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Abstract

Virtual machine placement (VMP) is an important issue in selecting the most suitable set of physical hosts for a
set of virtual machines in cloud computing environment. VMP problem consists of two sub problems: incremental
placement (VMiP) problem and consolidated placement (VMcP) problem. The challenge in VMcP problem is how to
find optimal solution effectively and efficiently as well as it is a kind of NP-hard problem. In this paper, we present a
novel solution to the VMcP problem called VMPMBBO. The scheme of VMPMBBO treats the VMcP problem as a
complex system, and utilizes the biogeography-based optimization (BBO) technique to optimize the virtual machine
placement that minimizes both the resource waste and the power consumption at the same time. Extensive experiments
are conducted using synthetic data from related literature and data from two real datasets. First of all, the necessity
of VMcP has been proved by experimental results obtained by applying VMPMBBO. Then, the proposed method is
compared with two existing multi-objective VMcP optimization algorithms and it is shown that VMPMBBO has better
convergence characteristics and is more computationally efficient. VMPMBBO is also robust. And then, the issue of
parameter setting of the proposed method has been discussed. Finally, adaptability and extensibility of VMPMBBO
have also been proved. To the best of our knowledge, this work is the first approach that applies biogeography-based
optimization (BBO) to virtual machine placement (VMP).

Keywords: Virtual machine placement, Multi-objective optimization, Resource utilization, Biogeography-based
optimization, Cloud computing

1. Introduction

Cloud computing has been a popular computing paradigm in IT industry since 2008. It delivers computing infras-
tructures, computing platforms, and software as hosted services on demand over the Internet. Cloud users can access
computing resources without having to own, manage, and maintain them. There are three common cloud computing
models known as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)
[1, 2, 3]. In the most basic model IaaS like Amazon Web Services, cloud users are provided with physical or more
often virtual servers and additional resources like raw block storage, which are allocated from massive computing
resource pools in large-scale data centers. The focus of this paper is on IaaS model.

From the perspective of a cloud provider, to reduce the operating cost, the use of computing resources in cloud
needs to be maximized. In addition, the power consumption needs to be minimized as it became a significant contrib-
utor to the operating cost [4]. The total electricity used by data centers in the US increased about 56% from 2005 to
2010 [5].

The core technology in cloud computing is virtualization [6], which separates resources and services from the
underlying physical delivery environment. The resources of a single physical machine (PM) are sliced into multiple
isolated execution environments for multiple virtual machines (VMs). Virtual Machine Placement (VMP) is an im-
portant topic in cloud environment virtualization, in particular in IaaS model. VMP maps a set of virtual machines to
a set of physical machines. For the cloud providers, a good VMP solution should maximize resource utilization and
minimize power consumption.

Preprint submitted to Future Generation Computer Systems January 19, 2015
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Fig. 1: An example of VMiP and VMcP

The problem of VMP consists of two sub problems: incremental placement (VMiP) problem and consolidated
placement (VMcP) problem [7], as shown in Fig. 1. VMiP is deals with continuous arrival of VM deployment
requests in runtime. Quick response is a crucial metric for ensuring a high service quality of the VMiP. The problem
of VMiP has received much attention [8, 9, 10, 7]] as VMs are being continuously removed over time, which may
bring the infrastructure to a poor state over a long time period. Therefore, it is necessary to consolidate VMs into
servers periodically [7].

One of the benefits of virtualization is the ability of readjusting existing VMs into the more suitable servers.
This process, known as VMcP, is used by data centers to increase resource utilization and reduce electric power
consumption costs [11]. VMcP is particularly important when user workloads are unpredictable and VMP need to be
revisited periodically [11]. Whenever VM instances change, VMs can be relocated and migrated to different physical
servers if necessary [11]. VMcP can be invoked periodically, or be triggered based on some preset conditions. The
problem of VMcP is NP-hard [12, 13, 14, 15, 16, 17]. The challenge in VMcP problem is how to find optimal solution
effectively and efficiently as well as it is a kind of NP-hard problem.

The existing research in VMcP can be classified into five categories based on the techniques being used: heuris-
tic bin packing [18, 19, 20, 21, 22, 23, 24, 25, 12, 26], biology-based optimization [27, 28, 29, 30, 31, 32], linear
programming [33, 34], constraint programming [35], and simulated annealing optimization [36]. Another kind of
classification is single-objective or multi-objective based on number of objectives to be optimized during the place-
ment. Recent research [5, 31, 37] focus on multi-objective solutions. Both [5] and [31] optimize resource utilization
and power consumption. The thermal dissipation cost is also considered in some research efforts [31]. The work
in [37] optimizes CPU utilization, network throughput, and disk I/O rate. Existing biology-based optimization algo-
rithms for VMcP include genetic algorithms [29, 5], particle swarm optimization [28] and ant colony optimization
[27, 31].

In this paper, we propose a novel multi-objective VMcP solution named VMPMBBO. It employs a state-of-the-
art evolutionary algorithm, biogeography-based optimization (BBO) [38, 39] to find the optimal VM placements
that simultaneously minimizes both the resource waste and the power consumption. Compared with two existing
multi-objective evolutionary algorithms [5, 31], VMPMBBO has better convergence characteristics and is more com-
putationally efficient. Extensive simulation results confirm the effectiveness, efficiency and robustness of the proposed
approach. Adaptability and extensibility of VMPMBBO have also been proved by experimental results. To the best
of our knowledge, this work is the first approach that applies biogeography-based optimization (BBO) and complex
system optimization to virtual machine placement (VMP).

The remainder of this paper is organized as follows. In Section 2, the existing VMP solutions are reviewed. VM
placement problem is formulated in Section 3. Section 4 presents background knowledge of the proposed VMPMBBO
approach. The simulation results are presented in Section 4. Section 5 evaluates the effectiveness of the proposed
approach. Section 6 proves the adaptability and extensibility of VMPMBBO and finally Section 7 concludes the
paper.
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2. Related Work

VMcP is one the well research area in cloud computing [4, 18, 19, 20, 27, 28, 29, 30, 31]. These research efforts
can be classified into five categories based on their underlying techniques: heuristic bin packing [18, 19, 20, 33, 21,
22, 23, 24, 25, 12, 26], biology-based optimization [27, 28, 29, 30, 31, 32], linear programming [33, 34], constraint
programming [35], and simulated annealing optimization [36].

Heuristic bin packing Many studies model the VM placement as vector bin packing, a well- known NP-hard
optimization problem [19]. Simple heuristics like greedy algorithms are utilized to approximate the optimal solution
of this NP-hard problem. These include worst fit and best fit in [18], first fit decreasing (FFD) and best fit decreasing
(BFD) [33, 22]. An extended first fit decreasing (FFD) heuristics in the pMapper system [20, 39], first fit and best fit
modified using node utility and power consumption [21], worst fit based on the profiling data [23], first fit modified
using application migration [24], best fit used for VM migration in [12], and a modified best fit decreasing heuristics
in [26].

Biology-based Optimization. In [27], an ant colony optimization method (ACO) is used to pack the VMs to the
least number of physical machines necessary for the current workload. The SAPSO approach [28, 32] is a self-adaptive
particle swarm optimization (PSO) algorithm. SAPSO has been applied to automatically adjusts VM placement in
response to changing resource pools in a dynamic cloud environment. The GABA approach [29] is a genetic algorithm
(GA) based algorithm that dynamically reconfigures the VM mappings according to estimated future workload in a
dynamic cloud environment.

Linear programming. In [33], the server consolidation problem is considered as bin packing, for which FFD and
BFD are suggested. In addition, the server consolidation problem is formulated as linear programming that is extended
with a number of constraint types elicited from practical applications. An LP-relaxation-based heuristic is designed
to minimize the cost of linear programming. The study in [34] formulates the QoS-aware VMP problem as integer
linear programing (ILP) and proposes a polynomial-time heuristic algorithm based on bipartite graph to reduce the
complexity of ILP and efficiently solve the problem.

Constraint programming. A resource management framework is presented in [35]. It consists of two major com-
ponents, a dynamic utility-based VM provisioning manager and a dynamic VM placement manager. Both managing
tasks are modeled as constraint satisfaction problems. Entropy is a resource manager [40] used for homogeneous
clusters, which employs constraint programing to perform dynamic consolidation and considers both VM placement
and VM migration.

Simulated annealing optimization. The authors in [36] propose a dynamic runtime virtual machine mapping
framework called GreenMap that contains multiple modules. The placement module utilizes a simulated annealing
optimization based algorithm to dynamically map the VMs onto a small set of PMs that minimizes power consumption
without significantly degrading the system performance.

Many VMcP schemes optimize a single objective such as resource utilization, power consumption or load balanc-
ing, etc. However, real-world VMcP solutions often need to consider multiple objectives. Take VMcP as an example,
its optimization model of has been widely studied and a number of characteristics have been taken into consideration,
according to the specific application scenarios, such as, VM dependency [41], inter-VM data movement [41, 42, 43]
and load balance [44, 45, 46, 47]. The characteristics considered in these research efforts have been formalized as
objective functions or constraints. Meanwhile,recent research efforts tend to adopt evolutionary algorithm to address
this kind multi-objective optimization problem. MGGA in [5] employs a grouping genetic algorithm with fuzzy multi-
objective evaluation to minimize the resource waste, power consumption, and the thermal dissipation costs. VMPACS
in [31] is a multi-objective ant colony system algorithm (ACO) that minimizes both the total resource waste and the
power consumption. The work in [37] optimizes CPU utilization, network throughput, and disk I/O rate using a hybrid
genetic algorithm for VMcP. This paper firstly incorporates five factors into the optimization model, which is more
complex than the ones in above research.

3. Problem formulation

The first part of this section describes a universal resource waste model, which supported multiple resource di-
mensions. And then, a power consumption model has been built based on literatures and experiments. Finally we
formalize VMcP optimization problem.
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3.1. Resource Waste Model

Different VMcP solutions may leave different amount of residual resources for each resource type on each PM.
To accommodate future requests, an effective VMcP solution should keep the residual resources balanced in each
dimension. Fig. 2 illustrated the balanced problem of residual resources. The cube represents the total CPU, memory
and bandwidth capacity of a server. The two small cubes labeled VM1 and VM2 represent the amount of CPU, mem-
ory and bandwidth allocated to the two VMs. The left small cube labeled Residual Capacity denotes the remaining
amount of CPU, memory and bandwidth after placing two VMs. Clearly, there is a lot of memory and bandwidth left
but little CPU remaining. This CPU scarcity may block the placement of a new VM on this server.

Memory
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1VM
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Capacity

Fig. 2: An example of resources allocated to two VMs placed into a single PM

Based on the above observation, we propose resourceWaste( j) function to quantify the cost of resource waste
in the multiple loads on a server, which is an extension of the model in [30, 31] used for the compatibility of multi-
dimensional resource. The utilization of a resource (CPU, memory or network bandwidth) owned by a server is
estimated as total amount that is requested by all VMs running on that server. 100% utilization of a specific resource
may lead to severe performance degradation [48] and trigger live VM migration. Therefore, an upper bound is imposed
on the resource utilization of a single server.

resourceWastage( j) =
y j

R
×
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(xi| j) · ( j|xi) · D

φ
i

))
−

(
T ρ

j −
N∑

i=1

(
(xi| j) · ( j|xi) · D

ρ
i

))∣∣∣∣∣∣ + ε

N∑
i=1

(
(xi| j) · ( j|xi) · D

φ
i

)
+

N∑
i=1

(
(xi| j) · ( j|xi) · D

ρ
i

) , (1)

where Dφ
i and Dρ

i are demands of resource φ and ρ in VMi respectively. Let T φ
j or T ρ

j be the threshold of the utilization
of resource φ and ρ in server j respectively. R is the number of resource dimension we consider ε is a tiny positive
real number, which is 0.0001 in our experiments. We use an integer variablexiand a binary variable y j. The value of
variable xi indicates the assigned server number of VMi and the binary variable y jindicates whether server j is used
(value 1) or not (value 0).

3.2. Power Consumption Model

A popular power consumption model [49, 50, 51] where shows that the power consumption is linearly proportional
to the CPU utilization. We also investigate this model in Vmware ESXi 5.5 [52] deployed on an IBM x3850 X5 server.
The performance data is collected by Veeam Monitor [53] every 2 hours from 10/2/2014 to 1/2/2015. The relationship
between resource usages and power consumption is presented in Fig.3. The correlation coefficient between them is
listed in Table 1. It is obvious that the strong positive correlation exist between power consumption and CPU usage.
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Fig. 3: Relationship between resource usages and power consumption

Table 1: VM instances in the data center

Variable a Variable b Correlation Coefficient(a,b)

Power Consumption

CPU Usage 0.990667
Memory Usage 0.681875
Datastore I/O 0.253151

Network Usage -0.12116

Based on above investigation, powerConsumption( j) is introduced to quantify total power consumption by the
server j.

powerConsumption( j) = y j ×

(Pbusy
j − Pidle

j

)
·

N∑
i=1

(
(xi| j) · ( j|xi) · DCPU

i

)
+ Pidle

j

 , (2)

where Pidle
j and Pbusy

j represent the power consumed when server j is idle and on full-load respectively. An idle server
is turned off and it does not consume any power. DCPU

i refers to CPU utilization of server j.

3.3. VMcP Formulation

The VMcP optimization problem is described as following: Suppose that there are N VMs which are to be placed
on M physical machines, and none of the VMs requires more resource than a single server can offer. The resource
allocation requests for a VM and the resource capacity of a PM (server) are both represented by a multi-dimensional
vector. Each dimension refers to the amount of a specific type of resource requested by a VM or owned by a server.
The aim is to simultaneously minimize power consumption and resource waste.

Goal:

Minimize :
M∑
j=1

resourceWastage( j) (3)
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Minimize :
M∑
j=1

powerConsumption( j) (4)

Constraints:
xi ∈ {1, ...,M} i = [1, ...,N] (5)

N∑
i=1

Dr
i · (xi| j) · ( j|xi) ≤ T r

j · y j j = [1, ...,M] r = [1, ...,R] (6)

yi =

{
1 ∃xi = j
0 others j = [1, ...,M] (7)

The objectives (3) and (4) shown above are to minimize the power consumption and total resource waste by all
the servers. Constraint (5) ensures that each VM is allocated to one and only one server. Constraints (6) guarantees
allocated resources from each server to not exceed their capacity. Constraint (7) defines the range of the variable y j.

4. VMPMBBO - Biogeography-based Optimization for VM Placement

In this section, we introduce background knowledge of biogeography-based optimization (BBO), give an overview
of the proposed VMPMBBO algorithm, and also provide discussion on migration and mutation.

4.1. BBO
BBO is a family of biogeography-based optimization methods. Biogeography studies the geographical distribution

of species migration and extinction of existing species and rise of new species. A geographically isolated habitat is
called an island. The habitability (suitability for biological residence) of an island is indicated by its habitat suitability
index (HSI), which is determined by a number of independent variables called Suitability Index Variables (SIVs).
Temperature and rainfall are some examples of SIV.

The higher the HSI of an island is, the more the species on the island, the lower its immigration rate, and the
higher its emigration rate. Species may migrate from high HSI islands to low HSI islands. The arrival of new species
may increase the HSI of an island by increasing the diversity of species on the island. If the HSI of an island is too
low, existing species on the island may become extinct. Unexpected random events like natural disaster or sudden
immigration of species from neighboring islands may cause the dramatic change in HSI of an island.

Biogeography-based optimization (BBO) applies biogeography to solving discrete optimization problems. In the
original BBO [38], the population of candidate solutions is an archipelago of islands. A candidate solution is an
island. The goodness (or fitness) of a solution with respect to an objective function is measured by its HSI. A good
solution is an island with a high HSI. A poor solution is an island with a low HSI. The decision variables are SIVs. A
solution is represented by a vector of SIVs.

There are two key operators in BBO: migration and mutation. The migration is designed to probabilistically share
SIVs between solutions, thus increasing the quality of low HSI solutions. The mutation is used to probabilistically
replace SIVs in a solution by randomly generated new SIVs. The initial population of candidate solutions evolves
repeatedly from generation to generation until a termination criterion is met. In each repetition, a migration followed
by a mutation is performed. Given enough generations, BBO can definitely converge to the optimal solution [54].
Migration is a distinguishing feature of BBO from other population-based optimization methods.

There have been many extensions to the original BBO since its publication in 2008. One of them is BBO/Complex
[39]. The original BBO is designed for optimizing a single system with a single objective and without any constraints.
It considers an ecosystem that is an archipelago of islands. BBO/Complex is created for optimizing a complex system
with multiple objectives and multiple constraints. The complex system may be composed of multiple subsystems
that may have different objectives and different constraints. The ecosystem considered in BBO/Complex consists
of multiple archipelagos, each of which contains a number of islands. The migration in BBO is extended to two
types: migration between islands within the same subsystem and migration between islands in different subsystems.
The second extension is a ranking algorithm used in within-subsystem migration that considers both the islands’
performances and the system constraints. The third extension is a partial distance strategy used in cross-subsystem
migration for effective diversity control.
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4.2. The Ecosystem Model in VMPMBBO

In VMPMBBO, the VMP problem is treated as a complex system that consists of multiple subsystems. Each
subsystem optimizes itself with respect to its own objectives and constraints. They also share information with each
other so that the entire complex system is optimized. The system decomposition is based on optimization objectives.
A subsystem may optimize either power consumption (the objective in (4)) or resource waste (the objective in (3)).
Two subsystems may have the same optimization objective. No subsystem should violate the four constraints in (5)
to (7). A subsystem consists of a number of candidate solutions.

VMPMBBO solves VMP problem by using BBO/Complex to optimize the VMP complex system. Archipelago
in BBO/Complex theory corresponds to subsystem. That is to say, a subsystem is an archipelago. A candidate VMcP
solution in a subsystem is an island in an archipelago. And each candidate solution consists of a set of x, where the
value of variable xi indicates the assigned server number of VMi.

Let E = {A1, A2, . . . , Ah} denote an ecosystem of h archipelagos. Ak = {Ik1, Ik2, . . . , IkT ; Oh; C1,C2,C3,C4} repre-
sents an arbitrary archipelago, which contains T islands, one objective, and four constraints. The objective Ok is either
the power consumption in (4) or the resource waste in (3). The four constraints C1,C2,C3 correspond to (5) to (7).
All islands in the same archipelago have same objective Ok and same constraints C1,C2 and C3.

Each island is defined by a vector of N SIVs. The kt-th island in archipelago Ak is denoted by Ikt = [S IVkt1,
S IVkt2, . . ., S IVktN], where k ∈ {1, 2, ..., h} , t = 1, 2, . . . ,T. Each SIV is an integer that refers to the index of a server
(physical machine) hosting a VM. S IVkti is the index of the server occupied by the i-th VM in Ikt. The HSI of an
island Ikt is denoted by HS Ikt, which is computed as the inverse of the island’s objective function Ok.

Mutation

Cross-Subsystem 
Migration

Within-Subsystem 
Migration

Elite Selection

Start

Initialization

Next Population
Generation

Termination
Criterion?

Meet

Stop

yes

no

Fig. 4: Flowchart of VMPMBBO

4.3. VMPMBBO

The following are the major steps in VMPMBBO, as pictured in Fig. 4.
Step 1) Initialize the system
Step 2) Within-subsystem perform migration on each subsystem
Step 3) Perform cross-subsystem migration on selected subsystem pairs
Step 4) Perform probabilistic mutation on each island
Step 5) Perform elitism
Step 6) Terminate if the termination condition is satisfied otherwise, generate the next population and go to Step

2).
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In Step 1), the system parameters are initialized including both non-BBO parameters like maximum CPU and
memory utilization, average power consumption by an idle or a busy server, and BBO parameters such as the number
of subsystems, number of islands, number of SIVs, stopping criterion, mutation probability, elitism parameter, and
SIV migration probability. The initial population is number of subsystems multiplied by the number of islands per
subsystem. Each subsystem is a matrix where each row is an island and each column is a SIV. Each SIV is randomly
generated and it meets all four constraints corresponding to (5) to (7).

In Step 2), within-subsystem migration is based on the islands’ within-subsystem ranking. In Step 3), cross-
subsystem migration is based on similarity levels between subsystems. The details of these two steps will be discussed
in the following subsections.

In Step 4), each island is mutated with mutation probability Pmutation. If an island is chosen for mutation, we
randomly select an SIV from this island and replace it by a new randomly generated SIV.

In Step 5), a Variant of modified non-dominated ranking system algorithm 1 (details refer to Section 4.4) is used
to pick up Nelite elitists from both best solutions of each subsystem and the elitists from last generation. And then,
generate new population for next generation and replace Nelite matrices with the elitists generated from last step, if the
iteration doesn’t reach the end. In Step 6), checking the termination criterion is reached the maximum number of cost
function evaluations.

As shown in Fig.5, feasible solutions of each objective have been obtained for different subsystems. The sub-
systems are loosely coupled and they communicate with each other by cross-subsystem migration. It provides an
efficient way to communicate between subsystems and provides a unique migration strategy to share information both
within and across subsystems. Cross-subsystem migration can significantly enrich communication among subsystems
compared to more traditional methods [39].

SUBSYSTEM  1

Within-
Subsystem 
Migration

Cross-
Subsystem 
Migration

Mutation

SUBSYSTEM  2

Within-
Subsystem 
Migration

Cross-
Subsystem 
Migration

Mutation
Within-

Subsystem 
Migration

Cross-
Subsystem 
Migration

Mutation

Initialization

Elite Selection

SUBSYSTEM  S

Fig. 5: Subsystems in VMPMBBO

4.4. Within-Subsystem Migration in VMPMBBO
Within-subsystem migration is executed in every subsystem based on the rankings of islands within their own

subsystems. First rank all islands in each subsystem using a variation of ranking system in BBO/Complex. The
rankings consider both the feasibility and performance of each island relative to other islands in the same subsystem.
The feasibility is expressed in terms of number of constraint violations. The performance is expressed in terms of
the objective function value. The feasibility is considered primary factor. The performance is secondary and has an
impact only when two islands are equally feasible. The detailed algorithm is listed in Algorithm 1. Ranka and Rankb

are the performance rank values of islands Ia and Ib respectively. A small performance rank value indicates a good
solution.

Next, we probabilistically choose the immigrating islands based on the rankings. A low-ranking island (with a
large performance rank value) has a higher probability of being chosen as an immigrating island than a high-ranking
island (with a small performance rank value). The ranking g of an island is converted to its immigration rate λ using
following formula:

λ =

∑g
i=1 i/T∑T
i=1 i/T

(8)
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where T is total number of islands in a subsystem. The probability of an island being chosen as an immigrating
island is linearly related to its immigration rate.

Then, an emigrating island is probabilistically selected for each immigrating island using the roulette wheel se-
lection [55] based on emigration rates. The emigration rate µ of an island is computed using the formula below. The
larger the µ is, the higher the probability is.

µ = 1 − λ (9)

Algorithm 1 Variant of modified non-dominated ranking system
1: Compute the constraint violations of all islands;
2: Sort the islands in the ascending order of constraint violations;
3: Compute the performance ranks of islands as in the box below;
4: Ranka = Randb = 0;
5: for each island pair (Ia, Ib) in each subsystem do
6: for each v′ = V ′ do
7: if the objective of Ia is better than Ib then
8: Randb++

9: else if the objective of Ib is better than Ia then
10: Ranka++

11: end if
12: end for
13: end for
14: If multiple islands have the same constraint violations, sort them further in the descending order of performance

ranks.

In last step perform migration from chosen emigrating island to corresponding immigrating island. Each SIV in
the immigrating island has probability PS IVmigration of being replaced by a randomly selected SIV from the emigrating
island.

4.5. Cross-Subsystem Migration in VMPMBBO

Cross-subsystem migration is carried out only on selected subsystem pairs. First, we compute the constraint
similarity level (CSL) and objective similarity level (OSL) between every two subsystems. The detail is listed in
Algorithm 2. It is based on fast similarity level calculation (FSLC) [39]. SL represents either CSL or OSL. V denotes
the constraint set or objective set of one subsystem while V’ is the corresponding counterpart in other subsystem in a
pair. In VMPMBBO, all subsystems have same four constraints((5) to (7)). Therefore CSL is always 4. And any two
subsystems may have either the different objectives or the same objective. So the value of OS L corresponds to 0 or 1.

Algorithm 2 Similarity level calculation.
1: S L = 0
2: for each v ∈ V do
3: for each v′ = V ′ do
4: if v and v′ are the same type then
5: S L = S L++;
6: end if
7: end for
8: end for

Next, compute the migration probability Pmigration based on subsystem similarity level according to (10). OS Lmax
and CS Lmax are the maximum OSL and CSL value in the population. In VMPMBBO, the computed Pmigration is 0.5.
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The probability of migration between two subsystems is linearly related to Pmigration.

Pmigration =


1
2

(
OS L

OS Lmax
+ CS L

CS Lmax

)
, i f OS Lmax > 0 and CS Lmax > 0

1
2

OS L
OS Lmax

, i f OS Lmax > 0 and CS Lmax = 0
1
2

CS L
CS Lmax

, i f OS Lmax = 0 and CS Lmax > 0
0, i f OS Lmax = 0 and CS Lmax = 0

(10)

Then, for each subsystem pair chosen for inter-subsystem migration, select immigrating islands from one subsys-
tem with probability PinterS ysImg. For each immigrating island, compute distances between this island and all islands
in other subsystem. And select an emigrating island using the roulette wheel algorithm based on these distances. The
partial distance proposed in BBO/Complex is not used. Instead we used the Euclidean distances between island vec-
tors because these vectors have same structure. Last step perform the migration between the chosen island pair in the
chosen subsystem pair. Each SIV in immigrating island has probability PS IVmigration of being replaced by a randomly
selected SIV from emigrating island

4.6. Discussion

The immigration rate λ and emigration rate µ are important parameters in the configuration of VMPMBBO. Our
chosen configuration, λ as desrcibed in Eq.8 and µ in Eq.9, are essentially quadratic with respect to the ranking g of
each island (the HSI of an island), as shown in Fig. 6. λ can be transformed to Eq.9 below, where a and b represent
constants.

λ = a (g/T )2 + b (g/T ) (11)
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Fig. 6: Graph of immigration rate λ and emigration rate µ in VMPMBBO

In the original BBO [38], a linear strategy described in Eq.12 is used. Quadratic in Eq.13, cosine in Eq.14, and
exponential strategies in Eq.15 have been proposed in the existing work [56, 57] for improving performance. In next
section we will present our experimental results of these strategies when they are applied to proposed VMPMBBO
system. The quadratic strategy in Eq.11 performs the best in these experiments.

λ =
g
T

(12)

λ =

( g
T

)2
(13)

λ = 0.5
(
1 − cos(

π

T
π)

)
(14)

λ = eg/T (15)
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5. Experiments and their Analysis

In this section, we evaluate the effectiveness of VMPMBBO applied to VMcP. For this purpose, a series of ex-
periments have been carried out. First of all, we compare two VMP processes with and without VMcP. Then we
present the evaluation results comparing proposed VMPMBBO with two existing multi-objective VMcP algorithms,
MGGA [30] and VMPACS [31] And then, the robustness of VMPMBBO has been validated. The parameter values
concerning experiments have also been discussed. A total of 35 scenarios have been considered, and both synthetic
and real datasets have been considered, as shown in Table 2.

Table 2: scenarios and datasets

Evaluation Scenario Index Test Dataset

Necessity Proving 1-10 Synthetic datasets
11, 12 Real dataset -EC2

Solution Quality 13-22 Synthetic datasets
23 Real dataset -EC2
24 Real dataset -XJTUDLC

Computational Efficiency 25, 26 Synthetic datasets
27 Real dataset -EC2
28 Real dataset -XJTUDLC

Robustness 29, 30, 31 Synthetic datasets
Parameter Value Selection 32, 33, 34 Synthetic datasets

Simulation Configurations: VMPMBBO is configured using parameters shown in Table 3. The term “Sub-
systems” is the number of subsystems. The “popsize” refers to the number of islands per subsystem (archipelago).
Subsystems and popsize are fixed as 4 and 3 respectively in most experiments with the exception of one scenario where
the impact of these two parameters is tested. MGGA and VMPACS are configured as recommended in [30, 31]. For
each algorithm and each scenario, 10 Monte Carlo simulations are conducted, and the average results are used in the
comparisons. According to complexity of the different datasets, the termination criterion (preset maximum number
of cost function evaluations) is 100,000 for synthetic dataset and 10,000 for real datasets, respectively. The programs
for proposed algorithm, MGGA and VMPACS were coded in the matlab 7.0 and ran it on a Virtual Machine with 4
vCPU and 8 GB RAM hosted on a VMWARE ESXi 5.5 of a Dell R720 server.

Table 3: parameter setup for experiments

Parameter Value

Subsystems 4
Popsize 3

PS IVmigration 0.5
Pmutation 0.05

PinterS ysImg 0.5
Elitism parameter 1

5.1. Necessity of dealing with VMcP in VMP
In this section, we prove the necessity of VMcP applied to VMP. For this purpose, we compare two VMP processes

with and without the VMcP.
1) Dataset
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The experiments are conducted using both the synthetic data from related literature [31] and the data from Amazon
EC2 [58].

Synthetic Dataset. The same configuration as [31] is adopted for the purpose of performance evaluation with
following considerations:

1. The number of servers is set as the number of VMs in order to support the worst VM placement scenario (one
VM per server). It is obvious that reducing the number of optional servers will narrow the search space and
improve efficiency.

2. The servers are assumed to be homogeneous. Pidle
j and Pbusy

j in Eq.2 are set to 162 and 215 Watt respective-
ly. The CPU and memory utilizations of each server is capped at 90% (TCPU

j = T MEM
j = 90%). However,

VMPMBBO is applicable in the case of heterogeneous servers.
3. Each VM deployment request is a pair of CPU and memory demands. It is assumed that CPU and memory

demands are linearly correlated. All VM deployment requests are randomly generated using the method in [59]
listed in Algorithm 3. ξc, ξm, and γ are all random numbers between 0 and 1. DCPU and DMEM are reference
values of CPU and memory demands respectively. DCPU

i and DMEM
i together form a deployment request. ρ is a

probability value used to control the correlations of CPU and memory demands.

Based on above settings, we generated VM deployment requests in 10 different scenarios by changing DCPU and
DMEM twice (25%, 45%) and P five times (0.0, 0.25, 0.50, 0.75, 1.0). The ranges of the generated CPU and memory
demands are [0, 50%) with DCPU and DMEM being 25%, and [0, 90%) with DCPU and DMEMbeing 45%. The average
correlation coefficients of CPU and memory demands are -0.754, -0.348, -0.072, 0.371, and 0.755 per request set to
DCPU and DMEM being 25%. The five coefficients indicate strong negative, weak negative, no, weak positive, and
positive correlations in sequence. The coefficients are -0.755, -0.374, -0.052, 0.398, and 0.751 when DCPU and DMEM

are 45%. The CPU and memory utilizations of each server are both capped at 90% (TCPU
j = T MEM

j = 90%) in all
experiments.

Algorithm 3 Generation of VM deployment requests.
1: for i = 0 : 200 do
2: DCPU

i = 2 × DCPU × ξc

3: DMEM
i = 2 × DMEM × ξm

4: if
(
(γ < p)&&(DCPU

i ≥ DCPU)||(r ≥ p)&&(DCPU
i < DCPU)

)
then

5: DMEM
i = DMEM

i + DMEM

6: end if
7: end for

Real Dataset - EC2 We consider the resource requirement to be relevant to the VM instances provided by Amazon
EC2 [58]. It is a public cloud. We take 17 instance types into account in our simulation, including 7 general instances,
5 compute optimized instances, and 5 memory optimized instances The details are shown in Table 4. It is obvious
that the CPU demand and memory demand of instances has strong positive correlation. The CPU models have been
presented in [58]. The number of CPUs and memory in a server is assumed, as E5-2680 v2 has 10 physical cores.
And with Hyper-Threading (HT) technology, each E5-2680 v2 can provide 20 logical cores, that is each E5-2680 can
serve 20 vCPU [58]. Maximum number of vCPU demand of a memory optimized instance is 32, and each server is
assumed to have four CPU (E5-2680), and provide 80 logical processors. If using five memory-optimized instance
types, the demand of memory is 7.625 times larger than that of vCPU in quantitative terms. Therefore, the memory
of each server is assumed to be 512 GiB, which is the power of 2 and is close to 610 (80*7.625).

Based on above configuration, the deployment requests of each instance type independently follow uniform dis-
tributions, which has been widely adopted in previous researches [10, 60]. Pidle

j of the 4 server models are set to 110,

150, 250, 200 Watt respectively. And Pbusy
j are set to 300, 350, 700, 600 Watt respectively.

2) Result Discussion
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Table 4: VM and PM configurations in real dataset-EC2

Pattern
Instance Specs Server Specs

Instance Type vCPU Memory (GiB) CPU Memory(GiB)

General
Purpose

t2.micro 1 1
2 * Intel E5-2620 v2
24 logic processors 32t2.small 1 2

t2.medium 2 4
m3.medium 1 3.75

2 *Intel E5-2670 v2
40 logic processors 128

m3.large 2 7.5
m3.xlarge 4 15
m3.2xlarge 8 30

Compute-
Optimized

c3.large 2 3.75

4*Intel E5-2680 v2
80 logic processors 128

c3.xlarge 4 7.5
c3.2xlarge 8 15
c3.4xlarge 16 30
c3.8xlarge 32 60

Memory-
Optimized

r3.large 2 15.25

4*Intel E5-2670 v2
80 logic processors 512

r3.xlarge 4 30.5
r3.2xlarge 8 61
r3.4xlarge 16 122
r3.8xlarge 32 244

The first 10 scenarios (Scenarios 1-10 in Table 2) are based on Synthetic Dataset. In each scenario, we generated
a sequence of 400 VM requests to simulate the continuous arrival requests. 300 of them are set to be deployment
requests, and the others are set to be removal requests. The removal of only deployed VM is guaranteed.

Algorithm 4 an VMiP algorithm based on Best Fit
1: for each VM request Ri(cpu demand,mm demand) do
2: if Ri is a deployment request then
3: find the most suitable server as in the box below;
4: for each candidate solution S do
5: calculate costs (Eqs.3 and 4)
6: end for
7: sort solutions by Eqs.3 then Eqs.4, in ascending order pickup the first as the best solution
8: else
9: remove the VM

10: end if
11: end for

Both resource waste and power consumption are considered in dealing with VMiP and a best fit algorithm (Al-
gorithm 4) is adopted for each VM request. And with VMcP, VMPMBBO has been used for consolidation of 200
remaining VMs. Table 5 lists the total resource waste and power consumption with or without VMcP. It is obvious
that VMPMBBO plays an important role in VMP.

The last 2 scenarios (Scenario 11, Scenario 12) are based on Real Dataset-EC2.
Scenario 11 consists of 5 phases: VMiPI, VMcPI, VMiPII, VMcPII and VMiPIII.
The VM request sequence presents continuously deployment and removal of VMs over time. VMiP I simulates the

process at the system start-up, when there is no prior placement. In VMiP I a request sequence of 5,000 VM requests
(Sequence I) has been simulated, including 1,000 removal requests. In VMcP I, VMPMBBO is used to consolidate
the residual 4,000 VMs. In VMiP II phase, a new sequence of 6,000 VM requests (Sequence II) has been simulated,
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Table 5: Power consumption and resource waste of Best Fit and VMPMBBO algorithms.

Reference value Corr. Algorithm Power consumption(W) Resource waste

DCPU = DMEM=25%

-0.754
Best Fit 12561.2361 4.4348
VMPMBBO 11913.23607 1.20919

-0.348
Best Fit 11790.7176 4.2429
VMPMBBO 11304.71756 1.17909

-0.072
Best Fit 11228.8508 3.5225
VMPMBBO 10904.85084 0.92431

0.371
Best Fit 11229.2016 3.1733
VMPMBBO 10590.78346 0.73268

0.755
Best Fit 10645.0821 2.18512
VMPMBBO 10358.42339 0.54919

DCPU = DMEM=45%

-0.755
Best Fit 24117.3295 21.1098
VMPMBBO 22380.15586 9.80711

-0.374
Best Fit 23565.6729 19.797
VMPMBBO 21297.67288 6.53505

-0.052
Best Fit 22428.1293 13.7283
VMPMBBO 20646.12933 5.5952

0.398
Best Fit 21659.5739 13.7113
VMPMBBO 19890.57741 5.54417

0.751
Best Fit 19839.6558 6.62257
VMPMBBO 18770.45581 2.59881

including 2,000 removal requests. The residual 8,000 VMs has been consolidated in VMcP II. After that, a sequence
of 6,000 VM requests (Sequence III) is processed in VMiP III, including 2,000 removal requests.

Scenario 12 simulates a continuous VMiP process and the request sequence is a combination of Sequence I, II and
III.

Table 6: Power consumption and resource waste in Scenario 11 and 12.

Power consumption(W) Resource waste
Scenario Scenario Decrease Scenario Scenario Decrease

12 11 percentage 12 11 percentage

When the 5,001th request
coming 229135 205112 10.484% 49.2377 43.8525 10.9371%

When the 11,001th request
coming 413175 366876 11.206% 87.9862 76.0912 13.5192%

Fig.7(a) and Fig.7(b) show the costs while VM request arriving with (Scenario 11) or without (Scenario 12)
VMPMBBO, respectively. In Fig.7, we use mean cost curve to depict convergence of proposed algorithm. Each point
in the curve represents the mean value of cost calculated from each function evaluation. The solid curves in Fig. 7
show total power consumption and total resource wastage at each request respectively. The reduction of costs for
some requests is a result of applying VMPMBBO. As can been seen from Table 6 total power consumption has been
reduced by more than 10 percent with VMPMBBO.

5.2. Solution Quality
In this section, the performance of the three algorithms, MGGA, VMPACS and VMPMBBO, is compared and

contrasted.
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Fig. 7: mean cost curves with and without VMPMBBO

1) Dataset
Three kinds of datasets have been used in Scenarios 13-24.
Scenarios 13-22 are based on 10 synthetic datasets, which have been used in VMcP of section 5.1. Each synthetic

dataset contains 200 VMs.
The Scenario 23 is based on 8,000 VMs consolidated in VMcP II of section 5.1.
Real Dataset-XJTUDLC. In Scenario 24, we collected data from a real-world data center, which is a private cloud

powered by VMware ESXi 5.5. This data center belongs to Distant Learning College of Xi’an Jiaotong University
(XJTUDLC for short, www.dlc.xjtu.edu.cn), which serves more than 81,000 e-Learning students. The details of VM
instances in data center are shown in Table 7. Moreover, the physical servers of the datacenter are listed in Table 8.

Table 7: VM instances in the data center

Instance Type 1 2 3 4 5 6 7 8

vCPU 1 2 2 2 4 4 8 16
Memory (GiB) 2 4 8 16 8 16 16 8
VM Quantity 9 48 17 11 36 16 10 4

Table 8: server hardware configuration in the data center of XJTUDLC

Server Model Logic Processor Memory(GiB) Pidle
j (W) Pbusy

j (W) quantity

DELL R720 2 * Intel E5-2650 64 123 317 22
32 logic processors

IBM X3850 X5 4* Intel E7-4850 256 443 854 3
80 logic processors

2) Result Evaluation
The comparison results in Scenarios 13-22 have been shown in Table 9 and Fig.8 to Fig.17. Table 9 lists the

total resource wastage and power consumption of each algorithm after 100,000 cost function evaluations. In Fig.8 to
Fig.17, we use mean cost curve to depict convergence of each algorithm. Each point in the curve represents the mean
value of cost calculated from each function evaluation. And we use boxplot to depict statistical distribution of cost
values through their quartiles. These cost values are calculated from each function evaluation. The median in boxplot
refers to the middle value of costs, which has been calculated from a total of 100,000 cost function evaluations for
synthetic dataset and 10,000 for real datasets.

Fig. 8(a) and Fig. 8(b) plot the mean cost curve of each objective function in all three algorithms when DCPU =

DMEM = 25%,Corr. = −0.072. Both show that VMPMBBO is superior to MGGA and VMPACS in this scenario.
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Table 9: Power consumption and resource waste of VMPMBBO and other two multi-objective algorithms.

Reference value Corr. Algorithm Power consumption Resource waste

DCPU = DMEM = 25% -0.754 MGGA 12075.23607 2.87269
VMPACS 12075.23607 1.94735
VMPMBBO 11913.23607 1.20919

-0.348 MGGA 11466.71756 1.89013
VMPACS 11466.71756 1.74654
VMPMBBO 11304.71756 1.17909

-0.072 MGGA 11066.85084 2.40885
VMPACS 10904.85084 1.37153
VMPMBBO 10904.85084 0.92431

0.371 MGGA 10914.78346 1.65359
VMPACS 10914.78346 1.16171
VMPMBBO 10590.78346 0.73268

0.755 MGGA 10520.42339 1.25547
VMPACS 10520.42339 1.00769
VMPMBBO 10358.42339 0.54919

DCPU = DMEM = 45% -0.755 MGGA 22704.15586 13.0427
VMPACS 22380.15586 11.5713
VMPMBBO 22380.15586 9.80711

-0.374 MGGA 21783.67288 9.75471
VMPACS 21621.67288 8.11456
VMPMBBO 21297.67288 6.53505

-0.052 MGGA 21294.12933 10.8148
VMPACS 20970.12933 7.59448
VMPMBBO 20646.12933 5.5952

0.398 MGGA 20214.57741 7.28013
VMPACS 20052.57741 6.23694
VMPMBBO 19890.57741 5.54417

0.751 MGGA 18770.45581 3.56561
VMPACS 18932.45581 3.02583
VMPMBBO 18770.45581 2.59881

VMPMBBO can converge to a lower minimum faster than MGGA and VMPACS. Fig. 8(c) and Fig. 8(d) boxplots
the statistical distribution of each objective function values in the same scenario. It is revealed that the upper quartile
value of VMPMBBO is smaller than the minimum values of the other two algorithms. In another word, more than
75% objective function values of VMPMBBO are lower (i.e. better) than the smallest objective values (best results)
of MGGA and VMPACS. Similar results are obtained in the other four scenarios when DCPU = DMEM = 25%. These
figures are portrayed in Fig. 9 to 12

The cost curves when DCPU = DMEM = 45%,Corr. = −0.755 are plotted in Fig. 13(a) and Fig. 13(b). The initial
performance of VMPMBBO is better than MGGA and worse than VMPACS. However, VMPBBO can guarantee
convergence to better solutions given enough generations. The boxplots in Fig. 13(c) and Fig. 13(d) for this second
scenario are similar to Fig. 8(c) and Fig. 8(d). They also support similar statistical performance of VMPMBBO in this
scenario. In the other four correlation scenarios whenDCPU andDMEM are 45%, VMPMBBO also performs similarly.
The figures are included in Fig. 14 to Fig. 17.

In summary, VMPMBBO has superior or at least competitive performance compared to MGGA and VMPACS.
VMPMBBO excels when most VM requests are not demanding.
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Fig. 8: mean cost curve and boxplot of each objective in DCPU = DMEM = 25%, Corr. = −0.072
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Fig. 9: mean cost curve and boxplots of each objective in DCPU = DMEM = 25%, Corr. = −0.754
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Fig. 10: mean cost curves and boxplots of each objective in DCPU = DMEM = 25%, Corr. = −0.348
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Fig. 11: mean cost curves and boxplots of each objective in DCPU = DMEM = 25%, Corr. = 0.371
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Fig. 12: mean cost curves and boxplots of each objective in DCPU = DMEM = 25%, Corr. = 0.755

2 4 6 8 10

x 104

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65
x 104

Function evaluations

C
os

ts

Power Consumption (W) 

 

 

MGGA
VMPACS
VMPMBBO

(a)

2 4 6 8 10

x 104

10

15

20

25

30

35

40

Function evaluations

C
os

ts

Resource Wastage

 

 

MGGA
VMPACS
VMPMBBO

(b)

MGGA VMPASC VMPMBBO

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

x 104

C
os

ts

Power Consumption (W) 

(c)

MGGA VMPASC VMPMBBO
10

15

20

25

30

35

C
os

ts

Resource Wastage

(d)

Fig. 13: mean cost curve and boxplot of each objective in three algorithms with DCPU = DMEM = 45%, Corr. = −0.755
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Fig. 14: mean cost curves and boxplots of each objective in DCPU = DMEM = 45%, Corr. = −0.374
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Fig. 15: mean cost curves and boxplots of each objective in DCPU = DMEM = 45%, Corr. = −0.052

20



2 4 6 8 10

x 104

2

2.05

2.1

2.15

2.2

2.25

2.3
x 104

Function evaluations

C
os

ts

Power Consumption (W) 

 

 

MGGA
VMPACS
VMPMBBO

(a)

2 4 6 8 10

x 104

5

10

15

20

Function evaluations

C
os

ts

Resource Wastage

 

 

MGGA
VMPACS
VMPMBBO

(b)

MGGA VMPASC VMPMBBO

2

2.05

2.1

2.15

2.2

2.25

x 104

C
os

ts

Power Consumption (W) 

(c)

MGGA VMPASC VMPMBBO

6

8

10

12

14

16

18

C
os

ts

Resource Wastage

(d)

Fig. 16: mean cost curves and boxplots of each objective in DCPU = DMEM = 45%, Corr. = 0.398
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Fig. 17: mean cost curves and boxplots of each objective in DCPU = DMEM = 45%, Corr. = 0.751
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The Scenarios 23 and 24 are based on Real Dataset-EC2 and Real Dataset-XJTUDLC respectively.
The results on two Real Datasets have been presented in Figs.18 and 19, where the termination criterion is 10,000

cost function evaluations.
We have also carried out experiments with 100,000 cost function evaluations. The results have been presented in

Figs.20 and 21. However, we find that the solution after 10,000 function evaluations is acceptable.
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Fig. 18: mean cost curve of each objective in three algorithms on Real Dataset-EC2 with 10,000 function evaluations
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Fig. 19: mean cost curve of each objective in three algorithms on Real Dataset-XJTUDLC with 10,000 function evaluations

We can conclude from experimental results that VMPMBBO has superior or at least competitive performance
compared to MGGA and VMPACS in both synthetic and real datasets. VMPMBBO excels when most VM requests
are not demanding.

5.3. Computational Efficiency

1) Dataset
Three kinds of datasets have been used in Scenarios 25-28. In Scenarios 25 and 26, 20 datasets have been randomly

generated using Algorithm 3. The dataset in Scenario 27 is same as Scenario 23, which is based on 8,000 VMs
consolidated in VMcPII of Scenario 11. Real Dataset-XJTUDLC is used in Scenario 28, which is the same as Scenario
24.

2) Result Evaluation
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Fig. 20: Mean cost curve of each objective in three algorithms on Real Dataset-EC2 with 100,000 function evaluations
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Fig. 21: mean cost curve of each objective in three algorithms on Real Dataset-XJTUDLC with 100,000 function evaluations

Scenario 25 shows how running time changes with varying number of VM requests from 200 to 2000 when
P = 0.5, DCPU = DMEM = 25%,Corr. = −0.072. The termination criterion is also 100,000 cost function evaluations.
Each value, as plotted in Fig. 22(a) shows average of three repeated runs of each instance. The curves illustrate that
the execution time of VMPMBBO is always less than MGGA. Compared to VMPACS, VMPMBBO has about same
execution time when the number of VM requests is smaller than 800. After that, VMPMBBO always runs faster than
VMPACS. Overall, VMPMBBO is computationally more efficient than MGGA and VMPACS as shown in Scenario
25.

Fig. 22(b) for the scenario 26 also shows that VMPMBBO has a better computational efficiency when P = 0.5,
DCPU = DMEM = 45%,Corr. = −0.052. Another observation is that when DCPU = DMEM = 25%, it takes 213
seconds for VMPMBBO to calculate a new placement of 1000 VMs and 754 seconds for placing 2000 new VMs. In
contrast, when DCPU = DMEM = 45%, the running times for VMPMBBO are 270 and 1112 seconds for placing 1000
and 2000 new VMs. The reason for difference in results with the same number of new VMs is due to fact that the
number of servers used to host VMs differs, on average there are four VMs per server in case of DCPU = DMEM = 5%,
and two VMs per server in the case of DCPU = DMEM = 45%.

As almost no pattern can be found in these instances, the number of physical servers requested is beyond estima-
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Fig. 22: Running times of three algorithms relative to the number of VM requests

tion. The number of servers is set as the number of VMs in order to support the worst VM placement scenario (one
VM per server) [30, 31]. It is obvious that reducing the number of optional servers will narrow the search space and
reduce the running time.

Fig. 23 shows how running time changes with cost function evaluations in the real scenarios (Scenarios 27 and
28). VMPMBBO takes 13 and 143 seconds to get the solution at 10,000th cost function evaluations, in Scenarios
27 and 28 respectively. A total of 8,000 VMs have been consolidated in Scenario 27. However, the running time is
significantly lower than in Scenarios 25 and 26, where 2,000 VMs have been relocated. The reason why VMPMBBO
converges faster to the optimal solution in the real-world problem is that the number of instance types and the number
of servers both are small and determined.
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Fig. 23: Running times of VMPMBBO relative to the number of function evaluations

5.4. Robustness
In Scenarios 29-31, the robustness of the proposed VMPMBBO approach has been validated, in the sense that the

performance obtained by setting different subsystems and popsize values does not vary considerably in most cases.
Dataset Synthetic dataset has been used in Scenarios 29-31, which is the same as the dataset used in Scenarios

13-22.
Result Evaluation
Subsystems and popsize Subsystems and popsize (i.e. number of islands per subsystem) are two key parameters

of VMPMBBO. The intuition is that the performance will improve with more subsystems and larger subsystems,
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because there are more candidate solutions to explore and more generations of solutions being produced. To verify
this hypothesis, we carried out some experiments. The experiments use sixteen pairs of Subsystems and popsize, as
listed in Table 10.

In Scenario 29, we examine the performance under these different combinations of subsystems and popsize Fig.
24 plots the power consumption and resource waste after 100, 000 cost evaluations, under different combinations of
subsystems and popsize. It can been seen that the curves of power consumption do not change much in these scenarios.
This is because each SIV in an immigrating island has a chance to be replaced by a SIV from an emigrating island.
And there is a linear relationship between power consumption and CPU utilization of a server. In contrast, due to lack
of such a linear relationship between resource waste and CPU utilization, the resource waste fluctuates a lot under
these scenarios.

Table 10: different combinations of subsystems and popsize in our experimental tests
Test number f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

Subsystems 2 2 2 2 4 4 4 4 10 10 10 10 20 20 20 20
Popsize 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Next, we built Scenarios 30 and 31 to examine the performance when fixing the values of two parameter: sub-
systems or popsize, how VMPMBBO responds to the changing values of the other parameter. Fig.25 depicts the
mean cost curves for varying number of subsystems (2, 4, 10, 20) when popsize = 3, P = 0.5, and DCPU =

DMEM = 25%,Corr. = −0.072 or DCPU = DMEM = 45%,Corr. = −0.052. Fig. 26 draws the mean cost curves
for different popsizes (3, 5, 10, 20) when Subsystems = 4, P = 0.5,DCPU = DMEM = 25%,Corr. = −0.072 or
DCPU = DMEM = 45%,Corr. = −0.052. For comparison purpose, the performances of MGGA and VMPACS are
also included in Figs. 25 and 26. It is observed that the performances of VMPMBBO do not change much with more
subsystems or larger popsizes. This is because there are few solution points available for VMPMBBO to evolve from.
Another observation is that in most cases VMPMBBO can converge to better solutions more quickly than MGGA
and VMPACS in all settings of these two parameters. These observations indicate that the robustness of VMPMBBO
in sense that the performance obtained using the representative parameter settings is very close to other parameter
settings.

5.5. Parameter Value Selection

In Scenarios 32-33, the selection of parameter values in VMPMBBO has been discussed, including mutation
probability Pmutation, replacement probability PS IVmigration, immigration rate λ and emigration rate µ.

1) Dataset
Synthetic dataset has been used in Scenarios 32-34, which is the same as the dataset used in Scenarios 13-22 .
2) Result Evaluation
Pmutation and PS IVmigration. Mutation rate Pmutation and SIV migration rate PS IVmigration are also important parameters

of VMPMBBO. In BBO/Complex [39] the mutation rate of 0.05 is recommended. Experiments are conducted in order
to find out the appropriate setting for these two parameters in VMPMBBO. Fig. 27 plots the statistical distributions of
the power consumption and resource waste with various mutation rates when DCPU = DMEM = 45%,Corr. = −0.052.
In each subfigure, the left most boxplot is for Pmutation being 0. The second boxplot from the left is for the mutation
rate of 0.05, the third from the left is for the mutation rate of 0.01. It is shown that the mutation does improve
performance when the mutation rate is below 0.4. The mutation rate of 0.05 has the best overall performance. Fig.
28 presents the changes of the two objective functions with different SIV migration rates. The result indicates that the
power consumption is not dramatically affected by the SIV migration rate, but the resource waste is least when the
SIV migration rate is 0.5. Based on these experiment results, we use the mutation rate of 0.01 and SIV migration rate
of 0.5 for VMPMBBO.

λ and µ. The immigration and emigration curves are straight lines in the initial work of BBO [38]. It means that
the immigration rate λ and emigration rate µ are linear (Eq.12) functions of the number of species (i.e. the values of
HSI). As mentioned earlier, other strategies such as quadratic in Eq.13, cosine in Eq.14, and exponential in Eq.15 have
been proposed in [56, 57]. In order to find out which of these strategies and the strategy described in Eq.11 is the best
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(b) in the case of DCPU = DMEM = 45%

Fig. 24: Power consumption and resource waste of VMPMBBO with different subsystems and popsize
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Fig. 25: mean cost curves of objectives in VMPMMBBO with different subsystems
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Fig. 26: mean cost curves of objectives in VMPMMBBO with different popsizes
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Fig. 27: Boxplots of each objective obtained by VMPMBBO with different mutation rates

for VMPMBBO. Experiments are carried out and the average cost curves of these strategies are presented in Fig. 29
for case of DCPU = DMEM = 25%,Corr. = −0.754 and Fig. 30 for the case of DCPU = DMEM = 45%,Corr. = −0.052.
In these figures strategy 1, strategy 2, strategy 3, strategy 4, and strategy 5 refer to quadratic in Eq.11, linear in Eq.12,
quadratic in Eq.13, cosine in Eq.14, and exponential in Eq.15. The emigration rate µ is always 1 – λ. It reveals that the
quadratic strategy in (11) converges to a lower minimum faster than the other four. The results in the other correlation
scenarios support the same conclusion, but are not included due to the space limitation.

6. Adaptability and Extensibility of VMPMBBO

In VMPMBBO, VMcP problem has been solved as a multi-objective optimization problem. As mentioned in
Section 4, feasible solutions of each objective have been obtained for different subsystems. The subsystems are
loosely coupled and they communicate with each other by cross-subsystem migration. Therefore, VMPMBBO can
be easily rebuilt to meet the demands by adding new objectives or constrains.
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Fig. 28: The costs of VMPMBBO with different SIV migration rates
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Fig. 29: mean cost curves with five migration rate generation strategy in DCPU = DMEM = 45%,Corr. = −0.754

In the following subsection, the adaptability and extensibility have been proved by using a complex scenario,
where the optimization model incorporates many factors, including resource wastage, power consumption, load bal-
ance [44, 61, 62, 45, 46, 47], Inter-VM network traffic [41, 42], Storage traffic [63] and anti-affinity policy [64, 65, 66].

6.1. Extended Model
Five objectives have been set in this scenario to reduce power consumption (Eq. 3), reduce resource wastage

(Eq.4), balance the loads (Eq.16), decrease inter-VM network traffic due to the inherent dependencies (Eq.17), and
also decrease storage traffic by storage affinity policy(Eq.18). Moreover,both mapping VMs to servers and mapping
VMs to storage nodes have been considered in the Extended VMcP Model. Two kinds of VM-to-VM policies: affinity
and anti-affinity policies [64, 65, 66] have been considered. A kind of Server-to-Storage policy: storage anti-affinity
policy [63] has also been considered. Moreover, CPU, memory, extranet bandwidth, inter-VM network traffic, storage
bandwidth and storage space have been considered in this model.

1) Load balance model. Imbalance of servers is represented by the load unevenness as follows, which has been
adopted in [44, 61, 62, 45, 46, 47]:

unevenness =

R∑
φ=1

M∑
j=1

∣∣∣∣Dφ
j − µ

∣∣∣∣, (16)

where M is the number of used servers. Dφ
j is the load of resource φ on jth server, and µ is the average load of resource

φ on M servers. Ris number of resource dimension we have considered.
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Fig. 30: mean cost curves with five migration rate generation strategy in DCPU = DMEM = 45%,Corr. = −0.052

2) Inter-VM network traffic model. It is represented by the product of communication distance and inter-VM
network bandwidth usage [41, 42] and modeled as follows:

NetworkTra f f icinter−V M =

N∑
i1=1

N∑
i2=1

(
Distance(xi1 , xi2 ) · Usage(i1, i2)

)
, (17)

where N is number of VMs. The value of variable xi1 indicates the assigned server number of VM i1. Distance(xi1 , xi2 )
is defined as the latency, delay or number of hops between server xi1 and xi2 . Distance(xi1 , xi2 ) = 0 when xi1 = xi2 .
Usage(i1, i2) is defined as traffic demand between VM i1 and VM i2.

3) Storage traffic model. It is assumed that the main storage is a distributed object storage system like Ceph [67].
Each storage node has been coupled with a certain number of servers as a group, considering the storage affinity policy
[63]. Each VM instance runs on a server and its image is stored in a storage node. If the servers where VMs running
and the storage node where VM images stored are in the same group, the traffic between server and storage system
would be low. The storage traffic is modeled as follows:

S torageTra f f ic =

N∑
i=1

(
Distance(xi, xsn

i ) · S torageBandwidthUsage(i)
)
, (18)

where the value of variablexsn
i indicates the assigned storage node number of VMi. Distance(xi, xsn

i ) is defined as the
latency, delay or number of hops between server xi and storage node xsn

i . Distance(xi1 , xi2 ) = 0 when server xi and
storage nodexsn

i are in the same group. S torageBandwidthUsage(i) is defined as storage traffic of VM i.
4) Constraint by anti-affinity policy. Affinity and anti-affinity policies have been widely used in virtualization

infrastructure [64, 65, 66]. Affinity policies keep VMs together on the same server for reducing traffic across networks,
which is represented as the objective in Eq.17. Anti-affinity policies separate VMs on different hosts for failover, which
is considered as a constraint of the VMcP model as follows:∣∣∣xi1 − xi2

∣∣∣ > 0, ∀i1, i2 ∈ V MS etAnti−A f f inity and i1 , i2, (19)

where V MS etAntiA f f inity is a set of VMs restricted by anti-affinity policy.
5) Extended VMcP Model. The VMcP optimization problem has been extended as following: Suppose that there

are N VMs which are to be placed on Mphysical machines, the VM images are to be stored in S storage node,
and none of the VMs requires more resource than a single server or storage node can offer. The resource allocation
requests for a VM and the resource capacity of a PM (server) are both represented by a multi-dimensional vector.
Each dimension refers to the amount of a specific type of resource requested by a VM or owned by a server or owned
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by a storage node. The aim is to simultaneously minimize power consumption, resource wastage, load unevenness,
inter-VM network traffic and storage traffic.

Goal:

Minimize:
M∑
j=1

resourceWastage( j) (20)

Minimize:
M∑
j=1

powerConsumption( j) (21)

Minimize: unevenness (22)
Minimize: NetworkTra f f icinter−V M (23)
Minimize: S torageTra f f ic (24)

Constraints:

xi ∈ {i, ...,M} i = [i, ...,N] (25)
xsn

i ∈ {1, ..., S } i = [1, ...,N] (26)
N∑

i=1

DstorageS pace
i ·

(
xsn

i |s
)
·
(
s|xsn

i

)
≤ T storageS pace

s · S Ns s = [1, ..., S ] (27)

N∑
i=1

Dr
i · (xi| j) · ( j|xi) ≤ T r

j · y j j = [1, ...,M]

r = [CPU,memory, extranet bandwidth, intranet bandwidth] (28)

N∑
i=1

(DstorageBandwidth
i )·

(
xsn

i |s
)
·
(
s|xsn

i

)
≤ T storageBandwidth

s · S Ns s = [1, ..., S ] (29)

N∑
i=1

(DstorageBandwidth
i ) · (xi| j) · ( j|xi) ≤ T storageBandwidth

j · y j j = [1, ...,M] (30)

S Ns =

{
1, ∃xsn

i = s
0, others s = [1, ..., S ] (31)

yi =

{
1, ∃xi = j
0, others j = [1, ...,M] (32)∣∣∣xi1 − xi2

∣∣∣ > 0, ∀i1, i2 ∈ V MS etAnti−A f f inity and i1 , i2 (33)

where S is number of storage nodes. The binary variable S Ns indicates whether storage s is used (value 1) or not
(value 0). DstorageS pace

i and DstorageBandwidth
i refer to the space and storage bandwidth demand of VM i. Let T storageS pace

s

be the threshold of the utilization of storage space. Let T storageBandwidth
j and T storageBandwidth

s be the threshold of storage
bandwidth at server side and at storage side respectively.

Constraints (27), (28), (29) and (30) guarantee allocated resources from each server or storage node to not exceed
their capacity. Constraint (31) defines the range of the variable . Constraint (33) ensures anti-affinity policy.

6.2. Experiment Configuration

Test Dataset. We consider the dataset where items independently follow normal distribution, which has been
adopted in previous researches [68, 69, 70]. We generated six VM demand sets based on normal distribution. We
simulate a system with 50 servers, 10 storage nodes and 200 VMs. We use random VM to server mapping and
random VM to storage node mapping in initial layout. Fig. 31(a), (b) and (c) show CPU, memory and extranet
bandwidth demands generated with N(0.15, 0.05). The storage bandwidth and storage space demands are generated
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with N(0.03, 0.01), as shown in Fig. 31(c)(d). Then, we randomly select 50 VM-VM pairs. Let 25 of them be restricted
by anti-affinity policy. In the other 25 pairs, inter-VM data movement is taking place. The inter-VM network traffic
in each pair is generated with N(0.15, 0.05).
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Fig. 31: Test dataset distribution

Network Configuration. Three networks have been set in this scenario, including intranet, extranet and
storage network. And they are fairly isolated from each other .The communication distance between servers is
dependent on the architecture and is computed as shown in [42]. We use Tree architecture [71] to compute the
distances both between server and storage node in storage network, as shown in Fig.32, and between servers in
intranet. In Fig.32, a ‘SW’ refers to a switch, a ‘SN’ refers to a storage node, and a ‘PM’ refers to a server.
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Fig. 32: Storage network architecture

We set up four subsystems, and make each subsystem correspond to an optimizing objective. The termination
criterion is 10,000 cost function evaluations. Other configurations are the same as described in Section 5.

6.3. Result
Fig. 33 plots the graph of function evaluations vs. each cost with error bars specified by the upper and lower edges

of the shadow. In Fig. 33(c), the lower and upper edges of the shadow contain lower and upper error ranges for server
unevenness. The white curves in Fig. 33 show the mean of power consumption, resource wastage, server unevenness
and inter-VM network traffic at each function evaluation. The fluctuations in the white curves present the optimal
decisions in the presence of trade-offs between conflicting objectives.

Fig.34 shows the CPU, memory and network bandwidth utilization of 50 servers before applying VMPMB-
BO£which is randomly generated as in Section 6.4. And Fig.35 shows the resource utilization after applying VMPMB-
BO. As shown in Fig. 35, a total of 8 servers have been turned off for energy conservation. The load on servers are
balanced, and for each server, the multi-dimensional resources are in a good equilibrium
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Fig. 33: Errorbars of VMPMBBO applied in four objectives

7. Conclusion And Future Work

In this paper, we propose a novel VMcP solution called VMPMBBO. It treats VMcP problem as a complex system,
and uses a biogeography based optimization method to optimally solve VMcP problem. The proposed VMcP solution
optimizes multiple objectives such as power consumption and resource waste at the same time. VMPMBBO is tested
using both synthetic data from related literature and real data from two real-world data centers.

We conducted extensive simulations, evaluating the different parameter settings of the proposed approach and
comparing it with two existing multi-objective VMP solutions, MGGA and VMPACS. The experimental results show
that in most cases, VMPMBBO has better convergence characteristics and is computationally more efficient than
MGGA and VMPACS. Adaptability and extensibility of VMPMBBO have also been proved. Future work will code
the algorithm in Python and focus on parallelization of VMPMBBO, and then deploy it to a cluster powered by
OpenStack [72].
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