore, by 
only taking fve frames from each sequence in each class would mean losing an enormous 
amount of useful data from the respective samples. 

The decision was made to slice each sequence in each class into subsequent sequences, 
all with a length of fve frames. This drastically extended the usable dataset for the two 
classes at hand. Further to this, during the curation of the dataset, it was noted that in 
the majority of examples, it would take several frames for the pedestrian to begin their 
characteristic movement for the specifed class and several frames at the end of each 
sequence where the characteristic movement was not recognizable. Therefore, to negate 
this immeasurable drawback, 10 frames from the beginning and 10 frames from the end of 
each sequence were removed and not considered in the training of the GAN. The resulting 
samples for each class were 4268 for Crossing from the Left, and 4749 for Crossing from 
the Right. 

To create a meaningful training and testing set to evaluate the success of Ped-Cross 
GAN, the dataset was divided in to two subsets, 80% for training and 20% for testing, as 
is the convention with deep learning algorithms. An equal distribution was randomly 
removed from both classes, culminating in 7215 samples for training, and 1802 samples for 
testing. This testing set will be used to validate the GANs results in Section 6.1. 

5.3. Hyperparameters 

The hyperparameters for the Ped-Cross GAN have been fnely tuned to provide 
optimal results, which can be seen in Section 6. Throughout training, Stochastic Gradient 
Descent (SGD), ADAM optimizer [30], and the RMSProp optimization algorithm [31] were 
all used and compared. For the training of Ped-Cross GAN, it was found that RMSProp 
provided the most optimal results. RMSProp provided far more stable training with the 
loss from the Generator tending towards zero, whereas ADAM and SGD experienced some 
volatility. Both the discriminator and generator used the RMSProp optimization algorithm. 

The sequences were trained at a length of fve frames, such that D would see sequences 
of fve frames from the Pedestrian Scenario dataset, and G would feed in fve poses with 
the ambition of creating a pose sequences that matches the distribution of the Pedestrian 
Scenario dataset. 

Ped-Cross GAN was trained for 5000 epochs, during each epoch, D would see samples 
from the Pedestrian Scenario dataset fve times for every time it would see a generated 
sample. This is due to the way the GAN trains. If the two are trained to the same level, it 
means that G would become too good at fooling D too quickly, sometimes even quicker 
than D has time to learn a meaningful distribution from the dataset. By creating this 
imbalanced game, it forces G to work harder to fool D, as D will have a much better idea of 
what a true sample looks like. For this research, a 5:1 training ratio was found to be the 
right balance. It was found that if D was trained more than this, D became too good at 
identifying the generated samples from G, hampering the training of G. 

Other notable parameters were the learning rate, which was set at 0.0001, and the 
batch size, which was set to be 32. 

6. Ped-Cross GAN Results 

In this section, the results for the Ped-Cross GAN will be introduced and analyzed. To 
deliver insight in to the generated results, the results are validated in a number of ways, 
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which will be outlined in Section 6.1. The validated results themselves will be shown in 
Section 6.2, while selected generated results will be shown in visual form in Section 6.3. 

6.1. Validation Method 

When training and testing GANs, it is important to avoid a self fulflling prophecy. 
That being, when the generated results are tested on the very same data in which the 
discriminator was trained using in the GAN itself. To avoid this, the subset of the Pedestrian 
Scenario dataset was divided, to keep 20% of the samples to one side, so that they could 
be used for testing and validation. In this case, this meant that 1802 testing samples were 
available, 1802 samples which Ped-Cross GAN would have never seen prior. 

The fully trained Ped-Cross GAN is capable of generating as many, or as few, new 
samples as is required. For that reason, several different number of samples were generated 
for testing the success of the GAN. While 5000 samples for each class was the number of 
samples that provided the most favorable and balanced results, validation efforts were also 
carried out on fewer and greater samples for each class. 

The validation methods used were in the form of a simple LSTM classifer network. 
This network would see each pose sample in a sequence length of fve, and output a 
classifcation score. In this case, the classifer would classify whether the pose sequence 
was one of crossing from the left, or a pose sequence of crossing from the right. 

The architecture of the validation LSTM was very similar to the LSTM in the discrimi-
nator in Ped-Cross GAN. The reason for this is that both networks are essentially doing a 
very similar classifcation task. The discrimintator in Ped-Cross GAN is trying to classify 
between two classes, whether a sample is real or fake. Whereas, the validation LSTM is 
also classifying between two classes, the two movement classes previously defned. 

Therefore, the LSTM was constructed as a single LSTM block, which contained 400 hid-
den units. It accepted an input dimension of 34, a sequence dimension of 5, and an output 
dimension of 1. The only slight difference between this LSTM and the discriminator was 
that of the fnal layer. In the discriminator, a non integer value on the classifcation was 
acceptable as the Generator could use this to learn. In this LSTM, a frmer decision on the 
classifcation of a sample was desired, so therefore the fnal layer was a fully connected 
layer, with a softmax activation function, so that the classifcation for any particular sample 
would be mutually exclusive of any other class. The classifer was trained with a batch size 
of 16 and for 20 epochs. 

This validation using the classifer was carried out in two ways. The two methods 
sound very similar in practice, however they harbor different results and importantly, 
different insights that can be taken from the training in Ped-Cross GAN. 

The frst validation method was to train the classifer on the 1802 samples, which 
were kept from the Pedestrian Scenario dataset. This trained classifer was then used to 
test the 10,000 newly generated samples from Ped-Cross GAN. This will be called normal 
validation throughout the discussion. 

The second validation was to train the classifer on the 10,000 newly generated samples 
from Ped-Cross GAN. Then this trained classifer was used to test how well it could classify 
the real 1802 samples kept aside from the Pedestrian Scenario dataset. This will be called 
reverse validation throughout the discussion. 

6.2. Validation Results 
6.2.1. Normal Validation 

The method for normal validation was that of training the classifer on 1802 samples 
in the testing set from the Pedestrian Scenario dataset. The classifer was then tested on 
the generated samples from Ped-Cross GAN. The number of correctly classifed samples 
would give an indication into the capability of Ped-Cross GAN. 

Over the 20 epochs of training, it can be seen in Figure 6, that the classifer trains well, 
and begins to converge at around 10 epochs. 
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Figure 6. Classifer training for normal validation. 

Following training on the 1802 real data samples, 10,000 generated samples from 
Ped-Cross GAN were classifed. Figure 7 shows the results for the generated samples. It 
can clearly be seen that the generated results have performed well, scoring an overall 
correct classifcation rate of 99.2%. Out of the 10,000 samples tested, only 40 samples were 
classifed incorrectly. 

Figure 7. Results of generated/real samples on trained classifer. 

Therefore, these results highlight that the Generator in Ped-Cross GAN was able to 
replicate the training distribution of the Pedestrian Scenario dataset well enough to score 
very highly when classifed against never before seen data. 

6.2.2. Reverse Validation 

The method for reverse validation was to test the 1802 real samples from the Pedestrian 
Scenario dataset on a classifer trained entirely on data generated as a result of Ped-Cross 
GAN. The same 10,000 samples that were generated for the normal validation were used 
to train the classifer. 
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Figure 8 shows the accuracy of the model throughout training of the classifer. It can 
be seen that the classifer registers a classifcation accuracy of 100% after just 3 epochs, on 
a dataset of over 10,000 samples. This can be regarded as a somewhat surprising result, 
considering the number of generated samples that the classifer was trained on. 

Figure 8. Classifer training for reverse validation. 

In the opposite way as the normal validation, the reverse validation used the classifer 
trained on generated data to test the real data in the testing subset of the Pedestrian Scenario 
dataset. Figure 9 shows the confusion matrix of the results. It can clearly be seen that 
the results do not offer the same refection on Ped-Cross GAN, as the results from the 
normal validation method. In this instance, the classifer correctly classifed 1176 real poses 
correctly out of a possible 1802 and therefore misclassifed 626 poses. This resulted in an 
overall accuracy of 65.26%. 

Figure 9. Results of real/generated samples on a trained classifer. 

6.3. Visual Results 

The results presented in Sections 6.2.1 and 6.2.2 show a disparity in results when 
attempting to validate Ped-Cross GAN in two very similar ways. One way to display some 
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of the reasons behind these two results is to visually inspect some of the generated samples, 
and to try understand why they led to the results seen in Section 6.2.2. 

The generated pose sequences in Figure 10 and 11 have been chosen by the authors of 
this paper. After viewing hundreds of samples, the pose sequences were cherry picked, 
with a view to give a good idea of what was observed in the generated pose sequences. 

It is clear to see that the Generator in the Ped-Cross GAN has provided some errors, 
especially when looking at Class 1 (crossing from the left). Figure 10 shows some selected 
generated pose sequences. In the frst four rows, the results are promising, where it clearly 
looks like a human crossing from the left. However, when consulting the fnal four rows, 
there are several issues that are clearly apparent. Specifcally, row 6 appears to start the 
generated sequence well, before it encounters an error, which causes the human-like form 
to disappear. 

The results in Figure 11 are far better. Unlike Class 1, Class 4 (crossing from the right) 
did not show any erratic visual errors. In all the visual trials, not one observed sample from 
Class 4 appeared to show any great error. On the one hand this is a good result, it means 
that some confdence can be had in Ped-Cross GAN and how it had applied its learning 
to its Generator. However, on the other hand, it is noted that there is a strong similarity 
between generated sequences for crossing from the right. 

Figure 10. Selected generated poses for Class 1. 
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Figure 11. Selected generated poses for Class 4. 

7. Discussion 

The results presented in Sections 6.2.1 and 6.2.2 both show very different refections 
for how the Ped-Cross GAN has been trained. This section will look into some of the 
reasons as to why such results were attained. 

7.1. Normal Validation 

The results for normal validation are good. Reporting a classifcation accuracy of 
99.2% shows that the Ped-Cross GAN was able to excellently replicate the distribution of 
the Pedestrian Scenario Dataset. Therefore, if there is a confdence in the human nature 
of the poses in the dataset, then there is confdence in the human nature of the generated 
poses. 

For the classifer to output a classifcation accuracy of 99.2%, the correct classifcation 
of so many of the erratic pose sequences, seen in Figure 10, cannot be attributed to chance. 
It is highly unlikely that the classifer would be able to guess the correct classifcation of 
these pose sequences to the degree of only making 40 errors out of 10,000 samples. It is, 
therefore, possible to conclude that these erratic pose sequences must already exist in the 
pedestrian scenario dataset and that the errors must be so prominent that examples of the 
errors were present in both the training and testing subsets. It is ineffcient to visually check 
over 100,000 poses, a cursory check of the pedestrian dataset highlighted that there were 
these errors present in the dataset. It is therefore possible to conclude that the anatomical 
rules outlined in Section 3.1.2 are not stringent nor strenuous enough. 

On the one hand, this conclusion can be regarded as negative, however it is also 
positive from the perspective of the training that occurred in the Ped-Cross GAN. For the 
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Ped-Cross GAN to be able to generate an array of different pose sequences, which were 
able to score 99.2% on the trained classifer, means that the training in the GAN can be 
regarded as a success. It could be construed that the erratic results, seen in Figure 10, are 
a refection of how well the Ped-Cross GAN trained. Not only was it able to generate 
plausible, human-like pose sequences in rows 1–4, but the knowledge gained was such 
that it was also able to replicate the pose errors apparent in the dataset. This, therefore, 
means that when trained with the correct anatomical data, the Ped-Cross GAN would be 
capable of generating new pedestrian crossing scenarios which can be used for simulated 
testing of CAVs. 

7.2. Reverse Validation 

In normal validation, the classifer was trained on the full variety of sequences cap-
tured in the two classes. When tested on the generated samples, because a vast number of 
samples were very similar, this meant that they would have been captured by the same 
neurons in the vector space of the classifer. In other words, when the normal classifer 
correctly classifed one sequence, it would also have no trouble in correctly classifying all 
of the other generated samples that were similar to the frst. The same would apply for all 
slight variations in generated samples. 

As we know, the reverse validation does the exact opposite of this. Now that it is 
known that many of the samples are similar to one another, it means that the variation in 
data available to the classifer is limited. Therefore, when it comes to testing the 1802 real 
samples, the variation in the test data is far richer than that of the generated pose sequences 
used to train the classifer. Thus, it struggled to effectively classify the real samples, 
resulting in an accuracy score of 65.26%. 

For reverse validation, the results did not prove to be as good as those presented by 
the normal validation. This is due to a number of factors. The main factor identifed relates 
to the variation, or lack thereof, in the generated results. 

By consulting the visual results shown in Figure 11, it is clear that many of the 
generated sequences are very similar. Naturally, in a crossing scenario, so tightly labelled 
as is in the case of those used from the Pedestrian Scenario Dataset, it would be expected 
that the generated samples would look fairly similar. However, upon a visual inspection of 
the results, the generated pose sequences were far more similar than expected. It appears 
to show that the generated pose sequences are all very slight variants of the same precise 
movement. 

It shows that the Ped-Cross GAN was able to learn the inherent nature of the class 
that it was asked to generate. However, it is apparent that it has simplifed the knowledge 
learned to satisfy a few examples and is good enough to fool the discriminator during 
training, but is lacking the variation expected. 

7.3. Training of Ped-Cross GAN 

The failure to generate enough variation in the samples created the issues observed in 
the results. If the GAN is not able to vary the samples which are output, then the worth 
of the GAN is diminished. The advantage of using GANs is that you can generate new 
samples and data points based on the learning from real data. The generated data points 
should fall within the scope and distribution of the real data. The generator should be able 
to generate samples across the full range of distribution of a dataset, and not localize about 
a single area within the data distribution, as it appears to have done so in this training. 

This is a common issue in the training of GANs and one that is not always simple to 
rectify. The explanation for the issue is a simple one. The generator, G, has a sole purpose 
to fool the discriminator, D. As is the same when playing or conducting any game, when 
the player devises a strategy to win the game, the player will continue to use this strategy, 
as it is proven to lead to success. The minimax game completed between G and D in a 
GAN is no different. When G has fgured out a way to fool D, it will continue to focus on 
this route so that it can prolong its success. In the case of Ped-Cross GAN, the successful 
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arrangement of data points to fool D appears in the form of the similar pose sequences, as 
seen in Figure 11. 

The results presented in this paper have encountered this issue mainly due to over-
simplifying, what is complex human pose sequence data, into just two classes. When 
this research progresses, and more classes are added from Table 4 and 5, this will enable 
almost every pose sequence to be different from each other. By being able to differentiate 
between the samples, the generator will have far more information to learn from, creating 
a multi-dimensional vector space, rather than the simple two-dimensional space created in 
this paper. 

Further to this, amendments to the training parameters of the GAN can be made. 
Namely to introduce weight clipping and penalties to the generator when it over performs. 
This effectively means that each time G signifcantly fools D, G will be punished such that 
it is discouraged from continuing to force itself down the same route. This is akin to closing 
the door on that route, but not locking it, and given the correct input noise, G would still 
be able to use this route, however with other input noise, it will have to fnd another way. 

The results from the Ped-Cross GAN have highlighted promising research avenues, 
as well as shone a light on aspects that need improvement. It is clear that the Ped-Cross 
GAN is very capable of learning the movement of a pedestrian in human pose form, and 
to then generate new pedestrian crossing scenarios based on a given label. Not only was 
the Ped-Cross GAN able to learn how to generate new pedestrian crossing scenarios, but it 
was able to do so in a manner which was indistinguishable from the Pedestrian Scenario 
dataset, as seen in Section 6.2.1. However, visual results have highlighted the need for 
more rigorous anatomical tests to be completed on the Pedestrian Scenario dataset. The 
anatomical tests used in this research are seen in Section 3.1.2. 

8. Conclusions and Future Work 

In the research area of autonomous vehicles and automated driving, the challenge 
of addressing pedestrian safety will always be a diffcult task when implementing new 
technology. To implement such new technology on the roads used by millions of people 
everyday requires extensive testing, validation, and verifcation, all of which can only be 
completed with adequate data for the task at hand. 

When testing such technology, there are a multitude of diffculties to consider, such as 
testing for rare events. It is not feasible, nor safe, to conduct real world testing of scenarios 
such as those including children or drunken pedestrians, therefore, these tests must be 
conducted in simulation. However, testing in simulation is not without its own issues. 
Hard coding a test by an engineer introduces a bias into that test, which limits the fdelity 
of a test to that very specifc scenario, or the very issue of where the relevant scenarios 
come from. There is a need for CAVs to be able to identify the fner details of a pedestrian, 
such as intent and other factors that may affect their movement. 

The research presented in this paper aims at tackling that issue. The Ped-Cross GAN 
has demonstrated the ability of a generative adversarial network to generate new pedestrian 
crossing scenarios in the form of human poses. The results highlighted in Section 6 show 
the encouraging performance in generating new pedestrian crossing scenarios, as well as 
some short comings that will become the basis of future research. 

With the introduction of the Pedestrian Scenario dataset, the specifc movements, 
behaviors, and descriptives of pedestrians is captured and extensively labeled. These 
additional labels take the datasets from simple video data to identify a pedestrian in an 
image, to an extensive dataset which will show insight into how pedestrians act and behave 
in a road environment. 

After disseminating the results, it is clear that there are some issues that need address-
ing, namely the confdence in every human pose in the dataset being anatomically true. 
Given the poses generated and displayed in Figure 10, it is clear that the anatomical rules 
outlined in Section 3.1.2 were not extensive, nor strenuous enough. 
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Following the correction of the dataset, this research will progress to improve on the 
Ped-Cross GAN, and implement additional labels, as seen in Table 4 and 5. This could 
drastically improve the use case for the Ped-Cross GAN. 

The ultimate objective for this research is to be able to train the Ped-Cross GAN to a 
point where a practitioner will be able to generate new pedestrian crossing scenarios which 
may have not been captured in video data. They will also be able to generate rare and 
important crossing events and scenarios, such as those involving elderly people, where the 
available data is limited. 

It is envisaged that these generated pose sequences will be used in simulated environ-
ments, to test and validate the connected and autonomous vehicles, such that they are able 
to perform in a safe manner on our roads. This will enable the simulation of rare events, 
frstly, in a safe controlled environment and secondly, without ever needing to capture the 
rare event ‘in the wild’. 
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