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IMPLEMENTATION OF NON-UNIFORM

SAMPLING FOR ‘ALIAS-FREE

PROCESSING’ IN DIGITAL CONTROL
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Controls Systems Group, Department of Electronic and Electrical
Engineering, Loughborough University, Loughborough LE11 3TU, UK

*(e-mail: m.s.khan@lboro.ac.uk)

Abstract: A non-uniform additive pseudo-random sampling pattern (mainly proposed in the
signal processing communities) can be used for performing an ‘alias-free signal sampling’ process.
The carefully designed sampling scheme can mitigate the effects of aliasing and permit significant
reductions in the average sampling frequency, leading to more efficient processor utilization.
Despite the fact that the sampling scheme potentially yields a number of advantages, has
previously received no significant attention in the field of control theory for research. This paper
highlights the implementation of this technique in digital control compensators, discussing the
importance of selecting a suitable form for implementation and illustrates the potential benefits
in terms of alias avoidance.
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1. INTRODUCTION

Digital controllers used in modern real-time control system
implementations need to operate at frequencies that are
higher than ever before. In order to use the classical signal
processing techniques, it is often necessary to increase
the sampling rates to levels beyond the hardware limits.
This is primarily due to the phase lags introduced by the
sampled-data controller and limits imposed by the Nyquist
sampling theorem. According to the theorem, the sampling
frequency must be at least twice the highest frequency
component present in the sampling signal. If this condition
is not satisfied, the resulting digital spectrum will contain
copies of extra frequency components i.e. will be aliased.
Aliasing tends to corrupt the characteristics of the signal
and is not desirable in signal processing applications. With
context to feedback control, this means that any energy
in the signal beyond the Nyquist frequency should be
sufficiently small to have an impact on the overall system
operation. In digital control systems, usually a relatively
high sample rate is used; for example, a figure of around
70 times the control system bandwidth is usually recom-
mended (Goodall et al. [1998]). However, there might be
certain cases in which the processing system cannot meet
this requirement, indicating that a higher performance
device is required (along with a rise in the hardware cost).
The authors are proposing the possibility of a second
option: to use a different sampling scheme to reduce the
average sample rate leading to a reduction in the controller
processing and hardware requirements.

Several sampling schemes have been investigated in the
area of digital signal processing with distinct properties
(Bilinskis and Mikelsons [1992]). Perhaps the most promis-
ing for alias suppression is the additive random sampling
scheme, which can remove aliasing without requiring any
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Fig. 1. Sampling data non-uniformly with a ZOH recon-
struction

pre-processing, thereby reducing the complexity of the
system. This allows high-frequency analogue signals to
be sampled at much lower sample rates and yet avoid
the addition of any aliases in their digital spectra. Fig-
ure 1 illustrates the concept of applying random sam-
pling and reconstructing them back by using a zero-order-
hold (ZOH) reconstruction device (note that since the
sample time is non-uniform, the ZOH-reconstruction will
not be a time invariant system). More recently, other
texts have commented on non-uniform sampling theory
and its applications (See e.g. Marvasti [2001], Bilinskis
[2007]), demonstrating its advantages and benefits. The
non-uniform sampling strategy has been used for the
implementation of broad-band measurement instruments
(Filicori et al. [1989]). Furthermore, investigators have



demonstrated the ability of random sampling to recover a
DC signal immersed in noise (Carrica et al. [2001]). Non-
uniform sampling has also recently been applied to FIR
filtering (Tarczynski et al. [1997]). However, despite being
a popular area for research in digital signal processing, it
has received scant attention in the field of digital control.
This could be due to the fact that unintended variations or
any sort of non-uniformity in the sampling instants have
always been seen as a threat in feedback control systems as
they could cause degradation in the control performance
and may even lead to instability (Marti et al. [2001]).
Either way, as far as the authors can tell, there has been no
research reported investigating the opportunities of using
a non-uniform sampling rate for feedback control systems.

In classical digital controller design, the sampled signals
are always considered to be periodic and equally time-
spaced. But variations in the sample times are inevitable
during operation and much efforts have been researched
to reduce these effects (Albertos and Crespo [1999]). The
motivation for this research is to investigate practical ways
of creatively using these variations in the sample period or
even utilizing a deliberate non-uniform sampling scheme
to extract some benefits from it, principally as a result of
enabling a lower sampling frequency without compromis-
ing the operating bandwidth of the digital compensator,
with a reduction in the overall processing.

This paper is structured as follows. Section 2 presents the
theoretical background of alias-free sampling describing its
potential benefits, followed by a brief description of an
IIR filter. Section 3 highlights the design of a non-uniform
sample time controller and the consequence of using the
z-operator to implement it. Sections 4 proposes a solution
to the issues rising from using the z-operator by using
the modified delta operator. Section 5 describes the future
work and finally the conclusion.

2. THEORETICAL BACKGROUND

2.1 Alias-free sampling

Alias-free sampling is purely an exercise of identifying the
true spectral content of a signal. A sampling scheme that
demonstrates such superior abilities for alias suppression is
the additive-random sampling scheme (Shapiro and Silver-
man [1960]), which is primarily based on the assumption
that the successive sampling intervals {ti, ti+1} are sta-
tistically independent and identically distributed. These
sample intervals were characterized by their mean value µ
and a standard deviation σ. The sampling mode is given
as:

ti = ti−1 + Ti, i = 0, 1, 2, . . . (1)

where ti−1 is the i − 1th sampling time and Ti is a
realization of a random variable which can be generated
by a pseudorandom number generator algorithm i.e. linear
feedback shift registers.

When a non-uniform sample time is used, the variances
of the sample point locations sum up, so that after some
time the probability of the sampling points along the
time axis becomes constant. Therefore the non-uniformity
between sample points should be implemented accurately
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Fig. 2. Uniformly sampled data. Sampling below the
Nyquist rate causes aliases which can clearly be seen
to have corrupted the signal
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Fig. 3. Non-uniformly sampled data. Adding variation to
the sampling scheme can mitigate the effects of aliases

so that some probabilistic requirements are met, or else
the required alias suppression effects will not be achieved.
The randomness introduced in the sampling time can be
controlled by one parameter, the ratio of σ and µ (which is
the standard deviation and mean sample rate). Note that a
ratio σ/µ of zero will signify uniform sampling. The ability
to distinguish frequencies depends on the ratio σ/µ used
when generating the sampling point process. Obviously,
the more the ratio σ/µ, the more alias suppression can be
achieved, but too much variation can introduce unaccept-
able statistical errors in the whole process. Therefore an
intermediate value must be used that will accomplish the
intended effect.

In Figure 2, an 80Hz sine wave is sampled at 100Hz with
a uniform sampling scheme. Obviously, due to the slow
and constant sample rate, duplicate frequencies appear
in the spectrum of the ‘under-sampled’ signal. Figure 3
shows the result achieved when the non-uniform additive
pseudo-random sampling pattern is used to acquire the
sample instances. The pattern has an average non-uniform



Fig. 4. Applying a deliberate non-uniform sampling rate
in a closed-loop

sample rate of 100Hz, with a variation ratio σ/µ = 0.2.
The signal being sampled is a 80Hz sine wave. It can
be seen that by using a non-uniform sample rate, aliases
are converted into broadband noise which does not have
the same implications as aliases (noise is incoherent) and
hence is much less objectionable. It should be pointed out
that when a set of data is sampled with a non-uniform
sample rate, the usual FFT algorithms cannot be used.
The results in Figure 3 are estimated by Equation (A.3)
which is derived in the Appendix A.

Alias-free sampling is theoretically possible whenever the
random sampling sequences are stationary (Bilinskis and
Mikelsons [1992]). In practical conditions of processing
a finite number of samples, alias components are never
eliminated completely but can only be suppressed by a
finite amount. The mean sampling rate of a typical alias-
free sampling process is lower than the sampling frequency
of the periodic sampling process that would be sampling
the same signal. In other words, a non-uniform sampling
scheme can allow the use of fewer numbers of samples and
yet give accurate results.

2.2 The Infinite Impulse Response (IIR) Filter

Controllers used in real-time control system implementa-
tions are primarily based on digital IIR filters that make
use of the shift operator z−1. The principal advantages of
using recursive filters rather than nonrecursive Finite Im-
pulse Response (FIR) filters are reduction of computation
delays and improved computational efficiency as they use
less memory resources, although it should be noted that
the recursion introduces significant numerical issues that
do not exist with FIR approaches. Typically, a general IIR
type equation in the s-domain is defined as:

H(s) =
N(s)

D(s)
=

n0 + n1s + · · · + nMsM

1 + m1s + · · · + mNsN
, (2)

It can be implemented digitally by making use of the shift
operator and the coefficients can be approximated from the
continuous plane to the digital domain through mapping
techniques, e.g. bilinear transform. The resulting transfer
function takes the form:

H(s) =
N(z)

D(z)
=

a0 + a1z
−1 + · · · + aMz−1

1 + b1z−1 + · · · + bNz−1
, (3)

Fig. 5. The direct implementation structure

Fig. 6. The canonical implementation structure

It is this filter (3) that needs to be implemented with a
time varying sampling frequency.

3. SETTING UP THE NON-UNIFORM SAMPLE
TIME CONTROLLER

A closed-loop layout for enabling a non-uniform sample
rate to an existing controller is shown in Figure 4. It
comprises of the digital compensator, that will implement
the control algorithm and a non-uniform sample times
block which regulates the sampling process and provides
the digital compensator with the current sample rate value
to update its coefficients. In addition, there will be vari-
ous delays associated with the controller implementation
which includes the effects of the Zero-Order-Hold (ZOH)
reconstruction and latencies during computation.

The design layout is simplified, since the delays are ignored
at all the frequencies in the bandpass. Although, during
implementation this can be done only if the uniform sam-
ple rate is much higher than the bandpass frequency, ωs. A
good selection of the sample rate fs, where fs = 1/T and
2Π = ωs, well above the control bandwidth can provide
control engineers with certain freedom to design compen-
sators in the continuous s-domain to the approximate z-
domain to match their requirements. Therefore, the role
of sampling in control systems is two-fold, it has to limit:

• aliasing of frequencies within the control loop band-
width

• loss of phase and gain margin due to delays (primarily
due to the ZOH)

In order to implement the discrete controller using the
z-operator, an implementation structure will have to be
determined. These structures reflect the ways in which
the discrete transfer functions can be interpreted both
theoretically and diagrammatically. The most commonly
used methods are the direct and canonical forms shown in



Figures 5 and 6, respectively. It is widely recognized that
the canonical form has certain benefits over the direct form
since there are fewer stored variables and shift operations
and hence is the most popular choice for implementation.

In order to adapt to the varying sampling rate, simple
formulas can be driven from (2) through discretization
techniques, to be used by the control algorithm in every
iteration. This will enable the coefficients of the compen-
sator to be updated directly during the operation in order
to preserve the desired filter characteristics. Consider the
non-uniform sampling sequence {. . . , ti−1, ti, . . . }, then
the coefficients for a time varying 1st order compensator
can then be given as:

a0 =
n0(ti − ti−1) + 2n1

(ti − ti−1) + 2m1

a1 =
n0(ti − ti−1) − 2n1

(ti − ti−1) + 2m1

b1 =
(ti − ti−1) − 2m1

(ti − ti−1) + 2m1

(4)

3.1 Repercussions of sample-time non-uniformity

The coefficients of any digital filter are dependent on the
sampling interval, which are usually calculated just once
at the start of the implementation. When a non-uniform
sampling scheme is employed, the filter coefficients will
have to be updated at each sample instant by using (4),
which will allow the filter to retain its desired character-
istics. However, in the case of recursive filters, the output
signal may suffer from a transient phenomenon as the filter
is loaded with its internal variables based on the previous
coefficient set. The severity of transient signals depend on
the filter input signal and the size of magnitude change in
the filter coefficients.

A point to be noted is that, if implemented in the correct
way, this transient phenomenon will not occur in the
case of non-recursive filters (Valimaki and Tarczynski
[1996]). Furthermore, a recursive time varying filter is
‘transient-free’ only when its feedback coefficients are kept
unchanged throughout the whole process. However, in this
case, all the compensator coefficients will being changed
and hence the transients will cause an undesirable behavior
of the closed loop system.

To better understand the concept of transients, consider
the following experiment which is an emulation of a
practical PID compensator based on IIR filtering, where
the filter coefficients are changed just once at runtime at
t = 8s. The compensator has the transfer function:

H(s) =
1 + 0.05s

1 + 0.01s
.
1 + 0.2s

0.2s

And the fixed and continuous plant model is:

P (s) =
0.65

1 + 0.45s

The digital filter coefficients are updated by changing
the sample time parameter ts. For simplicity, in this
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Fig. 7. Showing an undesirable transient. The filter coeffi-
cients are changed just once at t = 8s
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Fig. 8. Uncontrollable transients when using a nonuniform
sampling pattern. The filter coefficients are changing
at every sample instant

demonstration only two filter coefficient sets are being
used, set-1 from 0s → 8s (where ts = 0.02s), and set-2 from
8s → 15s (where ts = 0.01s). Figure 7 shows the control
signal generated by the controller and plant response due
to it.

It is evident that the change in coefficients in the discrete
compensator (at t = 8s) has significantly affected the con-
trol signal at the point of coefficient change. A solution to
this problem was presented based on the assumption that
images of recursive filters are running for each coefficient
set that is ever encountered in the system, but only one of
them is connected to the output at one time (Zetterberg
and Zang [1988]). However, this approach requires a very
large number of filters running in parallel which makes
it increasingly complex. In practice, this is not computa-
tionally viable and further modifications to this method
were suggested (Valimaki et al. [1995]) for transient sup-
pression that could give an acceptable performance at a
reasonable implementation complexity. The problem that
has to be addressed in the case of nonuniform sample



Fig. 9. The Modified delta canonical structure

time IIR filtering is slightly more complicated, especially
when the sample time parameter ts is changing at every
instant, introducing uncontrollable transients. Figure 8
demonstrates the effect of transients occurring due to a
continuously varying sampling time pattern. The pattern
has an average sample rate of 50Hz (ts = 0.02s), with
the variation ratio σ/µ = 0.2. Clearly, the control signal is
suffering from transients that could destabilize the system.

3.2 The importance of implementation structure

Recent investigators have highlighted the significance of
choosing the right implementation structure for the pur-
pose of transient reduction (Kovacshazy et al. [2001]).
Using the proper structure for the controller realization
can aid in suppressing transients, and the delta structure
has been identified to assure smaller transients than other
structures for small disturbances.

3.3 The Delta transform

The delta operator provides a much superior performance
over the fixed-point shift law implementation (Middleton
and Goodwin [1990]) and can lead to much reliable and
robust numerical control algorithms. Since the internal
variables in the delta structure are no longer successive
values of the same quantity, the operation is rather an
accumulation of the previous values with the new values. A
delta equivalent transfer function can be derived from the
z based discrete function by using the following mapping:

δ−1 =
z−1

1 − z−1

4. IMPLEMENTING THE DELTA OPERATOR

The discrete transfer function in the delta form can be
written in identical form to that for the z operator (3),
although the coefficient values will be different:

H(δ) =
c0 + c1δ

−1 + · · · + cMδ−n

1 + r1δ−1 + · · · + rNδ−n
, (5)

The only adjustment needed in the implementation equa-
tions is that the original shift equations have to be replaced
by additions.

4.1 The modified delta transform

A modification of the filter structure can be seen in Figure
9, in which the feedback coefficients are moved into the
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Fig. 10. Output response using the delta operator. Demon-
strating transient dependence on the filter structure

forward path of the filter (Forsythe and Goodall [1991]).
This modification has the important advantage that the
internal variables have their maximum values which are of
the same order as that of the input variable. The discrete
transfer function is now written as:

H(δ) =
p + d1qδ

−1 + · · · + d1 . . . dNrδ−n

1 + d1δ−1 + · · · + d1 . . . dNδ−n
, (6)

where r is the last feed-forward coefficient.

Again, the coefficients need to be recalculated each time
the sample time changes during the operation. The equa-
tions required for calculating the coefficients for a time
varying 1st order delta compensator can be given as:

p =
n0(ti − ti−1) + 2n1

(ti − ti−1) + 2m1

q = n0

d1 =
2(ti − ti−1)

(ti − ti−1) + 2m1

(7)

It is worth mentioning that as the order of the fil-
ter increases, the coefficient calculations will have to
take the prior sample rates into consideration. For ex-
ample, assuming the non-uniform sampling sequence
{. . . , ti−2, ti−1, ti, . . . }, then a 2nd order filter will need
to take the values of ti−2, ti−1 and ti into account to
calculate the correct results. Figure 10 demonstrates the
simulation carried on the same PID compensator used ear-
lier, but with a modified delta structure implementation
instead. It is evident that using the delta operator in the
non-uniform sample time controller implementation can
provide a better performance than its z counterpart in
canonical realizations.

5. FUTURE WORKS AND CONCLUSION

The paper described the concept of alias-free sampling
highlighting its potential to suppress aliasing while pro-
cessing signals at rates below the Nyquist limit. The paper



investigates the use of this approach for digital control
applications. However, a major issue was identified when
variations in sampling instants result in uncontrollable
transients that can cause serious performance degradation.
A simple control example was presented to demonstrate
this effect and a solution to reduce it was also presented.
The delta transform was found to provide a more robust
implementation with the non-uniform sample rate.

The next steps involve demonstrating the applicability
with other controller structures and application to some
real experimental hardware. Central questions related to
the research that are yet to be answered are:

• Can a non-uniform sampling pattern help improve the
operating bandwidth of a control system?

• What are its implications on stability?
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Appendix A. NON-UNIFORM TIME DISCRETE
FOURIER TRANSFORM

Many techniques exist in literature for estimating the
spectral content of unevenly sampled data (see e.g. Lomb
[1976], Marvasti [2001]). Although, a simple method based
on numerical integration is described here.

Consider the expression of the standard discrete Fourier
transform (DFT) as given by Ramirez [1984]:

Xd(k∆t) = ∆t
N−1∑

n=0

x(n∆t)e−j2Πk∆fn∆t (A.1)

where the variables have the following definitions:

Xd(k∆t) set of Fourier coefficients
x(n∆t) discrete set of samples
N number of samples considered
∆t time between samples
∆f sample interval in the frequency domain
n time sample index
k frequency component index

assuming that the sampling scheme is defined according
to Equation (1), then the spectrum can be estimated as:

Xd(k∆f) = ∆t

N−1∑

n=0

x(ti)e
−j2Πk∆fti (A.2)

where ti is the non-uniform sample time instant

The approximation of the Fourier coefficients can further
be improved by applying other sophisticated numerical
integration rules (although the improvement in approxi-
mation will come at the cost of increased complexity of
the expression). Consider the following substitution where

y(ti) = x(ti)e
−j2Πk∆fti

the result with trapezoidal integration can be expressed:

Xd(k∆f) = ∆t
N−1∑

n=0

[y(ti) + y(ti+1)]
(ti+1 − ti)

2
(A.3)
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