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Abstract 

Purpose: This paper describes the design and experimental evaluation of the MAESTRO thorax phantom, a new 

anthropomorphic moving ribcage combined with a 3D tumour positioning system to move target inserts within static 15 

lungs. Material and Method: The new rib cage design is described and its motion evaluated using Vicon Nexus, a 

commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib 

motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. 

Each axis of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in 

terms of amplitude, period and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 20 

mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm RMSE. The agreement 

between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. 

Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which 

can be synchronised with 3D internal target motion. The easily accessible static lungs enable the use of a wide range 

of inserts or can be filled with lung tissue equivalent and deformed using the target motion system. 25 
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I. INTRODUCTION 

 

IGRT and ART phantoms are used in radiotherapy to evaluate respiration induced external/internal motion 

correlation and prediction as well as the accuracy of radiotherapy equipment enabling the latter to deliver the 

appropriate dose at the correct instant in time. The timing and accuracy of the treatment delivery is particularly 35 

relevant in intensity modulation using photons or scanned protons beams which exhibit sharp dose gradients 1,2. 

Based on the aforementioned issues and on 3 the following eleven requirements were identified for a motion 

management radiotherapy research phantom. (i) Represent a suitable anatomical site, such as thorax and abdomen, 

including realistic human anatomy and tissue equivalent material. (ii) Generate 3D translational and 3D rotational 

motion. (iii) Generate programmable regular motion to address the reproducibility of motion compensation and 40 

tracking strategies. (iv) Generate human-like trajectories with a naturally wide variability (period: [0.2, 0.3] Hz; 

amplitude: [3.9, 18.5] mm (SI), [0, 9.4] mm (AP) and [1, 10.5] mm (LR)8; velocity: [5, 15] mm.s-1 and acceleration: 

[10, 25] mm.s-2) 4,5,8 exhibiting both cyclic behaviour, with varying frequency as well as slow intra-fractional 

aperiodic trends which can be of greater magnitude than the cyclic signal 4-8. (v) Generate both internal and external 

motion with programmable degrees of correlation and phase shift. (vi) Include deformable parts/components to 45 

evaluate the effect of organ/structure deformation on motion detection algorithms. (vii) Be compatible with 

commercial and research motion monitoring systems; (viii) Be 4DCT and MRI compliant. (ix) Have extendable I/O 

signal interfaces to trigger motion start or beam gate output. (x) Have the possibility to insert devices to measure the 

dose distribution received by the target and some surrounding tissues, e.g. ionisation chamber(s), film(s) or gel 

dosimeter. (xi) Be compact and easy to set up.  50 

       To date, there is no phantom that fulfils all these requirements, see 3, 9-13 and references therein. Most phantoms 

are platform based and not anthropomorphic focusing on ease of use and compactness 3, 9. Others are much larger 

and exploit standard robotic manipulators to benefit from their inherent high accuracy when realising complex target 

motions 3, 14. Some phantoms focus on the use of deformable structures to achieve accurate body structure 

densities 12,13. The difficulty for phantoms using deformable material is to be able to generate a reproducible and 55 

accurate deformation. Despite the importance of rib motion in terms of high-density material interfering with the 
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beam path, only a few phantoms have a moving ribcage. By contrast with phantoms which achieve motion through 

deformation using pneumatic actuators, the MAESTRO thorax phantom, developed during the Framework 6 

European integrated project on Methods and Advanced Equipment for Simulation and Treatment in Radiation 

Oncology (MAESTRO), , moves each set of ribs mechanically. It fulfils the requirements (i) to (xi) with the 60 

limitation that only 3D translational motion can be generated and that the insert should be sufficiently small to fit in 

either the left or the right lung. The moving rib cage addresses, to some extent, requirement (vi), however, it is not 

the lung volume that changes but the volume between the skin/ribs and the static lungs. A combination of natural 

sponge, Dermasol, nylon wires and Lucite beads similar to 13 could however be mechanically deformed within the 

static lung for more challenging imaging studies with realistic lung densities. The Material and Method Section 65 

describes the phantom design and the experimental methods adopted to study the phantom motion and its practical 

use. The results section focuses on the novel rib cage motion characteristics. 

  

II Material and Methods 

II.A Phantom design and components 70 

The MAESTRO thorax phantom comprises two main components i) a motorised rib cage including eight sets of 

moving ribs, two stationary lungs, a trachea and a spine enclosed by a skin used to form a hermetic container which 

can be filled with water, leaving easy access to the lung cavities, see FIG 1 and FIG S1 in supplemental material; ii) 

a robotic arm which can apply 3D translational motion to a target within either the left or the right lung. The latter 

can be replaced by any other robotic device to generate the target motion or deform foam material within the static 75 

lungs. The phantom dimensions are: length (SI) 30 cm, width (LR) 32 cm, height (AP) increases from 18 cm at the 

superior end to 24 cm at the inferior end with a maximum of 45.5 cm high for the water overflow column added to 

allow for volume expansion during inhale-exhale phases. The dimension of the phantom enables it to fit in standard 

linac as well as in a ring based gantry e.g. CT, MRI and VEROTM. The right and left lungs dimensions are SI 29 cm, 

LR 13 cm, AP 6 cm and SI 31 cm, LR 11 cm, AP 9 cm respectively. Target inserts include a film holder 6 cm 80 

diameter by 3 cm width and a build-up cap fitting in a cylinder 5 cm height and 3 cm diameter. However more 

elongated inserts could be used depending on the programmed motion given that the operating envelope is 13 cm SI 

by 6 cm AP by 6 cm SI. 
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A novel mechanism was developed to move the ribs. Each set of ribs pivots about a set of shaped plates (denoted ‘P’ 85 

in FIG. 1a and 1c) that are attached to the static frame of the phantom corresponding to the superior and inferior 

sides. The shaped plates were designed to allow each set of ribs to rotate synchronously with the upper ribs moving 

less than the lower ribs. The bottom parts of the ribs are fixed onto a frame using pivots. The frame is moved along 

the SI direction by a stepper motor (23HSX-306) fixed onto an overflow column (Fig. 1d). The relatively small 

motion of the frame is amplified according the distance between the pivot representing the centre of rotation and the 90 

bottom pivot attached to the tray. The motion of the ribs about the pivots results in both SI and AP motion with 

some residual LR motion see FIG 1a-c.  

 

FIG. 1. MAESTRO thorax phantom rib motion mechanism: a) 3D CT study at exhale showing the shaped Perspex 

frame, denoted ‘P’, onto which the pivots are fixed; b) CAD diagram of the thorax illustrating the motion for ribs 3-95 

4 and 15-16. The ribs, attached to the base of the frame (small black discs), rotate about the pivots (large black 

discs) due to the linear motion applied in the SI direction (see c). The dashed lines represent the centre position and 

the plain lines represent the exhale position. c) Bottom view of the phantom showing the Perspex frame moved by a 

stepper motor, denoted M in d), through a belt and screw mechanism to convert rotational to translational motion. d) 

Phantom with infrared markers tracked by the VICON Nexus system to characterise the ribs motion. 100 
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The bottom, front and rear of the phantom as well as the water expansion column are realized with Perspex. The 

skin is composed of latex reinforced with gauze. To prevent skin expansion due to the large volume of water 

contained within the phantom a 2 mm skin, shaped by painting latex onto gauze positioned onto a phantom cast, was 

sewn to each set of ribs. The skin bellows (see FIG 1d and S1b) were designed to accommodate ribs motion. The 105 

spine, ribcage, the inner spine and the cartilage were manufactured using 45, 31, 5.7 and 1.5 % of CaCO3 (2.71 

gcm−3) mixed with Epoxy resin (1.07 g.cm−3) respectively based on 17-19 and experimental verifications to adjust the 

compounds ratio.  

To date three types of inserts have been used to perform dosimetric and motion studies. Wax blocks were used to 

insert thermo luminescent dosimeters (TLDs) or an ionization chamber. A film holder, attached to the slider system 110 

using two parallel rods was used to simulate and measure dose delivered to a moving target with and without motion 

compensation 15. The film holder enabled the insertion of a 5 cm diameter film. A build-up cap was used to enable 

the installation of an ionization chamber and provide accurate point dosimetry, see FIG. 2 as well as position 

fiducial markers and assess their detection.  

 115 

FIG. 2. Phantom inserts: a) 3D slide system attachment for lung inserts (1), ionisation chamber insert (2), inserts for 

5cm diameter film (3,4); b) wax blocks for TLDs (5-7) or ionisation chamber (8). 
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The target motion system was constructed using three slides (Unislide, LG motion, Basingstoke, UK) supported by 

high precision linear rails and driven by a 23HSX-102 stepper motor via a lead screw. Gear boxes were added to the 120 

SI and AP directions in the ratio 1 to 3 and 1 to 2 respectively to accommodate the velocity and acceleration 

required. Position sensors were subsequently added onto each axis to (i) enable position feedback control and (ii) to 

synchronise the recording of position measured by the phantom and external devices. A Windows laptop-based open 

loop control system was developed using LabVIEWTM to drive each stepper motor through either a 6024E PCMICA 

card connected to a SC-2075 or a NI USB-6229 DAQ. The latter provides a large number of analogue and digital 125 

signals to synchronise the phantom with external systems. Each axis of motion of the 3D slide and the ribcage can 

perform different trajectories calculated based on mathematical models implemented in LabVIEWTM, MATLAB®, 

Scilab or loaded from a file (ASCII text or spread sheet). The software re-samples and quantizes each trajectory to 

accommodate the velocity and acceleration limitations imposed by the phantom drive mechanism. 

 130 

II.B Phantom motion evaluation  

The phantom motion was evaluated using three different methods. Motion of the 3D slide system controlling the 

target motion was evaluated using a position sensor LIPS P 103, Positek Cheltenham, UK which exhibited fast 

response and a high accuracy (http://www.positek.co/Specs/p103spec.htm). Motion of the ribs at the locations 

denoted as S15-16 in Fig. 1 was evaluated with the same sensor. Motion of the 2D slider driving the ribs was 135 

evaluated using an in-house video tracking system. The overall external 3D rib cage motion was evaluated using a 

VICON system (http://www.vicon.com/). The system used 12 VICON MX40 cameras with the VICON Nexus 

software v1.7 to capture images at 30Hz and determine the 3D position of 12 markers located in the middle section 

(sternum) as well as the left and right sides of the phantom ribcage, see FIG. 1d. The stated absolute accuracy was 

0.5 mm; however, it is our experience that better relative accuracy can be achieved. The range of motion was 140 

obtained by moving the phantom manually between the maximum inhale and exhale positions. Motion linearity was 

evaluated by comparing the signals sent to the rib cage with that measured by the VICON or the LIPS P 103 position 

sensor fixed onto the set of ribs corresponding to location S15-16. To illustrate the wide range of signals that can be 

programmed or loaded from file and accurately reproduced, a sinusoidal waveforms and an irregular motion based 

on a bilinear model 15, 20 were generated by the phantom and measured using the VICON system. The latter 145 

trajectory was then used to evaluate the ability of the rib cage and 3D target positioning system to produce arbitrary 

http://www.vicon.com/
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motion for long periods of time.  Motion reproducibility was evaluated by comparing measured motion in 

subsequent cycles. The root mean square error (RMSE) was calculated to characterize the difference between each 

cycle. The effect of the rib motion on the phantom geometry was evaluated by performing CT scans, with a 

TOSHIBA Aquilion/LB helical CT, at inhale and exhale positions. Pixel spacing was set to 1.0740 mm and slice 150 

thickness at 2 mm. The phantom skin outline was delineated and its area calculated for each CT image to visualise 

the effect of rib motion and compare the corresponding CT image at inhale and exhale. MATLAB and its Image 

Processing Toolbox V 8.2 were used to perform the automatic outlining and area calculation using a combination of 

edge detection and mathematical morphology. 

 155 

III. Results 

III.A Target inserts motion characteristics 

The maximum ranges of motion of the sliders are 125 mm (SI), 88 mm (AP) and (LR), however when used in 

conjunction with the rib cage to move a target within one of the lungs, the range of motion is limited by the internal 

dimension of the lungs, see Section II. Such a large range is however useful to evaluate the effect of drift on motion 160 

management. The 3D slide resolutions are 0.016, 0.0050 and 0.015 mm/step and the maximum velocities are 16, 5, 

and 15 mm/s, at 1 kHz sampling frequency, for the AP, LR and SI directions respectively. Fig.3 illustrates the ability 

of the phantom to apply sinusoidal waveforms of different amplitude and phase shift concurrently. It exhibits an 

acceptable repeatability with RMSE between successive cycles in the range [0.1, 0.16] mm for the sinusoidal 

waveform compared to [0.003, 0.013] mm an the immobile marker There are no issues with the linearity of the 165 

slider, as the waveforms produced by the slider are identical to the one generated by the phantom control system. 

Similar findings were obtained for the third axis of motion (LR). 
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FIG. 3. 2D repeatability of the slider motion for AP and SI using a sinusoidal waveform with period 6.3s, SI 170 

amplitude 14 mm and AP amplitude 12 mm over three successive cycles c1, c2 and c3.  

 

 

III.A Rib motion characteristics 

The maximum amplitude of motion for each pair of ribs ranges from 7 to 20 mm in SI, and from 1 mm to just under 175 

4 mm for AP with LR motion being of the order of 1 mm, see Table 1. In applications requiring larger amplitude in 

AP, the AP motion can be increased by converting some of the SI motion into AP motion by locating the phantom 

on an incline (4DCT commissioning) or fixing a flexible plastic film between the ribs S15-16 and the frame of the 

phantom (experiment with VERO).  

The relationship between the signal sent by the control system and the resulting ribs motion in SI and AP is slightly 180 

nonlinear due to the geometry of the pivot mechanism and the existence of some backlash, see FIG. 1. This 

nonlinear response results in flat topped slightly distorted triangular waveform for a triangular signal sent to the 

motor drive. The motion nonlinearity is consistent and not significantly affected by the speed of the ribs, see FIG. 4. 

To overcome the effect of backlash the velocity of the drive can be artificially increased, see sharp change of 

direction achieved at 35 s in FIG. 4. The rib motion is reproducible and repeatable with RMSE between the first and 185 

successive cycles of a sinusoidal signal being of the order of 0.08 mm, see FIG. 5 and in the range [0.04, 0.16] mm 

for the signal shown in FIG 4.  

 

TABLE I. Range of motion of the rib cage for sensor location indicated in Fig. 1d. 
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Marker location 
Motion 

[mm] S 3
-4

 

R
3 

R
4 

S 7
-8

 

R
7 

R
8 

S 1
1-

12
 

R
11

 

R
12

 

S 1
5-

16
 

R
15

 

R
16

 

SI  7.2 2.5 2.1 11.4 8.3 7.8 19.6 11.9 12.1 20.0 11.4 9.8 
AP 0.9 0.8 0.9 0.5 0.6 0.7 2.6 2.2 1.4 3.7 2.3 2.0 
LR 0.8 0.5 2.2 0.8 0.5 0.9 0.8 1.4 0.9 1.3 1.1 0.8 
  190 

 

FIG. 4. Nonlinear relationship between the signal sent to the stepper motor to move the ribs and the main rib motion 

in SI: (Top) normalised input trajectory sent to the rib motor drive system; (bottom) resulting position measured by 

position sensor LISP P 103. 

 195 
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 205 

FIG. 5. Rib cage motion linearity and repeatability for markers located in S15-16 (left column) and R15 (right 

column), see FIG. 1a. The correlation between SI and AP motion increases with the amplitude of motion and 

depends on the shape of the fixed plate supporting the pivots around which the ribs rotate. The location of the 

marker R15 near the pivot mechanism results in smaller amplitudes than observed for S15-16. 

 210 

 

The reproducibility of the rib cage motion for a statistically generated signal based on a bilinear model 20 is shown in 

Fig. 6a. The samples between 3000 and 500 correspond to the portion of the signal acquired by VEROTM using 

external markers (Fig 6b-d) to establish a correlation model with the fiducial marker position obtained by the kV X-

rays. This experiment demonstrated the simultaneous motion of the 3 axes of the target positioning system as well as 215 

the rib cage. 
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a) 

 220 

 b)                                                            c)                                                   d) 

FIG. 6. a) Irregular signal of varying period, amplitude and frequency generated by the phantom and measured (30 

Hz sampling) at point S15-16 using the VICON system (http://www.vicon.com/) for three successive repetitions (c1-

c3). b-d) Extracts from the VERO 4D modelling module (pre-clinical version) showing a) motion correlation 

between external (cyan/light grey) and internal markers (orange/dark grey). b) External reflective markers located on 225 

the MAESTRO thorax phantom; c) Fiducial marker located on ionisation chamber insert monitored with kV-X-ray.  

III.B Effect of rib motion on CT geometry 

http://www.vicon.com/
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The ribs motions create a variation in the phantom volume which is visualised by the change in area of the phantom 

outline for corresponding CT slices between the inhale and the exhale phases. FIG 7 illustrates this process using the 230 

CT images, at inhale and exhale, at index position 141. It can be observed that differences in area are up to 5% (4th 

peak from the right in Fig. 7 top). The CT automatic outlining (FIG. 7 bottom) can be challenging due the skin 

contour blurring effect created by the skin bellows used to accommodate for rib cage expansion, see Section II and 

S1.2. The evaluation of more challenging image processing tasks such as non-rigid registration and tracking would 

require more realistic material for the lung insert using an approach similar to 12. 235 

The CT image confirms the dosimetric accuracy of the substitute material with mean mass density and Hounsfield 

Unit for the cartilage (1.09 g.cm-3, 96 HU), the ribcage (1.47 g.cm-3, 472 HU), the spine hard bone (1.81 g.cm-3, 698 

HU) and spine inner bone 1.12 g.cm-3, 164 HU), being within 3% of patient data, see Table S1 and S2 in 

Supplemental material.  

  240 
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FIG.7 Effect of rib the motion on the area enclosed within the skin of the phantom: ‘o’ and ‘+’ represent the areas of 

the polygons obtained by contouring each CT image. The area enclosed within the outline of the CT images at 245 

inhale (bottom right) and exhale (bottom left) correspond to the points indicated by ‘×’ and ’∗’ (top). The different 

densities used to manufacture cartilage; ribs and spine are clearly identifiable together with the Perspex frame used 

to move the ribs.  

 

IV. Summary 250 

This paper has presented the MAESTRO thorax phantom, a new dynamic anthropomorphic phantom, for IGRT and 

ART, capable of replicating a wide range of realistic and independent 3D tumour and thorax motion. The ribcage 

motion is produced with a single actuator driving the SI motion, however the new rib design enables it to produce 

SI, AP and to a lesser extent LR motion. The new design enables each set of ribs to pivot about a frame shaped to 

produce individualised amplitude of motion. A specialist 3D tracking system was used together with a 1D position 255 

sensor and CT studies at inhale and exhale to assess the overall 3D rib motion. It was found that the maximum 

ranges of ribs motion are SI 20 mm, AP 3.7 mm and LR 1.3 mm. The upper ribs motion are 3 to 4 times smaller than 
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that of the lower ribs in term of SI and AP respectively. The relationship between SI and AP is approximately linear 

for ribs with large amplitude of motion. The rib construction leads to a slightly nonlinear response between the drive 

signal and the SI motion, the latter can however be linearized programmatically. The new rib cage design can 260 

deliver deterministic and reproducible rib motion. Each element of the phantom has been evaluated dosimetrically 

and found to be in good agreement in terms of tissue equivalence. To date the phantom has enabled the 

demonstration of couch motion compensation and the evaluation of different types of fiducial markers for motion 

correlation on an early prototype of the VERO tracking system. It is currently used for 4D CT commissioning at 

UHCW. 265 
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Supplemental material 

S1.1 Phantom components 

 

a) Internal structure of the phantom lungs, trachea, vertebrae and spine  325 

 

b) illustrating the use of bellows to allow for skin expansion 

FIG. S1.  

 

  330 
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S1.3 Linearity and reproducibility of slider motion 

 

 

FIG. S2 Illustrating the repeatability of motion for a given marker location on the rib and the relationship between 335 

motion in AP, SI and LR. The degree of correlation between SI and AP motion increases with the amplitude of 

motion and depends on the shape of the fixed plate supporting the pivots around which the ribs rotate, see Fig. 1f. 

The location of the markers R3 and R15 near the pivot mechanism results in smaller amplitudes than the markers 

S3-4 and S14-15 located on top of the phantom.   

 340 
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S1.3 Dosimetric study 

Skin and bone substitutes were initially evaluated for dosimetric fidelity. Skin was compared to epoxy-resin-based 

solid water.  345 

Bone substitutes were compared to the materials describe in references 16 – 19 and patients’ CT. Two types of CT 

studies were then realised. Initially the entire treatment process for the whole phantom was then simulated to 

identify the accuracy between calculated dose and delivered dose to the phantom. The process was as follows: 1) 

Scan the thorax phantom (General Electric Lightspeed CT scanner). 2) Plan two standard treatments to calculate the 

dose at key locations within the phantom (XVplan® treatment planning system). 3) Deliver a dose of 200 cGy per 350 

fraction to the middle of the gross tumour volume (GTV) using 6 MV photons from two Elekta linacs. 4) Measure 

the dose using a combination of a 6 MV build-up cap for an ionisation chamber representing the target in the middle 

of the left lung and three wax blocks inserted at different positions within the lung (see Fig. S2). Two 

thermoluminescent detectors (TLDs) were placed in each wax block. Blocks 1 to 3 enabled the positioning of two 

TLDs located at 1.5 cm either side to the centre of the target. Block 4 contained the ionisation chamber, one TLD 355 

placed anterior to the chamber and the other TLD posterior to the chamber at the isocenter position. The doses 

calculated by the TPS were then compared to the point doses measured in the phantom. The second CT study was 

aimed to evaluate the phantom motion as seen from the CT scanner and is described in the following sub-section.  

A dosimetric study was carried out to evaluate differences in the scattering and attenuation properties of the latex 

used for the phantom skin compared to human tissue. Standard epoxy resin based solid water was used as the 360 

substitute material of reference for soft tissue. The central axis depth dose curves for solid water and the latex were 

measured at a source to skin surface distance (SSD) of 100 cm for a 6 MV and a 25 MV photon beam with a 8 cm 

by 8 cm field size. For all measurements an ionisation chamber was placed in a slab of solid water at a depth of 1 

cm. Slabs of solid water or latex were placed on top of the chamber slab for comparative measurements in the beam. 

Slabs with 6 layers of gauze between the latex were manufactured to investigate the dosimetric effect of having 365 

gauze in some parts of the phantom skin. Both sets had a dimension of 10 cm by 10 cm. The following series of 

depth dose measurements were made: i) several thicknesses of solid water between 2 and 8 cm, ii) Several 

thicknesses of latex between 2 and 4.5 cm, iii) Several thicknesses of latex (between 2 and 4.5 cm) with 2 cm and 3 

cm of solid water on top to move the latex slabs out of the build-up region for 6 MV and 25 MV photons 
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respectively, iv) several thicknesses of latex with added gauze between 2.5 and 5 cm, v) Several thicknesses of latex 370 

with added gauze (between 2.5 and 5 cm) with 2 cm and 3 cm of solid water on top to move the latex slabs out of 

the build-up region for 6 MV and 25 MV photons respectively. Measurements were repeated three times for each 

set-up. 

 

Results 375 

The observed discrepancy in bone electron density is well within the variability that can be observed on patients’ 

CT. Considering the mean value only, the observed discrepancy would lead to dosimetric errors of less than 0.5%, 

confirming the acceptability of the bone substitute materials. The dosimetric discrepancy for the skin material was 

within ±0.5% for 6 MV photons and ±1.0% for 25 MV photons. A t-test at 95% confidence level was applied and 

indicated that there were no significant differences (P>0.05) in the mean values for all measurements.  380 

The whole-thorax dosimetric evaluation showed good agreements between the measured and calculated. TLD 

measurements were compared to calculated dose target giving maximum errors ranging from -2.69 % to 1.16% 

when the targets were located on the side of the lungs, see Table S3 in supplemental information. This was due to 

the difficulty in accurately re-positioning the target in the side of the lung compared to the middle of the lung. When 

target was positioned in the middle of the lung with the 3D slide system with maximum errors was reduced 1.06%, 385 

see Table S4 in supplemental information. In all cases the dosimetric evaluation met the designated target of ±3%.  

 

TABLE S1. Comparison between the mass density for the substitute material using data from ICRU Report 44 

(ICRU 1989) and data found in the literature e.g.*White et al 17, +Schneider et al18. Composition in % of weight for 

different bone substitute materials. The epoxy resin with hardener mixing ratio of 100:40 by weight 390 

Tissue (bone) type Mass density in [g.cm−3] Composition % weight 
  ICRU Report 44 Substitute     CaCO3 Epoxy resin 

Spine - inner bone 1.12* 1.03 1.13 5.7 94.3 
Spine - hard bone 1.85*  

 

1.92 1.81 45.0 55.0 
Ribcage 1.41 to 1.52+ — 1.47 31.0 69.0 
Cartilage — 1.10 1.09 1.5 98.5 
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TABLE S2. Substitute material HU, patients CT scans and a CT electron density phantom for different bone types; 395 

mean and standard deviation on 20 samples. 

Type HU (mean ± σ deviation) 
substitute patients    CT scans electron density phantom 

Spine - inner bone  164 ± 24 167 ± 43 239 
Spine - hard bone  698 ± 43 692 ± 131 263, 1202 

263, 1202 

  

 

Ribcage 472 ± 32 492 ± 183 
Cartilage 96 ± 3 102 ± 41 
 

TABLE S3. Dosimetric measurements with ionisation chamber for a target at the side of left lung. 

Plan Machine No. of 

set-ups 

% Average 

absolute deviation 

% σ % Range 

3 field H1 4 2.31 0.53 -2.69, -1.44 
3 field L1 4 2.55 0.02 -2.57, -2.53 
Spine H1 4 1.07 0.13 -1.16, -0.97 
 

TABLE S4. Dosimetric measurements with ionisation chamber for a target in the middle of the lung 400 

Plan Machine No.  

set-ups 

% Average 

Abs. dev. 

% σ % Range 

3 field H1 4 0.71 0.29 0.37, 1.06 
3 field L1 4 0.47 0.21 -0.68, -0.03 
spine H1 4 0.44 0.22 -0.45, 0.08 
 



2
   

22 

 

Fig. S2. Top: CT scans of thorax phantom, positions marked 1-3 indicate location of TLD and ‘Target’ in left side of 

lung being the insert or build up cap connected to the 3D slide system. Bottom: treatment plan obtained with 

XVplan corresponding to the situation illustrated in top left, left) 3 field plan, right) spine plan. The first plan (‘3 405 

field plan’) represents a typical treatment plan used for lung tumours and consisted of a parallel opposed beam pair 

with wedges and a lateral beam, Fig 2 (bottom-left). The second treatment plan (‘spine plan’) involves a posterior 

beam that passes through the spine, Fig. S2 (bottom-right).  

 

410 
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