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Abstract 

The use of Krylov subspace model order reduction for nonlinear/bilinear systems, 

over the past few years, has become an increasingly researched area of study. The 

need for model order reduction has never been higher, as faster computations for 

control, diagnosis and prognosis have never been higher to achieve better system 

performance. Krylov subspace model order reduction techniques enable this to 

be done more quickly and efficiently than what can be achieved at present. 

The most recent advances in the use of Krylov subspaces for reducing bilinear 

models match moments and multimoments at some expansion points which have 

to be obtained through an optimisation scheme. This therefore removes the 

computational advantage of the Krylov subspace techniques implemented at an 

expansion point zero. 

This thesis demonstrates two improved approaches for the use of one-sided 

Krylov subspace projection for reducing bilinear models at the expansion point 

zero. This work proposes that an alternate linear approximation can be used 

for model order reduction. The advantages of using this approach are improved 

input-output preservation at a simulation cost similar to some earlier works 

and reduction of bilinear systems models which have singular state transition 

matrices. 

The comparison of the proposed methods and other original works done in 

this area of research is illustrated using various examples of single input single 

output (SISO) and multi input multi output (MIMO) models. 
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Âi . . . . . . . . . . . . Reduced order linear approximations of a nonlinear function at multiple 

points 

ithAi . . . . . . . . . . . . Derivative of a nonlinear function 

A . . . . . . . . . . . . Resulting system matrix of Carleman bilinearisation process 

Ai,k . . . . . . . . . . . Member of A 

A� . . . . . . . . . . . . State transition matrix of a linear approximation of bilinear system for a 

constant input 

B . . . . . . . . . . . . . Input matrix 

B� . . . . . . . . . . . . Input matrix for parametrised linear approximation of a bilinear model 

B̂ . . . . . . . . . . . . . Reduced order input matrix 

B . . . . . . . . . . . . Resulting input matrix of Carleman bilinearisation process 

ithBi . . . . . . . . . . . . derivative of the nonlinear function B(x) 

Bi,k . . . . . . . . . . . Member of N 

C . . . . . . . . . . . . . output matrix 

Ĉ . . . . . . . . . . . . . Reduced order output matrix 

C . . . . . . . . . . . . Resulting output matrix of carleman bilinearisation process 






viii 

ithGi . . . . . . . . . . . . derivative of g(x) 

H(s) . . . . . . . . . . Transfer function 
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Chapter 1 

Introduction 

Models in their most fundamental form are considered approximations of the 

real world. These can be abstract or physical in form. Models can be elements 

or amalgamations of elements to describe a system or a process describing a 

phenomenon under scrutiny. Models can be classified broadly as linear and 

nonlinear but the vast majority of systems are nonlinear in nature. 

The increasing complexity of systems in automotive/aeronautic vehicles, man-

ufacturing and energy installations has led to the requirement of sophisticated 

management systems for control, condition monitoring, diagnostic and prognos-

tic purposes especially for systems which require safety and economic viabil-

ity. Not only is it important to accurately control these systems to deliver the 

expected performance but also identify and diagnose system faults to prevent 

avoidable breakdown scenarios. In addition, the need for increased reliability 

has put more emphasis on estimation of failure modes, state of health and re-

maining useful life. Therefore models for control, diagnostics and prognostics 

are now more than ever essential in order to meet these requirements. However, 

models for control diagnostics and prognosis are required to be computation-

ally efficient for online implementation whilst retaining enough characteristics to 

describe the systems behaviour. This has led to the need for model order reduc-

1 
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tion techniques that allow the resulting models to run online and also contain 

sufficient accuracy for the purpose of control, diagnostics and prognostics. 

There is no fixed method or rule for model order reduction for a specific sys-

tem but rather several options or paths that can be taken. The methodologies 

used often depend on the particular application and availability of a priori infor-

mation. For instance, one can derive a reduced order model from an existing high 

fidelity/high order model using mathematical manipulation based approaches or 

in the case where there is no first principle model available, one can identify a 

model from data driven approaches. In addition to the possibility of different 

approaches, there are also the questions of how accurate the model needs to be, 

how it will be implemented online and what structure it needs to have. 

Classical methods for model order reduction (MOR) are based on mathemat-

ical manipulation of the higher order model. These methods are used to project a 

high dimensional (high fidelity) model to a low dimensional (low fidelity) model, 

while preserving necessary dynamics and reasonable accuracy of the original sys-

tem. There are different approaches of obtaining reduced order model (ROM) via 

mathematical manipulation such as Krylov subspace based, truncation based and 

methods based on proper orthogonal decomposition (POD). MOR techniques by 

Arnoldi (Arnoldi 1951), Lanczos (Lanczos 1950) and Moore (Moore 1981) are 

some of the original methods proposed for linear time-invariant models. Model 

order reduction techniques for linear systems can be classified into two categories: 

moment matching and Singular Value Decomposition (SVD) based approaches. 

They include Balanced Truncation, Krylov subspace moment matching methods, 

H2-norm MOR (Gugercin, Antoulas & Beattie 2008) and singular perturbation 

approximation (SPA). These methods have been well researched, with various 

extensions as documented in (Tan & He 2007, Liu & Anderson 1989, Kumar, 

Tiwari & Nagar 2011, Lohmann & Salimbahrami 2000). MOR for nonlinear sys-

tems is still a relatively open area of research. Most of the methods developed 
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for linear systems have been extended to nonlinear systems. The approaches 

most popular today have been proposed for weakly nonlinear systems. These 

approaches include quadratic (Chen, White et al. 2000), piecewise-linear MOR 

(Bond & Daniel 2007, Rewieński & White 2003) and Krylov subspace-based 

MOR for nonlinear systems via Carleman bilinerarisation (Phillips 2000). The 

advantages of energy function based approaches for reduction of linear models, 

such as Balanced Truncation and H2-norm approaches, are not easily transferred 

to nonlinear cases. 

In systems engineering, control engineering and automotive applications, re-

search into reduced order models and methods for achieving them are increas-

ingly popular. The main objective for reduced order modelling is to preserve the 

input-output characteristics of a higher order model. There has not been much 

emphasis placed on the amount of effort required to achieve this. At the end 

of the day, in most cases it is not of much concern. However, this is a problem 

which has been raised in certain literature (Aizad, Sumis lawska, Maganga, Ag-

baje, Phillip & Burnham 2014, Baur, Benner & Feng 2014). In an ideal case, it 

will be useful to achieve reduced order models at minimum cost whilst achieving 

an optimum input-output criteria. 

Most of the linear MOR methods discussed so far are readily applicable to 

bilinear models. Unfortunately the peculiar disadvantages which apply to linear 

cases are also carried over to bilinear cases. Krylov subspace techniques are of-

ten preferred for computational efficiency and their ability to compute very large 

matrices. Balanced Truncation, unlike Krylov subspace MOR is not suitable for 

models with very large system matrices. It is therefore intuitive to find a way of 

exploiting the advantages. The most recent advances in the use of Krylov sub-

spaces for reducing bilinear models, match moments and multimoments at some 

frequencies which have to be obtained iteratively (Choudhary & Ahuja 2016, Bre-

iten & Damm 2010, Benner & Breiten 2012a, Benner & Breiten 2012a). However, 
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in (Breiten & Damm 2010), this approach has been said to require improve-

ment. Hence the iterative nature of finding the expansion points. In (Benner & 

Breiten 2012a), the Bilinear Iterative Rational Krylov Algorithm (BIRKA) has 

been proposed. The algorithm solves the interpolation problem in an optimal 

way i.e. a search of expansion points that match a suitable tolerance. This there-

fore removes the computational advantage of the Krylov subspace techniques as 

implemented by (Phillips 2000, Feng & Benner 2007, Condon & Ivanov 2007, Bai 

& Skoogh 2006), especially, when solving very large matrices. Other variants of 

the BIRKA such as the Truncated Bilinear Iterative Rational Krylov Algorithm 

(TBIRKA) (Benner & Breiten 2012a) also have these limitations. 

However, it is interesting to note that a combination of methods as has been 

discussed in (Tan & He 2007) brings about more possibilities for reduced order 

modelling practitioners. This has also been discussed in (Benner & Damm 2011) 

and provide good prospects for the future. For most work done on hybrid ap-

proaches, the TBR approaches are combined with Krylov subspace MOR tech-

niques. Other aspects of hybrid approaches are the combination of data based 

approaches with classical approaches (Saragih 2014). 

In this thesis, the focus is on the reduced order modelling for bilinear systems 

utilizing Krylov subspace multimoment matching methods which match multi-

moments at an expansion point of zero. Bilinear form is a subset of nonlinear 

models and is a good approximation of nonlinear behaviour (Rugh 1981, Phillips 

2000). 

1.1 Motivation and problem statement 

The motivation of this work is inspired by a series of issues which have been 

raised over the years. In the work done by (Phillips 2000) and (Feng & Benner 

2007), two one-sided projection techniques have been proposed to match the 

moments and multimoments bilinear models. Other authors (Breiten & Damm 
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2010, Wang & Jiang 2013) have proposed a two-sided technique for improving 

the input-output relationship of reduced models. This implies that two Krylov 

subspaces are used therefore utilising twice the effort for a one sided approach. 

In (Bai & Skoogh 2006), a matrix inversion approach was proposed to match 

more moments of a bilinear model. This was shown to produce a better input-

output relationship when compared to the approach presented in (Phillips 2000). 

However, the matrix inversion produces an awkward projection which cannot be 

regarded as one-sided approach and adds the need for more computational effort. 

Also, due to the computation of Krylov subspaces in (Feng & Benner 2007), there 

is often a multiplication of system matrices with singular bilinear state matrices 

and this could lead to loss of information and effectiveness of these techniques. 

Matrix inversions are not always possible and additionally, it is done at an 

extra computational effort. Also, projection of matrix dimensions is done in 

such a way that each moment and multimoment is matched at a point in the 

projection subspace and because this needs to match multimoments, it presents 

a lack of flexibilty in the application and therefore quality of reduced order 

models. The aim of this work is therefore to propose two techniques which 

are computationally efficient, promote flexibility and also enable the reduction 

of models with noninvertible system matrices. This will improve the input-

output characteristics of the reduced order models and expand the scope of its 

implementation. 

1.2 Methodology and thesis outline 

1.2.1 Methodology 

The thesis will be based on the original works done in this field and a mathemati-

cal analysis of those original works. Based on the analysis of these methods, new 

approaches are proposed. Also, the algorithms to be used will be similar in order 
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Figure 1.1: Schematic flow of thesis progression 

to highlight the salient differences for comparison. An experiment which defines 

a problem, in this case a higher order model, is to be used for each method re-

viewed or proposed. Input and output data are collected for each simulation and 

each method is analysed with a predefined performance criteria. Also simulation 

time is of interest in each case study. 

The chapters progress in such a way that each method is first applied to a 

single input single output (SISO) model, followed by their extension to multiple 

input multiple output (MIMO) models. The proposed methods are then applied 

in special cases which show the significance of the work done in this thesis. 

1.2.2 Thesis outline 

The thesis outline is as follows: 

Chapter 2: This chapter forms the background from which all the concepts 

proposed in this study are based. A literature review is presented to pro-

vide a summary to the state of the art research in this field, and cover the 

basic ideas of model order reduction using Krylov subspaces considering 

a linear system model structure for illustration. The chapter reviews mo-

ment matching and the definition of moments and Krylov subspaces. Also 

the chapter revises the linear algebra concepts of subspaces, linear depen-

dence and orthogonalisation. The Arnoldi process which is quite useful for 



7 1. Introduction 

computing projection matrices utilised in one sided Krylov subspace model 

order reduction is reported and the stability of Krylov subspace techniques 

is discussed. 

A literature review of the utilization of Krylov subspaces for linear and non-

linear MOR is presented. An overview of the use of Krylov subspace tech-

niques for the reduction of nonlinear models via bilinearisation, quadratic 

approximation and piecewise linear approximation is provided. 

Chapter 3: An introduction to bilinear models is presented in this chapter. The 

chapter narrows this discussion into the approximation of nonlinear mod-

els through a bilinearisation process called Carleman bilinearisation. This 

process makes it possible to extend Krylov subspace model order reduc-

tion to nonlinear systems via its bilinear approximation. The Carleman 

bilinearisation process is discussed and this is followed by the review of 

model order reduction through projection for bilinear models as proposed 

in literature. 

The various Krylov subspaces proposed over the years are discussed and 

this chapter also features the Taylor series expansion, uses of bilinear mod-

els and an algorithm for computing projection matrices. A literature review 

into the extension of Krylov subspace model order reduction techniques to 

MIMO bilinear models is presented. The chapter concludes with a discus-

sion. 

Chapter 4: This chapter presents and highlights the original contribution of 

this thesis. It contains an analysis of the one-sided projection techniques 

proposed in (Phillips 2000, Feng & Benner 2007) via their moment match-

ing capability and the multimoments matched are analysed mathemati-

cally. This mathematical analysis forms part of the novelty of this the-

sis. This chapter improves on the work done in literature which has been 
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reported in Chapter 3. A new method called an Improved Phillip type 

projection is presented followed by a mathematical analysis. Also a sec-

ond approach for the application of Krylov subspaces to the model or-

der reduction problem of bilinear models is presented. This is called the 

parametrised linear approximation (PLA) method. 

A numerical simulation analysis of an alternate linear approximation for 

bilinear models is done and the results are discussed. This has been com-

pared to the traditional linear approximation as used by the other Krylov 

subspace methods described in Chapter 3. This alternate linear approx-

imation forms the foundation for the parametrised linear approximation 

approach which is the second proposal of this chapter. 

This chapter also presents a simulation based study which helps to identify 

the parameters of an algorithm for computing Krylov subspace projection 

matrices. These parameters are then used to compute reduced order mod-

els from all the methods described in Chapters 3 and 4. Two examples from 

literature have been used to demonstrate these Krylov subspace model or-

der reduction methods. 

Chapter 5: More original contributions, focusing on bilinear systems, are pre-

sented in this chapter. The extension of the methods proposed in Chapter 

4 are applied to MIMO case studies. The presentation starts with a lit-

erature review into the extension of Krylov subspace MOR techniques to 

MIMO bilinear models. Also, a mathematical analysis which is an exten-

sion of the mathematical analysis done in Chapter 4 are given for MIMO 

bilinear models. 

This chapter contributes to the extension of the Feng and Benner (Feng 

& Benner 2007), Improved Phillips type projection and the parametrised 

linear approximation (PLA) approaches to the MIMO cases. Two arbitrary 

bilinear models have been used to illustrate the application of the proposed 
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results. These are to be compared with the other reviewed methods and 

the advantages of the newly proposed methods are analysed. 

Chapter 6 This chapter provides two applications of the techniques proposed 

in Chapters 4 and 5. A hybrid MOR technique for SISO and MIMO bi-

linear systems/models is introduced. This combines the techniques for 

parameter estimation, artificial intelligence and optimisation to optimise 

the parameters used for computing the parametrised linear approximation 

for reduced order modelling via Krylov subspace MOR. The second appli-

cation is the use of PLA for MOR of a pseudo-singular bilinear system. 

Pseudo-singular bilinear models have been defined therein. 

Using these applications, two case studies have been presented to show the 

unique implications of the techniques proposed in this thesis. The numer-

ical simulations have been analysed using plots and a set of performance 

criteria. 

Chapter 7: This chapter provides an overall conclusion of the works reported 

in the thesis. The avenues for further work are also presented. 

1.3 Contributions 

In summary, the contributions of this research are given as follows: 

1. The matching of a higher number of multimoments whilst avoiding the 

multiplication of nonsingular matrices. This has been called the Improved 

Phillip type projection (Chapter 3). 

2. The proposal of a reduced order modelling approach using Krylov sub-

spaces by applying a so called better linear approximation. This approach 

is called the Parametrised Linear Approximation (PLA). 
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3. The analysis of multimoment matching for the Feng and Benner type pro-

jection (Feng & Benner 2007), J. R. Phillip type projection (Phillips 2000) 

and the Improved Phillip type projection. 

4. The extension of the Improved Phillip type projection, Parametrised Linear 

Approximation projection and the Feng and Benner type projection (Feng 

& Benner 2007) to MIMO cases. 

5. The analysis of multimoment matching for MIMO bilinear model reduction 

using Krylov subspaces. 

6. The use of PLA for the reduced order modelling of pseudo-singular bilin-

ear systems to enable the reduction of systems with nonsingular system 

matrices. 

7. The use of an optimisation scheme for finding parameters which form an 

alternate linear approximation of a bilinear system/model and the use of 

these parameters for model order reduction. 

This thesis also served as a resource for understanding and practical imple-

mentation of reduced order modelling using Krylov subspaces. 

1.4 List of publications 

During the period of study, some publications have been made under the guid-

ance of my supervisors and collaboration with other researchers. The publi-

cations cover a wide range of techniques for producing reduced order models 

via data based approaches and classical methods. These publications are listed 

below. 

1. Agbaje, O, Kavanagh, D., Sumis lawska, M., Howey, D., McCulloch, M. 

& Burnham, K., Estimation of temperature dependent equivalent circuit 
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parameters for traction-based electric machines, in Hybrid and Electric 

Vehicles Conference 2013 (HEVC 2013), IET, pages 1-6, 2013. 

2. Aizad, T., Sumis lawska, M., Maganga, O., Agbaje, O., Phillip, N. & Burn-

ham, K. J., Investigation of model order reduction techniques: A super-

capacitor case study, in ‘Advances in Systems Science’, Springer, pages 

795–804, 2014. 

3. Sumis lawska, M., Agbaje, O., Kavanagh, D. F. & Bumham, K. J., Equiva-

lent circuit model estimation of induction machines under elevated temper-

ature conditions, in ‘UKACC International Conference on Control (CON-

TROL2014)’, pages 413–418, 2014. 

The knowledge gained from linear projection technique which has been inves-

tigated in (Aizad et al. 2014) has been expanded on for nonlinear systems and 

forms the focus of the research and original results presented in this thesis. Data 

based techniques have been used in (Agbaje, Kavanagh, Sumislawska, Howey, 

McCulloch & Burnham 2013, Sumis lawska, Agbaje, Kavanagh & Burnham 2014) 

to estimate the parameters of a low order equivalent circuit model at extreme 

conditions. Some of these techniques such as the use of identifiability analysis, 

parameter estimation and weighted optimisation have been used to optimise the 

results presented in this thesis. 



Chapter 2 

Mathematical Background 

Preliminaries 

2.1 Defnition of terms 

Defnition 2.1.1 (Moment) Moments have been defned as the coeÿcients of 

a Taylor series expansion (Tan & He 2007). Consider a continuous-time system 

with input u and output y. The transfer function H(s) describing the system 

behaviour is represented as 

y(s)
H(s) = . (2.1) 

u(s) 

Then the Taylor series expansion of the transfer function at the expansion point 

s = 0 is defned as 

1 X 
lH(s) = m(l)s (2.2) 

l=0 

where the moments, m(l), are defned as 

m(l) = 
1 dlH(s)
× |s=0 

l! dsl 
(2.3) 

i.e. the moments are defned from the corresponding derivatives of the transfer 

function with respect to s. 

12 
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Note that the moments can be defined for expansion points other than zero but 

in this thesis the methods described are only for moments for s = 0. Also in sub-

sequent chapters, this same expansion point is considered when multimoments 

are discussed. However, moment matching for expansion point other than zero 

have been considered in literature and are quite easily derived (Salimbahrami & 

Lohmann 2002). 

Defnition 2.1.2 (Multimoments) Multimoments are the coeÿcients of the 

Taylor series expansion for a multivariable transfer function. 

Defnition 2.1.3 (Krylov subspace) The qth Krylov subspace is defned as 

Kq(N,M) = span{N0
M,N1

M, ..., Nq−1
M} (2.4) 

where N ∈ Rn×n , M ∈ Rn×m and q, n,m ∈ Z. N and M are known as the starting 

matrices and they form the basis of the Krylov subspace. When considering a 

single input single output (SISO) system, M would be a vector and consequently, 

m = 1. Moreover, for multi input multi output (MIMO) systems, m > 1. 

Defnition 2.1.4 (Subspace) Given that an n-vector is an n × 1 matrix with 

real numbers as components and all n-vectors belong to the subset of vectors 

defned by Rn called the n-space. A subspace can then be defned as a set of Rn 

within which the following properties are inherent 

1. If s̄1 and s̄2 are in S, then s̄1 + s̄2 is in S 

s̄1 ∈ S, s̄2 ∈ S, s̄1 + s̄2 ∈ S (2.5) 

2. If r is any real number, and s̄i is any vector in S, then r × s̄i is in S 

r × s̄i ∈ S (2.6) 

For these conditions to hold, it is expedient that S is nonempty, i.e. a set that 

contains at least one component. 
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Defnition 2.1.5 (Linear Independence) If V is a set of m vectors in the 

subspace S, V can be said to be linearly independent if it is not possible to fnd 

constants, c1, c2, . . . , cm such that 

c1v1 + c2v2 + . . . + cnvm = 0 (2.7) 

where v1, v2, . . ., vm are the column vectors in V. This means that the vectors 

are only linearly independent when all the constants are zero i.e. 

c1 = c2 = . . . = cn = 0 (2.8) 

Defnition 2.1.6 (Span) The vectors in V can be said to span S or S is said 

to be spanned by V if every vector in S is a linear combination of the vectors in 

V. 

S = span{V} (2.9) 

This makes V a unique subset of S. The vectors of V are called the basis of S. 

Defnition 2.1.7 (Bounded input bounded input (BIBO) stability) A sys-

tem is BIBO stable i�, for any bounded input, the output is bounded at all times 

given zero initial conditions. 

2.2 Model order reduction (MOR) 

Given a model (2.1) of any structure which describes the input-output behaviour 

of a system. The model order reduction problem is to find another model which 

can be used to replace the former, where this new model is of a lower dimen-

sional space (vectors, matrices, equations), less storage requirements and low 

evaluation/simulation time, it is said to be a reduced order model. The process 

for getting this reduced order model is called model order reduction (MOR). 

Some MOR techniques preserve the structure of the higher order model and 

some do not. MOR techniques can broadly be divided into data based techniques 
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and classical techniques which are based on mathematical manipulation. The 

later takes advantage of the mathematical properties of the models to derive 

reduced order models. Data based techniques (Sumis lawska et al. 2014, Ag-

baje et al. 2013) will require taking input-output data, structure selection, data 

manipulation and processing techniques to achieve a reduced order model. 

The approach taken for MOR will depend on the type of system considered. 

Classical model order reduction techniques have been used for both linear and 

nonlinear models. MOR for linear models forms a background for extending 

MOR to other model structures. 

2.2.1 MOR for linear systems 

Linear systems have been defined in general as systems that obey the laws of 

superposition (Nise 2007) and have simple structures. This simple structure 

lends itself for implementation of control and diagnostic algorithms. To introduce 

Krylov subspace MOR, consider a state space form of linear model, 

ẋ(t) = Ax(t) + Bu(t) (2.10) 

y(t) = Cx(t) (2.11) 

Rn×n Rn×m Rp×nwhere A ∈ , B ∈ and C ∈ are called the system matrix, 

input matrix and output matrix respectively and n, p,m ∈ Z. For a single 

input single output (SISO) system model, p and m are equal to one. Several 

electrical circuits and some classes of mechanical systems can be represented 

in this form as described in (Feng & Benner 2007, Silveira, Kamon, Elfadel & 

White 1997, Freund 2000). The solutions derived here are easily realizable in 

other linear system formations. 

Moment matching and Gramian based model order reduction methods are 

the most popular for reducing the order of large linear systems/models. Gramian 

based approaches such as Balanced Truncation (BT) guarantee stability and pro-

vide an error bound for the higher order model and reduced order model. Other 
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MOR techniques which are regarded as Gramian based are singular perturba-

tion approximation (SPA) (Benner, Quintana-Orti & Quintana-Ort́ı 2000, Liu 

& Anderson 1986, Varga 1991, Aizad et al. 2014), Balanced stochastic trunca-

tion (Benner, Quintana-Ort́ı & Quintana-Ort́ı 2001), Frequency weighted bal-

anced truncation (Gawronski & Juang 1990) and Hankel norm approximation 

(Glover 1984, Benner, Quintana-Ort́ı & Quintana-Ort́ı 2004). These approaches 

are referred to because they involve the balancing of the higher order model by 

computing the observability and controllability Gramians, P and Q, respectively. 

For a linear system, they are defined mathematically as 

Z 1 

P = e AtBBT e A
T tdt (2.12) 

0 
Z 1 

¯ AT 
Q = e tCCT e Atdt. (2.13) 

0 

The observability and controllability Gramians can be computed by solving two 

Lyapunov equations 

AP + PAT + BBT = 0 (2.14) 

AT ¯ ¯Q + QA + CTC = 0. (2.15) 

This forms the first step for the Gramian based approaches. Using the Grami-

ans, a reduced order model can be obtained by using a balancing procedure 

followed by truncation. This is referred to as BT. Other variations of BT can 

be found in (Phillips, Daniel & Silveira 2003, Phillips & Silveira 2005, Reis & 

Stykel 2010, Benner 2010). As part of the procedure within this method, a 

set of linear equations need to be solved. The size of this set is the same as 

the dimension of the higher order model, thus the computational complexity 

of Gramian based approaches is O(n3), whilst the required storage is of order 

O(n2). Due to this disadvantage of BT, new and more efficient methods for 

solving large Lyapunov equations have been proposed (Jaimoukha, Kasenally 

& Limebeer 1992, Ahmad, Jaimoukha & Frangos 2010). These approaches use 
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Krylov subspaces to overcome the computational complexity of Gramian based 

approaches. 

Moment matching methods refer to MOR approches which match moments 

of the higher order model and reduced order model such that the reduced order 

model is accurate up to a certain degree depending on the amount of moments 

matched. These are also known as Krylov subspace based approaches. Together 

with Gramian based approches (Antoulas & Sorensen 2001, Tan & He 2007), 

they have been classified as projection based MOR for linear systems in (Tan & 

He 2007). 

2.3 Krylov subspace MOR methods 

In cases where very large system matrices which are not suitable for certain 

applications are considered, it is necessary to reduce the order of the system 

states using techniques that are appropriate to meet a predetermined criteria. 

Krylov subspace algorithms introduced in (Arnoldi 1951) and (Lanczos 1950) 

are some of the original results proposed in this area. Improvements to these 

techniques and associated difficulties in their implementation are discussed in 

detail in (Lohmann & Salimbahrami 2000, Silveira et al. 1997, Odabasioglu, 

Celik & Pileggi 1997, Kerns, Wemple & Yang 1995). Krylov subspace based 

approaches have been described as being quite closely related to other projection 

techniques (Tan & He 2007). In order to introduce MOR via Krylov subspaces, 

it is useful to consider linear systems as a case study. Linear systems have been 

represented using the transfer function in the s domain where a transfer function 

is defined as the ratio of the input to the output, H(s) = Y (s)/U(s). This can be 

derived from obtaining the Laplace transform of the state space representation 

(2.10) - (2.11). Using the relations ẋ(t) 7→ sX(s), y(t) 7→ Y (s) and u(t) 7→ U(s), 
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we can write 

sX(s) = AX(s) + BU(s) (2.16) 

(sI − A)X(s) = BU(s) (2.17) 

X(s) = (sI − A)−1BU(s). (2.18) 

Therefore, the output Y (s) can be expressed as 

Y (s) = CX(s) (2.19) 

Y (s) = C(sI − A)−1BU(s). (2.20) 

Furthermore, for SISO systems we can write 

Y (s) = [C(sI − A)−1B]U(s) (2.21) 

Y (s)/U(s) = C(sI − A)−1B (2.22) 

H(s) = C(sI − A)−1B. (2.23) 

By using the Taylor series expansion, the transfer function can be expressed as 

a polynomial function. The coefficients of this expansion at zero are called the 

moments of the transfer function 

1 X 
H(s) = m(l)s l−1 (2.24) 

l=1 

where m(l) are the moments. When the expansion point is at infinity, the mo-

ments are called Markov parameters (Salimbahrami & Lohmann 2002). It is 

possible to find moments at different values of s. For the case described here, 

the moments are 

m(l) = −CA−lB. (2.25) 

Krylov subspace methods aim to obtain reduced order models in such a way that 

makes the moments of the reduced and higher order models equivalent. 
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2.3.1 One-sided projection 

There are other projection methods. But this literature review focuses on Krylov 

subspace MOR which is closely related to other projection techniques. Krylov 

subspace MOR is known for its fast computational time when compared to 

other methods. Krylov subspace methods are well reported in (Celik, Pileggi 

& Odabasioglu 2002, Tan & He 2007). 

In one sided projection, two techniques are generally used. In (Feng & Benner 

2007) they have been refered to as the first projection technique and the second 

projection technique. They will be discussed here in that order. In the first 

projection technique as discussed in (Phillips 2000), the system matrix is not 

inverted prior to projection and the approximation x = V x̂ is used, where V is 

an orthonormal matrix of dimension n × q such that V TV = I, where q is much 

smaller than n, q << n. Substituting the approximation x ≅ V x̂, where x̂ is the 

state of the reduced order model, and premultiplying (2.10) by V T , results in a 

reduced order system with matrices of the form 

Â = V TAV, B̂ = V TB, Ĉ = CV. (2.26) 

The alternative method i.e. the second projection technique premultiplies both 

sides of the equation (2.10) with A−1 prior to approximating the states x 

A−1 ẋ = x + A−1Bu. (2.27) 

Applying projection matrix V to (2.27) and (2.11) by substituting the approxi-

mation x ≅ V x̂ and premultiplying (2.27) by V T gives 

TA−1V ˙V x̂ = x̂ + V TA−1Bu (2.28) 

ŷ = CV x̂ (2.29) 

and premultiplying both sides of (2.28) by the inverse of V TA−1V , the resultant 

reduced order matrices Â, B̂ and Ĉ are obtained as 

Â = (V TA−1V )−1 , B̂ = (V TA−1V )−1V TA−1B, Ĉ = CV. (2.30) 
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The first projection technique has also been used in (Odabasioglu et al. 1997) to 

preserve the stability and passivity of a system. It also matches as many moments 

as the second projection technique (Odabasioglu et al. 1997). However, the 

second technique cannot be said to be one-sided due to the awkward definition of 

the projection matrices when compared to the first projection technique. Notice 

that the right projection matrix is not actually a transpose of the left projection 

matrix. 

2.3.2 Moment matching 

The moment matching properties of the one sided projection has been discussed 

in detail in (Tan & He 2007, Lohmann & Salimbahrami 2000). (Tan & He 2007) 

state that the one sided projection methods match q moments whilst two sided 

methods match 2q moments. From Taylor series expansion of the reduced order 

model transfer function given below, 

1 X

Ĥ(s) = m̂(l)s l−1 (2.31) 
l=1 

the moments of the reduced order model can be defined as 

CÂ−l ˆm̂(l) = − ˆ B. (2.32) 

For the frst moment of the reduced order model m̂(1) = −ĈÂ−1B̂, note 

that A−1B belongs to the Krylov subspace Kq(A
−1, A−1B) and therefore can be 

written as A−1B = V r(1) and B = AV r(1) with r(i) ∈ Rq×1 , i = 1 . . . q, being a 

vector with parameters which make the statement true. From the definition of 

the moments for the higher and lower order models, moment matching can be 

proved as follows. Substituting the matrices (2.26) into (2.32), for l = 1, results 

in 

m̂(1) = −ĈÂ−1B̂ (2.33) 

m̂(1) = −CV (V TAV )−1V TB. (2.34) 
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Since A−1B = V r(1) and B = AV r(1). Substituting this into (2.34) yields 

m̂(1) = −CV (V TAV )−1V TAV r(1). (2.35) 

Also, (V TAV )−1V TAV = I and Ir(1) = r(1) therefore 

m̂(1) = −CV r(1) 

= −CA−1B (2.36) 

m̂(1) = m(1). 

Likewise for the second moment, m(2), the moment of the reduced order model 

can be defines as 

m̂(2) = −Ĉ(Â−1)Â−1B̂

= −CV (V TAV )−1(V TAV )−1V TB 
(2.37) 

= −CV (V TAV )−1(V TAV )−1V TAV r(1) 

= −CV (V TAV )−1 r(1). 

Using the orthogonality of the matrix V and some manipulations of matrix al-

gebra, we write: 

m̂(2) = −CV (V TAV )−1V TV r(1) 
(2.38) 

= −CV (V TAV )−1V TA(A−1)A−1B. 

Defining V r(2) := (A−1)A−1B, we obtain 

m̂(2) = −CV (V TAV )−1V TAV r(2) 

= −CV r(2) 
(2.39) 

= −C(A−1)A−1B 

m̂(2) = m(2). 

Continuing further for the third moment, m(3). The third moment of the 

reduced order model is 

m̂(3) = −Ĉ(Â−2)Â−1B̂
(2.40) 

m̂(3) = −CV (V TAV )−2(V TAV )−1V TB. 
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Since B = AV r(1), 

m̂(3) = −CV (V TAV )−2(V TAV )−1V TAV r(1) 

= −CV (V TAV )−2 r(1) 
(2.41) 

= −CV (V TAV )−2V TV r(1) 

m̂(3) = −CV (V TAV )−2V TA(A−1)A−1B. 

Also A−2B = V r(2), therefore, 

m̂(3) = −CV (V TAV )−2V TAV r(2) 

= −CV (V TAV )−1 r(2) 
(2.42) 

= −CV (V TAV )−1V TV r(2) 

m̂(3) = −CV (V TAV )−1V TAA−1V r(2). 

Since V r(2) = A−2B and A−3B = V r(3), therefore, 

m̂(3) = −CV (V TAV )−1V TA(A−1)(A−1)A−1B 

= −CV (V TAV )−1V TAV r(3) 

= −CV r(3) (2.43) 

= −C(A−2)A−1B 

m̂(3) = m(3). 

As can be observed, the crucial step in proving the matching of moments is 

that the vector (A−1)qB = V r(q) belongs to the Krylov subspace Kq(A
−1, A−1B). 

From the proof of moment matching shown above, the following theorem suffices. 

Theorem 2.3.1 Given a projection matrix, V , for the Krylov subspace span(V ) = 

Kq(A
−1, A−1B), where A is the system matrix and B is the input vector, q mo-

ments of the higher order model are matched by the reduced order model if the 

ˆ TB,reduced order model matrices are formed such that Â = V TAV , B = V

Ĉ = CV (Tan & He 2007). 
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Note that the case described here is for moments at an expansion point zero 

where the matrix V spans the Krylov subspace and can be computed using al-

gorithms proposed by (Arnoldi 1951) and (Lanczos 1950). When V is computed 

using one Krylov subspace and V TV = I, this is referred to as a one-sided pro-

jection. There exists/are methods which use two Krylov subspaces such that 

W TV = I where W spans the Krylov subspace, Kq(A
−T , A−TC). This implies 

that more computational effort is needed for computing the projection matrices. 

Moments can also be matched at � = ∞. In this case, they are referred to 

as Markov parameters. The work done in (Grimme 1997) matches the first two 

moments using a two sided approach at multiple expansion points, �1, �2, . . . , �k, 

k ∈ Z, by using a rational Krylov algorithm. Improvements to this approach for 

selecting expansion points in an optimal manner have been reported in (Frangos 

& Jaimoukha 2007a). 

The most recent work done in this area is inspired by (Grimme 1997) where 

rational Krylov algorithms are used for computing the projection matrices V 

and W where 

Span(V ) = Kq((A− �1I)−1B, (A− �2I)−1B, . . . , (A− �nI)−1B) (2.44) 

Span(W ) = Kq((A
T − �1I)−1CT , (AT − �2I)−1CT , . . . , (AT − �nI)−1CT ) 

(2.45) 

In (Gugercin et al. 2008), an iterative rational Krylov algorithm (IRKA) for an 

optimal selection of the expansion points was proposed. The method is reported 

to be H2 optimal as it is based on satisfying the H2 error of the higher and 

reduced order model given by 
s 

Z 1 

||H − Ĥ|| =
1 

|H(jw) − Ĥ(jw)|2dw. (2.46) 
2ˇ −1 

However, the preservation of stability is not guaranteed as the initial selec-

tion of the interpolation points is not clearly defined. The IRKA has been 

extended to several directions (Flagg, Beattie & Gugercin 2013, Druskin & 
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Simoncini 2011, Panzer, Jaensch, Wolf & Lohmann 2013). In (Flagg et al. 2013), 

a nearly optimal approach is developed. It uses Krylov subspaces for solving lin-

ear system of equations which are required for the IRKA and therefore is more 

efficient. An adaptive shift computation for selecting the expansion points has 

been developed in (Druskin & Simoncini 2011). This approach has been reported 

to be less accurate when compared to the IRKA but has less computational cost. 

In (Panzer et al. 2013), a stability preserving, adaptive rational Krylov (SPARK) 

algorithm was developed to guarantee stability and is H2 optimal at the cost of 

being more expensive computationally when compared to the IRKA. Generally, 

methods based on the Krylov subspaces (2.44) - (2.45), match only one moment 

at each expansion point and lack flexibility for matching more moments. The 

H2 optimal approach has been extended to apply to MIMO linear systems in 

(Van Dooren, Gallivan & Absil 2008, Van Dooren et al. 2008). 

2.4 Algorithms 

In this section, some algorithms that enable the computation of the projection 

matrices are presented. It is advantageous to build an orthogonal basis for the 

Krylov subspace by using numerically stable processes as the computation of V 

can be unstable as the dimension of the Krylov subspace q gets large (Tan & 

He 2007). Here the processes for orthogonalisation and the Arnoldi process are 

discussed. The variations and genealogy of these algorithms are well reported 

(see for instance (Saad 2003)). Note that in this section, qi, i = 1, 2, . . ., denotes 

the elements of the matrix Q in the QR factorisation. 

2.4.1 Orthogonalisation 

Two vectors are said to be orthogonal if the result of their product is zero. i.e. 

v1 
T v2 = 0. (2.47) 
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For a set of vectors, this same rule is applied. The set is said to be orthogonal 

if all the component vectors follow this same rule 

vi
T vj = 0, (2.48) 

where i 6 j and i, j ∈ Z. The set of vectors is orthonormal if, whilst being = 

orthogonal, each vector component has a 2-norm of 1. 

An orthonormal basis can be obtained by taking the basis of a subspace and 

orthonormalising them. This process of orthonormalisation and orthogonalisa-

tion is called the Gram-Schmidt process e.g. (Tan & He 2007, Saad 2003, Sal-

imbahrami & Lohmann 2002, Daniel, Gragg, Kaufman & Stewart 1976). 

For a set of n-vectors which are linearly independent, (v1, v2, . . . , vn), the 

initial step of the Gram-Schmidt process is to normalize the first vector of this 

set by dividing it by its 2-norm. The resulting vector, q1 is of norm 1. The 

following linearly independent vector, v2 is then orthogonalised against q1. This 

can be achieved by subtracting a multiple of q1 from v2 which makes the resulting 

vector orthogonal to q1 

v2 ← v2 − (v2 
T q1)q1 (2.49) 

The resulting vector is then normalised to obtain a vector q2. This means that 

the Gram-Shmidt process orthonormalises any vector vj in the set against any 

previous vector qj−1. 

The Gram-Schmidt algorithm is presented below. In the algorithm, it is 

necessary that the matrices are linearly independent to prevent a break down of 

the process. 

Algorithm 2.1 (Gram-Schmidt process) 

1. Compute: r11 = ||v1||2, if r11 = 0 Stop, else Compute q1 = v1/r11 



26 2. Mathematical Background Preliminaries 

2. for j = 2 : n 

3. rij = vj
T qi for i = 1, 2, . . . , j − 1 

= xj − 
Pj−14. q̂ i=1 rijqi 

5. rjj = ||q̂||2 

6. if rjj = 0 then Stop, else qj ˆ= q/rjj 

7. end 

There exist other versions of this algorithm which have been proposed by 

other authors to deal with loss of orthogonality in the process (Daniel et al. 1976). 

The Modified Gram-Schmidt algorithm is one of them and has been reported to 

have better numerical properties (Saad 2003) and is used in all the algorithms 

in this work. 

Algorithm 2.2 (Modifed Gram-Schmidt process) 

1. Compute: r11 = ||v1||2, if r11 = 0 Stop, else Compute q1 = v1/r11 

2. for j = 2 : n 

3. q̂ = xj 

4. for i = 1, . . . , j − 1 

5. rij = q̂T qi 

6. q̂ − rijqi 

7. end 
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8. Compute: rjj = ||q̂||2 

9. if rjj = 0 then Stop, else qj ˆ= q/rjj 

10. end 

An alternative orthogonalisation method which uses a factorisation approach 

is the Householder’s method (Golub & Van Loan 2012). 

2.4.2 QR factorisation 

As can be observed from Algorithm 2.1 steps 4 and 5, the relationship between 

the normalised and orthogonalised vectors at every step of the algorithm is 

j 
X 

vj = rijqi, (2.52) 
i=1 

or in the matrix form: 

V = QR. (2.53) 

This is known as the QR decomposition of the matrix V, where V is a set of 

linearly independent vectors [v1, v2, . . . , vn], Q = [q1, q2, . . . , qn] and R are non 

zero elements, rij ∈ R. The QR factorisation is an inbuilt function in MATLAB 

and can be accessed by using the command orth. This command has been used 

in Krylov subspace algorithms proposed in (Bai & Skoogh 2006, Lin, Bao & 

Wei 2009) and will also be used in this thesis. 

2.4.3 Arnoldi process 

To compute projection matrix V where V TV = I, Krylov subspace methods 

are utilised. The starting vectors of the Krylov subspace correspond to the 

system matrices and input vectors of the linear system. This is the case for one 
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sided projection. In two sided projection, two Krylov subspaces are utilised. 

In (Lohmann & Salimbahrami 2000, Arnoldi 1951), the Arnoldi and Lanczos 

algorithms have been discussed in details. 

Using the starting vectors of the Krylov subspace, the original Arnoldi algo-

rithm (Arnoldi 1951) iteratively formulates a set of vectors with norm 1 which 

are orthogonal to each other. The result of the algorithm is the matrix V . Which 

is orthonormal. The algorithm as presented in (Tan & He 2007) is as follows: 

Algorithm 2.3 (Arnoldi algorithm) 

1. Input: A,B,C, q 

2. Compute: r = A−1B 

3. Compute: v1 = r/||r||2 

4. for i = 1 : q − 1 

= A−15. r vi 

6. h = (V[i])
T r 

7. r = r − V[i]h 

8. if ||r||2 = 0, end 

9. vi+1 = r/||r||2 

10. end 

11. return V 

The algorithm is easily modified to a multiple input multiple output case as 

documented in (Tan & He 2007). The outcome of the algorithm is the projection 
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matrix V where the vectors vi are the columns of V . A two sided Arnoldi 

algorithm has been developed in (Lohmann & Salimbahrami 2000) to match 

2q moments at zero. Rational Arnoldi algorithms which match moments at 

multiple expansion points have been presented in (Frangos & Jaimoukha 2007b, 

Ruhe 1994). 

2.5 Stability of Krylov subspace techniques 

As mentioned earlier, MOR can sometimes results in unstable reduced models. 

While it is possible to simply discard unstable poles (Odabasioglu et al. 1997), 

several algorithms have been proposed to guarantee stability of the resulting 

models (Silveira et al. 1997, Kerns et al. 1995). In (Silveira et al. 1997), the 

system is said to be stable if all its eigenvalues have nonpositive real parts. Also 

given that the system matrix A ∈ Rn×n is negative semidefinite, i.e. 

p TAp ≤ 0, (2.55) 

where in this section, p is an arbitrary non-zero vector of appropriate dimen-

sions, it can be shown that the Arnoldi algorithm produces stable reduced order 

systems as follows: 

T ˆp Ap ≤ 0 (2.56) 

TVp TAV p ≤ 0 (2.57) 

(V p)TAV p ≤ 0. (2.58) 

In (Bond & Daniel 2007), an algorithm that utilises a Lyapunov function was 

proposed to ensure stable reduced order models for linear piecewise MOR ap-

proaches. For linear systems, a natural choice of a Lyapunov function is a 

quadratic function of the states 

W̄ = x TPx, (2.59) 
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where P ∈ Rn×n is some symmetric positive definite matrix that solves the 

algebraic equation 

PA + ATP = −Q (2.60) 

∈ Rn×nwhere A is the state matrix of the system and Q is a positive definite 

matrix, which often is chosen as the identity matrix. In order to achieve this, the 

left projection matrix and the matrices of the reduced linear model are defined 

as 

UT = (V TPV )−1V TP (2.61) 

Â = UTAV, B̂ = UTB, Ĉ = CV. (2.62) 

T ˆFor the reduced order model (2.62), there exists a Lyapunov function, Ŵ = x Px 

satisfying 

P̂ Â + ÂT P̂ = −Q̂ (2.63) 

P̂ = V TPV (2.64) 

which can be used to prove that the formulations (2.61) and (2.62) produce 

stable reduced order models. From (2.61), (2.62) and (2.64), we can write: 

P̂ Â = V TPV UTAV 

= V TPV [(V TPV )−1V TP ]AV (2.65) 

P̂ Â = V TPAV. 

ˆ ÂT ˆUsing A = UTAV from (2.62) and (2.64), P from (2.63) can be expressed as 

ÂT P̂ = (UTAV )TV TAV. 

Based on the definition of UT in (2.61), 

ÂT P̂ = [(V TPV )−1V TPAV ]TV TPV 

= (V TPAV )T [(V TPV )−1]TV TPV 
(2.67) 

= (V TPAV )T 

ÂT P̂ = V TATPV 
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Thus, 

P̂ Â + ÂT P̂ = V T (PA + ATP )V = −Q̂
(2.68) 

ˆ AT ˆPÂ + ˆ P = −V TQV 

Therefore, (2.63) is satisfied for a positive definite matrix Q̂ = V TQV . 

(Silveira et al. 1997) utilised a congruence argument to guarantee stability. 

Their work provides improvement to other work done earlier in (Kerns et al. 

1995). In (Silveira et al. 1997) a computationally efficient Arnoldi algorithm is 

proposed for arbitrary and stable reduced order systems. 

Some Krylov subspace approaches as proposed in (Bai & Freund 2001, Freund 

& Feldmann 1996, Freund & Feldmann 1997, Freund & Feldmann 1998, Kerns 

et al. 1995, Silveira et al. 1997) do guarantee stability and passivity (Odabasioglu 

et al. 1997). However, there have been cases where reduced order models derived 

from Krylov subspaces have resulted in unstable models (Bai & Skoogh 2006) 

which might be due to numerical approximations from solvers rather than from 

the method used. 

2.5.1 MOR for nonlinear systems 

Most of the techniques for reducing linear systems can be extended to apply to 

nonlinear systems by taking advantage of the Taylor series expansion of nonlinear 

models. Examples are the Carleman bilinearisation (Phillips 2000) and quadratic 

approximation (QA) as have been discussed in (Chen et al. 2000, Chen 1999). 

More recently, a trajectory piece-wise linear (TPWL) method and all its vari-

ants (Aizad et al. 2014, Rewieński & White 2003) have been proposed for the 

reduction of nonlinear systems. These approaches (QA and TPWL) have been 

used to reduce nonlinear models of the form 

ẋ = f(x) + Bu (2.69) 

y = Cx (2.70) 
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where f is a nonlinear function such that f : Rn → Rn , B ∈ Rn×1 and 

C ∈ R1×n . The TPWL is quite unique when compared to other approaches 

Figure 2.1: Procedure for MOR of nonlinear systems using Krylov subspace 
approaches. 

which depend on the Taylor series expansion about a point of a nonlinear model 

(Carleman bilinearization and QA). The TPWL method was first proposed to 

overcome this limitation by using multiple linearisation points. However, it 

has been reported to have limited small-signal distortion and interpolation fi-

delity (Dong & Roychowdhury 2003). In (Dong & Roychowdhury 2003, Dong 

& Roychowdhury 2008) a method which takes advantage of the TPWL and 

polynomial representation of models which further increases its complexity was 

therefore presented. These nonlinear MOR methods are either based on mo-

ment matching or BT. This is because the structure provided by bilinearisation, 

quadratic approximations and piece-wise linear approximation of the nonlinear 

model allows linear MOR techniques to be readily applicable. The MOR pro-

cedure for nonlinear systems using Krylov subspace approaches is outlined in 

Figure 2.1. Some aspects of this will be discussed further in Chapter 3. 
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2.6 Conclusion 

Krylov subspace MOR methods have been described as one of the most impor-

tant algorithms developed in this century (Dongarra & Sullivan 2000). They 

have been found to be very useful when dealing with systems of very high order. 

The use of Krylov subspaces has initially been proposed for linear systems, 

however the advantages they provide have driven research into their use for re-

duction of nonlinear models. In this chapter all the basic ideas which inform 

the reader of the hows and the whys of the use of Krylov subspaces have been 

discussed. The concepts such as moment matching, orthogonalisation, normali-

sation and the Gram-Schmidt process and their corresponding algorithms have 

been presented. Also, a linear model structure has been used to described pro-

jection techniques. Krylov subspace model order reduction which is a type of 

projection based reduction method has been shown to produce reduced order 

models which match the moments of the higher order model. This is achieved 

by projection bases which are computed using the Arnoldi process as shown in 

Algorithm 2.3. 

The processes discussed in this chapter, such as subspaces, orthogonalisarion 

and projection form a basic framework for which Krylov subspace projection can 

be extented to bilinear systems and in some ways, nonlinear systems which will 

be the focus of discussion in Chapter 3. 



Chapter 3 

Bilinear Systems 

Bilinear systems form a set of nonlinear systems which are closely related to 

linear systems. Bilinear models are particularly important because they are 

suitable for approximating the dynamics of nonlinear systems and models whilst 

retaining a well structured mathematical framework within which linear systems 

co-exist. They have been used to approximate a wide range of physical/electrical 

(Bai & Skoogh 2006, Phillips 2003), chemical (Espana & Landau 1978), biolog-

ical (Mohler & Barton 1978), social (Breiten & Damm 2010) and engineering 

systems (Mohler 1973), as well as manufacturing processes (Mula, Peidro, Dı́az-

Madroñero & Vicens 2010). Reduced order modeling is only one among many 

areas where bilinear models have gained interest. Bilinear models have been 

utilized for control system design (Schelfhout 1996, Martineau, Burnham, Haas, 

Andrews & Heeley 2004, Goodhart, Burnham & James 1994), fault detection (Yu 

& Shields 1996) and system analysis (Younis, Abdel-Rahman & Nayfeh 2003). In 

(Martineau et al. 2004) a bilinear PID control strategy has been proposed. Their 

approach comprises of a standard linear PID cascaded with a bilinear compen-

sator. This has been used to control an industrial furnace where the bilinear PID 

has been observed to reduce power consumption. In (Goodhart et al. 1994) a bi-

linear self-tuning pole-placement strategy is proposed. This control strategy has 

34 
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been applied to an industrial heat treatment furnace. Comparisons made with 

an industrial PID controller show encouraging results and indicate that adopting 

adaptive bilinear approaches can provide significant improvements. Also, in (Yu 

& Shields 1996) a diagnostic observer for a bilinear system with unknown inputs 

is proposed. By using a bilinear fault detection observer, residuals with a high 

sensitivity to a larger class of faults can be achieved. 

In the following subsections, a bilinear model structure and model order 

reduction techniques for bilinear models will be discussed. This will be followed 

by nonlinear models and model order reduction approaches proposed for this 

more general class of nonlinear systems. 

3.1 Defnition of bilinear systems 

In literature, bilinear models can be found in different forms (Zajıc 2013) but in 

this chapter and subsequent ones, we focus on those of the form: 

m X 
ẋ = Ax + Nixui + Bu (3.1) 

i=1 

y = Cx, (3.2) 

where A ∈ Rn×n , Ni ∈ Rn×n for i = 1, 2, . . . ,m, B ∈ Rn×m , C ∈ Rp×n and 

zero initial condition, (x0 = 0), is assumed. For a single input single output 

(SISO) model, m and p are one. Otherwise if they are both greater than one, 

the bilinear system is of multi input multi output (MIMO). Other variations 

of this configuration exist such as multi-input-single-output (MISO) and single-

input-multi-output (SIMO). Generally, the bilinearity is defined by a product of 

the system states and inputs (Mohler 1973). Therefore, for a fixed input, the 

bilinear model is linear in state. Also for a fixed state, it is linear in the input. 

In (Phillips 2000, Rugh 1981, Bai & Skoogh 2006), bilinear models have been 
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used to approximate nonlinear models of the form 

ẋ = f(x) + Bu (3.3) 

y = Cx (3.4) 

where f is a nonlinear function such that f : Rn → Rn , B ∈ Rn×1 and C ∈ R1×n . 

3.2 Volterra series representation of bilinear and 

nonlinear systems 

Using the Volterra series functional, the input u(t) and output y(t) relationship 

of nonlinear systems can be mapped. This is done by using an infinite polynomial 

sum of homogenous terms in the form of 

1 Z 1X 
y(t) = hn(˙1, . . . , ˙n)u(t − ˙1) . . . u(t − ˙n)d˙1 . . . d˙n. (3.5) 

−1 n=1 

Some cases of static nonlinear systems described by a polynomial series in the 

state are also part of these sets of nonlinear systems 

ẋ = a1x + . . . + a1x 1 (3.6) 

1 X 
n ẋ = anx . (3.7) 

n=1 

For example, consider a system of differential equations which describes a nonlin-

ear system as given in (3.3)-(3.4). The differential equations can be represented 

in an infinite polynomial form with convergence properties that retain the input-

output relationship of the nonlinear system. One useful polynomial expansion 

for describing the behaviour of nonlinear systems is the Taylor series expansion. 

The Taylor series is a representation of a nonlinear/linear function f(x) as an 

infinite sum of derivative terms calculated from the function at a single point. 
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At a finite derivative term, the Taylor series is defined mathematically as 

f(x) = A0+A1(x−a)+A2((x−a)⊗(x−a))+A3((x−a)⊗(x−a)⊗(x−a))+. . . + 

An((x − a) ⊗ . . . ⊗ (x − a)), (3.8) 

where the coefficient of the ith term, Ai, i = 1, 2, 3, · · · n is the ith derivative 

of the function f(x) evaluated at the point a and ⊗ is the Kronecker product. 

Due to time and space considerations, it is quite common and efficient to use 

the truncated form of the Taylor series expansion. This concept was formally 

introduced by Brook Taylor in 1715 (Taylor 1715) although it was first discovered 

by James Gregory (Roy 1990). It is important to note that the form presented 

here is around a point zero. The Taylor series centred at zero, is also called a 

Maclaurin series: 

f(x) = A1(x) + A2((x) ⊗ (x)) + A3((x) ⊗ (x) ⊗ (x)) + . . . + 

An((x) ⊗ . . . ⊗ (x)). (3.9) 

The Taylor series provides a framework for the reduction of nonlinear systems. 

Some authors have proposed direct techniques applied to the truncated expan-

sion. The quadratic approximation and bilinear approximation are linked to the 

Taylor series and will be discussed in the next section. 

3.2.1 Multimoment for bilinear systems 

The input-output relationship of systems are often represented using the con-

volution theorem (Rugh 1981, Bai & Skoogh 2006). Consider a SISO bilinear 

model. This can be described by using an infinite sum of convolution integrals 

to describe the input-output characteristics of a bilinear model (3.1) - (3.2), 

1 X 
y(t) = yk(t), (3.10) 

k=1 
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where yk(t) is the output of the kth subsystem and can be represented as 

Z t Z t1
Z tk−1 

yk(t) = . . . h(t1, t2, . . . , tk)u(t − t1 − t2 − . . . − tk) . . . 
0 0 0 

× u(t − tk)dtk . . . dt1, (3.11) 

where h(t1, t2, . . . , tk) is the kernel also known as the impulse response and can 

be represented as 

h(t1, t2, . . . , tk) = CeAtk−1N . . . e At2 NeAt1 B. (3.12) 

A multivariable Laplace transform of the kernels can be used to define a transfer 

function for h(t1, t2, . . . , tk) as given below. 

H(s1, s2, . . . , sk) = C(skI − A)−1N(sk−1I − A)−1N . . . 

(s2I − A)−1N(s1I − A)−1B. (3.13) 

Also, the concept of transfer functions for time-invariant bilinear systems/models 

has been discussed in (Bai & Skoogh 2006). H(s1, s2, . . . , sk) is referred to as the 

transfer function of the kth subsystem and it can be expanded in a multivariable 

Maclaurin series such that 

1 1 XX 
H(s1, . . . , sk) = . . . m(l1, l2, . . . , lk)s l1−1 l2−1 lk−1 (3.14) 1 s2 . . . s k 

lk=1 l1=1 

with 

m(l1, . . . , lk) = (−1)kCA−lk N . . . A−l2 NA−l1 B (3.15) 

the multimoments of the kth subsystem. Consider the first system transfer func-

tion and its Maclaurin series expansion 

H(s1) = C(s1I − A)−1B, (3.16) 

1 X 
H(s1) = m(l1)s 

l1−1 
1 , (3.17) 

l1=1 
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respectively and its moments 

m(l1) = −CA−l1 B. (3.18) 

Also consider the second subsystem transfer function and expansion are repre-

sented as 

H(s1, s2) = C(s2I − A)−1N(s1I − A)−1B (3.19) 

1 1 XX 
l1−1 l2−1H(s1, s2) = m(l1, l2)s1 s2 (3.20) 

l2=1 l1=1 

and the associated multimoments are 

m(l1, l2) = CA−l2 NA−l1 B. (3.21) 

The aim of Krylov subspaces model order reduction for bilinear systems/models 

is to match as many multimoments, i.e. m(l1) = m̂(l1) and m(l1, l2) = m̂(l1, l2) 

of the original model in a reduced order model. As will be shown in subsequent 

sections, the order of the reduced order model increases with the number of 

multimoments matched. 

3.2.2 Multimoment for MIMO bilinear systems 

As has been discussed in Section 3.2.1, the input-output relationship of a bilinear 

system can be represented in a Volterra series. The output yk(t) of the kth 

subsystem is given as 

Z t Z t1 
Z tk−1 k X� � � �

yk(t) = . . . h(t1, t2, . . . , tk). u t − ti ⊗ . . . ⊗ u(t − tk) dtk . . . dt1 
0 0 0 i=1 

(3.22) 
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In (3.22), the degree k kernel, h(t1, t2, . . . , tk) of the MIMO bilinear model is 

given as 

At2 )h(t1, t2, . . . , tk) = CeAtk N(Im ⊗ e Atk−1)(Im ⊗ N) . . . (Im ⊗ . . . ⊗ Im ⊗e 
| {z }

k -2 

(Im ⊗ . . . ⊗ Im ⊗N).(Im ⊗ . . . ⊗ Im ⊗e 
At1 )(Im ⊗ . . . ⊗ Im ⊗B), (3.23) 

| {z } | {z } | {z }

k -2 k -1 k -1 

where A, B and C are the state matrix, input and output matrices respectively. 

N consists of the bilinear state matrices 

N = [N1, N2, . . . , Nm]. (3.24) 

Consequently, the kth transfer function can be derived from a multivariable 

Laplace transform and in given as 

H(s1, s2, . . . , sk) = C(skI − A)−1N [Im ⊗ (sk −1I − A)−1](Im ⊗ N) . . . 

[Im ⊗ . . . ⊗ Im ⊗(s2I − A)−1](Im ⊗ . . . ⊗ Im ⊗N). 
| {z

k -2 

[Im 

}

⊗ . . . ⊗ Im 

| {z

k -2 

⊗(s1I − A)−1](Im 

}

⊗ . . . ⊗ Im ⊗B) (3.25) 
| {z

k -1 
} | {z

k -1 
} 

= C(skI − A)−1N [Im ⊗ (sk −1I − A)−1N ]) . . . 

.[Im ⊗ . . . ⊗ Im ⊗(s2I − A)−1N ].[Im ⊗ . . . ⊗ Im ⊗(s1I − A)−1B]. (3.26) 
| {z } | {z }

k -2 k -1 

Given (3.25), its Maclaurin series expansion is derived as 

1 1 

H(s1, s2, . . . , sk) = 
X X 

l1−1 l2−1 . . . m(l1, l2, . . . , lk)s s1 2 
lk−1 . . . s ,k (3.27) 

lk=1 l1=1 

where m(l1, l2, . . . , lk) is the multimoments of the kth subsystem such that 

m(l1, l2, . . . , lk) = (−1)kCA−lk N(Im ⊗ A−lk−1 N) . . . .(Im ⊗ . . . ⊗ A−l2 N) 
(3.28) 

(Im ⊗ . . . ⊗ Im ⊗ A−l1 B). 
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For example, the transfer function and the Taylor series expansion of the second 

subsystem are represented respectively as 

Therefore, the corresponding multimoments of the MIMO bilinear model is 

m(l1, l2) = CA−l2 N(Im ⊗ A−l1 B). (3.29) 

The first transfer function is the same as that of the SISO case except for C and 

B being matrices. 

3.3 Bilinearization of nonlinear systems 

The bilinearization process described here has been described in (Rugh 1981) and 

is called the Carleman bilinearization. We consider several classes of nonlinear 

systems for which the Carleman bilinearization can be applied. 

3.3.1 Input aÿne nonlinear system with constant input 

matrix 

Consider the input affine nonlinear system with constant input matrix (3.3) -

(3.4). The resulting bilinear system is an approximation of a nonlinear model of 

the form (3.1) - (3.2). Using the Taylor series expansion of the nonlinear function 

(1) (2) (3) (i)f(x) ≈ A1x + A2x + A3x . . . + Aix (3.30) 

and a definition of new states x , 

( (1) (2) (3) (i)]T x ) = [x x x . . . x , (3.31) 

http:Aix(3.30
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(1) (2) (3)a bilinear approximation is achieved where x = x, x = x⊗x, x = x⊗x⊗x, 

and so on. Generally, x(i) = x ⊗ x ⊗ . . . ⊗ x ∈ Rni 
. 

During the bilinearization process, it is crucial to note the relationship be-

tween each state element of current state in x , i.e x(i), the time derivative of the 

(i−1)original systems state, ẋ, and the previous state in x , x . The next example 

illustrates this relationship. 

(1) (2)]. (1)Example 3.3.1 Consider a state defnition where x = [x x For x , 

(1) (1)ẋ = ẋ = A1x + Bu. (3.32) 

(2)For x , 

d(2)ẋ = [x ⊗ x]
dy
d (1) ⊗ x(1)]= [x
dt

(1) (1) ⊗ ˙= ẋ⊗ x + x x 

(1) (1) (1) ⊗ (A1x
(1) (3.33) 

= (A1x + Bu) ⊗ x + x + Bu) 

(1) ⊗ x(1) (1) ⊗ A1x
(1) 1 = A1x + x + Bu⊗ x + x 1 ⊗ Bu 

= A1(I ⊗ I)(x 1 ⊗ x 1) + (I ⊗ I)A1(x 
1 ⊗ x 1) + (B ⊗ I + I ⊗ B)x 1 u 

(1)⊗x (1)= [(A1 ⊗ I) + (I ⊗ A1)](x
(1)) + (B ⊗ I + I ⊗ B)x u. 

(1) ˙Since ẋ = [ẋ x(2)], a bilinear model can be defned as 

ẋ = A x + N x u(t) + B u (3.34) 

y = C x , (3.35) 

where, 

    
A1 A2 0 0 

A =   , N =   (3.36) 
0 [A1 ⊗ I + I ⊗ A1] [B ⊗ I + I ⊗ B] 0 
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B ih 

B =   , C = C 0 (3.37) 
0 

2)×(n+n2) ∈ R(n+n2)×(n+n2) ∈ R(n+n2)×1 ∈ R1×(n+n2)with A ∈ R(n+n , N , B , C . 

For a state definition where the higher order Taylor series expansions are used, 

the system matrices (A and N ), output and input vectors (C , B ) as defined 

in (Phillips 2000) are given below 

 
A11 A12 0 · · · 0 0 · · · 

A = 
















 

0 A21 A22 0 · · · 

. .. .. 0 A31 A32 . 
















 

, N = 
















 

B20 0 · · · 

B30 0 · · · 
















 

(3.38) 

. . . . . . .. . . . . . .. . . . . .. 

 

B = 
















 

B 

0 

. . . 

0 
















 

ih 
, C = C 0 · · · 0 , (3.39) 

where Aki = Ai⊗I⊗· · ·⊗I+I⊗Ai⊗· · ·⊗I+ · · ·+I⊗I⊗· · ·⊗Ai for k > 1 and 

A1i = Ai. Note that there are k terms and k − 1 Kronecker products. Likewise 

Bk0 = B ⊗ I ⊗ · · · ⊗ I + I ⊗ B ⊗ · · · ⊗ I + I ⊗ I ⊗ · · · ⊗ B. The dimension of 

∈ R(n+n2+···+ni)×(n+n2+···+ni)the state matrices increases exponentially A , N . 
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∈ R(n+n +···+n ∈ R1×(n+n +···+ni)Similarly, B 
2 i)×1, C 

2

. In this formulation, the 

dimensions of zero matrices, 0, are as required in order to achieve the correct 

dimensions. 

3.3.2 Input aÿne nonlinear systems 

Another class of nonlinear systems which can be bilinearized using the Carleman 

bilinearization procedure is the general input affine nonlinear system 

ẋ = f(x) + g(x)u (3.40) 

y = Cx. (3.41) 

In this case, the elements of the input matrix g(x) are nonlinear functions of 

states. This has been discussed in (Breiten & Damm 2010, Rugh 1981). Using 

the same state definition as has been used in Subsection 3.3.1, the bilinearization 

process is possible as the nonlinear function g(x) can also be expressed as a Taylor 

series expansion 

g(x) = G0 + G1x + . . . + G2(x ⊗ x) + G3(x ⊗ x ⊗ x) + . . . + Gn(x ⊗ . . . ⊗ x). 

(3.42) 

An example of a nonlinear system of this class being bilinearized is presented in 

Chapter 4. 

The Carleman bilinearization process is quite useful in engineering applica-

tions. Control design (Sanchez & Collado 2010), system identification (Juang 

& Lee 2012), filtering (Germani, Manes & Palumbo 2005b, Germani, Manes & 

Palumbo 2005a), motion tracking (Sayem, Braiek & Hammouri 2010, Sayem, 

Braiek & Hammouri 2013) are some of the applications for which it has been 

found to be extensively used. Its application in the use for model complexity 

reduction (Ghasemi, Ibrahim, Gildin et al. 2014) has been researched widely. 

One of the limitations of this process of approximating nonlinear models is 

the resulting exponentially increasing, high dimensions of the bilinear models. 
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This brings about the need for model order reduction. The time efficiency of 

Krylov subspace projection techniques makes them ideal for solving this prob-

lem. When compared to methods such as balanced truncation and H2 model 

reduction for bilinear systems, where the computation of Lyapunov equations of 

high dimensions is necessary, the Krylov subspace projection techniques prove 

to be of great advantage. In some cases, the use of other model order reduction 

techniques are practically impossible. 

3.4 Stability of bilinear models 

There exist different definitions of stability for bilinear systems as discussed in 

(Dunoyer 1996), some of which are related to stability as defined for linear sys-

tems. However, in order to sufficiently guaranty the stability of bilinear models, 

it is convenient to consider a bounded input bounded output stability BIBO. In 

(Bose & Chen 1995, Kotsios 1995, Bibi 2004, Siu & Schetzen 1991) sufficient con-

ditions have been given on the input of bilinear models to ensure BIBO stability. 

The following definition of BIBO stability for bilinear models can be found in 

(Zhang & Lam 2002) 

Defnition 3.4.1 The bilinear system model of the form (3.1) - (3.2) is said to 

be BIBO stable if for a bounded input, the output is bounded on [0,∞). 

The following theorem for BIBO stability can be found in (Siu & Schetzen 1991, 

Flagg 2012, Zhang & Lam 2002) 

Theorem 3.4.1 : For a bilinear system model of the form (3.1) - (3.2), suppose 
pPmthere exists an M > 0 so that the input ||u|| = i=1 |ui|2 satisfes ||u|| ≤ M 

Pmfor all t greater than zero. Let Γ < i=1 ||Ni||. Then the output, y, given from 

the inputs, ui, is bounded on [0,∞] if there exist scalars � > 0 and 0 < � ≤ 

−maxi(Re(�i(A))), such that ||eAt|| ≤ �e−�t, t ≥ 0 and Γ < �/M� 
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From this theorem, it can be seen that the system represented by (3.1) - (3.2) is 

BIBO stable if A is stable and Ni, i = 1, . . . ,m are sufficiently bounded (Zhang 

& Lam 2002). 

3.5 MOR for bilinear models 

Linear model order reduction approaches such as Krylov subspace projection 

(Lohmann & Salimbahrami 2000), balanced truncation (Aizad et al. 2014) and 

H2 model reduction (Gugercin et al. 2008) have been extended to bilinear models 

(Phillips 2000, Bai & Skoogh 2006, Breiten & Damm 2010, Condon & Ivanov 

2007, Hartmann, Zueva & Schäfer-Bung 2010, Benner & Breiten 2012a, Zhang 

& Lam 2002, Couchman, Kerrigan & Böhm 2011) with all their disadvantages 

and advantages. 

Gramian based model order reduction tecniques have been proposed for bilin-

ear systems as described in (Al-Baiyat & Bettayeb 1993, Benner & Damm 2011, 

Condon & Ivanov 2005, Couchman et al. 2011, Hartmann et al. 2010). The 

use of balanced truncation was first proposed in (Al-Baiyat & Bettayeb 1993). 

Similar to MOR for linear systems, the computation of observability and control-

lability Gramians via two Lyapunov equations of the bilinear model is essential. 

Different notions of these Lyapunov equations have been described in (Condon 

& Ivanov 2005). These Gramians can then be used for balancing followed by 

truncation of the system matrices. The limitations of balanced truncation are 

even more prominent for bilinear models derived from Carleman bilinearization 

due to the exponential increase in model dimensions which in turn increases the 

computational complexity of solving the two Lyapunov equations. 
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3.6 Krylov subspace MOR for bilinear models 

In 2000, Phillips proposed a method which matches the multimoments of a bi-

linear model (Phillips 2000). This approach has influenced most of the work 

done so far (Bai & Skoogh 2006, Feng & Benner 2007, Breiten & Damm 2010). 

(Bai & Skoogh 2006) proposed a method which tries to match the moments and 

multimoments of the bilinear model. Feng and Benner discuss a one-sided ap-

proach which they claim is equivalent to the work done by Bai and Scoogh. A 

slightly different approach proposed by (Condon & Ivanov 2007) which uses a 

linear approximation of the bilinear model about a small constant input over a 

finite time period can also be explored for one sided projection. 

Comparative studies of these approaches have been done in (Baur et al. 

2014, Feng & Benner 2007, Bai 2002). In this section, these methods are to be 

discussed in some detail with numerical simulations done to compare their input-

output preservation qualities using predefined performance criteria. An improved 

approach for moment matching is also proposed. The approach proposed in 

(Bai & Skoogh 2006) cannot be referred to as one-sided because of the awkward 

formulation of the reduced system matrices, therefore it will not be considered 

here. Note that in this section, only the methods which have been proposed for 

SISO model structures are discussed. 

3.6.1 Petrov-Galerkin projection for bilinear models 

Considering a bilinear system of the form 

m X 
ẋ = Ax + Nixu + Bu (3.43) 

i=1 

y = Cx. (3.44) 

In this subsection we focus on the case for m = 1, A ∈ Rn×n , N1 = N ∈ 

Rn×n , B ∈ Rn×1 , C ∈ R1×n and we assume zero initial condition, (x = 0), is 
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assumed. Approximating system states will result in a system of lower dimension. 

Projection methods try to achieve this using the approximation x ≈ V x̂, where 

x̂ is the new set of states. Hence, (3.43) - (3.44) can be rewritten as 

V ẋ̂ = AV x̂ + NV xuˆ + Bu (3.45) 

ŷ x.= CV ˆ (3.46) 

Premultiplying (3.45) by the transpose of V , results in a set comprising of a new 

system matrix, input and output vectors 

TV ˙V ˆ = V x + V xu + V (3.47) x TAV ˆ TNV ˆ TBu 

ŷ = CV x̂ (3.48) 

˙ = ˆx + ˆxu + ˆ (3.49) x̂ Aˆ N ˆ Bu 

ˆŷ = Cx̂ (3.50) 

of lower dimensions. Of particular importance is the condition that V TV = I. 

This is because orthogonal matrix computations contain less numerical noise 

(Tan & He 2007). The reduced system is of q states, q << n, q ∈ Z, with system 

matrices, input and output vectors labelled A, ˆ B and ˆˆ N, ˆ C, with 

Â = V TAV ∈ Rq×q (3.51) 

N̂ = V TNV ∈ Rq×q (3.52) 

ˆ TB ∈ Rq×1B = V (3.53) 

Ĉ = CV ∈ R1×q . (3.54) 

This is often referred to as the Petrov-Galerkin projection (Flagg 2012). In 

another analogy, the Petrov-Galerkin projection is derived by defining the state 

approximation x ≈ V x̂ such that x̂ ∈ Rq and enforcing the Petrov-Galerkin 

condition W TR = 0, i.e. requiring R to be orthogonal, where R is the residual 

R = Ax + Nxu + Bu− ẋ (3.55) 
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and W and V are matrices with columns that span suitable subspaces. Premul-

tiplying (3.55) by W T and substituting x with V x̂ results in 

W TR = W TAV ˆ xu + W TBu− W TV ẋ (3.56) x + W TNV ˆ ˆ

0 = W TAV x̂ + W TNV ˆ ˆ (3.57) xu + W TBu− x.˙

The reduced order model is defined as in (3.49) and (3.50) where Â = W TAV ∈ 

Rq×q, N̂ = W TNV ∈ Rq×q, B̂ = W TB ∈ Rq×1 , Ĉ = CV ∈ R1×q. 

In both analogies, it is required to find appropriate matrices V and/or W. 

This can be achieved by using Krylov subspace techniques. For one-sided Krylov 

subspace projection for bilinear systems, W = V . 

3.6.2 Phillips type projection 

In (Phillips 2000), a multimoment matching approach has been proposed by 

using the Krylov subspaces 

span{V {1}} = Kq1 (A
−1, B) (3.58) 

span{V {k}} = Kqk (A
−1, NV {k−1}) (3.59) 

k [

span{V } = span{ span{V {k}}}, (3.60) 
k=1 

where V {k} is the basis of the qk
th Krylov subspace Kqk (M,N). The Krylov 

subspace (3.58), as defined, matches q1 − 1 moments of the first subsystem of 

the bilinear model. 

In the numerical studies which will be presented in this thesis, only V {1} 

and V {2} are used for computing V , i.e. the Krylov subspaces and projection 

matrices are defined as 

span{V {1}} = Kq1 (A
−1, B) (3.61) 

span{V {2}} = Kq2 (A
−1, NV {1}) (3.62) 

2 [

span{V } = span{ span{V {k}}}. (3.63) 
k=1 
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The projection matrix, V , is computed as a union of V {1} and V {2}. The di-

mension of V is therefore n × (q2q1 + q1), where n is the dimension of A, q1 

and q2 refer to the Krylov subspaces Kq1 (A
−1, B) and Kq2 (A

−1, NV {1}) respec-

tively. The formulation of V and its dimension is the same for the other types 

of projection types to be discussed in this section. 

3.6.3 Feng and Benner type 

In the work influenced by the approach of (Phillips 2000) and (Bai & Skoogh 

2006), Feng and Benner have proposed the Krylov subspaces 

span{V {1}} = Kq1 (A
−1, A−1B) (3.64) 

k−1)span{V {k}} = Kqk (A
−1, A−1NV (3.65) 

k [

span{V } = span{ span{V k}} (3.66) 
k=1 

for matching the maximum amount of moments. These sets of Krylov subspace 

bases are said to match the same amount of moments as in (Bai & Skoogh 2006). 

In this case, the Krylov subspaces span{V {1}} and span{V {2}} are 

span{V {1}} = Kq1 (A
−1, A−1B) (3.67) 

span{V {2}} = Kq2 (A
−1, A−1NV {1}) (3.68) 

and the corresponding projection vector is formed as 
2 [

span{V } = span{ span{V k}}. (3.69) 
k=1 

In (Bai & Skoogh 2006) an approach which multiplies the system equation by 

the inverse of the state transition matrix is used. In (Breiten & Damm 2010) a 

generalization of the methods discussed in (Bai & Skoogh 2006) has been pro-

posed. They proposed a multiplication of the system matrix by an appropriate 

non-singular matrix of the same dimensions. In this case, the computation of 

the reduced order matrices is different from the projection methods described in 

this section. 

http:A�1,A�1NV(3.65


51 3. Bilinear Systems 

3.6.4 Condon type Krylov subspace projection 

Using a slightly different approach from the other authors discused in this section 

is a method proposed by (Condon & Ivanov 2007). Consider a method which 

matches only moments of a single variable expansion of the bilinear model about 

a small input u = � (Condon & Ivanov 2007). If a bilinear model is analysed 

over a finite time interval t ∈ [0, ˝ ], then it is possible to analyse it as a linear 

model. The validity of this linear approximation has been discussed extensively 

in (Condon & Ivanov 2005). The resulting system is 

ẋ = Ax + Nx� + Bu (3.70) 

y = Cx. (3.71) 

Applying the definition of the Krylov subspace (2.4) (defined in Chapter 2), q 

moments of (3.70) - (3.71) can be matched using the Krylov subspace 

span{V } = Kq1 (A� 
−1, A� 

−1B), (3.72) 

where A� = [A + N�] and H�(s) = C(sI − A�)
−1B. Making use of the 

Petrov-Galekin projection procedure, the reduced system with, Â = V TAV , 

N̂ = V TNV , B̂ = V TB, Ĉ = CV , is achieved. In this thesis, we will refer to 

this as a Condon type, as it was used in (Condon & Ivanov 2007). Condon & 

Ivanov have used a two-sided approach to improve the output of the reduced 

model, but in this thesis it will be implemented using a one-sided approach. 

Note that the major difference between the projection types discussed in this 

section is the definition of the Krylov subspaces. These slight differences, as will 

be shown in subsequent subsections and sections, can have a significant effect on 

the input-output relationship preservation for the reduced order model. 

Since the works proposed by (Phillips 2000, Feng & Benner 2007, Condon & 

Ivanov 2007), there has been a lot of interest in the reduction of bilinear models 
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using Krylov subspaces. The works done in (Benner & Breiten 2015, Flagg 2012, 

Breiten & Damm 2010, Benner & Breiten 2012a) show multimoment matching 

at some frequencies. Using Krylov subspaces, (Breiten & Damm 2010) show 

multimoment matching using this approach and demonstrated their work us-

ing two numerical simulations. In their conclusion, it has been noted that this 

approach needs improvement. An extension of the IRKA, namely the bilinear 

IRKA was first proposed in (Benner & Breiten 2012a). This approach applies 

a two sided rational Krylov iterative procedure for computing a reduced order 

model. The reduced order model is said to satisfy the conditions for H2 opti-

mality and methods of this form are regarded as H2 model order reduction. The 

bilinear IRKA (BIRKA) has been described to be very expensive in (Choudhary 

& Ahuja 2016). This is because the algorithm solves the projection matrices 

by using the solutions of two generalised Sylvester equations. The truncated 

BIRKA (TBIRKA) (Flagg 2012) was proposed for this purpose. Using Krylov 

subspace methods for solving the Sylvester equations, the computational effi-

ciency of the H2 norm approach has been improved. However, this is at the cost 

of solving the Sylvester equations to some tolerance which can deteriorate the 

quality of the resulting reduced order model. 

3.7 Krylov subspace MOR for MIMO bilinear 

models 

Many applications of bilinear models are MIMO systems. Similar to the case 

of moment matching for SISO linear models as discussed in Chapter 2, multi-

moment matching and other classical model order reduction techniques (Phillips 

2000, Feng & Benner 2007, Hartmann et al. 2010) proposed for bilinear models 

can be extended to MIMO models. In (Hartmann et al. 2010), different balanced 

truncation approaches were proposed for MIMO bilinear models. Likewise, in 
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(Benner & Breiten 2012a, Zhang & Lam 2002), H2 methods were proposed and 

implemented. The structural differences between SISO and MIMO models also 

pose a set of different challenges one of which is multiple N matrices. Intrin-

sically, MIMO models have input and output matrices as opposed to row and 

column vectors respectively. Also, they might possess multiple system matrices. 

Some of the problems with extending multimoment matching to MIMO bilinear 

models have been dealt with in linear cases. In (Tan & He 2007) a block Arnoldi 

algorithm which is capable of computing orthonormal basis for two starting ma-

trices is presented. 

Krylov subspace model order reduction techniques for MIMO bilinear models 

of the form 

m X 
ẋ = Ax + Nixui + Bu (3.73) 

i=1 

y = Cx, (3.74) 

where A ∈ Rn×n , Ni ∈ Rn×n for i = 1, 2, . . . ,m, and B ∈ Rn×m , C ∈ Rp×n with 

n ∈ Z,m ∈ Z, and p ∈ Z was first proposed in (Lin, Bao & Wei 2007) wherein the 

Phillips (Phillips 2000) type projection was extended to bilinear MIMO models. 

In a subsequent paper written by the same authors (Lin et al. 2009), the Bai 

type projection framework and algorithm was extended to MIMO models. In 

their work, they compared both approaches using arbitrary bilinear models and 

showed superior reduced order models using the Phillips type (Phillips 2000) 

approach. 

The application of the Petrov-Galerkin condition and state approximation 

x = V x̂ to (3.74) yields a reduced order model of the form 

m X
˙ = ˆx + ˆ xui + ˆ (3.75) x̂ Aˆ Niˆ Bu 

i=1 

ˆŷ = Cx̂ (3.76) 

ˆ ˆ ˆ ˆsuch that if V ∈ Rn×q, then, A ∈ Rq×q, Ni ∈ Rq×q, B ∈ Rq×m ,C ∈ Rp×q, where 
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ˆ ˆ TNiV ˆ TB, ˆA = V TAV , Ni = V , B = V C = CV . Both analogies discussed in 

this chapter for SISO bilinear systems also apply here. 

3.7.1 Krylov subspace for MIMO Phillips type projection 

In the work presented by Lin, Bao and Wei (Lin et al. 2007) an algorithm that 

computes the projection bases for MIMO bilinear was proposed. The following 

Krylov subspaces were said to match the multimoments of the MIMO bilinear 

model. 

span{V {1}} = Kq1 (A
−1, B) (3.77) 

span{Vi 
{2}
} = Kq2 (A

−1, NiV
{1}) (3.78) 

i = 1, 2. . . . ,m (3.79) 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (3.80) 
i=1 

The algorithm presented was shown to be able to preserve the input output 

characteristics of the high order bilinear model. In (Baur et al. 2014) the work 

done by Lin, Bao and Wei has been identified as an extension of the Phillips 

type projection of SISO bilinear models. 

3.7.2 Bai type projection 

An alternative to the projection formulation for the reduced order models as 

proposed for one-sided and two-sided projections for bilinear systems has been 

utilised in (Bai & Skoogh 2006). This alternative formulation has been achieved 

by premultiplying the bilinear system equation by A−1 

A−1 ẋ = x + A−1Nxu + A−1Bu. (3.81) 
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Utilizing the change in state approximation, x = V x̂, such that x̂ ∈ Rq×q. 

A−1 ẋ = V ˆ xu + A−1Bu x + A−1NV ˆ (3.82) 

ŷ x.= CV ˆ (3.83) 

Premultiplying (3.82) with V T results in a reduced order system. 

TA−1V ˙V x̂ = V TV x̂ + V xu + V TA−1Bu (3.84) TA−1NV ˆ

ŷ x.= CV ˆ (3.85) 

Note that due to the orthogonality of V, the system matrix for the reduced order 

system is identity, V TV = I. However, an equivalent definition of reduced order 

TA−1Vmatrices can be achieved using the inverse of V . Therefore 

ˆ x + (V xu + Vẋ = (V TA−1V )−1 ˆ TA−1V )−1V TA−1NV ˆ TA−1V TA−1Bu (3.86) 

ŷ = CV x̂ (3.87) 

The new definition of the reduced system matrix Â is (V TA−1V )−1 . This new 

ˆdefinition can be made computationally effective by using A for computing the 

other system matrices as follows: 

ˆ ˆN = AV TA−1NV (3.88) 

ˆ ˆB = AV TA−1B (3.89) 

Ĉ = CV. (3.90) 

According to (Bai & Skoogh 2006), if it is assumed that V V T = I, then it can 

be proved, for the Bai type projection, that for k = 1, 2, the qk moments of the 

reduced order model m̂(l1, l2) matches qk moments of the higher order model 

m(l1, l2) by utilising the Krylov subspaces 

span{V {1}} = Kq1 (A
−1, A−1B) (3.91) 

span{Vi 
{2}
} = Kq2 (A

−1, A−1NiV
{1}) i = 1, 2. . . . ,m (3.92) 

m [ [

span{V } = span{span{V {1}} { span{Vi 
{2}
}}}, (3.93) 

i=1 
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where l1, l2 = 1, 2, . . . , q. Numerical studies carried out by the authors of (Bai & 

Skoogh 2006) have shown that using this method, the input-output relationship 

of higher order bilinear models is preserved in the reduced order models. 

3.8 Algorithms for computing projection ma-

trices 

For computing the projection matrix, V , a modified version of the algorithm 

proposed in (Bai & Skoogh 2006) is described in this section. The algorithm 

has been shown to be useful for matching moments and multimoments (Bai & 

Skoogh 2006, Breiten & Damm 2010). The required inputs to the algorithm are 

the starting matrices for the first Krylov subspace M, N and q1 for computing 

V {1}. Another parameter, p2, is required to select the number of columns of 

V {1} to be used for computing V {2}. q2 is used for computing the second Krylov 

subspace spanV {2}. Note that the bases, M, N will vary depending on the 

method used. The outline of this algorithm is as follows: 

Algorithm 3.1 (Computation of projection base, V ) 

1. Input: N,M, q1, p2, q2, N 

2. Compute: r = M 

3. Compute: v1 
{1} 

= r/||r||2 

4. for i = 1 : q1 − 1 

5. r = Nvi 
{1} 

{1}
)T6. h = (V r[i] 
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{1}
7. r = r − V h[i] 

8. if ||r||2 = 0, end 

{1}
9. vi+1 = r/||r||2 

10. end 

{1}
11. G = NNV[p2] 

V {2}12. = orth(G) 

13. for i = 1 : p2(q2 − 1) 

{2}
14. r = Nvi 

15. h = (V
{2} 

)T r[p2+i−1]

{2}
16. r = r − V h[p2+i−1]

17. if ||r||2 = 0, end 

{2}
18. vp2+i = r/||r||2 

19. end 

20. V = orth([V {1}V {2}]) 

The routine from step 3 to step 10 and step 12 to step 19 can be recognised as 

the Arnoldi process which has been used to compute V {1} and V {2} respectively. 

Step 11 is used to define the base for V {2} which is dependent on V {1}. Using the 

in built MATLAB function orth in steps 12 and 20, a QR decomposition/Gram-

Schmidt process is carried out to generate an orthonormal basis for the range 

of G and [V {1}V {2}]. The output of the algorithm is V which is to be used for 
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computing the reduced order model as discussed in Section 3.6.1. 

The projection matrix computed here using Algorithm 3.1 is for the Feng and 

Benner (Feng & Benner 2007) type projection where N = A−1 and M = A−1B 

{1}
as at step 11, NV is multiplied by N. This is not required in Phillips type [p2] 

{1}
projection (Phillips 2000), as only NV is used instead. The subscript [p2][p2] 

denotes the number of columns of V {1} which are used in forming V {2}. 

3.9 MIMO projection algorithms 

In order to construct a projection matrix for matching multimoments of a MIMO 

bilinear model, a series of algorithms need to be put in place. Firstly, a block 

Arnoldi process as described in (Tan & He 2007, Lin et al. 2009) is needed in 

order to compute an orthonormal basis for a block Krylov subspace Kq(N,M) 

to handle the matrix M. The Block Arnoldi algorithm is presented below: 

Algorithm 3.2 (Block Arnoldi for MIMO models) 

1. Input: N, M, q 

2. Q =orth(M) 

3. W = Q 

4. for i = 1 : q − 1 

5. R = NQ 

6. R = R− W (W TR) 

7. Q =orth(R) 

8. W = [W,Q] 
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9. end 

10. Return W 

At the end of the algorithm, a matrix W is returned where 

W = [W {1},W {2} , . . . ,W {q}] (3.96) 

and the columns of W form basis for the Krylov subspace spanned by Kq(N,M). 

Algorithm 3.2 can be used for computing the projection matrix V for a bi-

linear model using the procedure in the following algorithm proposed in (Lin 

et al. 2009). A similar version of this algorithm proposed for the Phillips type 

projection method has been presented in (Lin et al. 2007). 

Algorithm 3.3 (Computation of V for MIMO bilinear models) 

1. Input: A,B,N1, . . . , Nm,m, q1, q2, p2 

2. Compute an orthonormal basis, V {1}, for the Krylov sub-

space: Kq1 (A
−1, A−1B), using Algorithm 3.2 

3. for i = 1 : m, compute an orthonormal basis, Vi 
{2} 

, for the 

Krylov subspace: Kq2 (A
−1, A−1NV[p

{

2

1
] 
}
), using Algorithm 3.2 

4. end 

{2} {2}
5. V = orth([V {1}, V 1 , . . . , V m ]) 

6. Return V 

Observing steps 2 and 4, the Krylov subspaces utilised here are for the Feng 

and Benner (Feng & Benner 2007) type and the Bai (Bai & Skoogh 2006) type 
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projections. For the other projection types, the Krylov subspace starting vectors 

should be changed accordingly. The output of the algorithm can be used for 

computing reduced order MIMO bilinear models for one-sided projection using 

the following algorithm. 

Algorithm 3.4 (Computation of matrices for MIMO models) 

1. Input: V 

ˆ2. A = V TAV 

3. N̂i = V TNiV 

ˆ TB4. B = V

ˆ5. C = CV 

The Bai type projection (Bai & Skoogh 2006) reduced order matrices can be 

computed by using the following algorithm. 

Algorithm 3.5 (Computation of matrices for Bai type) 

1. Input: V 

2. Â = (V TA−1V )−1 

ˆ ˆ3. Ni = AV TA−1NiV 

ˆ ˆ4. B = AV TA−1B 

ˆ5. C = CV 
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The computation of the reduced order matrices for Bai (Bai & Skoogh 2006) 

type projection has been explained in Subsection 3.7.2. 

3.10 Discussion 

Krylov subspace model order reduction techniques for bilinear systems have been 

quite useful for reduction of bilinear and nonlinear models. They have been suc-

cessfully applied to many nonlinear systems. In (Bai & Skoogh 2006) a nonlin-

ear transmission line model and an electrostatic gap-closing actuator have been 

reduced using Krylov subspaces. Also (Benner & Damm 2011) used Krylov sub-

spaces to reduce the order of a heat transfer model. In (Breiten & Damm 2010) a 

flow model which can be used for modelling engineering problems such as traffic 

flow and gaseous systems has been reduced for control applications. 

When compared to other methods such as balanced truncation and H2 model 

order reduction for bilinear systems, it has been reported that the Krylov sub-

space approaches are more desirable due to the ease of implementation (Baur 

et al. 2014). This is because the computation of controllability and observability 

Gramians for high dimensional systems are very costly and in some cases, solv-

ing Lyapunov equations is impossible (Damm 2008). In (Benner & Damm 2011) 

a hybrid approach which combines the Gramian computation approaches and 

the Krylov subspace MOR has been proposed. This implements the methods 

by reducing the dimensions of the bilinear model using Krylov subspaces before 

the computation of the Gramians of a reduced bilinear model to a much smaller 

dimension. 

One limitation that Krylov subspace projection methods have is the need 

for inversion of the system matrix. There exist systems whose matrices are not 

invertible and this poses a problem for the discussed methods. In (Mach, Pranić 

& Vandebril 2013) and (Chu, Lai & Feng 2008), Krylov subspace approaches 

which do not require explicit matrix inversions have been proposed. However in 
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(Mach et al. 2013) they have been reported not to deliver good results for the 

application therein and further investigation is needed. 

The Carleman bilinearization process often produces sparse matrices and the 

system matrix N is in some cases singular. This is likely to pose some numerical 

issues for the Krylov subspaces where the multiplication of N with a matrix 

occurs. This is an issue which has not been discussed in literature previously 

and is an interesting prospect for discussion as model order reduction using 

Krylov subspaces have been reported to have numerical issues (Choudhary & 

Ahuja 2016). 

3.11 Conclusion 

In this chapter, model order reduction of nonlinear systems via bilinearization 

has been discussed focusing on the Krylov subspace based model order reduc-

tion methods for bilinear systems. By using the Taylor series expansion, the 

approximation of nonlinear systems is made possible not only via bilinearization 

but also quadratic approximation. A second derivative truncation of the Taylor 

series is used to explain the bilinearization process. This is followed by exam-

ples of the different applications of bilinearization. Other model order reduction 

approaches for nonlinear systems have also been highlighted. 

In literature, the input-output behaviour of reduced order models is deter-

mined by the amount of multimoments matched. Within the following chapter, 

a detailed analysis of the multimoment matching capacity of the original works 

done in this field is presented. This analysis which has not been seen in this 

forms for multimoment matching form part of the contributions of this work. 

The next chapter introduces two new approaches for MOR using Krylov sub-

spaces and solves some of the problems which arise when using Krylov subspace 

MOR. 



Chapter 4 

Improved Phillips and 

Parametrised Linear 

Approximation for MOR of 

Bilinear Systems 

4.1 Introduction 

Some bilinear models result in non-invertible A and/or N matrices (Bai & Skoogh 

2006, Breiten & Damm 2010, Couchman et al. 2011). This means that the model 

order reduction of these models is not possible using the methods discussed in 

the previous chapters that involve the use of matrix inversion. Also, when the N 

matrix is singular, there is likely to be an irreversible loss of information when 

multiplying matrices. The method proposed in (Feng & Benner 2007) uses a 

routine which multiplies two matrices of the same dimensions (A−1N). However, 

if one of these matrices is singular, then the loss of information, such as loss in 

rank, affects the input-output preservation of the reduced order model. These 

are questions which have not been considered in other work and an investigation 

63 
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of this effect is presented in this chapter. 

As mentioned earlier, the overall desire of model order reduction is to preserve 

the input-output relationship of the high order/fidelity model. Research in this 

topic that exploits the use of Krylov subspace projection at the expansion point 

s = 0, is seemingly exhaustive. In this chapter, a new method for improving the 

input-output preservation is proposed based on using a so called better linear 

approximation of the bilinear model. Some simulation studies to illustrate the 

usefulness of this proposed method are provided. 

In this chapter, an analysis of multimoment matching for the Phillips (Phillips 

2000) type projection and the Feng and Benner (Feng & Benner 2007) type 

projection are presented. This forms part of the original contributions of this 

thesis. Based on this analysis, a new approach is presented which is called the 

Improved Phillips (IP) type projection. A multimoment matching analysis for 

this new approach is also presented. This is followed by a proposal for using 

alternate linear approximations for MOR using Krylov subspaces. This is called 

the parametrised linear approximation (PLA) for Krylov subspace MOR. 

4.2 Multimoment matching 

4.2.1 Multimoment matching for Phillips type projection 

By using the Krylov subspace Kq1 (A
−1, B) for computing V {1}, as has been 

shown in Section 2.3.2, this only matches q1 − 1 moments of the first trans-

fer function of the bilinear model. This consequently affects the multimoment 

matching when V {1} is used for computing V {2}. However, this formulation of 

Krylov subspaces presented by Phillips (Phillips 2000) can be shown to match 

multimoments of the multivariable transfer function H(s1, s2) of the bilinear 

model. 

Theorem 4.2.1 The Krylov subspaces Kq1 (A
−1, B) and Kq2 (A

−1, NV {1}) when 
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used to compute projection vectors, V T and V as defned in (3.61) - (3.63) match 

the multimoments of a bilinear model (3.1) - (3.2) and a reduced order bilinear 

model such that m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1 − 1, l2 = 1, . . . , q2 − 1, if 

the reduced order model matrices are computed as Â = V TAV , N̂ = V TNV , 

B̂ = V TB and Ĉ = CV , where V spans the Krylov subspaces Kq1 (A
−1, B) and 

Kq2 (A
−1, NV {1}) and V TV = I. 

Proof. This multimoment matching property can be shown by first substi-

tuting the reduced order matrices (3.51) - (3.54) as given in Subsection 3.6.1 

into the multimoments of the reduced order model, m̂(l1, l2). From (3.15) the 

multimoment of the reduced order bilinear model can be defined as 

CÂ−l2 N̂Â−l1 ˆm̂(l1, l2) = ˆ B. (4.1) 

ˆ ˆ ˆ ˆNow, using the definition of the reduced order matrices, A, N , B and C, this 

multimoment equation can be rewritten as 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 (V TNV )(V TAV )−l1 V TB. (4.2) 

Because A−(q1−1)B belongs to the Krylov subspace Kq1 , it can be written that 

A−(q1−1)B = V {1} = A(q1−1)V {1}r(q1). Then B r(q1). Also because V {1} ∈ V , then 

V {1}r(q1) = V p(q1), where r(i) and p(i) are appropriate parameters and dimensions, 

∈ Rq1+q1q2 ∈ R(q1+q1q2)×q1where r(i) ∈ Rq1 , p(i) for i ≤ q1 and p(i) for i > q1. 

From the routine of moment matching as shown in (2.40) - (2.43), for any value 

of q1 ∈ Z|q1 > 0, when l1 = q1 − 1 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TNV p(q1). (4.3) 

Since V p(q1) = V {1}r(q1) then 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TNV {1}r(q1). (4.4) 

Moreover, from (3.62) - (3.63), NV {1} ∈ V , therefore NV {1} = V p(q1+1) and 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TV p(q1+1)r(q1) 
(4.5) 

= CV (V TAV )−l2 V TAA−1V p(q1+1)r(q1). 
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Further, since A−1NV {1} ∈ V and A−1NV {1} = A−1V p(q1+1) = V p(q1+2), there-

fore, 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TAV p(q1+2)r(q1) 
(4.6) 

= CV (V TAV )−l2+1 p(q1+2)r(q1). 

Using this routine iteratively until q2 = (l2 + 1), (4.6) becomes 

ĈÂ−l2 N̂Â−l1 B̂ = CV p(q1+l2+2)r(q1). (4.7) 

Now A−l2 NV {1} = V p(q1+l2+2), so 

A−l2 N ˆĈ ˆ ˆA−l1 B̂ = CA−l2 NV {1}r(q1). (4.8) 

Since V {1}r(q1) = A−(q1−1)B and l1 = q1 − 1, then, 

ĈÂ−l2 N̂Â−l1 B̂ = CA−l2 NA−l1 B. (4.9) 

Therefore, 

m̂(l1, l2) = m(l1, l2), (4.10) 

where l1 = 1, . . . , q1 − 1 and l2 = 1, . . . , q2 − 1. 

This proof forms an extension of the proof of moment matching as done is 

(Tan & He 2007) to multimoment matching. A proof of multimoment matching 

for (3.61) - (3.63) has been done in (Phillips 2000). However, the author has 

stated that l1 can be less than or equal to q1. This has been shown not to be the 

case here. Also unique to this proof is the relationship between l2 and q2. 

Consequently, this proof can be generalised for cases where the transfer func-

tion has more than two variables i.e. for H(s1, s2, . . . , sk), 

m̂(l1, l2, . . . , lk) = m(l1, l2, . . . , lk), (4.11) 

such that l1 = 1, 2, . . . , q1 − 1, l2 = 1, 2, . . . , q2 − 1, . . . lk = 1, 2, . . . , qk − 1 where 

V {k} for k = 1, 2, . . ., as defined in (3.58)-(3.59) have been used for computing 

the projection matrix V (3.60). 

2 
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4.2.2 Multimoment matching for Feng and Benner type 

projection 

Theorem 4.2.2 Given the Krylov subspaces as proposed by Fend and Benner 

(Feng & Benner 2007), Kq1 (A
−1, A−1B) and Kq2 (A

−1, A−1NV {1}), multimo-

ments of the bilinear model (3.1) - (3.2) and a reduced order model can be 

matched such that m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1, l2 = 1, . . . , q2, when 

the reduced order model matrices are computed as Â = V TAV , N̂ = V TNV , 

B̂ = V TB and Ĉ = CV with V spans the Krylov subspaces Kq1 (A
−1, A−1B) and 

Kq2 (A
−1, A−1NV {1}) and V TV = I. 

Proof. To match the multimoments of the multivariable transfer function, 

the Krylov subspaces proposed by Feng and Benner (Feng & Benner 2007) can 

be used following a similar procedure as in Section 4.2.1. The multimoments of 

the reduced order model are defined as 

A−l2 ˆA−l1 ˆm̂(l1, l2) = Ĉ ˆ N ˆ B. (4.12) 

Using the definition of the reduced order matrices we have, Â = V TAV , N̂ = 

V TAV , B̂ = V TB and Ĉ = CV . Substituting these matrices into (4.12), gives 

m̂(l1, l2) = ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 (V TNV )(V TAV )−l1 V TB. (4.13) 

Because A−q1 B = V {1}r(q1), then 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TNV {1}r(q1) (4.14) 

= CV (V TAV )−l2 V TAA−1NV {1}r(q1). (4.15) 

From (3.68), A−1NV {1} ∈ V , therefore A−1NV {1} = V p(q1+1) and 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TAV p(q1+1)r(q1) 

= CV (V TAV )−l2+1 p(q1+1)r(q1) (4.16) 

= CV (V TAV )−l2+1V TAA−1V p(q1+1)r(q1). 
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Moreover, A−2NV {1} = V p(q1+2) = A−1V p(q1+1) therefore, 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2+1V TAV p(q1+2)r(q1) 
(4.17) 

= CV (V TAV )−l2+2 p(q1+2)r(q1). 

Following this routine results in 

A−l2 N ˆĈ ˆ ˆA−l1 B̂ = CV p(q1+l2)r(q1) 
(4.18) 

= CA−l2 NV {1}r(q1) 

for any value of l2. Note that A−l2 NV {1} = V p(q1+l2). Since V {1}r(q1) = A−q1 B, 

ĈÂ−l2 N̂Â−l1 B̂ = CA−l2 NA−l1 B. (4.19) 

Therefore, 

m̂(l1, l2) = m(l1, l2), (4.20) 

where l1 = 1, . . . , q1, l2 = 1, . . . , q2 p(i), i = 1, . . . , (q1 + q2) and r(i), i = 1, . . . , q1 

are appropriate parameters for achieving orthogonality. 

The same approach used in (Tan & He 2007) for linear systems moment 

matching has been extended to multimoment matching for bilinear models. In 

the proof for multimoment matching shown in (Feng & Benner 2007), it has 

been assumed that V V T = I. This is not the case in this thesis. The condition 

for computing the projection matrices, i.e. V TV = I has been used for showing 

multimoment matching. This proof can also be generalised for cases where the 

transfer function has more than two variables. For H(s1, s2, . . . , sk), 

m̂(l1, l2, . . . , lk) = m(l1, l2, . . . , lk), (4.21) 

such that l1 = 1, 2, . . . , q1, l2 = 1, 2, . . . , q2, . . . lk = 1, 2, . . . , qk where V {k} 

for k = 1, 2, . . ., as defined in (3.64)-(3.65) have been used for computing the 

projection matrix V (3.66). 

2 
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4.3 Improved Phillips type projection 

The method proposed by Phillips (Phillips 2000) which has been discussed in 

Subsection 3.6.2 can be readily improved because it has been shown that the 

Krylov subspace used to compute V {1} matches only q1 − 1 moments of its linear 

approximation. Further observation of the Phillips (Phillips 2000) type projec-

tion shows that in order to match more moments of the linear approximation of 

the bilinear model, the Krylov subspace bases (3.58) to compute V {1} should be 

replaced by 

span{V {1}} = Kq1 (A
−1, A−1B). (4.22) 

This formulation for computing V {1} would match q1 moments, i.e. if we are only 

considering the linear approximation of the bilinear model. This implies that the 

Krylov subspace multi-moment matching of the bilinear model can be improved 

by using (4.22). Also, since the methods so far use the system matrix A for the 

linear approximation of the bilinear model, exchanging A with a so called better 

linear approximation and using it for computing V {1} will result in improved 

input-output preservation for the reduced bilinear model. This approach can be 

demonstrated numerically as we will show in Section 4.4 and Section 4.5. 

In Subsection 4.3.1, an analysis of multimoment matching will be shown. The 

approach presented here is an extension of the proof for moment matching as 

shown in (Tan & He 2007). This approach has also been used to analyse matched 

multimoments for methods proposed by Phillips (Phillips 2000) as well as Feng 

and Benner (Feng & Benner 2007) in Subsections 3.6.2 and 3.6.3 respectively. 

An improved parametrised linear approximation for MOR of the bilinear model 

will also be discussed in Section 4.4. 
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4.3.1 Multimoment matching for Improved Phillips pro-

jection 

For matching the multimoments of the multivariable transfer function, the fol-

lowing Krylov subspaces is proposed in this thesis: 

span{V {1}} = Kq1 (A
−1, A−1B) (4.23) 

span{V {2}} = Kq2 (A
−1, NV {1}) (4.24) 

2 [

span{V } = span{ span{V k}}. (4.25) 
k=1 

Theorem 4.3.1 (Improved Phillips projection) For a bilinear system/model 

as defned in (3.1) - (3.2), a reduced order model of dimensions q1q2 + q1 can be 

constructed by using projection matrices, V and V T , V TV = I, If V is computed 

using the Krylov subspaces (4.23) and (4.24). This formulation of Krylov sub-

spaces matches multimoments of the multivariable transfer function H(s1, s2) of 

the bilinear model such that m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1, l2 = 1, . . . , q2 −1. 

This has been called the Improved Phillips type projection projection. 

Proof. From (3.15) the multimoment of the reduced order bilinear model 

can be defined as 

A−l2 ˆA−l1 ˆm̂(l1, l2) = Ĉ ˆ N ˆ B. (4.26) 

Also, using the definition of the reduced order matrices, Â = V TAV , N̂ = 

V TNV , B̂ = V TB and Ĉ = CV , and substituting the matrices into (4.26), gives 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 (V TNV )(V TAV )−l1 V TB. (4.27) 

V {1}Because, A−q1 B = r(q1), where r(i) appropriate parameters for achieving 

orthogonality, then 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TNV {1}r(q1) (4.28) 
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From (4.24), NV {1} ∈ V , therefore NV {1} = V p(q1+1), where p(i) are appropriate 

parameters for achieving orthogonality, thus 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TV p(q1+1)r(q1) 
(4.29) 

= CV (V TAV )−l2 V TAA−1V p(q1+1)r(q1). 

Since A−1NV {1} = V p(q1+2) = A−1V p(q1+1) 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2 V TAV p(q1+2)r(q1) 

= CV (V TAV )−l2+1 p(q1+2)r(q1) (4.30) 

= CV (V TAV )−l2+1V TAA−1V p(q1+2)r(q1). 

Moreover, as A−2NV {1} = V p(q1+3) = A−1V p(q1+2) 

ĈÂ−l2 N̂Â−l1 B̂ = CV (V TAV )−l2+1V TAV p(q1+3)r(q1) 
(4.31) 

= CV (V TAV )−l2+2 p(q1+3)r(q1). 

Using this iterative scheme, it can be derived that 

ˆĈÂ−l2 N̂Â−l1 B = CV p(q1+l2+1)r(q1) 
(4.32) 

= CA−l2 NV {1}r(q1) 

for any value of l2, where it is true that A−l2 NV {1} = V p(q1+l2+1). Since 

V {1}r(q1) = A−q1 B, then 

ĈÂ−l2 N̂Â−l1 B̂ = CA−l2 NA−l1 B. (4.33) 

Note that p(i) are matrices for i > q1 otherwise they are vectors and r(i) are 

vectors for SISO bilinear models. Using this analysis, it can be observed that the 

Krylov subspaces (4.23) -(4.24) match the multi-moments, m̂(l1, l2) and m(l1, l2), 

such that l1 = 1 . . . q1, and l2 = 1 . . . q2 − 1. 

This proof of multimoment matching for the Improved Phillip approach is 

unique to this thesis. 

2 
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4.3.2 For higher order subsystem of the bilinear model 

In order to compute the projection matrices for higher order subsystems of the 

bilinear model, the following definition of Krylov subspaces is then used: 

span{V {1}} = Kq1 (A
−1, A−1B) (4.34) 

span{V {k}} = Kqk (A
−1, NV {k−1}) (4.35) 

k [

span{V } = span{ span{V {k}}} (4.36) 
k=1 

where k is the number of Krylov subspaces computed. This formulation matches 

the multimoments with all the indices l1, l2, l3, . . . , lk. 

The new results for the proof of multimoment matching using the Improved 

Phillips approach can also be generalised for a higher order subsystem of the 

bilinear model i.e. for H(s1, s2, . . . , sk), 

m̂(l1, l2, . . . , lk) = m(l1, l2, . . . , lk), (4.37) 

such that l1 = 1, 2, . . . , q1, l2 = 1, 2, . . . , q2 − 1, . . . lk = 1, 2, . . . , qk − 1 where 

V {k} for k = 1, 2, . . ., as defined in (4.34)-(4.35) have been used for computing 

the projection matrix V (4.36). 

Remark 4.3.1 Note that the formulation of V and its dimension are the same 

for all the types of projection discussed in this section. The only di�erence be-

tween these projection types is the defnition of the matrices confguration at the 

initial setting of the Krylov subspaces. These seemingly slight di�erences as will 

be shown in subsequent subsections and sections have a signifcant e�ect on the 

input-output relationship preservation for the reduced order model. 

The advantage of using the Improved Phillips approach is that it is a com-

promise between the Phillips type projection (Phillips 2000) and the Feng and 

Benner (Feng & Benner 2007) type projection. It improves the matched linear 

moments when computing V {1} and reduces the loss of information which occurs 
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by multiplying the inverse of the system matrix A with N . This is for the case 

where N is a singular matrix. 

4.4 Parametrised linear approximation for mul-

timoment matching 

The formulation of the projection matrix V {1} for the methods, i.e. Phillips 

(Phillips 2000) type projection, Feng and Benner (Feng & Benner 2007) type 

projection and the newly proposed Krylov subspaces for multimoment matching 

(4.23) - (4.25), aattempts to match moments of the linear approximation of the 

bilinear model. In this subsection, we propose a new and improved approach, 

allowing any linear approximation of the bilinear model to satisfy the condition 

for matching multimoments of the bilinear system. This approach promises to 

achieve ’better’ preservation of the input-output propertied of the bilinear model. 

This is demonstrated here by utilising the linear approximation of 

ẋ = Ax + Nxu + Bu (4.38) 

for a constant input u = � as given below 

ẋ = Ax + Nx� + B� (4.39) 

y = Cx, (4.40) 

where A� = [A + N�] and B� = B × �, the linear approximation of the bilinear 

system can be written as 

ẋ = A�x + B�u (4.41) 

y = Cx. (4.42) 

This forms a linear approximation of the bilinear model for a constant input � 

(Flagg 2012). This will be referred to as the parametrised linear approximation 
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of the bilinear model. With this linear approximation, a Krylov subspace can be 

defined such that 

span{V {1}} = Kq1 (A
−1, A−1B�)� � (4.43) 

span{V {k}} = Kqk (A
−1, NV {k−1}) (4.44) 

k 

k=1 

[

This formulation parametrised linear approximation of the bilinear system a 

allow the computation of the projection matrices and subsequently the reduced 

order models that can be described as being one-sided. The parametrised linear 

approximation has been applied to the Improved Phillips type projection (4.43) 

- (4.45). 

All the methods discussed in Section 3.5 use a conventional linear approxi-

mation, with transition matrix A, of the bilinear model for achieving this. Note 

that the linear approximation approach can be applied to the other moment 

matching approaches such as Phillips type projection (Phillips 2000) and Feng 

and Benner type projection (Breiten & Damm 2010). A comparison of these 

methods can be carried out numerically. When reducing the order of a bilinear 

model via Krylov subspaces, the computation of V {1} is done first. As there 

exists a linear approximation of the bilinear model for a constant input applied 

to the bilinear systems over a finite time, consider using a bilinear model as 

described in Example 4.4.1 where the outputs of both linear approximations are 

compared using input-output plots over time. 

Example 4.4.1 Linear approximation of bilinear models 

Consider the bilinear model presented in (Flagg 2012): 

span{V } = span{ span{V {k}}}. (4.45) 

 
−1 0 0.1667 0 0 0 0 0 
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B = C = 1 0 1 0 (4.47) , 

where A ∈ Rn×n , N ∈ Rn×n , B ∈ Rn×1 , C ∈ R1×n and n = 4. 

A constant input of � = 0.5 is chosen to achieve a linear approximation of the 

system. This is compared to a linear approximation of the bilinear model where 

the linear approximation uses only the system matrix A. All three models are 

excited using a sinusoidal input u = sin(t). The plotted output of the models can 

be observed in Figure 4.1, where the parametrised linear approximation, tends 

1 

0.5 

0 1 2 3 4 10 
Bilinear model 

Linear approximation using A + N 2 

Linear approximation using A 

u
y 0 
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-1 
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Figure 4.1: Comparison of linear approximation using the conventional state 
transition matrix and the parametrised linear approximation 

to provide a better approximation of the bilinear model. 

Similar linear approximations have been used in various applications. In 

(Juang & Lee 2012) a bilinear system identification algorithm was developed by 
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introducing constant inputs at designated sampling points. A linear approxima-

tion for bilinear systems of this kind was also used to compute observability and 

controllability Gramians for bilinear systems in (Condon & Ivanov 2005). 

4.5 Case studies 

4.5.1 Simulation based study 

A form of this simulation based study as described in this subsection has been 

used in (Baur et al. 2014) to understand the effect of the parameters on the 

reduction process. Here, using the input defined as 

u = (cos(2ˇt/10) + 1)/2, (4.48) 

the effect of the parameters q1, q2 and p2 on the reduced order model are inves-

tigated. It is expected that the accuracy of reduced order model will improve 

when the order increases and vice versa as this corresponds to the multimoments 

matched. However, this is not always the case as it has been reported that Krylov 

subspace methods lose accuracy as the subspace dimension increases. The pa-

rameters, q1, q2 and p2 affect the dimensions of the reduced order model and 

will also determine the input-output preservation of the reduced order model. 

However, it is more desirable to achieve a much lower order at a reasonably high 

accuracy. 

Using V {1} and V {2} to compute the projection bases, V , an experiment is 

carried out by defining four cases. Each case possesses different values of q1, q2 

and p2 for the Algorithm 3.1. 

• Case 1: q1 = 20, q2 = 1 and p2 = 1 

• Case 2: q1 = 11, q2 = 2 and p2 = 5 

• Case 3: q1 = 5, q2 = 16 and p2 = 1 
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• Case 4: q1 = 17, q2 = 2 and p2 = 2 

This is done for all the multimoment matching methods discussed in Chapter 

3 (Phillip type projection (Phillips 2000) and Feng and Benner type projection 

(Breiten & Damm 2010)), and the Improved Phillip type projection discussed in 

Section 4.3. 

All the cases presented here are expected to achieve the same reduced order 

dimensions. The results are to be assessed using performance criteria which will 

be predefined, graphic output and absolute error plots. 

4.5.2 Projection procedure 

After selecting the parameters, q1, q2 and p2, The algorithm used to compute 

the projection matrices V and V T is given in Algorithm 3.1 which requires a 

slight modification for the Phillips type projection (Phillips 2000) and Improved 

Phillips Type projection. For the Phillips type projection, the input vectors are 

A−1N = and M = B. For the Improved Phillips type projection, the input 

vectors are N = A−1 and M = A−1B. Also in step 11, G = NV[p
{

2

1
] 
} 

for the 

Phillips (Phillips 2000) and Improved Phillips type projection. Note that for the 

Condon type projection, only V {1} has been used as the right projection base, 

V {1}i.e V = . This means that an algorithm which matches only moments is 

sufficient. An algorithm for matching moments has been presented in (Tan & 

He 2007). This process for constructing V {1} is know as the Arnoldi process and 

has been discussed in Chapter 2. After getting the projection bases, the reduced 

order models are computed as described in Subsection 3.6.1. An algorithm for 

this is given below: 

Algorithm 4.1 (Reduced order matrix computation) 

1. Input: V 
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ˆ2. A = V TAV 

ˆ3. N = V TNV 

ˆ TB4. B = V

ˆ5. C = CV 

The implementation of the Algorithm and simulation of models has been 

carried out using Matlab and Simulink. Two examples of bilinear models are 

presented as discussed next. The first example demonstrates the use of case 

studies for determining parameters q1, q2 and p2. This is followed by the MOR 

of a flow model. These two examples have been used by (Bai & Skoogh 2006) and 

(Breiten & Damm 2010) respectively to demonstrate Carleman bilinearization 

and Krylov subspace MOR. In order to compare the different reduced order 

models, some performance criteria have been used as discussed next. 

4.5.3 Performance criteria 

The quality of a reduced model using Krylov subspaces is determined by how 

many moments are matched. Reduced models are only useful when pre-set 

criteria are reached. 

C.1 Integral of absolute error: In order to assess the goodness of fit of the 

reduced order model in the time domain, a quantitative efficacy index is 

required. In this thesis the integral of absolute error (IAE) of the difference 

in the output responses between the high order bilinear model and the 

reduced order bilinear model is used, which is calculated as 

Z ns 

IAE = |y(t) − ŷ(t)|dt (4.50) 
0 
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where y and ŷ are the outputs of the higher order bilinear model and the 

reduced order bilinear model respectively. Terms ns refer to the number 

of the samples collected in the time sequence and t is the time sequence. 

These notations are also used for the remaining performance criteria to be 

discussed. 

C.2 Coefficient of determination: The coefficient of determination (RT 2 is 

mathematically defined as 

||ŷ − y||2 

RT 2 = 100 × 2 , (4.51) 
||y − ymean||22 

where ymean is the mean of bilinear/nonlinear system output. The desire 

is to keep the coefficient of determination as high as possible. Generally, a 

model with an RT 2 = 90 is regarded as highly acceptable. 

C.3 Mean square error: The mean square error (MSE) computes the average 

of the squared deviations of the reduced order model from the high order 

model 

ns 

MSE = 
1 X 

(ŷ − y)2 (4.52) 
ns 

i=1 

and is analogous to mean squared deviation (MSD). It is widely used in 

statistics, regression analysis and parameter estimation. 

C.4 Sum of square of error: The sum of square of error (SSE) is a mathematical 

function which computes the sum of the squared errors of the reduced order 

model and is mathematically defined as: 

ns X 
SSE = (ŷ − y)2 (4.53) 

i=1 

The SSE is also known as the residual sum of squares (RSS) and the sum of 

squared residuals (SSR). The desire is to keep the SSE as small as possible. 

This criterion is widely used in parameter and model selection. 
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C.5 IAE divided by number of samples (NIAE): The NIAE is the IAE divided 

by the number of samples 

Z ns1 
NIAE = |y(t) − ŷ(t)|dt. (4.54) 

ns 0 

C.6 Simulation time in seconds (ST) During the simulations, the time for each 

algorithm for computing the projection matrices is measured, 

ns 
1 X 

ST = STi (4.55) 
ns 

i=1 

where ns is the number of simulations carried out. 

These criteria have been used to determine the accuracy of the reduced order 

models. Also, the magnitude error of each reduced order model with respect to 

the input u and the absolute error with respect to time depicted in graphic plots 

have been used to analyse the reduced order models in Subsections 4.5.4 and 

4.5.5. Note that the time series used in computations used in this thesis have 

not been equally spaced as a variable time step has been used for simulations. 

However, both high order and low order model output values which have been 

analysed using the performance criteria are identical in size and sampling points. 

4.5.4 Case study 1: A nonlinear RC circuit 

The nonlinear model used in this paper to compare the methods discussed is a 

transmission line model of 20th order, i.e. n = 20 as illustrated in Figure 4.2. 
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Figure 4.2: Nonlinear circuit 

The nonlinear circuit model is of the form (3.3) - (3.4) discussed in Chapter 

3, where f(x) = f(v), input B and output C matrices are given as 

 
−g(v1) − g(v1 − v2) 1 1 

f(v) = fkv = 
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. (4.56) 

g(v) − g(vn−1 − vn) 0 0 

The model is composed of linear capacitors which are assumed to have capac-

itance values of unity, i.e. C = 1, and nonlinear resistors where the resistance 
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g(v) is a function of voltage: 

g(v) = exp(40v) + v − 1 (4.57) 

As the definition of the output vector indicates, the output of the nonlinear 

circuit is the voltage between node 1 and the ground. 

(1) (2)A state vector x = [x x x(3)] has been defined for the Carleman bilin-

earization of the nonlinear model. This results in system matrices, input and 

∈ R8420×8420, N ∈ R8420×8420ouput vectors with the following dimensions, A , 

∈ R8420×1 ∈ R1×8420B , C . 

Results: 

First of all, the results of the Phillips (Phillips 2000) type projection for the case 

studies is presented. The outputs y of the different cases are shown in the first 

row of Figure 4.3. The middle row of this figure shows the input u whilst the 

absolute error values are shown in the bottom row. In Table 4.1, the performance 

criteria values of the different cases are shown. 

Table 4.1: Performance criteria for different experimental cases of the Phillips 
(Phillips 2000) type method. 

Phillip type RT 2 MSE IAE NIAE SSE NSSE 
Case 1 96.98 9.6002e-07 0.4470 7.4617e-04 5.7505e-04 9.6002e-07 
Case 2 99.87 4.0522e-08 0.0799 1.3338e-04 2.4273e-05 4.0522e-08 
Case 3 99.56 1.3929e-07 0.1528 2.5504e-04 8.3435e-05 1.3929e-07 
Case 4 99.90 3.0749e-08 0.0697 1.1632e-04 1.8419e-05 3.0749e-08 

As presented, the results suggest that Case 4 with parameter values q1 = 17, 

q2 = 2, and p2 = 2, produce the best results. Next, the experimental results of 

the Feng and Benner (Feng & Benner 2007) type projection are presented. Fig-

ure 4.4 compares the output of the reduced order model to that of the nonlinear 

model in the top figure. In the middle is the input u and the absolute error values 
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Figure 4.3: Time response y of bilinear model and reduced order of different 
cases, input u and absolute error values for all the cases using the Phillips 
(Phillips 2000) type projection. 

are shown in the bottom figure. In Table 4.2, the performance criteria values of 

the different cases 1 to 4 are shown. For the Feng and Benner projection, the, 

Case 2 (q1 = 11, q2 = 2, p2 = 5) and Case 4 (q1 = 17, q2 = 2, p2 = 2) show simi-

lar results. However, Case 2 is slightly better with RT 2 = 99.86, 0.11 more than 

Case 4. The experimental results of the Improved Phillips type projection are 

presented in Figure 4.5. This compares the output of the reduced order model 

to that of the nonlinear model in the first row. In the second row is the input 

(u) and the absolute error values are shown in the third row. In Table 4.3, the 

performance criteria values of the different cases 1 to 4 are shown. Also in the 

experimental values for the Improved Phillips type projection show improved 
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Figure 4.4: Time response y of bilinear model and reduced order of different 
cases, input (u) and absolute error values for all the cases using the Feng and 
Benner (Feng & Benner 2007) type projection. 

values for the Cases 2 and 4 when compared to the other cases. The results for 

the experiment suggest that choosing q1 too high does not necessarily improve 

the output of the reduced order model. Likewise, selecting a high value of q2 

does not improve the results. However, values of p2 higher than 1 is likely to in-

crease the input-output preservation capacity of the reduced order model. These 

experimental results suggest that the computation of a reduced order model that 

preserves input-output relationship which satisfies a set of performance criteria 

is highly dependent on V {1} and therefore the correct selection of the parameters 

q1 and p2 is critical. This knowledge has been used to manually derive a much 

lower reduced order model for the Phillips type projection (Phillips 2000), Feng 
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Table 4.2: Performance criteria for different experimental cases of the Feng and 
Benner type method. 

Feng and Benner RT 2 MSE IAE NIAE SSE 
Case 1 94.51 1.7247e-06 0.4939 9.3022e-04 9.1583e-04 
Case 2 99.86 4.4082e-08 0.0764 1.4385e-04 2.3408e-05 
Case 3 96.46 1.1107e-06 0.3932 7.4053e-04 5.8980e-04 
Case 4 99.75 7.7999e-08 0.0964 1.8163e-04 4.1418e-05 
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Figure 4.5: Time response y of bilinear model and reduced order of different 
cases, input (u) and absolute error values for all the cases using the Improved 
Phillips type projection. 

and Benner (Feng & Benner 2007), Improved Phillips and Parametrised Linear 

Approximation projection (PLA) techniques whose results will be shown next. 

The results of using a one-sided Condon (Condon & Ivanov 2007) approach are 

also included. The computation of V {1} for the PLA type projection uses the 
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Table 4.3: Performance criteria for different experimental cases of the Improved 
Phillips type method. 

Improved Phillips RT 2 MSE IAE NIAE SSE 
Case 1 96.38 1.1453e-06 0.4118 7.5701e-04 6.2306e-04 
Case 2 99.86 4.3794e-08 0.0770 1.4160e-04 2.3864e-05 
Case 3 96.53 1.0976e-06 0.4001 7.3544e-04 5.9710e-04 
Case 4 99.82 5.5529e-08 0.0874 1.6058e-04 3.0208e-05 

parameter � = 0.522. The results presented in here are for reduced order models 

of 7th order where the parameters q1 = 5, p2 = 2 and q2 = 1. 

0.016 
Nonlinear model 
Phillips 
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Improved Phillips 
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0.0040.005 
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(a) Plot of reduced order bilinear models via (b) Plot of nonlinear model, Improved 
Condon (Condon & Ivanov 2007), Feng and Phillips (IP) and parametrise linear approxi-
Benner (Feng & Benner 2007) (FB), Phillips mation (PLA) reduced order bilinear models. 
(Phillips 2000) (IP) and nonlinear model. 

Figure 4.6: Plots of outputs ŷ for reduced order models and nonlinear model 
output y. 

Figure 4.6(a) shows a graphic comparison of the simulated outputs for the 

Condon type projection (Condon & Ivanov 2007), Phillips type projection (Phillips 

2000), Feng and Benner type projection (Feng & Benner 2007), the Improved 

Phillips type projection and the nonlinear circuit model. As can be observed, 

the approach proposed by Condon et. al. (Condon & Ivanov 2007), when ap-

plied to a one sided projection, is not as effective as the other methods. This is 

because only moments are matched. Figure 4.6(b) compares the output for the 

Improved Phillips type projection with that of the PLA output. The effect of 
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the so called better linear approximation of the bilinear model can be observed. 

This trend can also be observed in Table 4.4 which shows the RT 2, SSE, IAE, 

NIAE and MSE values of the reduced order models. Comparing the results 

presented in Table 4.4, IP improves, in terms of RT 2, the results found using 

Phillips (Phillips 2000) and Fend and Benner (Feng & Benner 2007) by 1.4% 

and 0.28% respectively. Applying PLA for MOR further improves on the results 

from IP in terms of RT 2 by 0.02% and IAE by 20%. These results confirm the 

effectiveness of using an alternate linear approximation for computing a reduced 

order system model, see Section 4.4. 

The simulation time values for computing the projection matrices are 271 

seconds, 292 seconds, 424 seconds and 293 seconds for Phillips (Phillips 2000), 

Improved Phillips, Feng and Benner (Feng & Benner 2007) and PLA respectively. 

These values were computed using the average of 6 simulation runs. This shows 

similar simulation times for IP, Phillips (Phillips 2000) and PLA, with Phillips 

being the fastest, as expected. Feng and Benner (Feng & Benner 2007) is about 

1.5 times slower than IP due to the additional matrix inversion required. 

Table 4.4: Performance criteria for 7th order reduced order models. 
RT 2 MSE IAE NIAE SSE 

Condon 65.01 1.0982e-05 1.3207 0.0025 00.58 
Phillips 98.50 4.6991e-07 0.2846 5.3504e-04 2.4999e-04 

Feng and Benner 99.66 1.0718e-07 0.1121 2.1063e-04 5.7020e-05 
Improved Phillips 99.94 1.9686e-08 0.0482 9.0529e-05 1.0473e-05 

PLA 99.96 1.1669e-08 0.0385 7.2371e-05 6.2077e-06 

According to (Rugh 1981) the error, y − ŷ, of bilinear approximations is a 

function of the input and number of Taylor series expansion terms. In Figures 

4.7, 4.8 and 4.9 the reduced order model errors corresponding to the increasing 

input is shown. Comparing the reduced order model of Feng and Benner type 

projection with the Phillips type projection in Figure 4.7, the Feng and Benner 

type projection shows less error for most of the input values. This can also be 
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observed in the RT 2 values. However, this is not the case when it is compared 

the Improved Phillips type projection in Figure 4.8. 
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Figure 4.7: Comparison of Phillips (Phillips 2000) type projection with Feng 
and Benner (Feng & Benner 2007) (FB) type projection using plot of magnitude 
error against corresponding ascending input values. 
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Figure 4.8: Comparison of Improved Phillips type projection with Feng and 
Benner (Feng & Benner 2007) (FB) using plot of magnitude error against cor-
responding ascending input values. 
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Figure 4.9: Comparison of Improved Phillips (IP) type projection with 
Parametrised Linear Approximation (PLA) approach using plot of magnitude 
error against corresponding ascending input values. 

As can be observed in Figure 4.9, the Improved Phillips type projection shows 

less errors for smaller inputs but as the input gets bigger, the PLA maintains its 

error range whilst the first method becomes worse. Overall, the parametrised 

linear approximation approach shows a better input-output preservation for the 

nonlinear model. 

4.5.5 Case study 2: Flow model 

Another model which can be used to demonstrate bilinearization and Krylov 

subspace model order reduction for nonlinear models is the flow model which 

has been used in (Breiten & Damm 2010). The system presented therein is a 

one-dimensional Burgers equation: 

� �
@w @w @ @w 

+ = v , for (x, t) ∈ (0, L) × (0, T ), (4.58) 
@t @x @t @x 
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with 

w(x, 0) = p(x) for x ∈ (0, L) (4.59) 

w(0, t) = u(x) for t ∈ (0, T ) (4.60) 

w(L, t) = q(x) for t ∈ (0, T ), (4.61) 

where x is a point at time, w(x, t) is the velocity, and v is the viscosity coefficient 

which also depends on space and time. In order to reduce the model order, 

(Breiten & Damm 2010) assumed a constant viscosity coefficient. A zero initial 

condition is also imposed on the system. Only the left boundary condition is 

controlled while the right boundary condition is 0. A spacial discretization of 

(4.58) results in a nonlinear control system with nonlinear functions of system 

states. 
 

−w1w2 v w1 v w1 + (w2 − 2w1) +
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v+ (−2wnh2 + wn−1) 0 

(4.62) 

This nonlinear control system is of the form 

ẇ = f(w) + g(w)u 

y = Cw, 

(4.63) 

(4.64) 
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where f(w) and g(w) are nonlinear functions with Taylor series expansions 

f(w) = A1w + A2(w ⊗ w) (4.65) 

and 

B(w) = G0 + G1w, (4.66) 

∈ Rn×n ∈ Rn×nwhere A1 and A2 
2 

are the first and second derivatives of f(w). 

G0 ∈ Rn and G1 ∈ Rn×n are the solution of g(w) at w = 0 and the first derivative 

of g(w) respectively. 

A Carleman bilinearization is then carried out on the nonlinear control system 

by introducing a state vector 
  

w 
x =   . (4.67) 

w ⊗ w 

This results in the following bilinear system matrices, 
    

A1
1 A2 G1 0 

A =  2  , N =   (4.68) 
0 A1 ⊗ I + I ⊗ A1 G0 ⊗ I + I ⊗ G0 0 

  

B =  
G0 

 , 
h

1C = 
n 1 · · · 1 0 · · · 0 

i 
. (4.69) 

0 

The simulations have been done with the parameters of the nonlinear model 

L = 1, v = 0.1 and with state space order, n = 50. 

Using Algorithms 3.1 and 4.1, the high order bilinear model is reduced to a 

3rd order model using the Phillips (Phillips 2000) type, Improved Phillips type 

and Feng and Benner (Feng & Benner 2007) type projection methods. The 

parameters of Algorithms 3.1 have been set as q1 = 1, q2 = 1 and p2 = 1. These 

parameters have been obtained experimentally. Simulation results using input 

function, 

u = sin((2ˇ/10) × 50t + 50) (4.70) 
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are presented. 

Results: 

The model reduction outcomes of this case study uses performance criteria RT 2 , 

MSE, SSE, IAE and NIAE to show the goodness of fit for each reduced order 

model which have been derived by the Phillips (Phillips 2000) type projection, 

Feng and Benner (Feng & Benner 2007), Improved Phillips and PLA type pro-

jections. Graphical plots have also been used to show the system outputs and 

error values. 

Table 4.5 shows the performance criteria values of the reduced order mod-

els. The numerical figures for Phillips (Phillips 2000) type projection and the 

Improved Phillips type projection are identical. This is because they are quite 

similar in the computation of their subspaces. Whilst the figures for Feng and 

Benner show better results. For all the three methods, RT 2 = 100. 

Table 4.5: Performance criteria values of MSE, IAE, NIAE and SSE for reduced 
order models via Phillips (Phillips 2000) type, Feng and Benner (Feng & Benner 
2007) and Improved Phillips type projections. 

Methods MSE IAE NIAE SSE 
Phillips 5.4760e − 07 5.0134 5.3019e − 04 0.0052 

Fend and Benner 1.2352e − 11 0.0114 1.2074e − 06 1.168e − 07 
Improved Phillips 5.4760e − 07 5.0134 5.3019e − 04 0.0052 

Figure 4.10 shows the output (y, average speed) plots of the reduced order 

models and that of the high order bilinear model against time (t) in the first 

row. The second row shows the input plot against time (t). Figure 4.11 shows 

the plot absolute error of the model outputs against input in ascending order 

in the first row and shows the plot of absolute error values in time. In Figure 

4.11, it can be observed, as it was for Table 4.5 with MSE = 5.3019e − 04, SSE 

= 1.168e − 07, IAE = 1.2074e − 06 and NIAE =1.168e − 07 that the Feng and 

Benner (Feng & Benner 2007) type projection produces reduced order models 
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of higher accuracy when compared to Phillips (Phillips 2000) and the Improved 

Phillips type projection with MSE = 5.4760e− 07, SSE = 0.0052, IAE = 5.0134 

and NIAE = 5, 3019e − 04 when the flow model is considered. 
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Figure 4.10: Time response y (average speed) of high order bilinear model 
(HOBM) and reduced order models via Phillips (Phillips 2000) (P), Feng and 
Benner (Feng & Benner 2007) (FB) and Improved Phillips (IP) type projections 
for input u. 

The application of PLA via Feng and Benner (Feng & Benner 2007) can be 

done by using the Krylov subspaces as defined below: 

span{V {1}} = Kq1 (A
−
� 
1, A−

� 
1B�) (4.71) 

span{V {2}} = Kq2 (A
−1, A−1NV {1}) (4.72) 

2 [

span{V } = span{ span{V {k}}}. (4.73) 
k=1 

Computing the reduced order model using PLA produces the following results 

for simulations carried out using the input, 

u = sin((2ˇ/10) × 50t) + 500. (4.74) 
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Figure 4.11: Time response y of bilinear model and reduced order of different 
cases, input u and absolute error values for all the cases using the Feng and 
Benner type projection. 

Table 4.6 shows the performance criteria values for the reduced order models 

using Feng and Benner and PLA via Feng and Benner. The amplitude of the 

input has been increased in this case to highlight the advantage of the PLA 

approach. The linear approximation parameter has been chosen to be � = 10. 

4.6 Discussion 

Considering Case study 1, the proposed Improved Phillips (Phillips 2000) type 

approach tends to be as effective as the Feng and Benner (Feng & Benner 2007) 

approach for model order reduction. However, it seems to be more promising 

when computing models of very low order in light of the case study. 

In the different cases of parameters presented for Case study 1, there is a 

deflation in Case 3 which results in an order of 17. Deflation does not occur 
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Table 4.6: Performance criteria values of IAE and SSE for reduced order models 
via Feng and Benner (Feng & Benner 2007) and PLA via Feng and Benner type 
projection. 

Methods IAE SSE 
Fend and Benner 73.8428 12.5305 

PLA 73.6805 12.5249 

when the operating parameters of the algorithm (q1 = 5, q2 = 1, p2 = 2) have 

been reduced. This results in reduced order models of 7th order. 

In Case study 2, the Feng and Benner (Feng & Benner 2007) type projection 

produces a reduced order model with better performance criteria when compared 

to the Improved Phillips type and the Phillips (Phillips 2000) type projection. 

When the PLA approach is then applied via L. Feng and P. Benner (Feng & 

Benner 2007), the performance criteria values of the PLA were improved com-

pared to those for the Feng and Benner (Feng & Benner 2007) approach. 

Whilst it is suspected that the best reduced order model derived from all 

the simulated methods will depend on the type of matrices possessed by the 

high order system, the parametrised linear approach promises to reduce the 

error when applied to each of these approaches. This improved input-output 

preservation has been achieved at very low cost of computing A� and B�. When 

compared to the simulation time of the other approaches, the parametrised linear 

approximation (PLA) is quite efficient. 

The implications of using an alternate linear approximation for reducing bi-

linear models are not only significant for preserving the input-output behaviour 

of the bilinear model, Their application suggests that they can be used for re-

ducing systems with non-invertible matrices. This is possible if the alternate 

linear approximate of the bilinear model is non-singular. This will be discussed 

further in Chapters 5 and 6. 
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4.7 Conclusion 

Two novel results have been proposed in this chapter; the Improved Phillips and 

the parametrization of the linear model. 

The present study showcases the use of different Krylov subspace projection 

methods which have been proposed by other authors for matching the moments 

and multimoments of a bilinear model. With the use of Carleman bilinearization 

the approximation of nonlinear models has been shown. An improved approach 

which matches multimoments of the multivariable transfer function of the result-

ing bilinear model has been implemented. In addition, it has been demonstrated 

that the moments of the first transfer function of a bilinear model can be im-

proved by using an alternative linear approximation of the bilinear system. These 

findings have been illustrated by reducing a bilinearised nonlinear circuit model. 

With the use of coefficient of determination, mean square error and magnitude 

error and graphic plots a comparison of the different Krylov subspace reduced 

models has been carried out. 

An experimental procedure has been done to identify the effect of the pa-

rameters of the Algorithm 3.8 on the reduced order model. The results of the 

experiment agree with other authors as according to (Baur et al. 2014) the 

input-output presevation of the reduced order model is highly dependent on the 

computation of V {1}. 

The results obtained here suggest that the use of Krylov subspaces for match-

ing multimoments is quite subjective as the quality of the reduced or model is 

dependent on the nature of system matrices being used for computing the Krylov 

subspace. But the high dependence of the reduced order model on the linear 

approximation of the bilinear model can be used to improve its input-output 

preservation via the PLA approach. 



Chapter 5 

IP and PLA for MIMO Bilinear 

Models 

The results presented in (Lin et al. 2007) and (Lin et al. 2009) propose Krylov 

subspaces for matching multimoments and moments for MIMO bilinear models. 

These are basically extensions of the Phillips type projection (Phillips 2000) 

and Bai type projection (Bai 2002) which have been proposed for SISO bilinear 

models. 

As has been discussed in Chapter 4, the Krylov subspaces proposed in (Feng 

& Benner 2007) match the multimoments m(q1, q2) and m̂(q1, q2). This has 

been shown to be less effective in some cases for preserving the input-output 

relationship of the high order models when compared to the following Krylov 

subspaces 

span{V {1}} = Kq1 (A
−1, A−1B) (5.1) 

span{V {2}} = Kq2 (A
−1, NV {1}) (5.2) 

2 [

span{V } = span{ span{V {k}}}, (5.3) 
k=1 

proposed in this thesis for the SISO case studies. It has also been shown that the 

PLA approach for MOR can be used to improve input-output preservation in all 
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the cases discussed. While the extension of Phillips (Phillips 2000) projection to 

MIMO Bilinear model already exists, improvement can be achieved using other 

methods. 

In this chapter, the Improved Phillips, Feng and Benner (Feng & Benner 

2007) and the parametrized linear approximation approaches for model order 

reduction are extended to MIMO bilinear models. An analysis and multimoment 

matching for bilinear models are also illustrated. The newly proposed approaches 

are compared to the work done in (Lin et al. 2007, Lin et al. 2009). 

5.1 IP type projection for MIMO bilinear mod-

els 

In order to extend the Improved Phillips type projection to MIMO bilinear mod-

els, the multiple bilinear state matrices will have to be taken into consideration. 

V {1} remains the same with the SISO case. The Krylov subspace which con-

tains the bilinear state matrices is V {2}. The result of this for MIMO bilinear 

projection is that there are multiple matrices which are members of V {2}. This 

can be represented by utilising indices, i.e Vi 
{2} 
∈ V {2}, where i = 1, 2, . . . ,m. 

Therefore the Krylov subspace V {2} is defined below: 

m 

span{V {2}} = span{
[

span{Vi 
{2}
}} (5.4) 

i=1 

span{Vi 
{2}
} = Kq2 (A

−1, NiV
{1}), i = 1, 2. . . . , m. (5.5) 

Utilizing V {1} and Vi 
{2}

, the projection matrix V is then computed as given 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (5.6) 
i=1 

The extension of Krylov subspace techniques for MOR of MIMO bilinear mod-

els follows this pattern. For completeness, the Krylov subspaces for higher kth 
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subsystem of the bilinear model is given as 

span{V {1}} = Kq1 (A
−1, A−1B) (5.7) 

span{Vi 
{k}
} = Kqk (A

−1, NiV
{k−1}), i = 1, 2, . . . ,m (5.8) 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (5.9) 
i=1 

5.2 Feng and Benner type projection for MIMO 

bilinear models 

The Feng and Benner (Feng & Benner 2007) type projection for the model order 

reduction of MIMO bilinear models, to the best of the author’s knowledge, is 

being proposed first in this thesis. 

As in the case with the other methods, the Krylov subspaces proposed in 

(Feng & Benner 2007) can be extended to MIMO bilinear models. This can be 

achieved for the second subsystem of the bilinear model by using the Krylov 

subspaces given below 

span{V {1}} = Kq1 (A
−1, A−1B) (5.10) 

span{Vi 
{2}
} = Kq2 (A

−1, A−1NiV
{1}), i = 1, 2, . . . ,m (5.11) 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (5.12) 
i=1 

5.3 Multimoment matching for MIMO bilinear 

models 

Theorem 5.3.1 For a MIMO bilinear model, the Krylov subspaces Kq1 (A
−1, A−1B) 

and Kq2 (A
−1, NiV

{1}) match the multimoments, m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1, 

l2 = 1, . . . , q2, of the higher order and reduced order bilinear models if the reduced 
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ˆ ˆ TNiV , ˆorder model is computed such that A = V TAV , Ni = V B = V TB and 

Ĉ = CV , where V {1} ∈ V , Vi 
{2} 
∈ V and V TV = I. 

Proof. If the Krylov subspaces in (5.10) - (5.12) as proposed in (Feng & 

Benner 2007) for projection are considered, multimoment matching for MIMO 

bilinear systems can be established. It has been shown previously that A−l1 B ∈ 

V {1} , A−l1 Bspan{V {1}}, so A−l1 B = r(q1) and because V {1} ∈ V = V p(q1) for 

l1 = 1, . . . , q1, 

A−l1 B = V p(q1). (5.13) 

Therefore, for the multimoments of the reduced order model and using the defi-

nitions of the reduced order matrices 

ĈÂ−l2 N̂(Îm ⊗ Â−l1 B̂) = CV [V TAV ]−l2 V TNV (Im ⊗ [V TAV ]−l1 V TB) 

= CV [V TAV ]−l2 V TNV (Im ⊗ V TV p(q1)) (5.14) 

= CV [V TAV ]−l2 V TNV (Im ⊗ p(q1)). 

Note that due to the definition of N and the Kronecker product, we have 

ĈÂ−l2 N̂iÂ
−l1 B̂ = CV [V TAV ]−l2 V TNiV p(q1), for i = 1, . . . ,m 

= CV [V TAV ]−l2 V TNiV
{1}r(q1), for i = 1, . . . ,m (5.15) 

= CV [V TAV ]−l2 V TAA−1NiV
{1}r(q1), for i = 1, . . . , m. 

Since A−1NiV
{1} ∈ V , therefore A−1NiV

{1} = V p(q1+1) and 

A−l2 A−l1Ĉ ˆ N̂i 
ˆ B̂ = CV [V TAV ]−l2 V TAV p(q1+1)r(q1) 

= CV [V TAV ]−l2+1 p(q1+1)r(q1) 

= CV [V TAV ]−l2+1V TAA−1V p(q1+1)r(q1), for i = 1, . . . , m. 

(5.16) 

Also, A−2NiV
{1} = V p(q1+2) = A−1V p(q1+1), then 
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ĈÂ−l2 N̂iÂ
−l1 B̂ = CV [V TAV ]−l2+1V TAV p(q1+2)r(q1) 

TAV ]−l2+2 = CV [V p(q1+2)r(q1) 

= CV [V TAV ]−l2+2V TAA−1V p(q1+2)r(q1), for i = 1, . . . , m. 

(5.17) 

Continuing this routine, it can be shown that 

ĈÂ−l2 N̂iÂ
−l1 B̂ = CV p(q1+l2)r(q1) 

(5.18) 
= CA−l2 NiV

{1}r(q1), for i = 1, . . . , m. 

Note that A−l2 NiV
{1} = V pq1+l2 . Also, since V {1}rq1 = A−q1 B, 

ĈÂ−l2 N̂iÂ
−l1 B̂ = CA−l2 NiA

−l1 B, for i = 1, . . . , m. (5.19) 

Considering the definition of N and the use of a Kronecker product, we have 

ĈÂ−l2 N̂(Îm ⊗ Â−l1 B̂) = CA−l2 N(Im ⊗ A−l1 B), (5.20) 

where r(q1) and p(i) are appropriate parameters for achieving orthgonality and 

r(q1) ∈ Rq1 , p(i) ∈ Rq1+q1q2m×1 for i ≤ q1 and p(i) ∈ R(q1+q1q2m×q1)×q1 for i > q1. 2 

Using this analysis, it can be derived that for a one-sided projection of a 

MIMO bilinear model, the Krylov subspaces proposed in (Lin et al. 2007) match 

the multimoments, m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1 − 1, l2 =, . . . , q2 − 1. 

Also, it can be derived that the Improved Phillips type projection matches the 

multimoments m̂(l1, l2) = m(l1, l2), l1 = 1, . . . , q1, l2 = 1, . . . , q2 − 1. The proof 

shown here differs from those done in (Lin et al. 2007, Lin et al. 2009) for MIMO 

bilinear models because they (Lin et al. 2007, Lin et al. 2009) have assumed that 

V V T = I. 

5.4 PLA for MIMO bilinear models 

The parametrised linear approximation approach is also proposed for MIMO 

cases. Considering a MIMO bilinear model of the form (3.1)- (3.2), the multiple 
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bilinear state matrices with an application of a constant input u = [u1 u2 . . . um]T 

over a short period of time results in the linear approximation of the MIMO 

bilinear model where the state matrix is 

A� = A + N1�1 + N2�2 + . . . + Nm�m, (5.21) 

given that u1 = �1, u2 = �2, . . ., um = �m are the so called parameters for a 

linear approximation of the bilinear model. The input matrix B� can also be 

defined using these parameters such that 

B� = B × � (5.22) 

where � = [�1 �2 . . . �m]T . Therefore, the following set of equations can be used 

for computing projection bases for model order reduction using the parametrised 

linear approximation approach: 

span{V {1}} = Kq1(A
−
� 
1, A−

� 
1B�) (5.23) 

span{Vi 
{2}
} = Kq2(A

−1, NiV
{1}), i = 1, 2, . . . ,m (5.24) 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (5.25) 
i=1 

As can be observed, the set of equations use the Improved Phillips type projec-

tion for applying the parametrised linear approximation. However, the PLA for 

projection of bilinear models can be applied to the Phillips type (Phillips 2000) 

projection, Feng and Benner (Feng & Benner 2007) and Bai (Bai & Skoogh 2006), 

type projections for MIMO bilinear model reduction. 

Two versions of the PLA are developed in this chapter. The first is (5.23) -

(5.25). The second version is presented below 

span{V {1}} = Kq1 � � (5.26) (A−1, A−1B�) 

(A−1 span{Vi 
{2}
} = Kq2 � , NiV

{1}), i = 1, 2, . . . ,m (5.27) 

m [ [

span{V } = span{span{V {1}} { span{Vi 
{2}
}}}. (5.28) 

i=1 
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For systems which have noninvertible state transition matrices, (5.26) - (5.28) 

are used. This is because (5.24) does not use the alternate state transition matrix 

for computing V {2} and will not be useful in this case. 

Remark 5.4.1 Using the same approach as in Theorem 5.3.1, it can be shown 

that the Krylov subspaces (5.23) - (5.24) match the multimoments 

ĈÂ−l2 N̂(Îm ⊗ Â−
�
l1 B̂�) = CA−l2 N(Im ⊗ A−

�
l1 B�) (5.29) 

It can also be shown that the Krylov subspaces defned in (5.26) - (5.27) match 

the multimoments 

ĈÂ−
�
l2 N̂(Îm ⊗ Â−

�
l1 B̂�) = CA� 

−l2 N(Im ⊗ A−
�
l1 B�) (5.30) 

Note that when as �1, �2, . . . , �m becomes negligible, 

ˆA−l2 ˆ A−l1 ˆ A−l2 ˆ A−l1 ˆC ˆ N(Îm ⊗ ˆ
� B�) ≅ Ĉ ˆ N(Îm ⊗ ˆ B) (5.31) 

CA−l2 N(Im ⊗ A� 
−l1 B�) ≅ CA−l2 N(Im ⊗ A−l1 B) (5.32) 

and 

ĈÂ� 
−l2 N̂(Îm ⊗ Â� 

−l1 B̂�) ≅ ĈÂ−l2 N̂(Îm ⊗ Â−l1 B̂) (5.33) 

CA� 
−l2 N(Im ⊗ A� 

−l1 B�) ≅ CA−l2 N(Im ⊗ A−l1 B). (5.34) 

The following algorithm can be used for computing Krylov subspace projec-

tion matrix, V for PLA as presented in (5.23) - (5.27). 

Algorithm 5.1 (Computation of V for MIMO models using PLA) 

1. Input: A,B,N1, . . . , Nm,m, q1, q2, p2, �1, �2, . . . , �m 
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2. Compute linear approximation: A� = A + N1�1 + N2�2 + . . . + 

Nm�m, B� = B� 

3. Compute an orthonormal basis, V {1}, for the Krylov sub-

space: Kq1 (A
−
� 
1, A−

� 
1B�), using Algorithm 3.2 

4. for i = 1 : m, Compute an orthonormal basis, Vi 
{2} 

, for the 

Krylov subspace: Kq2 (A
−1, A−1NiV[p

{

2

1
] 
}
), using Algorithm 3.2 

5. end 

{2} {2}
6. V = orth([V {1}, V 1 , . . . , V m ]) 

7. Return V 

The algorithm is implemented with the condition that p2 ≤ q1 where p2 is as 

defined in Section 3.8. Algorithm 5.1 computes a projection matrix for imple-

menting the PLA for MIMO bilinear models. This differs from Algorithm 3.3 

in steps 1 and 2. In step 1, there are more input parameters as �1, �2, . . . , �m 

are added to the algorithm and in step 2, these parameters are used for com-

puting an alternate linear approximation of the bilinear model. The new linear 

approximation is then used to form V {1}. 

Implementing PLA for singular system matrices, step 4 should be computed 

using the alternate system matrix A� as implemented in the following algorithm: 

Algorithm 5.2 (Computation of V for MIMO models using PLA) 

1. Input: A,B,N1, . . . , Nm,m, q1, q2, p2, �1, �2, . . . , �m 
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2. Compute linear approximation: A� = A + N1�1 + N2�2 + . . . + 

Nm�m, B� = B� 

V {1}3. Compute an orthonormal basis, , for the Krylov sub-

space: Kq1 (A
−
� 
1, A−

� 
1B�), using Algorithm 3.2 

{2}
4. for i = 1 : m, compute an orthonormal basis, Vi , for the 

Krylov subspace: Kq2 (A
−
� 
1, A−

� 
1NiV[p

{

2

1
] 
}
), using Algorithm 3.2 

5. end 

{2} {2}
6. V = orth([V {1}, V 1 , . . . , V m ]) 

7. Return V 

Algorithm 5.2 differs from Algorithm 5.1 in step 4. Here the system matrix 

A has been replaced with A� the parametrised linear approximation as defined 

in Equation (5.21) to compensate the singularity of A at the expansion point of 

zero. 

5.5 Numerical examples 

In this section, two numerical examples of arbitrary bilinear models are used 

to compare the Phillips (Phillips 2000) type, Bai (Bai & Skoogh 2006) type, 

Feng and Benner (Feng & Benner 2007) type, the IP and PLA type projection 

techniques for MIMO bilinear models. The performance criteria used are RT 2 , 

MSE, IAE, NIAE and SSE. 
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5.5.1 Example 1 

Consider a time invariant MIMO bilinear model of state space dimension, n = 

1400, number of inputs, m = 2, number of outputs, p = 3. The state matrices 

A and N1 are given as 

 
−10 2 0 · · · 0 0 −1 0 · · · 0 

A = 










 










 

, N1 = 










 










 

. (5.37) 

. .. .. . . .2 −10 2 1 0 −1. .. . 
. . . . . .. . . . . .0 0 0 0. . . . . . 

. .. .. . . .2 −10 2 1 0 −1. .. . 

0 . . . 0 2 −10 0 . . . 0 1 0 

Also, N2 = −N1. B is an n × m matrix while C is a p× n matrix and are in the 

form given below 

 
1 1 

B = 










 

0 1 
. . . . . . 

0 1 










 

, C = 

 
1 1 · · · 1 1 




 




 

, (5.38) 0.8 0.8 · · · 0.8 0.8 

0.5 0.5 · · · 0.5 0.5 

0 1 

where A ∈ Rn×n , N1 ∈ Rn×n , N2 ∈ Rn×n and an initial state, x(0) = 0. The 

system is simulated with inputs, u1 (See Table 5.1.) and u2 which form the 

simulation input, u, where, 

Table 5.1: Table of input values u1 for Example 1. 

u1 5.1449 1.6550 14.4810 14.4897 19.6743 
Time range (s): t ∈ [0 : 0.9] t ∈ [1 : 1.9] t ∈ [2 : 2.9] t ∈ [3 : 3.9] t ∈ [4 : 4.9] 

u1 8.4851 11.2442 17.5686 1.4018 1.7853 
Time range (s): t ∈ [5 : 5.9] t ∈ [6 : 6.9] t ∈ [7 : 7.9] t ∈ [8 : 8.9] t ∈ [9 : 9.9] 

u1 11.74529 
Time range (s): t ∈ [10] 



107 5. IP and PLA for MIMO Bilinear Models 

u2 = (sin(t) + 1)/10 (5.39) 

u = [u1 u2]
T (5.40) 

Using Algorithm 3.3 and Algorithm 3.2 discussed in Chapter 3, four of the meth-

ods proposed in (Lin et al. 2007, Lin et al. 2009) and the methods proposed in 

this thesis were applied to reduce the order of the bilinear model (5.37)-(5.38) 

by utilising the parameters, q1 = 5, q2 = 5, p2 = 4. The outputs of the system 

are y1, y2, and y3. In this numerical example, the Phillips, Bai, MIMO Fend 

and Benner and Improved Phillips approaches to Krylov subspace projection 

are compared. This comparison is done using the performance criteria discussed 

in Chapter 4 and visual output plots. 

Results: 

Table 5.2 shows the RT 2, MSE, IAE, NIAE and SSE values of the reduced order 

models produced by the methods implemented. As can be observed, the values 

Table 5.2: Table of performance criteria values for Phillips type, Feng and Ben-
ner, Bai and Improved Phillips projection. 

MSE IAE NIAE SSE 
Phillips 0.0037 5.2415 0.0336 0.5746 

Bai 0.0015 3.2032 0.0205 0.2353 
Benner 5.9975e-04 2.0073 0.0129 0.0936 

Improved Phillips 5.4007e-05 0.5221 0.0033 0.0084 

of each performance criteria for the different methods are quite similar. This can 

also be observed in Figure 5.1 which shows the inputs u1, u2 and the simulated 

outputs of the reduced order models and the high order bilinear model. Only 

one of the outputs from these models has been plotted which has been denoted 

y1. 

Figure 5.2 shows a zoomed in view of all the reduced order models and the 

original higher order bilinear model at the 8 second mark of Figure 5.1. It can 
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Figure 5.1: Time response y1 of high order bilinear model and reduced order 
models using inputs u1 and u2. 

be seen from this zoomed-in plot that the Improved Phillips produces the closest 

result to the original model. This result is consistent also at all other points of 

time. 

5.5.2 Example 2 

In this example, the best algorithm from the previous Example 1, i.e. the Im-

proved Phillips has been applied, comparing the use of standard linearization 

and the parametrized linear approximation method. As in Subsection 5.5.1, a 

similar higher order bilinear model is used. Here, consider a time invariant 2 

inputs 3 outputs bilinear model with matrices A and N1 shown below 
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7.985 7.99 7.995 8 8.005 8.01 8.015 
t (s) 

44.55 

44.6 

44.65 

44.7 

44.75 

44.8 

44.85 

44.9 

44.95 

45 

y 1 

Higher order bilinear model 

Phillips 

Bai 

Feng and Benner 

Improved Phillips 

Figure 5.2: Zoomed in time response of higher order bilinear model (HOBM) 
and reduced order models. 

 
−5 2 0 · · · 0 0 −3 0 · · · 0 

A = 










 










 

, N1 = 










 










 

. (5.41) 

. .. .. . . .2 −5 2 3 0 −3. .. . 
. . . . . .. . . . . .0 0 0 0. . . . . . 

. .. .. . . .2 −5 2 3 0 −3. .. . 

0 . . . 0 2 −5 0 . . . 0 3 0 

∈ Rn×nThe matrix N2 = −N1, where A ∈ Rn×n , N1 . B is an n × m matrix 

while C is a p× n where n = 1400, p = 3 and m = 2 and are given below 
 

1 1 

B = 










 

0 1 
. . . . . . 

0 1 










 

, C = 

 
1 1 · · · 1 1 




 




 

(5.42) 0.8 0.8 · · · 0.8 0.8 

0.5 0.5 · · · 0.5 0.5 

0 1 
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The model order reduction is done for an initial state of zero. The same param-

eters as in the Subsection 5.5.1 have also been used here i.e. q1 = 5, q2 = 5, and 

p2 = 4. 

The parameters �1 and �2 are equal and have been chosen by trial and error to 

be equal to 0.753. The linear approximation approach for the Krylov subspaces 

defined in (5.23) - (5.25) have been implemented using Algorithm 5.1. 

The bilinear models have been simulated using inputs u1 and u2. 

Table 5.3: Table of input values u1 for Example 2. 

u1 18.3745 5.9107 51.7177 51.7490 70.2652 
Time range (s): t ∈ [0 : 0.9] t ∈ [1 : 1.9] t ∈ [2 : 2.9] t ∈ [3 : 3.9] t ∈ [4 : 4.9] 

u1 30.3039 40.1577 62.7450 5.0065 6.3760 
Time range (s): t ∈ [5 : 5.9] t ∈ [6 : 6.9] t ∈ [7 : 7.9] t ∈ [8 : 8.9] t ∈ [9 : 9.9] 

u1 40.9033 
Time range (s): t ∈ [10] 

u2 = (sin(t) + 1)/10 (5.43) 

u = [u1 u2]
T (5.44) 

Results: 

Table 5.4 shows the RT 2 , MSE, IAE, NIAE and SSE values of the reduced 

order models produced by using the Improved Phillips and parametrised linear 

approximation approaches. Figure 5.3 shows one of the outputs of the reduced 

order bilinear models compared to the higher order bilinear model. In order to 

highlight the differences between the IP and the PLA, the input u1 has been 

amplified as can be observed in the second row of Figure 5.3. u2 remains the 

same and has not been plotted. In the third row of Figure 5.3, the absolute 

errors of both reduced order models are plotted. 
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Figure 5.3: Time response y1 of high order bilinear model (HOBM) and re-
duced order models using the Improved Phillips (IP) type projection and the 
Parametrised Linear Approximation (PLA). Also plotted is the input u1 and the 
absolute error values 

As can be observed there is a significant increase in the input-output preser-

vation of the reduced order model when applying the parametrised linear approx-

imation method. It is also expected that the parametrised linear approximation 

approach will yield better results when applied to the Phillips (Phillips 2000) 

type projection, Feng and Benner type (Feng & Benner 2007), and Bai (Bai & 

Skoogh 2006) type projection for the reduction of MIMO bilinear models. 

5.6 Conclusion 

In this chapter, the use of Krylov subspaces has been extended for the reduction 

of MIMO bilinear models and some new approaches have been proposed. The 
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Table 5.4: Table showing performance criteria for Improved Phillips and 
Parametrised Linear Approximation for MIMO bilinear models. 

RT 2 MSE IAE NIAE SSE 
Improved Phillips 99.04 1.8256 365.0072 622.5193 

PLA 99.86 0.2603 139.6369 0.4036 8.9180 

Improved Phillips, Feng and Benner type (Feng & Benner 2007) and PLA ap-

proaches have been proposed. These methods have been compared by using a 

simulation study. These methods have also been shown to match multimoments 

of the bilinear model. 

The simulation study done here shows that all the considered Krylov sub-

space methods discussed here perform very similarly, with slight improvement 

in the Improved Phillips, as seen in Figure 5.2. Further investigation into the 

linearization method shows that the introduction of a parametrised linear ap-

proximation (PLA) tends to make a significant impact on the accuracy of the 

reduced order model. This is even more in the case of MIMO models as multiple 

N matrices add to the linear dynamics of the system which are not represented 

when a standard linear approximation A is utilised for the model order reduction. 

To summarize, the main contributions to literature which are proposed in 

this chapter are the Improved Phillips type projection proposed for MIMO bi-

linear systems and the Feng and Benner type projection (Feng & Benner 2007) 

proposed for MIMO systems and the PLA proposed for MIMO bilinear systems. 



Chapter 6 

Applications of PLA and IP 

Projection 

6.1 Introduction 

Reduced order models are used in many applications such as control design 

(Schelfhout 1996), diagnostics, hardware in the loop simulations and systems 

design. The need for reduced order models arises for various reasons such as 

cost and practicality. System level simulations, optimisation and system inter-

action design can be made easier in terms of time and in some cases, practi-

cally impossible without the use of reduced order models. In (Hung, Yang & 

Senturia 1997) a reduced order model is used to speed up the simulation time 

of a micromechanical device via a macromodel of reduced order. In (Nayfeh, 

Younis & Abdel-Rahman 2005), a state of the art literature review has been 

done on the development of reduced order models for micro-electromechanical 

systems. Reduced order models have also been used in (Filipi, Fathy, Hagena, 

Knafl, Ahlawat, Liu, Jung, Assanis, Peng & Stein 2006) to perform engine in the 

loop testing. In their paper, (Filipi et al. 2006) (Filipi et al. 2006) used an energy 

based model order reduction technique to reduce a high mobility multipurpose 

113 
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wheeled vehicle model. This was necessary because in order to carry out engine 

in the loop simulations, a model needs to capture all the important dynamics of 

the system, and at the same time the simulations must be able to run in real 

time. 

The nature of singular systems creates further difficulties for the applica-

tion of some mathematical processes. Their frequent occurrence in modelling 

of electric circuits and power systems has brought about an interest into find-

ing solutions for dealing with this type of systems. This has brought about the 

study of singular systems (Gray & Verriest 1989) and model order reduction for 

singular systems as discussed in (Xu, Lam, Liu & Zhang 2003, Bender 1987). A 

singular system has been defined in (Weisstein 2002) as a system whose condition 

number is infinite. 

The purpose of this chapter is to apply the PLA projection and the Improved 

Phillips projection techniques for the reduction of pseudo-singular bilinear mod-

els where a pseudo-singular bilinear model refers to a bilinear model with non-

invertible state transition matrices. Also, an optimisation scheme will be used 

to estimate the parameters, (�1, �2, . . . , �m,m ∈ Z), of a PLA MOR approach. 

Hybrid approaches for MOR are becoming very popular. These approaches try 

to combine the advantages of different MOR methods (data based and mathe-

matical manipulation) to achieve higher accuracy or ease of implementation and 

practicality. For example, in (Saragih 2014), genetic algorithm has been used 

with balanced truncation to reduce a MIMO bilinear model. 

In Section 6.2, a hybrid approach for model order reduction is introduced. 

This is followed by the use of PLA for MOR of so the called pseudo-singular 

systems in Section 6.3. Two case studies are provided in Section 6.4. A solar 

panel model with singular matrices has been reduced successfully by using PLA. 

Also, an optimisation scheme has been applied to the bilinear model provided 

in Subsection 5.5.2. This has been compared to PLA without an optimisation 



115 6. Applications of PLA and IP Projection 

scheme. 

6.2 Hybrid MOR using parameter estimation 

and optimisation techniques 

The involvement of parameters in the computation of reduced order models 

means that there will be optimum parameter choices for which an optimal re-

duced order model can be achieved. Since the reduced order model has to reach 

some level of accuracy for it to be acceptable, these parameters can be said to 

be optimum for a given set of performance criteria. 

An optimisation scheme can be taken into consideration. Tools such as ge-

netic algorithm (Gen & Cheng 2000) and Nelder-Mead simplex (Lagarias, Reeds, 

Wright & Wright 1998) method for the optimisation of reduction parameters are 

some of the optimisation algorithms which can be used to find optimal param-

eters for MOR. Figure 6.1 shows a flow chart that gives a pictorial view of the 

proposed optimisation scheme. 

The parameter initialisation stage in the flow chart (Figure 6.1) uses a best 

guess of the parameters, �1, �2, . . . , �m, from the user’s experience with the sys-

tem to be reduced. Normally, most algorithms can cope with an initialisation of 

zero but in this case, since the PLA achieves reduced order models with good 

performance criteria values without the optimisation scheme, an initialisation 

value can be obtained using trial and error whilst observing the accuracy of the 

reduced order model. The linear approximation of the bilinear model is 

A� = A + N1�1 + N2�2 + . . . + Nm�m (6.1) 

B� = B × �. (6.2) 

After which the projection matrix, V is computed using Algorithm 5.1 and Al-

gorithm 3.2. This is followed by computing the reduced order state transition 
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Figure 6.1: Flow chard for hybrid model order reduction using an optimisation 
scheme and Krylov subspace projection techniques. 

matrix, bilinear state matrices, input and output matrices using Algorithm 3.4. 

The scheme uses a performance criteria as a cost function. Depending on the 

cost, the optimisation algorithm updates the parameters (�1, �2, . . . , �m). This 

loop continues until a desirable cost or number of loops is achieved. 
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6.3 Parametrised linear approximation projec-

tion for pseudo-singular systems 

In this section, a pseudo-singular system model is defined. It is a bilinear system 

that has a noninvertible state transition matrix. Consider a bilinear system 

m1 X 
ẋ = Ax + Nixui + Bu (6.3) 

i=1 

y = Cx (6.4) 

where A ∈ Rn×n , N ∈ Rn×n , B ∈ Rn×m2 , C ∈ Rp×n and A is a singular matrix. 

u = [u1, u2, . . . , um2]. Note that whilst it is normal for u to be composed of all ui, 

it is not necessarily the case. In some cases, ui could be noise or some external 

input to the system/model. The ideal case discussed in previous chapters is for 

when m1 = m2. 

Using an alternate linear approximation to define the linear behaviour of the 

pseudo-singular bilinear system model, the model can be reduced by using the 

Krylov subspaces as defined as follows: 

span{V 1} = Kq1 (A
−
� 
1, A−

� 
1B�) (6.5) 

span{Vi 
2} = Kq2 (A� 

−1, NiV
{1}) (6.6) 

m [ [
{2}

span{V } = span{span{V {1}} { span{Vi }}}. (6.7) 
i=1 

Comparing (6.5)-(6.7) to (5.8)-(5.9), the state transition matrix, A, has been 

replaced by A�, assuming that A� is nonsingular and forms a stable linear ap-

proximation of the bilinear model. 
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6.4 Case study on Solar Panel Model 

6.4.1 Model description 

For illustration, a solar panel model shown in Figure 6.2 which has been presented 

in (Tenny, Rawlings & Wright 2004, Couchman et al. 2011) will be used to 

demonstrate the use of parametrised linear approximation for a pseudo-singular 

system. The solar collector plant consists of a heat exchanger, 790 meter pipe, 

Figure 6.2: Schematic diagram of solar collector 

collector and a pump. A fluid is used to collect the solar energy and is transported 

using the pipe to the heat exchanger for extraction of the heat energy. The fluid 

is then transported back to the collector. A pump is used to control the flow 

rate of the fluid through the pipes, therefore the fluid flow is the control variable. 

The operating outlet temperature of this system is 573 K. 

A model of this system is derived by discretizing the return loop, heat ex-
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changer and collector across a 1-dimensional space where the temperatures at 

each node are states of the model. The resulting model is of a bilinear structure 

(Couchman et al. 2011) with matrices of system parameters are given below 

 
A11 012 013

 

A = 



 




 
, N = diag([N1 0 N2]) + 

N11 0 
021 A22 023 . (6.8)  

N21 N22 
031 032 033 

A11 = −�1 ∗ I(20×20), A12 = 0(20×1), A13 = 0(20×20), A21 = 0(1×20), A22 = −1 − 

�2, A23 = 0(1×20) and N1 = −� × I(20×1), N2 = −� × I(20×1), N11 = 0(1×40), 

N21 = diag([�× I(1×19) 0 �× I(1×20)]), N22 = 0(40×1), where � = 8.22 × 10−3 , 

�1 = 1.19 × 10−3 , �2 = 5. The matrices B and C are 

 
B11 B12 

B = 



 

B21 0 




 
, 

ih 
C = C1 1 C2 , (6.9) 

B31 B32 

B11 = �1 × T1 × I(20×1), B12 = 1 × I(20×1), B21 = �2T2, B31 = 0(20×1), B32 = 

0(20×1), C1 = 0(1×19), C2 = 0(1×21), with  = 0.541, T1 = 303.15 and T2 = 375.15. 

In (Stuetzle, Blair, Mitchell & Beckman 2004) this plant model was used 

to develop a control algorithm for achieving desired system response. A linear 

model predictive controller was implemented on the plant at different weather 

conditions and in (Stuetzle, Blair, Beckman & Mitchell 2004) the gross output 

of this approach is analysed. 

The order of the model being discussed is n = 41. This higher order model is 

obtained as a result of discretization. However, much higher order models could 

be obtained if the discretization points are increased for higher accuracy of state 

estimation. To reduce the order of the resulting model, the implementation of 

the standard Krylov subspace techniques discussed (Phillips 2000, Bai & Skoogh 

2006, Feng & Benner 2007) would be impossible as A is a singular matrix. 
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6.4.2 MOR procedure 

The model order reduction procedure uses the Krylov subspaces defined in (6.5) 

- (6.7). The projection matrix has been computed using Algorithm 5.2 whilst 

the reduced order models have been computed using Algorithm 3.4. The results 

presented are for 7th, 9th and 11th order models using the simulation inputs 

u1 = 0.6 for: t ∈ [0 s : 200 s] (6.10) 

u1 = 8.0 for: t ∈ [200 s : 1750 s] (6.11) 

u2 = 1.4 for: t ∈ [0 s : 1000 s] (6.12) 

u2 = 0.6 for: t ∈ [1000 s : 1750 s] (6.13) 

u = [u1 u2]. (6.14) 

The higher order model and the reduced order models have been simulated with 

a nonzero initial condition of x(0) = 465. The results are presented in the next 

subsection. 

6.4.3 Results 

The first row of Figure 6.3 shows the output plots of the 7th and the 9th order 

models compared to the solar panel model output. The second row of Figure 6.3 

Table 6.1: RT 2, MSE, IAE, NIAE and SSE values for model order reduction of 
solar panel model using the Parametrised Linear Approximation 

RT 2 MSE IAE NIAE SSE 
7th order model 99.84 5.0398e+05 1.7284+06 542.1694 1.6067e+09 
9th order model 99.91 3.0202e+05 0.9560+06 299.8695 0.9628e+09 
11th order model 99.98 0.4977e+05 0.3512+06 110.1527 0.1587e+09 

shows the input values u1 and u2 as defined in (6.10) - (6.14) over a time length 

of 1700 seconds. 

Figure 6.4 shows the output of the solar panel model compared to a reduced 

order model of 11th order. The second row of Figure 6.4 shows the absolute error 
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Figure 6.3: Input and output plot of solar panel model (SPM) compared to 7th 

and 9th order models using PLA type projection 

values divided by 100 of the 7th, 9th, and 11th reduced order models. As can be 

observed in this figure, the accuracy of the reduced order model increases as the 

order increases. This trend can also be observed in Table 6.1 which shows the 

coefficient of determination (RT 2), integral of absolute error (IAE), integral of 

absolute error divided by number of samples (NIAE), mean square error (MSE), 

and the sum of square of error (SSE) values for the reduced order models. 

In (Couchman et al. 2011), the order of this same model has been reduced 

using an input constraint with balanced truncation to 3rd, 7th and 10th order. 

As is the case here, reducing the model to orders below 7 reduces its accuracy 

considerably. 
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Figure 6.4: Plot of 11th order model compared to solar panel model (SPM) and 
absolute error plots for 7th, 9th and 11th order models 

6.5 MOR with optimisation 

In order to demonstrate the use of optimisation algorithms for model order re-

duction, consider an arbitrary biliniear system of the form presented in (Lin 

et al. 2007, Lin et al. 2009) where the number of inputs is 2 and the number of 

outputs is 3. The bilinear model structure considered here has 2 bilinear state 

matrices i.e. m1 = 2. 
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Also, N1, N2,∈ Rn×n . B is an n × m matrix while C is a p × n matrix and are 

in the form given below 
 

1 1 

B = 










 

0 1 
. . . . . . 

0 1 










 

, C = 

 
1 1 · · · 1 1 




 




 
. (6.17) 0.8 0.8 · · · 0.8 0.8 

0.5 0.5 · · · 0.5 0.5 

0 1 

Using Algorithm 5.1, an optimisation scheme called the Nelder-Mead simplex 

method which is inbuilt in MATLAB has been used to estimate the parameters 

�1 and �2. As an initial guess, the parameter values �1 = 0.79 and �2 = 0.79 has 

been used. The reduced order model to be optimised is of dimension 25 where 

q1 = 5, q2 = 5 and p2 = 4. 

At each iteration step, the scheme returns a cost for the estimated reduced 

order model. In this case, the squared error (SE) has been used as the cost 

function: 

ns X 
SE = (ŷi − yi)

2 (6.18) 
i=1 
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where yi is the output of the higher order bilinear model at time i, ŷi is the 

output of the reduced order bilinear model at time i, and ns is the number of 

samples collected for each output. The input which has been used for simulation 

in the optimisation scheme is given. This is called the estimation input. 

Table 6.2: Input values u1 for parameter estimation. 

u1 18.3745 5.9107 51.7177 51.7490 70.2652 
Time range (s): t ∈ [0 : 0.9] t ∈ [1 : 1.9] t ∈ [2 : 2.9] t ∈ [3 : 3.9] t ∈ [4 : 4.9] 

u1 30.3039 40.1577 62.7450 5.0065 6.3760 
Time range (s): t ∈ [5 : 5.9] t ∈ [6 : 6.9] t ∈ [7 : 7.9] t ∈ [8 : 8.9] t ∈ [9 : 9.9] 

u1 40.9033 
Time range (s): t ∈ [10] 

u2 = (sin(2ˇ × t) + 90)/10 + 0.1 (6.19) 

u = [u1 u2]
T (6.20) 

The results to be shown are for simulations using the estimation data set and 

then the validation data set i.e. input and output values. The validation input 

is given as follows. 

u2 = (sin(2ˇ × t) + 90)/10 + 0.2 (6.21) 

u = [u1 u2]
T (6.22) 

6.5.1 Results 

Figure 6.5 displays the outputs y1 of the reduced order models derived from using 

the PLA and the optimised PLA and the higher order bilinear model (HOBM). 

The second row of this figure shows the absolute error values of the reduced order 

models. In these plots, the optimised PLA shows a better fit for the higher order 

bilinear model. 

Figure 6.6 shows the input u1 as defined in Table 6.2 in the first row. The 

second row of Figure 6.6 shows the second input u2 as defined in (6.20) 
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Table 6.3: Input values u1 for model validation. 

u1 14.8532 7.1170 35.5489 47.0612 47.0612 
Time range (s): t ∈ [0 : 0.9] t ∈ [1 : 1.9] t ∈ [2 : 2.9] t ∈ [3 : 3.9] t ∈ [4 : 4.9] 

u1 22.2576 28.3737 42.3934 6.5557 7.4058 
Time range (s): t ∈ [5 : 5.9] t ∈ [6 : 6.9] t ∈ [7 : 7.9] t ∈ [8 : 8.9] t ∈ [9 : 9.9] 

u1 28.8365 
Time range (s): t ∈ [10] 
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Figure 6.5: Plot of outputs y1 and absolute error for PLA, optimised PLA and 
high order bilinear model using estimation input 

In Table 6.4, the performance criteria values of the coefficient of determina-

tion (RT 2), the mean square error (MSE), the integral of absolute error (IAE), 

the integral of absolute error divided by number of samples (NIAE) and the sum 

of square of error (SSE) are displayed. 
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Table 6.4: Table of RT 2, MSE, IAE, NIAE and SSE values for model order 
reduction of solar panel model using parametrised linear approximation 

RT 2 MSE IAE NIAE SSE 
PLA 99.86 0.2603 139.6369 0.4036 8.9180 

PLA optimised 99.99 0.0258 40.9249 0.1183 90.0735 

u
 1

 

60 

40 

20 

0 1 2 3 4 5 6 7 8 9 10 
t (s) 

u
 2

 

0.15 

0.1 

0.05 

0 1 2 3 4 5 6 7 8 9 10 
t (s) 

Figure 6.6: Plot of inputs u1 and u2 used for parameter optimisation of the PLA 
parameters and the simulation output given in Figure 6.5 as defined in Table 6.2 
and (6.19). 

The results presented in Figures 6.5 and Table 6.4 are for the input used 

for parameter estimation. These validation results using a new set of inputs are 

shown in Figures 6.7. 
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Table 6.5: Table of RT 2, MSE, IAE, NIAE and SSE values for model order 
reduction of solar panel model using Parametrised Linear Approximation 

RT 2 MSE IAE NIAE SSE 
PLA 99.99 0.0165 43.1672 0.1680 4.2396 

PLA optimised 99.98 0.0545 24.4731 0.0952 14.0130 
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Figure 6.7: Plot of outputs y1 and absolute error for PLA, optimised PLA and 
higher order bilinear model using validation input 
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Figure 6.8: Plot of inputs u1 and u2 used for validating the optimised PLA 
parameters. 

. 

Figure 6.7 displays the output plots of the reduced order models compared 

with that of the higher order bilinear model (HOBM). Figure 6.8 shows the input 

plots u1 (top) and u2 (bottom). These inputs are as defined in Table 6.3 and 

(6.21) respectively. 

In Table 6.5, the performance criteria values of the coefficient of determina-

tion (RT 2), the mean square error (MSE), the integral of absolute error (IAE), 

the integral of absolute error divided by number of samples (NIAE) and the sum 

of square of error (SSE) of the validation output values are shown. 
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6.6 Conclusion 

In this chapter, two unique applications of the parametrised linear approximation 

(PLA) approach to applying Krylov subspaces for model order reduction are 

discussed and demonstrated. The first is the use of PLA for the reduction of 

pseudo-singular systems. These are systems/models which have singular system 

matrices. This means that the Krylov subspace model order reduction methods 

discussed in Chapters 3, 4 and 5 i.e the Phillips type (Phillips 2000), Feng 

and Benner type (Feng & Benner 2007), Bai type (Bai & Skoogh 2006) and the 

Improved Phillips type projection methods will not be applicable for model order 

reduction. However using the PLA approach, a pseudo-singular model which has 

been used in (Couchman et al. 2011) has been reduced. In order to reduce this 

system using PLA, the Krylov subspaces Kq1 (N,M) and Kq2 (N,M) were defined 

using the parameterised linear approximation which is invertible. The case study 

on Solar Panel Model demonstrated the advantage of the use of PLA approach. 

Not only is it useful for reducing models with noninvertible matrices, it can also 

achieve this at accuracy of RT 2 values of 99.98. 

In the second application and example, a hybrid model order reduction ap-

proach has been proposed. This approach suggests that the PLA parameters 

�1, . . ., �m can be optimised by using an optimisation scheme. Using the exam-

ple provided in Chapter 5, the optimised reduced order model was compared to 

the case where the PLA parameters are equal and the optimised reduced order 

model shows a better input-output preservation for the two sets of test input, 

i.e. the input used for optimisation and the input used for validation. 



Chapter 7 

Conclusion and Further Work 

This chapter will summarise the findings and contributions of this thesis. Also 

it will discuss future research ideas which are the result of the findings therein. 

In the next subsection, a brief description of the research objectives is revisited. 

This is followed by the research conclusion, contributions and further work. 

7.1 Conclusion 

This thesis presents novel approaches in the reduction of bilinear models. Single-

input-single-output (SISO), multi-input-multi-output (MIMO) and their pseudo-

singular model cases are considered. 

In Chapters 2 and 3, the basic concepts of Krylov subspace model order 

reduction approaches are discussed. Chapter 3 discusses the state of the art of 

one-sided Krylov subspace projection for bilinear models (Phillips 2000, Feng & 

Benner 2007) and their application to MIMO bilinear models (Lin et al. 2007, Lin 

et al. 2009, Lin et al. 2007, Lin et al. 2009). These Krylov projection types 

discussed multimoments of bilinear models/systems and in order to do this, 

matrix inversion is necessary. This limits their application only to models which 

have invertible matrices. Also, the error of the derived models tend to become 

130 
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larger as the input increases and are not flexible in their implementation. 

In Chapter 4, a new set of Krylov subspaces for matching multimoments has 

been proposed. The new approach is called the Improved Phillips (IP) type 

projection and takes advantage of the fact that model order reduction of bilinear 

models are dominated by the linear approximation of the bilinear model as has 

been discussed in (Baur et al. 2014). This new method therefore achieves a 

linear approximation by matching the multimoments m(l1, l2), l1 = 1, . . . q1, l1 = 

1, . . . q2 −1. Going further, to continue exploiting the linear approximation of the 

bilinear model, another new approach is proposed called the Parametrised Linear 

Approximation (PLA). This Parametrised Linear Approximation is shown to 

preserve the input-output relationship of a bilinear system using three examples 

which show the advantages of using the Improved Phillip type projection, the 

Parametrised Linear Approximation and the combination of both. The input-

output preservation of the reviewed methods in Chapter 3 and the proposed 

methods in Chapter 4 have been analysed using input-output plots, coefficient 

of determination (RT 2), mean square error (MSE), integral of absolute error 

(IAE), sum of square error (SSE), integral of absolute error divided by number 

of samples (NIAE) and plots of absolute error against ascending input values. 

Subsequently, the Feng and Benner type projection (Feng & Benner 2007), 

Improved Phillips type and the Parametrised Linear Approximation type projec-

tion have been extended to MIMO structures in Chapter 5. The multimoment 

matching for Feng and Benner type (Feng & Benner 2007) has been analysed 

for MIMO models and the analysis can be extented to other types of Krylov 

subspace projections in literature i.e projection for MIMO bilinear models as 

proposed in (Lin et al. 2007, Lin et al. 2009), where the Phillip type projection 

has been extended to MIMO cases in (Lin et al. 2007) and the Bai type projec-

tion in (Lin et al. 2009). Using the same criteria that has been used in Chapter 

4, the Feng and Benner type projection for MIMO bilinear models, Improved 
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Phillips type projection for MIMO bilinear models and the parametrised linear 

approximation for MIMO bilinear models have been compared to the work done 

in (Lin et al. 2007, Lin et al. 2009). In the numerical simulation results, it 

has been found that the parametrised linear approximation (PLA) shows good 

input-output preservation when compared to the other types. This is expected 

because the PLA uses a so called better linear approximation for the SISO and 

MIMO bilinear model reduction. 

Whilst the Feng and Benner type projection (Feng & Benner 2007) matches 

more multimoments when compared to the Phillips type projection (Phillips 

2000, Lin et al. 2007) and the Improved Phillips type for both SISO and MIMO 

models, it is not always the case that the reduced order models produced give 

a better approximation. This is because during the Krylov subspace reduction 

process, the multiplication of matrices which are nonsingular produce loss of in-

formation and therefore the Feng and Benner approach (Feng & Benner 2007) 

cannot guarantee a better reduced order model and in some cases it will be im-

possible to compute the projection matrix if there is a total loss of rank in the 

resulting matrices. It has been said that the Improved Phillips type projection 

combines the advantages of the Phillips type projection (Phillips 2000) and the 

Feng and Benner type projection (Feng & Benner 2007) by matching more mo-

ments of the linear approximation of the bilinear model and avoiding the loss of 

information when computing the projection matrix. 

The application of the model order reduction techniques developed so far were 

applied to a pseudo-singular system in Chapter 6. Therein, a pseudo-singular 

system has been defined as a system with system matrices that cannot be in-

verted. The application of the Improved Phillips type projection and the PLA 

approach shows the viability in the use of the proposed Krylov subspaces for 

reducing systems of this kind. As opposed to the other systems where the alter-

nate linear approximation is applied to only match the linear moments, in this 
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case the linear approximation has shown to be useful for computing subsequent 

Krylov subspaces for the bilinear approximation. This means that the singular 

system matrix can be replaced by a non-singular alternate/approximate which 

exhibits the same characteristics. The reduced order models derived show good 

accuracy. A second example which has been considered in Chapter 6 exploits 

the hybrid combination of optimisation techniques and the PLA approach. This 

has been shown to improve the reduced order model when compared to the PLA 

without an optimisation scheme. 

In summary, the contributions of the research reported in this thesis are as 

follows: 

1. The matching of a higher number of multimoments whilst avoiding the 

multiplication of nonsingular matrices. This has been called the Improved 

Phillip type projection (Chapter 3). 

2. The proposal of a reduced order modelling approach using Kylov subspaces 

by applying a so called better linear approximation. This approach is called 

the Parametrised Linear Approximation (PLA). 

3. The analysis of multimoment matching for the Feng and Benner type pro-

jection (Feng & Benner 2007), Phillip type projection (Phillips 2000) and 

the Improved Phillip type projection. 

4. The extension of the Improved Phillip type projection, Parametrised Linear 

Approximation projection and the Feng and Benner type projection (Feng 

& Benner 2007) to MIMO cases. 

5. The analysis of multimoment matching for MIMO bilinear model reduction 

using Krylov subspaces. 

6. The use of PLA for the reduced order modelling of pseudo-singular bilin-

ear systems to enable the reduction of systems with nonsingular system 
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matrices. 

7. The use of an optimisation scheme for finding parameters which form an 

alternate linear approximation of a bilinear system/model and the use of 

these parameters for model order reduction. 

This thesis also served as a resource for understanding and implementation 

of reduced order modelling using Krylov subspaces. 

7.2 Further work 

The research done in this thesis brings about various new scopes of research 

which are quite interesting. 

1. Exploration of other nonlinear approximations: The focus of this thesis 

has been on bilinear and nonlinear models of a certain type, i.e. those 

nonlinear models which can be bilinearised. The scope can also be extended 

to quadratic approximations (Chen 1999) and quadratic-bilinear control 

systems (Benner & Breiten 2012b). Quadratic approximations have been 

reported to be less effective when compared to bilinear approximations. 

The application of an alternate linear approximation for computing the 

projection matrices will improve the input-output preservation of quadratic 

and quadratic-bilinear approaches to MOR. 

2. Extension to other bilinear systems with singularity or ill-conditioned ma-

trices: This work makes it possible to apply bilinear model order reduc-

tion using Krylov subspaces to systems which would have been otherwise 

impossible to reduce. A further application of the techniques to other 

systems which have singular and/or ill-conditioned matrices either due to 

their derivation from Carleman bilinearisation or through the discretisa-

tion process is an interesting prospect. More practical examples of systems 



135 7. Conclusion and Further Work 

which result in singularity or ill-conditioned matrices will further highlight 

the effectiveness of the PLA approach. 

3. Further exploration of optimization techniques: optimisation of model 

order reduction techniques are also an interesting area to look at. In 

this thesis, Krylov subspaces were combined with parameter estimation. 

Here, the only algorithm looked at is the use of the Nelder-Mead opti-

misation algorithm. However, it has been suggested in (Abdullah, Deris, 

Anwar & Arjunan 2013) that other algorithms such as the Firefly Algo-

rithm (FA) (Yang 2009), Particle Swarm Optimization (PSO) (Kennedy 

2011, Campbell 2009) and the Hybrid Firefly Evolutionary Optimization 

(Abdullah et al. 2013), significantly outperform the MATLAB R imple-

mentation of the Nelder-Mead algorithms. Candidate algorithms to be 

investigated should include the aforementioned nature inspired optimisa-

tion algorithms as well as efficient gradient based constrained optimisation 

algorithms such as the interior-point or sequential-quadratic programming 

(SQP) (Nocedal & Wright 2006) solvers implemented in the MATLAB 

function fmincon. Exploring other optimisation schemes and combina-

tion of other parameter estimation techniques with Krylov subspace MOR 

should improve the accuracy of the reduced order models. Such improve-

ment would enable faster as well as more accurate online simulations. This 

should result in improved performance of model based control schemes 

exploiting such reduced order models. 

4. Further hybrid approaches: This involves the hybrid implementation of Im-

proved Phillip and PLA with other classical model estimation algorithms 

such as balanced truncation and H2 model order reduction. In the future, 

the combination of PLA with balanced truncation and H2 model order 

reduction are likely to make the use of these techniques more practical 

and less time consuming. For example, as has been discussed in litera-
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ture, Gramian based approaches can achieve higher accuracy and Krylov 

subspace techniques can be used for models with much higher dimensions. 

5. Two sided projection approaches: the natural progression after consider-

ing one-sided approaches is to consider two-sided projection. This can be 

achieved by using a different set of Krylov subspaces for defining the left 

projection matrix. This will increase the number of multimoments matched 

by the IP and PLA approaches. 
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