

Deadlock-free migration for virtual
machine consolidation using Chicken
Swarm Optimization algorithm

Tian, F. , Zhang, R. , Lewandowski, J. , Chao, K-M. , Li, L. and
Dong, B.

Post-print deposited in Coventry University repository January 2017

Original citation:
Tian, F. , Zhang, R. , Lewandowski, J. , Chao, K-M. , Li, L. and Dong, B. (2016) Deadlock-free
migration for virtual machine consolidation using Chicken Swarm Optimization algorithm.
Journal of Intelligent & Fuzzy Systems, volume In press. DOI: 10.3233/JIFS-169136

http://dx.doi.org/10.3233/JIFS-169136

IOS Press

The final publication is available at IOS Press through http://dx.doi.org/10.3233/JIFS-169136

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners.
A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge. This item cannot be reproduced or quoted extensively from without
first obtaining permission in writing from the copyright holder(s). The content must not be
changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holders.

http://dx.doi.org/10.3233/JIFS-169136
http://dx.doi.org/10.3233/JIFS-169136

Deadlock-free migration for Virtual Machine

Consolidation using Chicken Swarm

Optimization Algorithm

Feng Tian a,b,*, Rong Zhanga,b, Jacek Lewandowskic,d, Kuo-Ming Chaoc, Longzhuang Li e and Bo Dong a

a The MoE Key Lab for INNS, Xi’an Jiaotong University, Xi’an 710049, P.R. China
b Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, P.R. China
c School of Computing, Electronics and Mathematics, Coventry University, UK
d Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
e Department of Computer Science and Technology, Texas A&M University-Corpus Christi, TX, USA

Abstract. Consolidation of services is one of the key problems in cloud data centers. It consists of two separate but related

issues: Virtual machine (VM) placement and VM migration problems. In this paper, a VM consolidation scheme is proposed

that turns the virtual machine consolidation (VMC) problem into a vector packing optimization problem based on deadlock-

free migration (DFM) to minimize the energy consumptions. To solve this NP-hard and computationally infeasible for large

data centers problem, a novel algorithm named Chicken Swarm Optimization based on deadlock-free migration (DFM-CSO)

algorithm is proposed. The DFM-CSO algorithm is characterized by the ‘one-step look-ahead with n-VMs migration in parallel

(OSLA-NVMIP)’ method, which carries out the VM migration validation and the rearrangement of target physical host, as

well as records the migration order for each solution placement, so that VM transfer can be completed according to the migra-

tion sequence. The experimental results, for both real and synthetic datasets, show that the proposed algorithm with higher

convergence rate is favourable in comparison with the other deadlock-free migration algorithms.

Keywords: VM consolidation, VM placement, Deadlock-free migration, Chicken Swarm Optimization

*Corresponding author. E-mail: fengtian@mail.xjtu.edu.cn.

1. Introduction

The energy consumed by a data center can be

broadly categorized into two categories: energy used

by IT equipment such as servers, networks, storage,

etc., and energy usage by infrastructure facilities such

as cooling and power conditioning systems. The en-

ergy consumption of IT equipments accounts for

about half of the total energy consumption, of which

nearly 40% is consumed by servers. One of the most

important reasons for energy inefficiency in data cen-

ters is too much idle time when servers run at a low

load [1]. One of the main techniques to improve the

energy-efficiency of servers in data center is called

the virtual machine consolidation, which focus on

application workloads consolidation on a smaller

amount of physical hosts (PHs). The research shows

that the cost of running idle servers with no tasks

assigned accounts for over 50% of the peak power

consumption [2-3]. Therefore, consolidation of virtu-

al machines and shutting down idle servers are an

effective energy-saving strategy.

Power modeling is an active area of research,

studying both linear and nonlinear correlations be-

tween the system utilization such as VM placement

or migration and power consumption [4-5]. While

most of the virtual machine consolidation problems

focus on VM placement optimization, which is the

mapping of virtual machines to physical hosts, yet

little research concerns how the initial VM placement

can be transformed into the final placement and what

the migration sequence is. In this paper we cover both

VM placement and migration problems which can

help to reduce data center’s energy consumption

through efficient VM management.

2. Background

VM migration is a technology which has attracted

considerable interest from data center researchers in

recent years. It allows a virtual machine to migrate

from one physical host called source PH to another

physical host called target PH. The VM migration to

the new placement takes place after the workload

optimization. When there are m such virtual machines

that need to be migrated to the new placements, the

new VM placement has m migration tasks. If there

are insufficient resources on the target physical host

for a VM that needs to be migrated, then the migra-

tion of the VM is called ‘infeasible migration’, oth-

erwise, the migration of the VM is called ‘transfera-

ble migration’ or ‘transferable’. If there is at least

one infeasible migration task among the m migration

tasks, then the migration of the whole VM cannot be

successfully completed, and the new placement is

called ‘infeasible placement’.

In practice, deadlock may occur during virtual ma-

chine migrations, which transform the initial place-

ment into the new placement solution. There are four

conditions for the deadlock occurrence: mutual ex-

clusion, hold while waiting, no preemption and circu-

lar wait [6]. These conditions on both direct and indi-

rect deadlock examples illustrated in Figure 1 and 2

below are further discussed. Note that VM i-M nota-

tion, denotes that the i-th VM needs to take up M

units of host’s CPU.

PH1
cpu

cpu

VM1-4

VM2-3

1

cpu

cpu
PH2

VM3-2

1

(a) Initial placement

PH1
cpu

cpu

VM1-4

VM3-2

2

cpu

cpu
PH2

VM2-3

(b) Final placement

Fig. 1. Direct deadlock

In the first example of direct deadlock, also

known as infeasible migration, let’s assume that the

data center is made of two physical hosts: PH1 and

PH2. As shown in Fig. 1, the PH1 has 8 CPUs and

PH2 has 3 CPUs available. In this case, when the

initial VM needs to be transformed into the final

placement, there are 2 migration tasks to do. The first

task is the migration of VM2 requiring 3 CPUs from

its initial placement on PH1 to the new placement on

PH2.The second task in turn is the migration of VM3

requiring 2 CPUs from PM2 to PM1. In this case

each VM migration requires the other VM to release

its resources, what results in the deadlock, if and only

if there exit two physical hosts. Although resources

requirement in the final placement will not exceed the

PM’s maximum resources, the migration will not be

completed without resources from other servers.

cpu

PH1
cpu

VM1-2

VM2-1

1

cpu

cpu
PH2

VM3-3

2

(a) Initial placement

cpu

PH1
cpu

VM3-3

1

cpu

cpu
PH2

2

(b) Final placement

VM1-2

VM2-1

Fig.2. Indirect deadlock.

In the second example of indirect deadlock, im-

proper migration order leads to the deadlock. As

shown in Fig. 2, assume that the data center is made

of two physical hosts: PH1 and PH2 and that PH1 has

4 CPUs and PH2 has 5 available. In this case there

are 2 migration tasks that need to be done, and if the

migration order is: VM1-2PH2, VM3-3PH1, and

VM2-1PH2, then the migration can be completed.

However if the order is different and the first migra-

tion is VM2-1PH2, then there are only 2 available

CPUs left in PH1, and this PH cannot longer meet the

requirements for the VM3 migration. Meanwhile,

similar problem exists on PH2 where only two CPUs

are available, and also PH2 cannot meet the require-

ment for the VM2 migration to that host. Conse-

quently a circular wait is formed according to the

migration order VM3-3PH1 and VM1-2PH2,

that results in deadlock which does not allow the VM

migration to complete.

Although it is rare to break first three conditions

of deadlock’s occurrence, breaking the fourth condi-

tion is relatively common. When these happen, the

VM migration may lead to deadlock and in conse-

quence may require redundant servers to be added in

order to resolve the deadlock problem. Considering

constrained resources and heavily loaded data centers,

it is almost impossible to include additional physical

servers, especially for some private clouds composed

of a really small scale of physical servers.

This paper helps to solve this problem by propos-

ing the novel algorithm named Chicken Swarm Op-

timization based on deadlock-free migration (DFM-

CSO). It aims to find an optimal virtual machine

placement and the migration sequence, which will not

require redundant servers to mitigate the deadlock

problem. The DFM-CSO algorithm is characterized

by the OSLA-NVMIP method, which carries out

the VM migration validation and the rearrange-

ment of target physical hosts, as well as records

the migration order for each solution placement,

so that VM transfer can be completed according

to the migration sequence. It can help to obtain an

optimal placement and a specific migration order

which ensures that the optimal placement is transfer-

able. Moreover, the OSLA-NVMIP method takes the

idea of parallel priority to reduce the migration time.

The experimental results, for both real and synthetic

datasets, show that the proposed algorithm with high-

er convergence rate is favorable in comparison with

the other deadlock-free migration algorithms. This

paper is organized as follows. Section 3 focuses on

problem formulation and presents the proposed

methods. Section 4 introduces the DFM-SCO algo-

rithm and the OSLA-NVMIP deadlock avoidance

strategy. Section 5 presents the experiments and dis-

cusses the results. The paper is concluded in Section

6.

3. Problem formulation

The study in this paper is presented under one as-

sumption that servers share the same hard disks pool,

bandwidth, CPUs, and memory taken as the compu-

ting resources. Furthermore, redundant servers in data

center are not allowed. Such presented VM consoli-

dation problem is described as a vector packing prob-

lem and uses minimization of the energy consump-

tion of the placement as the objective function.

3.1. Power consumption model

One of the most popular power consumption

models is linearly proportional to the CPU utilization

[7-9]. However, with rapid development of computer

hardware technologies, the prediction performance of

linear model is not accurate enough. Literature re-

view [10] shows that the cubic polynomial power

consumption model is significantly better than the

linear model.

Let’s assume there are M servers and N VMs in a

data center. The power consumption, according to

polynomial model, for the i-th server can be defined

as：

2 3() () ()idle cpu cpu cpu

i i i i i i iC i C U U U         (1)

, with the total power consumption model defined as:

1

: ()
M

i

i

Minimize C x C i


 (2)

,where,
idle

iC represents the power consumed when the i-th

server is in idle state.

ia ,
ib ,

ig are three regression coefficients,

which describe the i-th server’s power con-

sumption.
cpu

iU ,
mem

iU represent the CPU-utilization and

memory-utilization of i-th server, respectively.

The constraints conditions for such defined model

are as follows:

0,

1,
i

i - th server idel
x

other


 


 (3)

 0 1mem

iU  (4)

 0 1 1,2, , .cpu

iU i M  ， (5)

The
ix in Eq. (1), is used to describe whether the

i-th server is shutdown or not. Eq. (4) and Eq. (5)

constrain the physical machine resource occupancy

upper limitation of VMs’ memory and CPU respec-

tively. Under such defined constraints the goal of this

study is to minimize the energy function C presented

in equation Eq. (2). For this purpose the experiments

were conducted on IBM 3850 X5 severs located in

the data center at the Distance Learning College of

the Xi’an Jiaotong University in China, which pro-

vides educational courses for over 69,000 students.

For the purpose of this experiment the performance

data was collected by Veeam Monitor [11] every 2

hours from 10/2/2014 to 1/2/2015 [12].

4. Methods

To solve the NP-hard and computationally in-

feasible for large data centers problem of VM mi-

gration, a novel algorithm named Chicken Swarm

Optimization based on deadlock-free migration

(DFM-CSO) is proposed. In this section, the main

steps of the DFM-CSO algorithm will be intro-

duced, and several key optimization strategies will

be discussed.

4.1. Introduction to the framework of DFM-CSO

algorithm

DFM-CSO is an optimization algorithm which

adds deadlock avoidance strategy named OSLA-

NVMIP to the CSO algorithm. CSO was first pro-

posed by Meng et al. [13] in 2014, as an swarm intel-

ligence algorithm. It is a stochastic optimization algo-

rithm which imitates the behavior of a group of

chickens searching for food. This algorithm classifies

‘chickens’ into three categories, namely: rooster, hen

and chick according to their fitness level. In this

model each type of ‘chicken’ carries out different

searching strategy and the chicken swarm updates

itself after several generations. What characterizes

this algorithm is its ability to avoid local optima and

quickly find the global optimal value, when solving

the optimization problem. The OSLA-NVMIP dead-

lock avoidance strategy means that, in each step of

transferring VMs, all transferable migration of the

VMs are moved into target PHs in parallel, while the

transferability of each solution placement is verified

and modified according to whether there exist suffi-

cient resources on the target physical host for each

VM that needs to be migrated, which ensures that

every solution placement can be transferred. In prin-

ciple if one solution placement is unable to be trans-

ferred, then the target PHs is rearranged until the

placement becomes transferable. This strategy will be

discussed in detail further in this section.

 Chicken swarm

initialization

Location update

Update the local optimal

and global optimal

Yes

NO

Start

Initialization

OSLA-NVMIP

Calculate the

population fitness

Stop

t=1

t>1?

mod(t, G) = 1?

Termination

criteria met?

t=t+1

Yes

NO

Fig. 3. Flowchart diagram of DFM-CSO algorithm.

Outlined in Figure 3 is the flowchart of the

DFM-CSO algorithm, proposed in this paper, which

is made of the following eleven main steps:

Step 1: Set t=1.

Step 2: Initialization. Initialize servers and virtual

machines, create placements, and set the

swarm population size and other parameters.

Each ‘chicken’ in the pool is encoded to rep-

resent a placement.

 Step 3: OSLA-NVMIP. “one-step look-ahead with

n-VMs migration in parallel” method carries

out the VM migration validation and the rear-

rangement of target PH, as well as records the

migration order for each solution placement.

Step 4: Calculate the population fitness. Calculate the

fitness for each placement.

Step 5: if t is greater than 0, then go to Step 10, oth-

erwise go to Step 6.

Step 6: t=t+1.

Step 7: Detect the judgement conditions. If the condi-

tions are met then go to Step 8, else, go to Step 9.

Step 8: ‘Chicken’ swarm initialization. Classify

‘chickens’ into three categories according to

their fitness.

Step 9: Location update. Update the location of dif-

ferent ‘chicken’ groups according to prede-

fined location model and encode them to rep-

resent their placement. Go to Step 3.

Step 10: Update the local optimal and global optimal

values.

Step 11: Detect the termination conditions. If the

termination conditions are met then exit the

loop, else, go to Step 6.

4.2. Core models and strategy

4.2.1 Swarm location update model

The rooster’s location update model is defined

as follows:
1 2

, , (1 (0,))generations generations

i j i jchrom chrom N    

2

1,

exp(),

i k

k i

i

if f f

f f
otherwise

f








 
 

[1,],k CN k i  ,

 where CN is the number of chicken swarms ,

ichrom depicts the position of the i-th chick-

en;
,

generations

i j
chrom is the j-th element of the i-th chrom

at time step generations. 2(0,)N s is the normal dis-

tribution with means 0 and standard deviation
2s . e

is the smallest constant used to avoid zero-division-

error. k is a rooster’s index randomly selected from

the roosters group,
if

is the fitness value of the cor-

responding
ichrom .

In turn, the hen’s location update formula is de-

fined as follows:

1

, ,

1, ,

2, ,

1* *()

2* *(),

generations generations

i j i j

generations generations

c j i j

generations generations

c j i j

chrom chrom

p Rand chrom chrom

p Rand chrom chrom

 

 

 

11 exp(| |),i c

i

f f
p

f e

-
= -

+

22 exp(),c ip f f= - -

c1≠ c2.

Where Rand is a uniform random number from

[0,1]. 1c ∊[1,…,CN] is the rooster’s index, which is

the i-th hen’s group-mate, while 2c ∊[1,…,CN] is an

index of the chicken (rooster or hen), which is ran-

domly chosen from the swarm. p1 is a influence fac-

tor that the chrom is affected by the rooster, which is

the hen’s group-mate, while p2 is the influence factor

that the chrom is affected by other hens and roosters.

Similar to nature, where chicks move around hens

to forage for food, the CSO model has its ‘chicks’

which move around ‘hens’ to search for optima. This

feature is defined as:

1

, ,

, ,*()

generations generations

i j i j

generations generations

m j i j

chrom chrom

L chrom chrom

 

 

,where
,

generations

m j
chrom stands for the position

of the i-th hen(m ∊[1,]CN) and L (L ∊ (0, 2)) is a

parameter, which ensures that chick follows its hen to

search for an optima. The parameter L value for

each chick is randomly chosen between 0 and 2.

4.2.2 OSLA-NVMIP

It is very difficult to estimate placement transfer-

ability without the virtual machine migration se-

quence. To estimate the given placement weather it is

transferable or not from initial placement is not a

trivial task. Moreover, it is the NP-hard problem to

search the VM migration sequence knowing only the

initial and the given placement. Since tracing whether

a solution can be transferred or not requires the VM

migration sequence, the VM migration sequence be-

comes the key to transferability detection.

Xing et al. [14] adopted “one-step look-ahead”

method to solve the deadlock problem in flexible

manufacturing system. The idea behind this method

is that if one step forward enters the unsafe state, then

the method returns this deadlock path and takes other

path instead. In turn, Sarker and Tang [15] proposed

an algorithm, which is similar to one-step look-ahead

with n-VM migration in parallel method to deal with

migration deadlock problem. This paper adopts the

OSLA-NVMIP strategy, which can rearrange the

target PHs for n-number of VMs which are failing to

be successfully migrated.

The framework of OSLA-NVMIP strategy pro-

posed below, takes the length of the vector as the

amount of VM’s, and each vector component value is

the corresponding physical host number assigned to

each VM. For example, chrom=[4 2 2] represents that

No.1 VM is placed in the No.4 PH, and that No.2

VM and No.3 VM are placed in the No. 2 PH.

The main steps of ‘OSLA-NVMIP’ strategy are

as follows:

Framework of ‘OSLA-NVMIP’ strategy:

Step 1: Find out all VMs which need to be migrated.

Step 2:For every PH, find all transferable VMs, and

record them (see Algorithm 1 for more de-

tails). Then immigrate these VMs into the

corresponding PHs.

Step 3: Detect if the termination condition is met.

That is, judge whether the number of VMs

need to be migrated before the transferring in

Step 2 is equal to the number of VMs need to

be migrated after the transferring in Step 2. If

these two numbers are zero, then stop this

procedure; If the two values are equal but not

zero, then go to Step 4; otherwise, return to

Step 2.

Step 4: Calculate idle virtual machines.

Step 5: If there still exist VMs that need to be migrat-

ed, then continue to Step 6, else stop the pro-

cedure.

Step 6: Rearrange the target PH for the VM which

needs to be migrated. The target PH is select-

ed from the list of currently used PHs. Calcu-

late available resources and the number of

idle PMs after each migration.

Step 7: Detect whether the termination condition is

met or not. Compare the number of migrated

VMs with the number of VMs which needed

migration in Step 1. If the two values are

equal, stop the procedure; otherwise, reset the

solution to the initial state and set the migra-

tion sequence to null.

For all the VMs that are identified in Step 2, the

migration process to different target PHs can be done

in parallel. In this way, the migration time can be

shortened due to multi-VM migration within one step.

The pseudo code for Step 2 is showed in Algorithm 1

listing below.

Algorithm 1 The pseudo codes for Step 2

1 for every physical host PH i do

2 find all the VMs that need to be migrated to PH i as

 a set, named vmposition1

3 if length(vmposition1)>0 then

4 Cc_cost=0;

5 Cm_cost=0;
6 for j = 1 to length(vmposition1) do
7 Cc_cost= Cc_cost +

 VM.Cc(vmposition1(j));

8 Cm_cost= Cm_cost +

 VM.Cm(vmposition1(j));

9 If (Cc_cost <= PMuseable.Cc(i))∧
 (Cm_cost <= PMuseable.Cm(i)) then

10 migratenum=migratenum+1;
11 migrationsequence(migratenum)=

 vmposition1(j);
 else

12 Cc_cost= Cc_cost –

 VM.Cc(vmposition1(j));

13 Cm_cost= Cm_cost –

 VM.Cm(vmposition1(j));
14 end if
15 end for
16 end if
18 end for

In the above listing, Cc_cost is an occupancy rate

of the sum of CPU utilization of all transferable VMs

that migrated to a specific PH in a step; and Cm_cost

is an occupancy rate of memory utilization of all

transferable VMs that migrated to the specific PH in

a step. VM.Cc is an occupancy rate of CPU utilization

of single transferable VM that migrated to a specific

PH; and VM.Cm is an occupancy rate of memory

utilization of single transferable VMs that migrated to

the specific PH. PMuseable.Cc(i) and PMusea-

ble.Cm(i) are the percentage of the residual CPU and

Memory capacity of the i-th PH

5. Experiment and analysis

Performance of the proposed DFM-CSO and

other four improved migration algorithms: DFM-PSO,

DFM-GA, DFM-IGA(improved DFM-GA algorithm)

and DFM-BBO/DE, were compared and evaluated in

experiments on both real and synthetic datasets. Syn-

thetic VM instances have been generated using meth-

od proposed by Gao et al. [16]. In turn, for real da-

taset generation 10 types of Amazon EC2 [17] in-

stances have been used. In the experiment scenario,

described below, the initial placement is what the

placement state (location, CPU, Memory, etc.) of all

VMs considered are in a moment. To simulate this,

Matlab software has been used. The results obtained

on both datasets show that the proposed algorithm

with higher convergence rate is favourable in com-

parison with the other improved deadlock-free migra-

tion algorithms. Note that, after introducing the

OSLA-NVMIP deadlock avoidance strategy into

PSO [18], GA [18], IGA [19] and BBD/DE [10], we

implemented and obtained four improved algorithms,

DFM-PSO, DFM-GA, DFM-IGA and DFM-

BBO/DE.

Ref. [20] and [21] had given the convergence

proof of the PSO algorithm, which shows that the

original PSO is neither with local convergence nor

with global convergence. So, the same thing happens

in the convergence of DFM-PSO. It is proved by

means of homogenous finite Markov chain analysis

that a generic GA will never converge to the global

optimum regardless of the initialization, crosser, op-

erator and objective function. However, variants of

canonical GA’s that always maintain the best solution

in the population, either before or after selection, are

shown to converge to the global optimum [22]. As

the same theory, both of the GA and IGA in this pa-

per adopt the method which maintain the best solu-

tion after selection, so the DFM-GA and DFM-IGA

which proposed in this paper are with global conver-

gence under the deadlock avoiding strategy. Ref. [23]

gives the convergence proof of the BBO algorithm

based on the assumption that the iteration time tends

to be infinite. So, the BBO/DE have the same con-

vergence property under the deadlock avoiding strat-

egy. Ref. [13] indicates that, for the CSO, the appro-

priate choose of parameter G is problem-based. If the

value of G is very big, it's not conducive for the algo-

rithm to converge to the global optimal quickly.

While if the value of G is very small, the algorithm

may trap into local optimal [13]. This principle also

works on DFM-CSO.

5.1 Scenario

There are 4 PHs and 8 VMs with the same con-

figuration. Initial VM placement is VM_inital = [1, 1,

2, 2, 3, 3, 4, 4], where each VM’s CPU and memory

occupancy rate demands are: VM.Cc = [1/4, 2/4, 1/4,

2/4, 1/4, 2/4, 1/4, 2/4] and VM.Cm = [1/10, 2/10,

1/10, 2/10, 1/10, 2/10, 1/10, 2/10] respectively. Since

memory utilization demand of each VM is relatively

low and the required resources of PH are adequate,

hence this scenario can be regarded as single-

resource case. Figure.4 shows the CPU resources of

the initial placement.

VM8-2

VM7-1

1

PH4

cpu

cpu

VM2-2

VM1-1

1

PH1

cpu

cpu

VM4-2

VM3-1

1

PH2

cpu

cpu

VM6-2

VM5-1

1

PH3

cpu

cpu

Fig.4. Scenario VM’s initial placement

There is a variety of candidate final placements

with the same minimum power consumption, because

the method presented in this paper considers the final

placement energy consumption as the only cost func-

tion that needs to be optimized without looking for

example at the number of VMs to be migrated. The

optimal solution calculated by DFM-CSO algorithm

is shown below:

 Optimal placement:

bestchrom=[2, 3, 3, 2, 3, 1, 2, 1] ;

 VM migration sequence:

VM_Migratesequence=[1, 3, 6, 7, 2, 8] ;

 Parallel nodes: parallernode=[2, 4, 5, 6].

The i-th element of parallelnode denotes the ag-

gregated number of VM migrations until the i-th step.

There are 4 parallel migrations according to the re-

sults:

The first parallel migration: VM1-1PH2;

 VM3-1PH3;

The second parallel migration: VM6-2PH1;

 VM7-1PH2;

The third parallel migration: VM2-1PH3;

The fourth parallel migration: VM8-2PH1.

The results indicate that according to the migra-

tion sequence, all migrations are deadlock-free.

Thanks to parallel migrations, the time spent for these

migrations is shorter than the time required to migrate

each VM separately. The optimal placement best

chrom shows that no VM is placed to PH4, therefore

PH4 will be idle after migrations and the number of

physical hosts with workload is three. This will save

the energy consumption.

5.2 Synthetic dataset

The method used to generate Synthetic instances

is showed in Algorithm 2.

Algorithm 2 Generation of Synthetic Instances

1 for i=1 to n do

2

2* ()iCc rand Cc= ;

3 ()iCm rand Cm= ;

4 (1)r rand= ;

5 if () ()i ir P Cc Cc r P Cc Cc      

 then

6 i iCm Cm Cm= + ;

7 end if

8 end for

, where Cc and Cm are parameters used to con-

trol the utilization of CPU and memory respectively.

P is corresponding to the correlations between CPU

and Memory utilization. The algorithm 2 is intro-

duced from Ref. [16] into this paper.

5.3 Real dataset

As outlined in Table 2, the real dataset has

been made of 10 general purpose T2 and C3 in-

stances from Amazon EC2 [17].

TABLE 2

 Instance Types from Amazon EC2

Instance

Type
vCPU

Memory

(GiB)

Physical

Processor

t2.nano 1 3 Intel Xeon family

t2.micro 1 6 Intel Xeon family

t2.small 1 12 Intel Xeon family

t2.medium 2 24 Intel Xeon family

t2.large 2 36 Intel Xeon family

c3.large 2 3.75 Intel Xeon E5-2680 v2

c3.xlarge 4 7.5 Intel Xeon E5-2680 v2

c3.2xlarge 8 15 Intel Xeon E5-2680 v2

c3.4xlarge 16 30 Intel Xeon E5-2680 v2

c3.8xlarge 32 60 Intel Xeon E5-2680 v2

5.4 Synthetic datasetResult and analysis

Several scenarios are used to compare the per-

formance of the DFM-CSO algorithm with that of

DFM-PSO, DFM-GA, DFM-IGA and DFM-

BBO/DE. For a fair comparison, all of the common

parameters of these methods are set to be the same.

We set the population size as 50 and the maximum

number of generations as 500 and 100 physical hosts

as servers. The related parameter values of these al-

gorithms are showed in TABLE 3.

TABLE 3

The related parameter values

Algorithm Paramerters

DFM-PSO c1=c2=1.49445,w=0.729

DFM-GA pmutation=0.3,pcrossover=0.7

DFM-IGA pmutation=0.3,pcrossover=0.7

DFM-

MBBO

Pmutation=0.2,I=1,E=1,

F=0.6,pcrossover=0.2

DFM-CSO CNr=0.2*CN,CNh=0.6*CN,

CNc=CN-CNr-CNh,

CNm=0.1*CNc,G=3,

L[0.5,0.9]

5.5 Experment result based on synthetic dataset

Scenario 2 sets parameters 0.25Cc Cm= = ,

0.072P = - to general 200 VMs synthetic instances,

and generate initial placement randomly.

Fig.5. Comparison of DFM-CSO with four algo-

rithms on Synthetic dataset

The experimental results shown in Fig.5 and TA-

BLE 4, show that the proposed algorithm is charac-

terized by the highest convergence rate in comparison

with other four migration algorithms with the solu-

tion being close to the optimum after about 25 itera-

tions. The algorithms which optimum solution is

closest to the one obtained with the DFM-CSO are

the DFM-IGA and DFM-BBO/DE. The convergence

rates of these two algorithms are very similar. The

other two algorithms performed significantly worst in

terms of the optimal solution accuracy as well as the

convergence rate.

TABLE 4

Comparison of DFM-CSO with four algorithms on

Synthetic dataset

Algorithms Cost(W)
Idle

servers

Save

Cost

Initial place-

ment
57846 10 0%

DFM-PSO 47896 32 17.2%

DFM-GA 44574 38 22.9%

DFM-IGA 43387 41 25%

DFM-

BBO/DE
43417 41 24.9%

DFM-CSO 43470 41 24.9%

The DFM-GA algorithm characterized by slow

search rate in the earlier stages of operation has been

improved after the number of iteration. DFM-PSP

algorithm characterized by the general slow search

rate was prone to trap into local optima. When look-

ing at the idle physical servers consolidation solu-

tions obtained with different algorithms, the DFM-

PSO and DFM-GA increased from 10 idle servers in

the initial placement up to 32 and 38 idle servers,

respectively, after 500 consolidation iterations. The

DFM-IGA, DFM-BBO/DE and DFM-CSO all

reached up to 41 idle physical servers.

Comparing the energy consumption of the initial

placement with the energy consumption of the opti-

mum placement of various methods, we observed that

the optimum placement obtained by DFM-CSO algo-

rithm saves 24.9% energy and beats DFM-PSO and

DFM-BBO/DE. The proposed algorithm, DFM-CSO,

has an outstanding feature that the speed of approach-

ing optimum placement is faster than others, seen in

Fig. 5.

TABLE 5

Comparison of DFM-CSO with three algorithms

on Synthetic dataset

Algorithms
Average

Cost(W)

Standard devia-

tion(W)

DFM-PSO 47953 513.165

DFM-IGA 43211 196.060

DFM-

BBO/DE
43552 135.100

DFM-CSO 43389 131.464

Using the same parameter values and running the

DFM-PSO, DFM-IGA, DFM-BBO/DE and DFM-

CSO for 10 times, respectively. The results are shown

in TABLE 5. The DFM-CSO has the minimal stand-

ard deviation as 131.464 compare with other three

algorithms, which mean that DFM-CSO has batter

stability than others. The convergence rate of DFM-

CSO is outstanding, because its results approached

the optimum placement after 25 iterations. Moreover,

the experiment has been carried out 15 times when

set the number of iterations as 30 and set G as 2, 3, 4,

5, 6, 7, 8, 9, 10, respectively, in scenario 2. The ex-

periment results are shown in Figure 6.

Fig.6. Comparison of DFM-CSO with different G

In Figure 6, we can observe that, with the de-

crease of the value of G, the convergence rate of

DFM-PSO becomes fast, while the optimum values

that the algorithm obtained are very close. This can

conclude that, with the influence of location update

strategy, the faster the speed of chicken grows and

smaller the value of G is, the faster the convergence

rate of the proposed algorithm is.

5.6 Experment result based on Real-world dataset

5.6.1 Real data scenario 1

In the first real data scenario, 200 virtual machines

were generated with 5 types of C3 instances and their

initial placement allocations were random. There

were 100 PHs with the same specification and each

PH had 40 CPUs and 128 GB of memory. The exper-

iment results are shown in Figure 7 and TABLE 6.

Fig.7. Comparison of DFM-CSO with four algo-

rithms on real dataset of C3 instances

TABLE 6

Comparison of DFM-CSO with four algorithms on

real dataset of C3 instances

Algorithms Cost(W)
Idle

servers
Save Cost

Initial

placement
66228 4 0%

DFM-PSO 54878 29 17.1%

DFM-GA 54967 28 17.0%

DFM-IGA 54284 30 18.0%

DFM-

BBO/DE
54324 30 17.97%

DFM-SCO 54306 30 18.0%

Comparing Figure 5 with Figure 7 we can notice

certain similarity between these two graphs. We can

also note that the convergence rate is smaller when

the virtual machine resources are larger.

5.6.2 Real data scenario 2

In the second real data scenario, the total of 200

virtual machine instances were generated and ran-

domly initialized with 5 types of T2 instances. There

were 100 physical hosts with the same specification

and each physical host had 40 CPUs and 128 GB of

memory.

Fig.8. Comparison of DFM-CSO with four algo-

rithms on real dataset made of T2 instances.

Comparison of Figure 7 and Figure 8, reveals that

the convergence rate of DFM-CSO algorithm is rela-

tively high compared with DFM-IGA and DFM-

BBO/DE, but much less effective than the other two.

The resource requirement of virtual machines in

scene 3 is much less than in scene 2, and DFM-CSO,

which is more applicable to virtual machines that

request more resources, may not have obvious ener-

gy-saving effect for correction of all the possible so-

lutions. Besides, it also shows that the virtual ma-

chine which have more resources leads to iteration of

convergence reducing relatively.

6. Conclusions

This paper presents a new algorithm for virtual

machine consolidation based on the Chicken Swarm

Optimization model. The experimental results, for

both real and synthetic datasets, indicated that the

proposed algorithm with higher convergence rate is

favourable in comparison with other deadlock-free

migration algorithms.

Future work on this algorithm will focus on serv-

er’s load balance on heterogeneous server infrastruc-

tures and the placement migration ability, combining

new strategies [24-25].

7. Acknowledgement

This research was partially supported by the Na-

tional Natural Science Foundation of China under

Grant Nos. 91118005, 91218301, 91018011,

61472315 and 61502379, MoE Innovative Research

Team in University under Grant No. IRT13035, In-

novation Project of Shaanxi Province Key lab

(2013SZS05-p01) and by Project of China

Knowledge Centre for Engineering Science and

Technology.

References

[1] F Farahnakian， P Liljeberg， J Plosila, Energy-Efficient

Virtual Machines Consolidation in Cloud Data Centers using
Reinforcement Learning, Parallel, Distributed, & Network-

based Processing, 2014:500-507.

[2] G. CHEN, et al, Energy-aware server provisioning and load
dispatching for connection-intensive internet services, Usenix

Symposium on Networked Systems Design & Implementation,

2008: 337-350.

[3] Khosravi A, Garg S K, and Buyya R, Energy and carbon-

efficient placement of virtual machines in distributed cloud da-

ta centers, International Conference on Parallel Processing,
Aug. 2013:317-328.

[4] Mohammad Masdari, Sayyid Shahab Nabavi, Vafa Ahmadi,

An over view of virtual machine placement schemes in cloud
computing, Journal of Network & Computer Applications,

2016, 66(C):106-127.

[5] Sandeep Kaur, Prof. Vaibhav Pandey, A Survey of Virtual
Machine Migration Techniques in Cloud Computing, Comput-

er Engineering and Intelligent Systems, 2015, 28-34.

[6] ZA Banaszak，BH Krogh, Deadlock Avoidance in Flexible

Manufacturing Systems with Concurrently Competing Process

Flows, IEEE Transactions on Robotics & Automation, 1990,
6(6):724-734.

[7] W. Tian, G. Lu, C. Jing, Y. Zhong, J. Hu, X. Dong. Method

and device for implementing load balance of data center re-
sources, US Patent8,510,747 (Aug. 13 2013).

[8] S. Srikantaiah, A. Kansal, F. Zhao, Energy aware consolida-

tion for cloud computing, Cluster Computing, 2008, 12(1):10-
15

[9] X. Fan,W.-D.Weber, L. A. Barroso, Power provisioning for a

warehouse-sized computer, Acm Sigarch Computer Architec-

ture News, 2007, 35(2):13-23
[10] Qinghua Zheng, Jia Li, et al. Multi-objective Optimization

Algorithm based on BBO for Virtual Machine Consolidation

Problem, IEEE International Conference on Parallel & Dis-
tributed Systems,2015:414-421.

[11] C.-H. Lien, Y.-W. Bai, M.-B. Lin, Estimation by software for

the power consumption of streaming-media servers, Instru-
mentation and Measurement, IEEE Transactions on Instru-

mentation & Measurement, 2007, 56(5):1859-1870.

[12] Q Zheng，R Li，X Li，N Shah，J Zhang, et al. Virtual

Machine Consolidated Placement Based on Multi-Objective

Biogeography-Based Optimization, Future Generation Com-
puter Systems, 2016, 54(C): 95-122

[13] Xianbing Meng, Yu Liu, Xiaozhi Gao, Hengzhen Zhang,

A New Bio-inspired Algorithm: Chicken Swarm Optimization,
Hefei: Springer International Publishing, 2014: 86–94.

[14] Xing, K. Y., Zhou, M. C., Liu, H. X., & Tian, F. (2009).

Optimal Petri net based polynomial-complexity deadlock
avoidance policies for automated manufacturing systems.

IEEE Transactions on Systems Man & Cybernetics Part A

Systems & Humans, 2009, 39(1):188-199.

[15] TK Sarker，M Tang, Performance-driven Live Migration of

Multiple Virtual Machines in Datacenters, IEEE International
Conference on Granular Computing, 2013,8151:253-258.

[16] Y Gao，H Guan，Z Qi，Y Hou，L Liu, A multi-objective

ant colony system algorithm for virtual machine placement in
cloud computing, Journal of Computer & System Sciences.

2013, 79(8):1230-1242.

[17] http://aws.amazon.com/ec2/instance-types/?nc1=h_ls.
[18] F Gao, MATLAB Super Learning Manual for Intelligent

Algorithm, Posts & Telecom Press, 2014

[19] SN Sivanandam，SN Deepa, Introduction to genetic algo-

rithms, MIT Press, 1998, 33(3):293--315

[20] Frans van den Bergh, A P Engelbrecht. A New Locally Con-
vergent Particle Swarm Optimize. IEEE International Confer-

ence on Systems, Man & Cybernetics, 2002, 3(3):94-99.

[21] FVD Bergh,AP Engelbrecht,A study of particle swarm opti-

mization particle trajectories ， Information Scienc-

es, 2006, 176(8):937-971
[22] G Rudolph, Convergence analysis of canonical genetic algo-

rithms, IEEE Transactions on Neural Networks, 1994,

5(1):96-101

[23] D Simon， A probabilistic analysis of a simplified biogeogra-

phy-based optimization algorithm，Evolutionary Computa-

tion, 2011, 19(2):167-188

[24] R Yousefian，S Aboutorabi，V Rafe, A greedy algorithm

versus metaheuristic solutions to deadlock detection in Graph

Transformation Systems, in: Journal of Intelligent and Fuzzy

Systems, 31(1) April 2016.

[25] KW Huang，JL Chen，CS Yang，CW Tsai, PSGO: Particle

swarm gravitation optimization algorithm, Journal of Intelli-

gent & Fuzzy Systems, 2015, 28(6):2655-2665.

http://xueshu.baidu.com/s?wd=author%3A%28F.%20van%20den%20Bergh%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28A.P.%20Engelbrecht%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28a3e5a8f9ef5e1da5913744757c6f632f%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0020025505000630&ie=utf-8&sc_us=5595428623985258111
http://xueshu.baidu.com/s?wd=paperuri%3A%28a3e5a8f9ef5e1da5913744757c6f632f%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0020025505000630&ie=utf-8&sc_us=5595428623985258111

	jacekcover
	jacek

