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Abstract.  Consolidation of services is one of the key problems in cloud data centers. It consists of two separate but related 

issues: Virtual machine (VM) placement and VM migration problems. In this paper, a VM consolidation scheme is proposed 

that turns the virtual machine consolidation (VMC) problem into a vector packing optimization problem based on deadlock-

free migration (DFM) to minimize the energy consumptions. To solve this NP-hard and computationally infeasible for large 

data centers problem, a novel algorithm named Chicken Swarm Optimization based on deadlock-free migration (DFM-CSO) 

algorithm is proposed. The DFM-CSO algorithm is characterized by the ‘one-step look-ahead with n-VMs migration in parallel 

(OSLA-NVMIP)’ method, which carries out the VM migration validation and the rearrangement of target physical host, as 

well as records the migration order for each solution placement, so that VM transfer can be completed according to the migra-

tion sequence. The experimental results, for both real and synthetic datasets, show that the proposed algorithm with higher 

convergence rate is favourable in comparison with the other deadlock-free migration algorithms. 
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1.  Introduction 

The energy consumed by a data center can be 

broadly categorized into two categories: energy used 

by IT equipment such as servers, networks, storage, 

etc., and energy usage by infrastructure facilities such 

as cooling and power conditioning systems. The en-

ergy consumption of IT equipments accounts for 

about half of the total energy consumption, of which 

nearly 40% is consumed by servers. One of the most 

important reasons for energy inefficiency in data cen-

ters is too much idle time when servers run at a low 

load [1]. One of the main techniques to improve the 

energy-efficiency of servers in data center is called 

the virtual machine consolidation, which focus on 

application workloads consolidation on a smaller 

amount of physical hosts (PHs). The research shows 

that the cost of running idle servers with no tasks 

assigned accounts for over 50% of the peak power 

consumption [2-3]. Therefore, consolidation of virtu-

al machines and shutting down idle servers are an 

effective energy-saving strategy. 

Power modeling is an active area of research, 

studying both linear and nonlinear correlations be-

tween the system utilization such as VM placement 

or migration and power consumption [4-5]. While 

most of the virtual machine consolidation problems 

focus on VM placement optimization, which is the 

mapping of virtual machines to physical hosts, yet 

little research concerns how the initial VM placement 

can be transformed into the final placement and what 

the migration sequence is. In this paper we cover both 

VM placement and migration problems which can 

help to reduce data center’s energy consumption 

through efficient VM management. 



2.  Background 

VM migration is a technology which has attracted 

considerable interest from data center researchers in 

recent years. It allows a virtual machine to migrate 

from one physical host called source PH to another 

physical host called target PH. The VM migration to 

the new placement takes place after the workload 

optimization. When there are m such virtual machines 

that need to be migrated to the new placements, the 

new VM placement has m migration tasks. If there 

are insufficient resources on the target physical host 

for a VM that needs to be migrated, then the migra-

tion of the VM is called ‘infeasible migration’, oth-

erwise, the migration of the VM is called ‘transfera-

ble migration’ or ‘transferable’. If there is at least 

one infeasible migration task among the m migration 

tasks, then the migration of the whole VM cannot be 

successfully completed, and the new placement is 

called ‘infeasible placement’. 

In practice, deadlock may occur during virtual ma-

chine migrations, which transform the initial place-

ment into the new placement solution. There are four 

conditions for the deadlock occurrence: mutual ex-

clusion, hold while waiting, no preemption and circu-

lar wait [6]. These conditions on both direct and indi-

rect deadlock examples illustrated in Figure 1 and 2 

below are further discussed. Note that VM i-M nota-

tion, denotes that the i-th VM needs to take up M 

units of host’s CPU. 
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Fig. 1. Direct deadlock 

In the first example of direct deadlock, also 

known as infeasible migration, let’s assume that the 

data center is made of two physical hosts: PH1 and 

PH2. As shown in Fig. 1, the PH1 has 8 CPUs and 

PH2 has 3 CPUs available. In this case, when the 

initial VM needs to be transformed into the final 

placement, there are 2 migration tasks to do. The first 

task is the migration of VM2 requiring 3 CPUs from 

its initial placement on PH1 to the new placement on 

PH2.The second task in turn is the migration of VM3 

requiring 2 CPUs from PM2 to PM1. In this case 

each VM migration requires the other VM to release 

its resources, what results in the deadlock, if and only 

if there exit two physical hosts. Although resources 

requirement in the final placement will not exceed the 

PM’s maximum resources, the migration will not be 

completed without resources from other servers. 
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Fig.2. Indirect deadlock. 

In the second example of indirect deadlock, im-

proper migration order leads to the deadlock. As 

shown in Fig. 2, assume that the data center is made 

of two physical hosts: PH1 and PH2 and that PH1 has 

4 CPUs and PH2 has 5 available. In this case there 

are 2 migration tasks that need to be done, and if the 

migration order is: VM1-2PH2, VM3-3PH1, and 

VM2-1PH2, then the migration can be completed. 

However if the order is different and the first migra-

tion is VM2-1PH2, then there are only 2 available 

CPUs left in PH1, and this PH cannot longer meet the 

requirements for the VM3 migration. Meanwhile, 

similar problem exists on PH2 where only two CPUs 

are available, and also PH2 cannot meet the require-

ment for the VM2 migration to that host. Conse-

quently a circular wait is formed according to the 

migration order VM3-3PH1 and VM1-2PH2, 

that results in deadlock which does not allow the VM 

migration to complete. 

Although it is rare to break first three conditions 

of deadlock’s occurrence, breaking the fourth condi-

tion is relatively common. When these happen, the 

VM migration may lead to deadlock and in conse-

quence may require redundant servers to be added in 

order to resolve the deadlock problem. Considering 

constrained resources and heavily loaded data centers, 

it is almost impossible to include additional physical 

servers, especially for some private clouds composed 

of a really small scale of physical servers. 

This paper helps to solve this problem by propos-

ing the novel algorithm named Chicken Swarm Op-

timization based on deadlock-free migration (DFM-

CSO). It aims to find an optimal virtual machine 

placement and the migration sequence, which will not 

require redundant servers to mitigate the deadlock 

problem. The DFM-CSO algorithm is characterized 

by the OSLA-NVMIP method, which carries out 

the VM migration validation and the rearrange-

ment of target physical hosts, as well as records 

the migration order for each solution placement, 



so that VM transfer can be completed according 

to the migration sequence. It can help to obtain an 

optimal placement and a specific migration order 

which ensures that the optimal placement is transfer-

able. Moreover, the OSLA-NVMIP method takes the 

idea of parallel priority to reduce the migration time. 

The experimental results, for both real and synthetic 

datasets, show that the proposed algorithm with high-

er convergence rate is favorable in comparison with 

the other deadlock-free migration algorithms. This 

paper is organized as follows. Section 3 focuses on 

problem formulation and presents the proposed 

methods. Section 4 introduces the DFM-SCO algo-

rithm and the OSLA-NVMIP deadlock avoidance 

strategy. Section 5 presents the experiments and dis-

cusses the results. The paper is concluded in Section 

6. 

3. Problem formulation 

The study in this paper is presented under one as-

sumption that servers share the same hard disks pool,  

bandwidth, CPUs, and memory taken as the compu-

ting resources. Furthermore, redundant servers in data 

center are not allowed. Such presented VM consoli-

dation problem is described as a vector packing prob-

lem and uses minimization of the energy consump-

tion of the placement as the objective function. 

3.1.  Power consumption model 

One of the most popular power consumption 

models is linearly proportional to the CPU utilization 

[7-9]. However, with rapid development of computer 

hardware technologies, the prediction performance of 

linear model is not accurate enough. Literature re-

view [10] shows that the cubic polynomial power 

consumption model is significantly better than the 

linear model. 

Let’s assume there are M servers and N VMs in a 

data center. The power consumption, according to 

polynomial model, for the i-th server can be defined 

as： 

2 3( ) ( ) ( )idle cpu cpu cpu
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, with the total power consumption model defined as: 
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,where, 
idle

iC  represents the power consumed when the i-th 

server is in idle state. 

ia ,
ib ,

ig  are three regression coefficients, 

which describe the i-th server’s power con-

sumption.  
cpu

iU ,
mem

iU  represent the CPU-utilization and 

memory-utilization of i-th server, respectively. 

The constraints conditions for such defined model 

are as follows: 

  

     
0,

1,               
i

i - th server idel
x

other


 


               (3) 

      0 1mem

iU                          (4) 

 
      0 1 1,2, , .cpu

iU i M  ，          (5) 

The
ix  in Eq. (1), is used to describe whether the 

i-th server is shutdown or not. Eq. (4) and Eq. (5) 

constrain the physical machine resource occupancy 

upper limitation of VMs’ memory and CPU respec-

tively. Under such defined constraints the goal of this 

study is to minimize the energy function C presented 

in equation Eq. (2). For this purpose the experiments 

were conducted on IBM 3850 X5 severs located in 

the data center at the Distance Learning College of 

the Xi’an Jiaotong University in China, which pro-

vides educational courses for over 69,000 students. 

For the purpose of this experiment the performance 

data was collected by Veeam Monitor [11] every 2 

hours from 10/2/2014 to 1/2/2015 [12]. 

4. Methods 

To solve the NP-hard and computationally in-

feasible for large data centers problem of VM mi-

gration, a novel algorithm named Chicken Swarm 

Optimization based on deadlock-free migration 

(DFM-CSO) is proposed. In this section, the main 

steps of the DFM-CSO algorithm will be intro-

duced, and several key optimization strategies will 

be discussed. 

4.1. Introduction to the framework of DFM-CSO 

algorithm  

DFM-CSO is an optimization algorithm which 

adds deadlock avoidance strategy named OSLA-



NVMIP to the CSO algorithm. CSO was first pro-

posed by Meng et al. [13] in 2014, as an swarm intel-

ligence algorithm. It is a stochastic optimization algo-

rithm which imitates the behavior of a group of 

chickens searching for food. This algorithm classifies 

‘chickens’ into three categories, namely: rooster, hen 

and chick according to their fitness level. In this 

model each type of ‘chicken’ carries out different 

searching strategy and the chicken swarm updates 

itself after several generations. What characterizes 

this algorithm is its ability to avoid local optima and 

quickly find the global optimal value, when solving 

the optimization problem. The OSLA-NVMIP dead-

lock avoidance strategy means that, in each step of 

transferring VMs, all transferable migration of the 

VMs are moved into target PHs in parallel, while the 

transferability of each solution placement is verified 

and modified according to whether there exist suffi-

cient resources on the target physical host for each 

VM that needs to be migrated, which ensures that 

every solution placement can be transferred. In prin-

ciple if one solution placement is unable to be trans-

ferred, then the target PHs is rearranged until the 

placement becomes transferable. This strategy will be 

discussed in detail further in this section. 
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Fig. 3. Flowchart diagram of DFM-CSO algorithm. 

Outlined in Figure 3 is the flowchart of the 

DFM-CSO algorithm, proposed in this paper, which 

is made of the following eleven main steps: 

Step 1: Set t=1. 

Step 2: Initialization. Initialize servers and virtual 

machines, create placements, and set the 

swarm population size and other parameters. 

Each ‘chicken’ in the pool is encoded to rep-

resent a placement.  

 Step 3: OSLA-NVMIP. “one-step look-ahead with 

n-VMs migration in parallel” method carries 

out the VM migration validation and the rear-

rangement of target PH, as well as records the 

migration order for each solution placement. 

Step 4: Calculate the population fitness. Calculate the 

fitness for each placement. 

Step 5: if t is greater than 0, then go to Step 10, oth-

erwise go to Step 6. 

Step 6: t=t+1. 

Step 7: Detect the judgement conditions. If the condi-

tions are met then go to Step 8, else, go to Step 9. 

Step 8: ‘Chicken’ swarm initialization. Classify 

‘chickens’ into three categories according to 

their fitness. 

Step 9: Location update. Update the location of dif-

ferent ‘chicken’ groups according to prede-

fined location model and encode them to rep-

resent their placement. Go to Step 3. 

Step 10: Update the local optimal and global optimal 

values. 

Step 11: Detect the termination conditions. If the 

termination conditions are met then exit the 

loop, else, go to Step 6. 

4.2. Core models and strategy 

4.2.1  Swarm location update model 

The rooster’s location update model is defined 

as follows: 
1 2
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 where CN is the number of chicken swarms , 

ichrom  depicts the position of the i-th chick-

en;
,

generations

i j
chrom is the j-th element of the i-th chrom 

at time step generations. 2(0, )N s  is the normal dis-

tribution with means 0 and standard deviation 
2s . e  



is the smallest constant used to avoid zero-division-

error. k  is a rooster’s index randomly selected from 

the roosters group, 
if  

is the fitness value of the cor-

responding 
ichrom . 

 
In turn, the hen’s location update formula is de-

fined as follows:
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c1≠ c2. 

Where Rand is a uniform random number from 

[0,1]. 1c ∊[1,…,CN] is the rooster’s index, which is 

the i-th hen’s group-mate, while 2c ∊[1,…,CN] is an 

index of the chicken (rooster or hen), which is ran-

domly chosen from the swarm. p1 is a influence fac-

tor that the chrom is affected by the rooster, which is 

the hen’s group-mate, while p2 is the influence factor 

that the chrom is affected by other hens and roosters. 

Similar to nature, where chicks move around hens 

to forage for food, the CSO model has its ‘chicks’ 

which move around ‘hens’ to search for optima. This 

feature is defined as:
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,where 
,

generations

m j
chrom  stands for the position 

of the i-th hen( m ∊[1, ]CN ) and L (L ∊ (0, 2))  is a 

parameter, which ensures that chick follows its hen to 

search for an optima. The parameter L  value for 

each chick is randomly chosen between 0 and 2. 

4.2.2  OSLA-NVMIP 

It is very difficult to estimate placement transfer-

ability without the virtual machine migration se-

quence. To estimate the given placement weather it is 

transferable or not from initial placement is not a 

trivial task. Moreover, it is the NP-hard problem to 

search the VM migration sequence knowing only the 

initial and the given placement. Since tracing whether 

a solution can be transferred or not requires the VM 

migration sequence, the VM migration sequence be-

comes the key to transferability detection.  

Xing et al. [14] adopted “one-step look-ahead” 

method to solve the deadlock problem in flexible 

manufacturing system. The idea behind this method 

is that if one step forward enters the unsafe state, then 

the method returns this deadlock path and takes other 

path instead. In turn, Sarker and Tang [15] proposed 

an algorithm, which is similar to one-step look-ahead 

with n-VM migration in parallel method to deal with 

migration deadlock problem. This paper adopts the 

OSLA-NVMIP strategy, which can rearrange the 

target PHs for n-number of VMs which are failing to 

be successfully migrated. 

The framework of OSLA-NVMIP strategy pro-

posed below, takes the length of the vector as the 

amount of VM’s, and each vector component value is 

the corresponding physical host number assigned to 

each VM. For example, chrom=[4 2 2] represents that 

No.1 VM is placed in the No.4 PH, and that No.2 

VM and No.3 VM are placed in the No. 2 PH. 

The main steps of ‘OSLA-NVMIP’ strategy are 

as follows:  

Framework of  ‘OSLA-NVMIP’ strategy: 

Step 1: Find out all VMs which need to be migrated. 

Step 2:For every PH, find all transferable VMs, and 

record them (see Algorithm 1 for more de-

tails). Then immigrate these VMs into the 

corresponding PHs. 

Step 3: Detect if the termination condition is met. 

That is, judge whether the number of VMs 

need to be migrated before the transferring in 

Step 2 is equal to the number of VMs need to 

be migrated after the transferring in Step 2. If 

these two numbers are zero, then stop this 

procedure; If the two values are equal but not 

zero, then go to Step 4; otherwise, return to 

Step 2. 

Step 4: Calculate idle virtual machines. 

Step 5: If there still exist VMs that need to be migrat-

ed, then continue to Step 6, else stop the pro-

cedure. 

Step 6: Rearrange the target PH for the VM which 

needs to be migrated. The target PH is select-

ed from the list of currently used PHs. Calcu-

late available resources and the number of 

idle PMs after each migration. 

Step 7: Detect whether the termination condition is 

met or not. Compare the number of migrated 

VMs with the number of VMs which needed 

migration in Step 1. If the two values are 



equal, stop the procedure; otherwise, reset the 

solution to the initial state and set the migra-

tion sequence to null. 

For all the VMs that are identified in Step 2, the 

migration process to different target PHs can be done 

in parallel. In this way, the migration time can be 

shortened due to multi-VM migration within one step. 

The pseudo code for Step 2 is showed in Algorithm 1 

listing below. 

Algorithm 1 The pseudo codes for Step 2 

1 for every physical host PH i  do 

2      find all the VMs that need to be migrated to PH i as  

         a set, named vmposition1 

3     if length(vmposition1)>0   then     

4        Cc_cost=0;  

5        Cm_cost=0;             
6        for j = 1 to length(vmposition1)   do 
7              Cc_cost= Cc_cost +  

                         VM.Cc(vmposition1(j));  

8              Cm_cost= Cm_cost +  

                          VM.Cm(vmposition1(j));  

9             If (Cc_cost <= PMuseable.Cc(i))∧ 
                 (Cm_cost <= PMuseable.Cm(i)) then 

10                 migratenum=migratenum+1; 
11               migrationsequence(migratenum)=  

                                      vmposition1(j); 
            else 

12                  Cc_cost= Cc_cost –  

                              VM.Cc(vmposition1(j));     

13                   Cm_cost= Cm_cost –  

                              VM.Cm(vmposition1(j));      
14               end if  
15          end for 
16     end if 
18 end for            

In the above listing, Cc_cost is an occupancy rate 

of the sum of CPU utilization of all transferable VMs 

that migrated to a specific PH in a step; and Cm_cost 

is an occupancy rate of memory utilization of all 

transferable VMs that migrated to the specific PH in 

a step. VM.Cc is an occupancy rate of CPU utilization 

of single transferable VM that migrated to a specific 

PH; and VM.Cm is an occupancy rate of memory 

utilization of single transferable VMs that migrated to 

the specific PH. PMuseable.Cc(i) and PMusea-

ble.Cm(i) are the percentage of the residual CPU and 

Memory capacity of the i-th PH 

5. Experiment and analysis 

Performance of the proposed DFM-CSO and 

other four improved migration algorithms: DFM-PSO, 

DFM-GA, DFM-IGA(improved DFM-GA algorithm) 

and DFM-BBO/DE, were compared and evaluated in 

experiments on both real and synthetic datasets. Syn-

thetic VM instances have been generated using meth-

od proposed by Gao et al. [16]. In turn, for real da-

taset generation 10 types of Amazon EC2 [17] in-

stances have been used. In the experiment scenario, 

described below, the initial placement is what the 

placement state (location, CPU, Memory, etc.) of all 

VMs considered are in a moment. To simulate this, 

Matlab software has been used. The results obtained 

on both datasets show that the proposed algorithm 

with higher convergence rate is favourable in com-

parison with the other improved deadlock-free migra-

tion algorithms. Note that, after introducing the 

OSLA-NVMIP deadlock avoidance strategy into 

PSO [18], GA [18], IGA [19] and BBD/DE [10], we 

implemented and obtained four improved algorithms, 

DFM-PSO, DFM-GA, DFM-IGA and DFM-

BBO/DE.  

Ref. [20] and [21] had given the convergence 

proof of the PSO algorithm, which shows that the 

original PSO is neither with local convergence nor 

with global convergence. So, the same thing happens 

in the convergence of DFM-PSO. It is proved by 

means of homogenous finite Markov chain analysis 

that a generic GA will never converge to the global 

optimum regardless of the initialization, crosser, op-

erator and objective function. However, variants of 

canonical GA’s that always maintain the best solution 

in the population, either before or after selection, are 

shown to converge to the global optimum [22]. As 

the same theory, both of the GA and IGA in this pa-

per adopt the method which maintain the best solu-

tion after selection, so the DFM-GA and DFM-IGA 

which proposed in this paper are with global conver-

gence under the deadlock avoiding strategy. Ref. [23] 

gives the convergence proof of the BBO algorithm 

based on the assumption that the iteration time tends 

to be infinite. So, the BBO/DE have the same con-

vergence property under the deadlock avoiding strat-

egy. Ref. [13] indicates that, for the CSO, the appro-

priate choose of parameter G is problem-based. If the 

value of G is very big, it's not conducive for the algo-

rithm to converge to the global optimal quickly. 

While if the value of G is very small, the algorithm 

may trap into local optimal [13]. This principle also 

works on DFM-CSO. 



5.1  Scenario 

There are 4 PHs and 8 VMs with the same con-

figuration. Initial VM placement is  VM_inital = [1, 1, 

2, 2, 3, 3, 4, 4], where each VM’s CPU and memory 

occupancy rate demands are:  VM.Cc = [1/4, 2/4, 1/4, 

2/4, 1/4, 2/4, 1/4, 2/4] and VM.Cm = [1/10, 2/10, 

1/10, 2/10, 1/10, 2/10, 1/10, 2/10] respectively. Since 

memory utilization demand of each VM is relatively 

low and the required resources of PH are adequate, 

hence this scenario can be regarded as single-

resource case. Figure.4 shows the CPU resources of 

the initial placement. 
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Fig.4. Scenario VM’s initial placement 

 

There is a variety of candidate final placements 

with the same minimum power consumption, because 

the method presented in this paper considers the final 

placement energy consumption as the only cost func-

tion that needs to be optimized without looking for 

example at the number of VMs to be migrated. The 

optimal solution calculated by DFM-CSO algorithm 

is shown below:  

 Optimal placement: 

bestchrom=[2, 3, 3, 2, 3, 1, 2, 1] ; 

 VM migration sequence: 

VM_Migratesequence=[1, 3, 6, 7, 2, 8] ; 

 Parallel nodes:    parallernode=[2, 4, 5, 6].  

The i-th element of parallelnode denotes the ag-

gregated number of VM migrations until the i-th step. 

There are 4 parallel migrations according to the re-

sults: 

The first parallel migration:        VM1-1PH2;  

    VM3-1PH3; 

The second parallel migration:   VM6-2PH1;  

  VM7-1PH2; 

The third parallel migration:       VM2-1PH3; 

The fourth parallel migration:     VM8-2PH1. 

The results indicate that according to the migra-

tion sequence, all migrations are deadlock-free. 

Thanks to parallel migrations, the time spent for these 

migrations is shorter than the time required to migrate 

each VM separately. The optimal placement best 

chrom shows that no VM is placed to PH4, therefore 

PH4 will be idle after migrations and the number of 

physical hosts with workload is three. This will save 

the energy consumption. 

5.2  Synthetic dataset 

The method used to generate Synthetic instances 

is showed in Algorithm 2. 

Algorithm 2  Generation of Synthetic Instances 

1 for i=1 to n do 

2
       

2* ( )iCc rand Cc= ; 

3       ( )iCm rand Cm= ; 

4        (1)r rand= ; 

5       if  ( ) ( )i ir P Cc Cc r P Cc Cc        

 then 

6           i iCm Cm Cm= + ; 

7        end if  

8  end for 

, where Cc and Cm  are parameters used to con-

trol the utilization of CPU and memory respectively. 

P is corresponding to the correlations between CPU 

and Memory utilization. The algorithm 2 is intro-

duced from Ref. [16] into this paper. 

5.3  Real dataset 

As outlined in Table 2, the real dataset has 

been made of 10 general purpose T2 and C3 in-

stances from Amazon EC2 [17]. 

TABLE 2   

 Instance Types from Amazon EC2  

Instance 

Type 
vCPU 

Memory 

(GiB) 

Physical  

Processor 

t2.nano 1 3 Intel Xeon family 

t2.micro 1 6 Intel Xeon family 

t2.small 1 12 Intel Xeon family 

t2.medium 2 24 Intel Xeon family 

t2.large 2 36 Intel Xeon family 

c3.large 2 3.75 Intel Xeon E5-2680 v2 

c3.xlarge 4 7.5 Intel Xeon E5-2680 v2 

c3.2xlarge 8 15 Intel Xeon E5-2680 v2 

c3.4xlarge 16 30 Intel Xeon E5-2680 v2 

c3.8xlarge 32 60 Intel Xeon E5-2680 v2 



5.4 Synthetic datasetResult and analysis 

Several scenarios are used to compare the per-

formance of the DFM-CSO algorithm with that of 

DFM-PSO, DFM-GA, DFM-IGA and DFM-

BBO/DE. For a fair comparison, all of the common 

parameters of these methods are set to be the same. 

We set the population size as 50 and the maximum 

number of generations as 500 and 100 physical hosts 

as servers. The related parameter values of these al-

gorithms are showed in TABLE 3. 

TABLE 3  

The related parameter values 

Algorithm Paramerters 

DFM-PSO c1=c2=1.49445,w=0.729 

DFM-GA pmutation=0.3,pcrossover=0.7 

DFM-IGA pmutation=0.3,pcrossover=0.7 

DFM-

MBBO 

Pmutation=0.2,I=1,E=1, 

F=0.6,pcrossover=0.2 

DFM-CSO CNr=0.2*CN,CNh=0.6*CN, 

CNc=CN-CNr-CNh, 

CNm=0.1*CNc,G=3, 

L[0.5,0.9] 

5.5 Experment result based on synthetic dataset 

Scenario 2 sets parameters 0.25Cc Cm= = , 

0.072P = -  to general 200 VMs synthetic instances, 

and generate initial placement randomly. 

 
Fig.5. Comparison of DFM-CSO with four algo-

rithms on Synthetic dataset 

The experimental results shown in Fig.5 and TA-

BLE 4, show that the proposed algorithm is charac-

terized by the highest convergence rate in comparison 

with other four migration algorithms with the solu-

tion being close to the optimum after about 25 itera-

tions. The algorithms which optimum solution is 

closest to the one obtained with the DFM-CSO are 

the DFM-IGA and DFM-BBO/DE. The convergence 

rates of these two algorithms are very similar. The 

other two algorithms performed significantly worst in 

terms of the optimal solution accuracy as well as the 

convergence rate. 

TABLE 4  

Comparison of DFM-CSO with four algorithms on 

Synthetic dataset 

Algorithms Cost(W) 
Idle 

servers  

Save 

Cost  

Initial place-

ment 
57846 10 0% 

DFM-PSO 47896 32 17.2% 

DFM-GA 44574 38 22.9% 

DFM-IGA 43387 41 25% 

DFM-

BBO/DE 
43417 41 24.9% 

DFM-CSO 43470 41 24.9% 

The DFM-GA algorithm characterized by slow 

search rate in the earlier stages of operation has been 

improved after the number of iteration. DFM-PSP 

algorithm characterized by the general slow search 

rate was prone to trap into local optima. When look-

ing at the idle physical servers consolidation solu-

tions obtained with different algorithms, the DFM-

PSO and DFM-GA increased from 10 idle servers in 

the initial placement up to 32 and 38 idle servers, 

respectively, after 500 consolidation iterations. The 

DFM-IGA, DFM-BBO/DE and DFM-CSO all 

reached up to 41 idle physical servers. 

Comparing the energy consumption of the initial 

placement with the energy consumption of the opti-

mum placement of various methods, we observed that 

the optimum placement obtained by DFM-CSO algo-

rithm saves 24.9% energy and beats DFM-PSO and 

DFM-BBO/DE. The proposed algorithm, DFM-CSO, 

has an outstanding feature that the speed of approach-

ing optimum placement is faster than others, seen in 

Fig. 5. 

TABLE 5 

Comparison of DFM-CSO with three algorithms 

on Synthetic dataset 

Algorithms 
Average 

Cost(W) 

Standard devia-

tion(W) 

DFM-PSO 47953 513.165 

DFM-IGA 43211 196.060 

DFM-

BBO/DE 
43552 135.100 

DFM-CSO 43389 131.464 

 



Using the same parameter values and running the 

DFM-PSO, DFM-IGA, DFM-BBO/DE and DFM-

CSO for 10 times, respectively. The results are shown 

in TABLE 5. The DFM-CSO has the minimal stand-

ard deviation as 131.464 compare with other three 

algorithms, which mean that DFM-CSO has batter 

stability than others. The convergence rate of DFM-

CSO is outstanding, because its results approached 

the optimum placement after 25 iterations. Moreover, 

the experiment has been carried out 15 times when 

set the number of iterations as 30 and set G as 2, 3, 4, 

5, 6, 7, 8, 9, 10, respectively, in scenario 2. The ex-

periment results are shown in Figure 6. 

 
Fig.6. Comparison of DFM-CSO with different G 

In Figure 6, we can observe that, with the de-

crease of the value of G, the convergence rate of 

DFM-PSO becomes fast, while the optimum values 

that the algorithm obtained are very close. This can 

conclude that, with the influence of location update 

strategy, the faster the speed of chicken grows and 

smaller the value of G is, the faster the convergence 

rate of the proposed algorithm is. 

5.6 Experment result based on Real-world dataset 

5.6.1 Real data scenario 1 

In the first real data scenario, 200 virtual machines 

were generated with 5 types of C3 instances and their 

initial placement allocations were random. There 

were 100 PHs with the same specification and each 

PH had 40 CPUs and 128 GB of memory. The exper-

iment results are shown in Figure 7 and TABLE 6. 

 
Fig.7. Comparison of DFM-CSO with four algo-

rithms on real dataset of C3 instances  

TABLE 6 

Comparison of DFM-CSO with four algorithms on 

real dataset of C3 instances 

Algorithms Cost(W) 
Idle 

servers 
Save Cost  

Initial 

placement 
66228 4 0% 

DFM-PSO 54878 29 17.1% 

DFM-GA 54967 28 17.0% 

DFM-IGA 54284 30 18.0% 

DFM-

BBO/DE 
54324 30 17.97% 

DFM-SCO 54306 30 18.0% 

Comparing Figure 5 with Figure 7 we can notice 

certain similarity between these two graphs. We can 

also note that the convergence rate is smaller when 

the virtual machine resources are larger. 

5.6.2 Real data scenario 2 

In the second real data scenario, the total of 200 

virtual machine instances were generated and ran-

domly initialized with 5 types of T2 instances. There 

were 100 physical hosts with the same specification 

and each physical host had 40 CPUs and 128 GB of 

memory. 

 
Fig.8. Comparison of DFM-CSO with four algo-

rithms on real dataset made of T2 instances. 

Comparison of Figure 7 and Figure 8, reveals that 

the convergence rate of DFM-CSO algorithm is rela-

tively high compared with DFM-IGA and DFM-

BBO/DE, but much less effective than the other two.  

The resource requirement of virtual machines in 

scene 3 is much less than in scene 2, and DFM-CSO, 

which is more applicable to virtual machines that 

request more resources, may not have obvious ener-

gy-saving effect for correction of all the possible so-

lutions. Besides, it also shows that the virtual ma-

chine which have more resources leads to iteration of 

convergence reducing relatively.  



6. Conclusions 

This paper presents a new algorithm for virtual 

machine consolidation based on the Chicken Swarm 

Optimization model. The experimental results, for 

both real and synthetic datasets, indicated that the 

proposed algorithm with higher convergence rate is 

favourable in comparison with other deadlock-free 

migration algorithms. 

Future work on this algorithm will focus on serv-

er’s load balance on heterogeneous server infrastruc-

tures and the placement migration ability, combining 

new strategies [24-25]. 
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