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Intermittent Fault Detection on an Experimental Aircraft Fuel Rig:
Reduce the No Fault Found Rate

Tabassom Sedighi?®, Peter D. Foote? and Samir Khan®

Abstract— In the context of aircraft engineering and mainte-
nance, No Fault Found (NFF) is a chain of events that develops
from a pilot experiencing a system malfunction with post-
flight maintenance failing to reproduce the reported symptoms.
Without any repair being undertaken, the malfunction may be
experienced again on subsequent flights. This present significant
cost impacts to the industry that includes financial, reduced
operational achievement, airworthiness challenges and potential
flight safety issues. One of the major causes identified for
NFF occurrence within electronic, mechanical and hydraulic
productsarefaultsthat areintermittent in nature. Thismakesit
difficult to use systematic fault detection techniques effectively,
as system are subject to unknown disturbances and model
uncertainties. The philosophy behind this criterion is that the
designed model-based Fault Detection (FD) observer should
be robust to disturbances but sensitive to intermittent faults
where the occupance of intermittent faults can be alarmed by
the use of an adaptive threshold. The aim of this paper is
to demonstrate the development of such methodologies and to
examine its performance in a real-world test bed. The test bed
consistsof an aircraft fuel system simulation rig which simulates
by hardware the components of an aircraft fuel system.

I. INTRODUCTION

A fault within a system is described as an external input
that causes the behavior of a system to deviate from a
pre-defined performance threshold [1]. Faults are generaly
categorized according to whether they have developed slowly
during the operation of a system usually characteristic of
gradual component wear (incipient fault); arisen suddenly
like a step change as a result of a sudden breakage (abrupt
faults); or accrued in discrete intervals attributed to compo-
nent degradation or unknown system interactions (intermit-
tent faults). Intermittent faults can manifest in any system,
mechanical or electronic, in an unpredictable manner. If these
are |eft unattended over time they will evolveinto serious and
persistent faults. This unpredictability of an intermittent fault
means that it cannot be easily predicted, detected nor is it
necessarily repeatable during maintenance testing, However,
an intermittent fault, which is often missed during standard-
ized maintenancetesting, by its very definition will reoccur at
some time in the future. The intermittent fault case therefore
poses an ever increasing challenge in the maintenance of
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electronic, mechanical and hydraulic equipment. Thus faults
of this nature raise many concerns in the realm of through-
life engineering of products [2]. A substantial portion of
malfunctions attributed to intermittent faults will test "OK”
and will be categorized as No Fault Found (NFF) [3].

A much simplified maintenance process within an organiza-
tion can be observed in Figure 1, which separates the recti-
fication process into three key levels within an organization.
Here it is important to understand the concept of how NFF
instances can manifest themselves at various levels. When an
operator records a system error, maintenance personnel are
notified, who will attempt to investigate the reason for the
system malfunction. For the most part, faults are diagnosed,
isolated and rectified. However, when bench test do not
reveal any reported faults perfectly working components are
replaced and tagged as "NFF”, Figure 1.

There may be various reasons that contribute to this overall
process, however, recent publications have highlight intermit-
tent faults within the system to be a major cause, [3]. This
highlights the need for revisiting testability requirement that
are capable of detecting an intermittent fault.

Fig. 1. The NFF phenomena.

In general, intermittent fault typically tend to worsen with
time, until eventually becomes substantial enough that it can
be detected with conventional test equipment [4]. Hence,
developing the capability for early detection and isolation
of the intermittent fault will help to avoid major system
breakdowns [6]. Faults can occur in the actuators, process
components or the sensors. Sensor faults are of particular
importance. The impact of sensor faults causes the system
fails to perform its function, or results in a catastrophic
mechanical failure [5]. For years, several methods have been
introduced for detecting possible issues in dynamic systems
to guarantee normal functionality of the system. In practice,



the designer selects one out of several Fault Detection (FD)
methods, based on the specifications of the system and the
nature of possible faults. Some methods are more suitable for
off-line FD test. One example is subspace-based detection
method, introduced in [7] and [8]. The method is used for
health monitoring of mechanical structures, such as bridges.
Other methods aim at detecting faults online. Among all
the methods for online fault diagnosis, one of the particular
interesting techniques is the observer-based FD approach.
In observer based FD methods, the designers usually need to
construct an observer that will be robust to the disturbance
impacting the system but sensitive to the faults, and then a
residual is constructed based on the output of the observer.
One can determine whether the system has suffered from
some fault or not by comparing the residua with a fixed
or adaptive threshold. The method to flag the fault occur-
rence by observing the residua is called residual-based FD.
Nevertheless, finding systematic design methods for systems
subjected to unknown disturbances and model uncertainties
has been proven to be difficult [9]. Since both disturbances
and faults contribute to the residual generated by the FD
observer, some small faults cannot be detected for a pre-
designed threshold. A perfect or ideal FD observer should
aim at minimizing the maximal undetectable fault size in
the worst case as its goal. However, this criterion is not
adopted for FD observer design directly. The philosophy
behind this criterion is that a FD observer should be robust
to disturbances but sensitive to faults [10] and [11].

In this paper, the aim is to study the robust FD problem of
the considered system when a nonlinear observer is provided
and is asymptotically stable. The FD consists essentialy
of two steps, residual generation and residua evaluation.
The purpose of the first step is to generate a signal, the
residual, which is supposed to be nonzero in the presence of
intermittent fault and zero otherwise. However, the residual
is amost always nonzero due to disturbances and model
perturbations, even if thereis no fault. The purpose of second
step of the FD algorithm is thus to evaluate the residual and
draw conclusions on the presence of a fault. This is done
by comparing some function of the residual to a threshold.
This paper is organized as follows: Section |l presents the
mathematical description of the nonlinear system of interest
to this paper. Modeling the aircraft fud rig is addressed
in Section I1l. The observer design along with the residual
and appropriate adaptive thresholds are designed in Section
IV while the numerical example and simulation results are
provided in Section V. The conclusions are given in Section
VI.

Il. SYSTEM DESCRIPTION
Consider the class of nonlinear systems defined by the
state-space form:
X(t) = hX(X7 U,[.l, 937 fl)
y(t) hy(x, fs) (1)

If the nonlinear function hy(x,u, u,gs, fi) is differentiable
with respect to the state x(t), then this class of the system

may be expressed in terms of a linear unforced part, and

nonlinear state dependent controlled part [12] and [13]:
X(t) = Ax(t)+Bu(t) +Du(t) + Sgs(x u,t) + Kifi(t)

Cx(t) + Kssfs(t) )

where x(t) € R", u(t) € R™, p(t) € R™ and y(t) € RP

represent the state, input, unknown input (disturbance) and
output vectors respectively. Ac R™", Be R™™, D € R™™,
CeRP*", Se R™S, Kj € R™' and K € RP* are known
matrices, f; and fs present the intermittent and sensor faults
respectively. This paper considers general nonlinearities that
depend on unmeasured states, but for illustration, a nonlin-
earity of the form gs(x,u,t) € RS has been included in the
design procedure.
To illustrate the application of the results obtained in sections
I1-V, the authors aim to take a relative simple fuel system,
to illustrate the key steps of the intermittent fault diagnostic
analysis which meets the initial fault detection and isolation
requirements. A schematic diagram of the fuel system is
presented in Figure 2. The fuel system contains a motor
driven external gear pump with internal relief valve, a shut
off valve, onefilter, two tanks (main tank and sump tank, the
last one emulating the engine), non-return valve, three-way
valve to switch between recirculation and engine feed mode,
variable restrictor to simulate engine injection and back pres-
sure when partially closed. The fuel system is representative
of a smal UAV engine feed. The diagnostic analysis will
focus on the filter, pump, shut-off valve, pipes and nozzle
failure modes. Five failure modes that are emulated on the rig
are: filter clogging from foreign matter, pump degradation,
valve stuck in a midrange position, leak in the main line,
and a clogged nozzle.

The fuel rig can accommodate various faults with different
degrees of severity. When afilter clogs, the flow through the
filter reduces and the pressure difference measured across the
filter increases. The filter failure was emulated by replacing
the filter component with a Direct-acting Proportional Valve
(DPV1). Valve position fully open is equivalent to a healthy
filter; partially closed being equivalent to a clogged filter with
a particular degree of severity. Various degrees of severity of
this fault can be ssimulated by varying the DPV position. In
this manner, incipient, slow progression, cascading, abrupt
and intermittent types of faults can be simulated on the
rig and the ability of the functional approach to model
and address such conditions can be assessed. The physical
implementation of the fuel system test bed is depicted in
Figure 3.

Pipes length and diameter, pump characteristics, loss co-
efficient versus valve opening characteristics, shut-off valve
pressure drop when fully opened, tank’s capacity have been
identified within the design phase by carrying out various
scenariosin a controlled simulation environment. Volumetric
flow rates in the main line and pressure rates at five different
locations were calculated using the physical model.

For the healthy state of the fuel system, the direct acting
proportional valves were set as follows: DPV1 - fully open,
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Fig. 3: Fuel system test bed.

DPV2 - fully closed, DPV3 - fully open, DPV4 - fully closed
and DPV5 - fully open. Pressure and flow rates for the
healthy condition were recorded for a period of 6 minutesin
order to have a good estimation and pump rotational speed
was set at 400rpm. The feedback loop of the pump control
unit was active, so the pump speed was constant for the entire
testing session.

I1l. SYSTEM MODELING

The modelling will focus on the fluidic side of the rig and

the approach used is mechanistic/physical modelling based-
on the hardware of the fuel rig and the fluid properties. On
the rig, the main tank supply fluid by means of pump with
an array of valve connected to the pump (Figure 2).
Each element in this figure is modeled as a subsystem and
the overall model consists of all such models to represent
the system shown in Figure 2. It should be noted that whilst
some of the pipes depicted are very short they are included in
the model of the system to make the overall model equations
solvable.

A. Tank Mode

The height and pressure of the fluid in the tank are defined
by equation (3) and eguation (4). The equations provide a
pressure output for a given height which in turn is dependant
on the flow in and out of the tank.

f(Qin - Qout)dt

h(t) = 3
(t) A ©)
R =pgh(t) 4
Substitute equation (3) into (4) where Qi = 0, will give:
R = Cthut (5)
With G = —%g. Q, A, h, p, P and g represents volumetric

flow (%), tank cross-section (n?), height (m), density (%),
pressure (Pa) and gravity (5’2) respectively.
B. Valve Model

The valve equation below gives the volumetric flow rate
from the valve for a given pressure differential across the

valve.
Q(t) = cVAV\/gAP (6)

where Q, p, AP, C, and A, represents volumetric flow
(@), density (%), pressure difference (Pa), valve conduc-
tance (n?) and proportional valve opening respectively. The
equation (6) for fast opening valves is nonlinear and could
be rewritten as

AP =RQ? (7)
__p
where R= R
C. Pump Model

The pump, motor and gearbox are represented in the model
based on results found by practical experiment. The ramp of
pump time is equal to valve transition time. It means that
the pump will reach the maximum voltage when the valve
reach it's state. The pump is aso required to validate the
pipe and valve model asit is the only physically measurable
input signal available to drive the pipe and valve subsystem
models.

For a pump with positive displacement,
Poweriy, = to

Power|oss = f(friction, viscous, ef fects, ---)

POWerout = AP X Q (8)
where T and o represent nominal displacement and rotational
(shaft) speed respectively. T is considered as input speed
of the pump in (rpm).
Equations (8), could be represented as follows

Power ot = nmPowerin 9

where nm is the pump volumetric efficient and typically gear
pumps have efficiencies around 85% . Hence the following
equation is obtained for pressure difference around the gear

pump:
AP = Imt®

(10)



D. Pipe Model

The defining equation for the pipe subsystem model is
based on the compressibility of fluid in the system due to
the pressure acting upon it, defined by the bulk modulus and
is shown in equation (11).

E

P=1r [(@n— Qe (12)

where Q, Ey, P, and Vo = Ay x ZLp represents volumetric
flow (ﬁ), Bulk modulus (Pa), pressure (Pa) and origina

S

volume of pipe (m?) respectively. The time derivative of (11)
is presented as

at dt (12)
where | = \E/—; = ”TL;. Lp and Ap are the length and cross-

section of the corresponding pipe respectively.

E. Overall System Model

When constructing the overall model the subsystems are
simply parameterized and connected together to represent the
complete system. For parameterizations of the component
models, information was taken from measurement, data-
sheets and based on experiment. In our model we assume
that the fuel temperature is constant during operations.
The fuel pressure dynamics can be calculated by suitably
combining the continuity equation, the momentum equation
and Newton's motion law. consequently the system state can
be represented by the pressure in each control volume. We
aso neglect fluid dynamic phenomena connected to flows
through pipes.

Equations (3) to (11) can be rewritten in a state space form,
assuming the pressures as state variables and the pump speed,
as inputs. With the following positions:

x=[P P P P BT,

(13)

where B for i = 1,---,5, presents the outputs of the ith
pressure sensor respectively .

The global system equation may have the following form:

X1 = X
. 1
2 = et
- XARC[ 1
T SV S
“ o= l1 * |1CtX3
X5 = Xe c
R > 1 Ky
e (Y L (P TR (PR o
U(t)
X7 = Xg
.~ (RItR+R)G , 1
® = () 8 (k)G
Ky
—U(t
+(|1+|2)Ct ®)
X9 = X0
o _(R1+R2+R3+R4)QX2 3 1
10 (14 12413) 0 U1+ 1+13)C
Ky
X9+7(|1+|2+|3)Qu(t) 14

The intermittent fault, fi(t), is considered as a fault in
DPV3. fi(t) is defined as a time varying function of the form
fi(t) = ddiyn.(t), where dd;, the maximum fault amplitudes,
are constant and vy, is the designers's choice of output.
Hence the intermittent fault, fi(t), could be generated as
combination of impulses at different amplitudes which will
occurred in discrete intervals. We could model the fault as
follows

0 for 0<t<30s
fi, for 30s<t<40s
0 for 40s<t < 100s
fi for 100s<t < 160s
=9 0 for 160s <t < 200s (15)
fi, for 200s<t < 260s
0 for 260s<t < 280s
fi, for 280s<t < 360s

where dd; = 0.0020, dd, = 0.0035, dd; = 0.0050 and
dds = 0.080 are constants, nc = 1,---,5 is the choice of
output and t indicates the time in seconds.

IV. INTERMITTENT FAULT DETECTION

To avoid the consequences caused by the failure of the
elements in the control systems, it is critical to monitor the
health situation of the plant and to detect and identify any
possible faults at the earliest stage.

Not al the states x(t) can be directly measured (as is
commonly the case), therefore an observer is designed, y(t)
to estimate them, while measuring only the output y(t).
The observer is basicaly a model of the plant; it has the
same input and follows a similar differential equation. An
extra term compares the actual measured output y(t) to the
estimated output of the observer y(t); minimising this error



will cause the estimated states X(t) to tend towards the values
of the actua real-system states x(t). It is conventional to
write the combined equations for the system plus observer
using the original state x(t) plus the error state [14],

e(t) = x(t) — X(t). (16)

For more details on the nonlinear observer design for the
system and it's error stability see [15]. In genera the fault
detection system consists of two parts, 1) residual generation,
2) residua evauation [17].

A. Residual Generation

While a suitable observer is chosen for every case, if the
error system stability is satisfied, then the following scalar
observer-based residual can be generated for each output to
detect the intermittent faults

rs(t) = (y(t) —Y(t)) = CCe(t) + CKsfs(t)

where § € R"™P, is a suitable weighting matrix to be de-
signed.

The problem can be stated as finding &, such that the
following aims are achieved [18]:

« The effect of unknown input and disturbance signals on
the residual signal are as small as possible while the
effect of fault signal is as large as possible.

o The effect of parametric uncertainties on residual signal
are as small as possible.

« The fault detection system is robust stable in the pres-
ence of exogenous signals and uncertainties.

The object is to show that the residuas are differing from

zero when faults have occurred; however, the residual tends
to zero in "no fault” situation.

17

B. Residual Evaluation
A common choice of evauation signa is the 2-norm:

0
(oo = 15l 2 [ Irs(o) P

Since the evaluation function (18) can not be realised exactly,
because the value of ||rs||2 is not known until t = o, and it
is reasonable to assume that faults could be detected, if they
occur over finite time interval. Therefore equation (18) could
be modified to

t
(o = 1022/ [ Irs(m) 20

where 7 is the time window and it is finite [16].

(18)

(19)

C. Adaptive threshold

For the evaluation signal (19), the occupance of faults can
be alarmed if

reva > Tr = A fault is detected

and
reval < Tr = No fault is detected.

Hence the value of threshold gives an explicit bound on in
the fault free case and thus provides a valuable guideline
for robust threshold selection ([17], [19]).

T, the threshold, is obtained based on the residual dy-
namics in fault-free case. To design the adaptive threshold
for nonlinear system (2) and evaluation signal (19) redefine
the residual r(t) = ECwe(t) as follows:

r(t) =re(t) +ry(t),

where re(t) = r(t) [4t)=o0.t)=0 ad rg(t) =r(t) [yp-o are
the residuals due to the error and intermittent fault

Finally according to the obtained results the designed
residual and adaptive thresholds are able to detect the in-
termittent faults while occurred (see [2]).

(20)

V. SIMULATION RESULTS

The model has been implemented and ssimulated in the
MATLAB/Simulink environment. To assess the model per-
formance, simulation results have been compared with ex-
perimental data obtained on a fuel rig system.

Some simulation results, which highlight the modeling ca-
pability, are illustrated in following figures.

Figure 4 shows the pressures outputs from al five sensors,
the main and sum tank flows and the intermittent fault.
The intermittent fault has been injected manually. It was
considered as shutoff valve is getting clogged gradually with
some rest periods in betweens. Eventually the shutoff valve
will be 80 percent clogged approximately. Based on Figures
5 and 6, it can be seen from the residual responses that
the observers perform as expected and the state estimation
errors do tend to zero asymptoticaly as expected. They
also show that the intermittent fault has been detected using
the designed adaptive threshold accurately for the chosen
outputs.

Figure 5 also shows that the output of the sensor located
right after the faulty valve, P; has been affected by stronger
intermittent fault in compare with first output Py, Figure 6.

The smulation results also demonstrate that the proposed
design approach minimising the effect of the unknown in-
puts (uncertainties) to the state estimation errors and will
give a straightforward way to design a robust observer for
intermittency fault detection where the bounded uncertainties
are existed.

VI. CONCLUSIONS

This paper presents a mathematical model of a fuel rig
system. The model equations are obtained by resorting to
physical laws regulating the main fluid-dynamic and me-
chanical phenomena. The proposed model is validated by
comparing simulation results with both experiments and
the outputs of an accurate fluid-dynamic model. A robust
nonlinear observer has been designed for a class of nonlinear
systems with bounded unknown inputs (uncertainties). The
authors also show that the existing error dynamics between
the estimated and actual states are stable. In this method, the
non-unique design matrix, &, has been used to provide extra



degrees of freedom to the user to design the residual. The
main advantage of the proposed method is the possibility
to diagnose the intermittent faults by generating a residual
and an adaptive threshold which is highly sensitive to faults
and insensitive to any bounded uncertainties. An adaptive
threshold, as employed in this paper, makes the difficult
intermittency fault detection an easier task for the considered
class of nonlinear systems.

Finally, the effectiveness of the technique is illustrated by
the help of a numerical example. The simulation results
show that the designed residual and adaptive threshold can
indeed detect the intermittent faults regardless of the bounded
unknown inputs (uncertainties).

The next key issue is how to dea with the intermittent
faults in prognosis and how to balance the decision making
strategy. To deal with this issue a Bayesian Network (BN)
will be obtained to predict the intermittent failure probability
by designing a safety limit threshold. By monitoring the
operations data the BNs for failure prediction can be driven
and hence the performance warning when the predicted
failure probability meets the threshold of safety limit will
be provided. Hence by predicting the intermittent fault the
huge reduction in NFF rate will be obtain.
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