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A B S T R A C T

In-cabin connectivity and its enabling technologies have increased dramat-
ically in recent years. Security was not considered an essential property,
a mind-set that has shifted significantly due to the appearance of demon-
strated vulnerabilities in these connected vehicles. Connectivity allows the
possibility that an external attacker may compromise the security - and
therefore the safety - of the vehicle. Many exploits have already been demon-
strated in literature. One of the most pervasive connective technologies is
Bluetooth, a short-range wireless communication technology. Security issues
with this technology are well-documented, albeit in other domains. A threat
intelligence study was carried out to substantiate this motivation and finds
that while the general trend is towards increasing (relative) security in auto-
motive Bluetooth implementations, there is still significant technological lag
when compared to more traditional computing systems.

The main contribution of this thesis is a framework for the systematic
security evaluation of the automotive Bluetooth interface from a black-box
perspective (as technical specifications were loose or absent). Tests were per-
formed through both the vehicle’s native connection and through Bluetooth-
enabled aftermarket devices attached to the vehicle. This framework is sup-
ported through the use of attack trees and principles as outlined in the Pen-
etration Testing Execution Standard. Furthermore, a proof-of-concept tool
was developed to implement this framework in a semi-automated manner,
to carry out testing on real-world vehicles. The tool also allows for severity
classification of the results acquired, as outlined in the SAE J3061 Cybersecu-
rity Guidebook for Cyber-Physical Vehicle Systems. Results of the severity
classification are validated through domain expert review. Finally, how for-
mal methods could be integrated into the framework and tool to improve
confidence and rigour, and to demonstrate how future iterations of design
could be improved is also explored.

In conclusion, there is a need for systematic security testing, based on
the findings of the threat intelligence study. The systematic evaluation and
the developed tool successfully found weaknesses in both the automotive
Bluetooth interface and in the vehicle itself through Bluetooth-enabled af-
termarket devices. Furthermore, the results of applying this framework pro-
vide a focus for counter-measure development and could be used as evi-
dence in a security assurance case. The systematic evaluation framework
also allows for formal methods to be introduced for added rigour and con-
fidence. Demonstrations of how this might be performed (with case stud-
ies) were presented. Future recommendations include using this framework
with more test vehicles and expanding on the existing attack trees that form
the heart of the evaluation. Further work on the tool chain would also be
desirable. This would enable further accuracy of any testing or modelling
required, and would also take automation of the entire process further.
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profile

BRSF Bluetooth Retrieve Supported Features: Used to report on
features supported by a hands-free device

CSR Cambridge Silicon Radio: A company that creates Bluetooth
chipsets

FHSS Frequency Hopping Spread Spectrum: A mechanism used by
Bluetooth, designed to reduce or avoid interference

FTP File Transfer Profile: Provides the ability to transfer files between
devices

HCI Host Controller Interface: Command interface to the Bluetooth
baseband controller

HFP Hands Free Profile: Allows for voice connections and remote
control of a connected device

HSP Headset Profile: Allows for audio between two devices
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L2CAP Logical Link Control and Adaptation Protocol: Used to
transport protocols such as RFCOMM to higher level protocols

LAP Lower address part: The last 24 bits of a Bluetooth address

LMP Link Manager Protocol: Handles low-level negotiations in
Bluetooth

MAP Message access profile: Provides ability to exchange messages
between devices

MNS Message Notification Service: Works in conjunction with MAP
to allow for notification of receipt of messages

MTU Maximum Transmission Unit: Measure of the largest packet that
can be sent through an L2CAP port (in bytes)

NAP Non-significant address part: The first 16 bits of the Bluetooth
address

NINO NoInput-NoOutput: A specific attack on the capabilities exchange
phase in Bluetooth, allowing for the weakest association model to be
used when pairing

OBEX Object Exchange Protocol: Communications protocol in Bluetooth
that allows for object exchange between connected devices

OPP Object Push Profile: Provides ability to push messages or data onto
a connected Bluetooth-enabled device

OUI Organisationally Unique Identifier: The first 24 bits of the
Bluetooth address, which correspond to a manufacturer registered to
Bluetooth SIG

PANU Personal Ad-hoc Network User profile: Provides ability to
receive Ethernet packets

PBAP Phonebook Access Profile: Provides access to phonebook objects
such as contacts

RFCOMM Radio Frequency Communications: Provides emulation of
serial ports

SDP Service Discovery Protocol: Used to discover service profiles on
offer by a Bluetooth-enabled device

SPP Serial Port Profile: Provides the ability to use a serial connection
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SSP Secure Simple Pairing: Pairing mechanism used by Bluetooth,
employing Elliptic Curve Diffie-Hellman public-key cryptography

SyncML Synchronization Markup Language: Former name for a
synchronisation standard, now known as “Open Mobile Alliance
Data Synchronization and Management”

UAP Upper address part: The third byte of the Bluetooth address

standards and organisations

EVITA E-safety Vehicle Intrusion Protected Applications: A project
aimed at protecting vehicular systems from intrusion by providing a
secure architecture for on-board automotive networks

FCC Federal Communications Commission: A body in the US
responsible for licensing any component or system that involves
radio communications

HEAVENS Healing Vulnerabilities to Enhance Software Security: A
project aimed at protecting vehicular software

ISAC Information Sharing and Analysis Centres: Organisations
dedicated to information sharing within a certain industry

ISO International Standards Organisation: A body that sets global
standards

SAE Society of Automotive Engineers: A professional association for
engineers



Part I

T H E T H R E AT L A N D S C A P E

“If you have built castles in the air, your work need not

be lost; that is where they should be. Now put the founda-

tions under them.”

Henry David Thoreau





1
I N T R O D U C T I O N

Historically, embedded systems were designed to operate in a tightly-

controlled environment which required specialist knowledge to de-

sign, calibrate and deploy. Security was, at best, only superficially con-

sidered during this period [96]. This mind-set began to shift when the

increasing number of microprocessors and complexity of software, in-

crease in functionality and growth of external-facing surfaces became

apparent [63], [75].

There are several major developments which have contributed to

the automotive threat landscape:

• Firstly, the presence of increased amounts of software (i.e. lines

of code) to deal with increasingly sophisticated functionality

and attendant rise in the number of processing units. This leads

to compounded complexity. Subsequently, testability (and in

this context, security testing) could become impaired and the

likelihood of large numbers and severity of vulnerabilities in-

creases [125].

• Secondly, there has been significant development and integra-

tion of (wireless) communication interfaces, which means more

connectivity. This has led to increased number of connections

in the intra-vehicular network as reuse of externally provided

information becomes more important. There is also a concomi-

tant rise in the number of external peripheral devices that can

now connect to the vehicle. This means that there are now more

access points for malicious attackers, which also potentially neg-

atively impacts system boundaries by blurring them, or extend-

ing them to beyond the control of original manufacturers such

that unknown interactions (and therefore possible security risks)

could exist.

• Finally, content volume, variability and value has changed and

increased, which means that there is more data about the ve-

3
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hicle to extract, with more potential value which could be ex-

tracted if personal data is also stored on the vehicle.

1.1 motivation

The consensus is that security engineering (and security testing as

part of that process) is still relatively novel in mainstream automotive

production [10], [137], and that security is incidental and usually a

by-product of achieving performance and safety goals [36], [63], [91],

[128]. Even with advanced formal methods for modelling and testing,

the need for and number of demands, features and increased connect-

ing power means that, even had security been considered, the scale

of the problem facing security testers is now much broader [12].

There are several challenges to securing interfaces in vehicles. Any

security mechanism will require additional processing overhead, and

on the hardware level, has ramifications in provision of energy and

in physical assembly and design, such as placement of additional

wiring. Even should such concerns be addressed, countermeasures

that are commonly used currently for large and complex systems

are not suitable for vehicular embedded systems because of hard-

ware constraints and the differences in network configuration. Well-

established defences at software level such as the use of cryptogra-

phy, firewalls and intrusion detection systems (IDS) cannot be imple-

mented without considerable change in architecture due to the use of

sufficiently different protocols and topologies within the automotive

domain. Post-release, maintenance becomes an issue as patches for

discovered vulnerabilities, unless performed over-the-air, are difficult

to apply once units are sold.

Although the vast majority of demonstrated attacks that have been

directed at the vehicle use automotive-specific vectors, many of the

methods are familiar to security professionals. This includes the use

of malware and known software vulnerabilities, proximity extending

hardware, replay attacks or simply reverse engineering to gain illicit

knowledge of the system [36]. Considering the similarity of attack

methods, parallels can be drawn between non-automotive and auto-

motive systems, forming a baseline from which to draw information

on possible weaknesses.

All of the above is dependent on acquiring knowledge and informa-

tion regarding existing vulnerabilities. From the number and variety
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of reported threats, weaknesses and exploits (see Chapter 2.1.1), it

is clear that a methodical description of the problem - a systematic

security evaluation - is essential.

The investigations in this thesis centre around the implementation

of Bluetooth technology on vehicles. This is because Bluetooth is a

pervasive interface and was therefore chosen for study because of the

potential negative impact should it be compromised. There have been

estimates that vehicles with a Bluetooth interface number at nearly

nine million currently, with a forecast of 21 million vehicles to have

Bluetooth by 2018 [57]. Market growth for wireless systems, of which

Bluetooth is a major enabler, is anticipated to grow by more than 40%

between 2012 and 2018 with market revenue set to rise to $1.6 billion

in 2018 [78].

1.2 research questions

A systematic security evaluation method has many advantages. There

is a disparity between what an attacker must find in order to ex-

ploit the system (potentially just one vulnerability) and the number

of flaws a defender would have to safeguard in order to protect the

system (as many as possible). An ad-hoc approach to finding vul-

nerabilities - which by implication means a subjective prioritisation

of what and where to test [100] - potentially results in flaws being

overlooked. A methodical approach increases the likelihood of de-

termining flaws, thereby mitigating this problem [138]. This is even

more important since information sharing is still limited due to the

competitive nature of the industry [102]. Systematic analyses can also

be supported by a variety of tools. An advantage of this is that the

final result can be documented, with all the details that led to the

system compromise [41].

Considering the above, this doctoral research addresses two ques-

tions:

• Firstly, how do we systematically establish a baseline security

state of the system when original specifications are absent? and

• Secondly, once the problem has been enumerated, how do we

use the results of such testing to aid in security assurance and

in future iterations of design?
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The research questions posed are in the context of Bluetooth imple-

mentation natively available through the vehicle’s information and

entertainment system and through any Bluetooth-enabled devices

that are deployed in the vehicle retroactively.

1.3 contributions

The main contributions of this thesis are:

• Threat intelligence regarding the presence of publicly broad-

casting Bluetooth-enabled devices (both through the vehicle head-

unit and through attached aftermarket devices) in a real-world

scenario. This also contributes to situational awareness regard-

ing the technological lag between year of vehicle registration

and year that versions of Bluetooth technology was adopted;

• Systematic security evaluation of the automotive Bluetooth in-

terface, implemented in a proof-of-concept tool. This tool also

contributes towards the automation of the security evaluation;

• Classification of evidence acquired from the security testing

process, using an industry standard severity classification scheme.

This encompasses two aspects, privacy and operational, and the

results can be used as evidence in a security assurance case;

• Conceptual methodology demonstrating how both the processes

and the results of empirical testing can be further formalised to

confer additional rigour and confidence regarding future test-

ing and design iterations.

1.4 thesis structure

The rest of the thesis is organised as follows:

Chapter 2 presents an overview of experimental analyses that have

resulted in the discovery of the nature of vulnerabilities in vehicles, as

well as the state of the art around comparable methodologies. This in-

cludes automotive specific evaluations as described in emerging stan-

dards.
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Chapter 3 focuses on Bluetooth as a technology, providing an overview

of the protocol, the known security issues and existing tooling for ex-

ploring known vulnerabilities, albeit not in the automotive domain.

The contribution in this chapter is a threat intelligence study regard-

ing the use of Bluetooth as implemented or used in vehicles.

Chapter 4 describes and explores the methodology used for the

systematic evaluation of the automotive Bluetooth interface. The pur-

pose of this chapter is to present the systematic framework developed,

supported by attack trees and penetration testing.

Chapter 5 discusses the implementation and validation of the proof-

of-concept tool developed in accordance with the methodology as

specified in Chapter 4. The contribution here is the (semi) automation

of the process by which an automotive interface can be systematically

evaluated from a security perspective.

In Chapter 6, the experimental analysis of Bluetooth as implemented

in automotive information and entertainment headunits is presented,

along with severity classifications of the findings. The contribution

here of evidence classification has been evaluated by domain experts.

Chapter 7 focuses on experimental results and the implications

thereof in aftermarket Bluetooth-enabled devices, specifically looking

at aftermarket devices that attach to a vehicle’s diagnostics port.

Chapter 8 looks at addressing the challenge of introducing formal

methods (for additional confidence and robustness) when testing a

vehicular black box. This is explored on two fronts: firstly, through

formal analysis and secondly, by formalising the attack trees used in

the systematic security evaluation in preceding chapters.

Finally, concluding remarks, a summary of contributions and fu-

ture directions are given in Chapter 9.





2
R E L AT E D W O R K

This chapter presents related work in the field of automotive cyberse-

curity. First, demonstrated exploits (which encompasses most of the

early work in the area) are discussed (Section 2.1.1). The revelation of

these exploits made it clear that a structured approach was needed

to cover all the security-related aspects of development and testing.

Comparative methods for this are explored in Section 2.1.2.

There is a marked dichotomy in the literature; a large body of

papers explore or propose security engineering methods and tools,

whilst another body describe and discuss methods by which the ex-

ploits were exposed. The former used formal methods in many cases,

whilst the latter was dependent on real-world implementation tests.

Standards bodies have therefore begun to look at integrating these

two streams in a full design, development, implementation and test-

ing process in standards such as J3061, and these are discussed in

Section 2.2.

2.1 security testing in the automotive domain

A feature of security, in any practice whether physical, digital or any

combination thereof, can be described as a series of foot-races. Ad-

vances in technology with the aim of implementing greater security

inspires ever more sophisticated attacks, which subsequently leads to

more technological development, which is again circumvented in a

yet more advanced manner. It should also be recognised that security

is not a “set of features” but rather is a property of a system [71]. It is

not enough to implement a strong cryptographic system, if it can be

easily bypassed by poor operating practices. Furthermore, like safety

or efficiency, security should be a cross-section consideration.

The cybersecurity aspect of testing concerns only software and its

interactions. It should not be confused with the testing of physical

security (such as door locks, or car alarms) although the two may

overlap, especially if physical security features have been enabled or

enhanced by software.

9
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2.1.1 Automotive Cybersecurity

There have been many studies investigating software weaknesses in

the vehicle. An example includes finding vulnerabilities in the soft-

ware that governs a CD player (and the unit that it is attached to). By

encoding arbitrary Controller Area Network (CAN) packets in a mu-

sic format, Checkoway, McCoy, Kantor, et al. [36] was able to cause a

buffer overflow. Using a later development they were also able to re-

flash the media electronic control unit (ECU). Other demonstrations

include brute forcing the native default WiFi Personal Identification

Number (PIN) to disable car alarms [101]. These have shown that

there are vehicles present on the road with potentially mission-critical

systems that were not sufficiently protected. This lack of protection

has also led to the ability to compromise these systems through the

on-board diagnostics (OBD) port [93], or by otherwise tapping into

the intra-vehicular Controller Area Network (CAN) bus [38], [73]

through other means.

Of most interest in this thesis were wireless or remote attacks. These

present the greatest risk, since a physical in-cabin presence is unnec-

essary. This has also been demonstrated in literature. Some examples

include injecting malware down the in-cabin phone, or via a compro-

mised Android device connected to the vehicle [36] using a malicious

self-diagnostic app to compromise the OBD-II port through Bluetooth

[161]. Alternatively, another study has discussed being able to take

advantage of easily guessable Bluetooth PINs to inject audio files and

eavesdrop on in-cabin conversations (implemented in a tool called

CarWhisperer) [167].

Keys were also a target, with relay attacks detailed in [54]. This

allowed the typical short distance of key to vehicle communication to

be amplified, with every passive key entry and start (PKES) system

susceptible. Encryption protocols governing keys and immobilisers

in the vehicle have also been demonstrably compromised [152], [153]

since embedded system constraints meant that very small encryption

keys were used.

Packets (and their unique fixed identifiers) could be captured from

tyre pressure monitoring systems [132] from as far away as 40m. Be-

cause of the length of the identifier field, there is sufficient unique-

ness to enable tracking of vehicles and their respective locations. This

could potentially compromise privacy.
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There are also exploits that have been reported through the media

or through “hacker conferences”. The exploitation of the cellular and

WiFi interfaces famously led to compromise of a vehicle’s control sys-

tems over the Internet [110]. Others have been able to compromise

an aftermarket dongle [7] to then compromise the vehicle through

use of messages originally meant for diagnostics. Laboratory exer-

cises, where a digital audio broadcast (DAB) station was created to

send data via DAB signals, have thrown up the possibility that text

or images could be injected into an infotainment unit [151]. However,

there has not yet been a demonstration to show how this might affect

mission critical systems.

Although the papers detailed above show an impressive range of

experimentation and an in-depth knowledge of the target system or

component, they have not mapped out a process or systematised their

findings. Furthermore, information on the practical aspect of automo-

tive security testing is scarce: automotive systems are complex with

many different technologies integrated into the single vehicle, and

thus many papers dealing with experimental analysis, by necessity,

limit their scope to a single interface, protocol or technology. However,

there are points of agreement on both actual and potential attack vec-

tors. For example, many agree that Bluetooth is a viable entry point

for an attacker [42], [73], [87], [107], [120], [159]. Nevertheless, despite

the paucity of information, from the number and variety of reported

threats, vulnerabilities and exploits, it is clear that a systematic de-

scription of the problem is required.

2.1.2 Comparative Methods

Not unlike the software in embedded systems, conventional comput-

ing software exists in an environment where there is a significant level

of co-dependence, whether it be the loading of libraries, or interfacing

with third party components. This is analogous to vehicular embed-

ded systems having nodes (ECUs) of various functions which are re-

quired to interact with equipment, firmware and possibly high-level

software (in the case of infotainment systems) developed by third

parties. Dependencies in all of these cases means that there are two

issues that may need to be considered: firstly, that the system may in-

herit weaknesses from one or more components that it depends upon,
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and secondly that any external security measure (as part of the larger

system boundary) might also fail.

Due to architectural and implementation heterogeneity and com-

plexity (especially in a vehicle), there may also be dependencies that

are unforeseen or undocumented when components are integrated

into the larger system [136]. Furthermore, due to the common practice

of reuse in the automotive sector [125], weaknesses could be passed

from one generation of vehicle to the next, or laterally across many

makes and models depending on the supplier or manufacturer.

Because we can draw analogies between traditional high-level soft-

ware and the software that exists in vehicles, we can use certain meth-

ods as a basis for the cybersecurity testing of a vehicle.

There are established security testing techniques and methods that

could be drawn from previous work and applied to the automotive

context. These are explored below.

2.1.2.1 Model-based Security Testing

Security testing is inherently hard [51], [147], due in part to the fact

that no kind of testing can show the absence of security flaws. Fur-

thermore, security testing can also be unstructured, non-reproducible,

undocumented or untraceable [51]. This is the primary motivation for

creating explicit models that contain information about the system

under test and its environment. These test models can be built from

requirements or specifications that already exist and its interactions,

properties and behaviours are usually expressed in some formal lan-

guage, such as the Communicating Sequential Processes (CSP) pro-

cess algebra.

Systematic evaluations have been described in model-based testing

studies such as that of [105], where test case generation starts from a

set of models, which are then executed on a system under test, using

a tool chain to stimulate the system. Reactions are then observed and

evaluated. The security perspective of this method is employed in

model-based security testing (MBST) [138]. MBST (which is an active

field of research) usually focuses on violation of security properties,

which are also formal statements in mathematical logic expressed in

conjunction with a formal system specification.

Model-based security testing may provide coverage of many kinds

(structural, data, requirements etc.) pertaining to security of or in a

system. However, applications thereof [86] have required that models
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be available or pre-built in order to formally examine. A generic sys-

tem model could be created, such as in the work done by [136], where

a system model of the automotive on-board network and an attacker

model were created. However, at that level of abstraction, security

flaws are difficult to test for, since many are based on flaws in specifi-

cation of the exact system or in implementation [81] or are lateral (i.e.

based on unintended functionality). Formal threat models created,

such as that of [137], yields many benefits such as precision, in-depth

understanding of the attack in question and automatic test-case gen-

eration. However, it would still require that the exact pathways of the

attack through a system and its environment be known.

The previous works as described above has inspired the systematic

approach used in this thesis, in particular the use of attack trees and

subsequent testing based on a proof-of-concept tool chain (see Chap-

ter 5). However, although model-based testing approaches provide

rigour and confidence, there is no trustworthy model from which to

generate tests. Even where specifications are available, the environ-

ment is sufficiently different such that functional accuracy is difficult.

For example, the Bluetooth specifications (which are freely available)

differ based on the version, some of which are substantially changed

from one version to the next (such as the difference between legacy

pairing and Secure Simple Pairing from Bluetooth 2.0 to Bluetooth 2.1

- see Chapter 3). Furthermore, the Bluetooth implementation would

be integrated with other systems (such as the embedded system’s

operating system and other firmware) for which we would need to

include to provide a complete model representation of the system

and for which there is very little information.

To conclude, the primary barrier to using such methods is that the

information required to do so is not available, both due to commer-

cial confidentiality and the obscurity of sub-components within the

system (many of which are third party). This also precludes other

methods of enabling systematic evaluation such as attack graphs, for

which formal model checking could be performed.

2.1.2.2 Test case generation

Because test case generation from models is not feasible in this study

(see above), approaches from requirements engineering could be used

instead.
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A use case would usually help define functional requirements (i.e.

what a piece of software or a system should do), which can be tested

against. However, it is the intentional misuse (i.e. abuse) cases that

can help identify security requirements [71], [163] by first elucidat-

ing the possible actions of an adversary, testing these actions and

acting on the results to create countermeasures. In this way, security

requirements can be mapped to components, systems or system in-

teractions, ensuring that flaws in design are minimised. However, se-

curity requirements differ in paradigm to functional requirements in

that usually they are about protection and bounding of a system (i.e.

not allowing something to happen, rather than making sure some-

thing does happen) which is difficult without some kind of problem

definition (the abuse case).

Abuse cases that have already been realised in analogous domains

could be used as a template from which to test the system (in this case

the vehicle). Inference of abuse cases to test would also highlight the

absence of security requirements, which may also give insight into

the entry points and vulnerabilities of the system. This is by necessity

based on a threat model, which can be both formal or informal (see

Chapter 4). This is then used to design the test cases and is a process

that is used in this thesis in order to generate the attack tree (see

Chapter 4).

Similar methods for gathering security requirements have been pro-

posed by Fuchs and Rieke [56], who emphasise the criticality of pri-

oritising security requirements in early design phases (although we

deal with an already implemented system in this thesis — this is dis-

cussed in Chapter 4). Advantages to this approach include the fact

that a “systems of systems” perspective is taken, and is similar to our

approach in that security requirements are linked to possible attacks.

A key difference to the methodology as presented here, however, is

that the methods described by Fuchs and Rieke [56] are predicated

again on the functional model of the system (based on “atomic ac-

tions” and functional dependencies) which results in the same issue

as before: that there is no information readily available.

There have also been comparative approaches specifically using

attack trees (Section 4.1) in a requirements gathering and actioning

process. One of these methods is the System Quality Requirements

Engineering (SQUARE) methodology [62]. However, use cases in this

methodology concentrated on security threats related to a company’s
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technical and operational procedures rather than embedded systems

(in particular the automotive system), which require consideration of

manufacturing processes and constraints.

Another related approach is the formation of “anti-models” [95],

depicting how model elements may be compromised or threatened

(analogous to attack trees). However, these anti-models are derived

from the model of the system-to-be (with attendant high informa-

tional needs), which makes it less suitable for a system with unknown

internals. Even where there are methods that allow for only partial

specifications (such as the framework based on Model Driven Engi-

neering) [81], perfectly legitimate functional behaviour in those spec-

ifications could actually be a weakness in terms of the larger system

boundary (see Chapter 8), for which there may be no information.

2.1.2.3 Attack patterns

Once test case generation has been addressed to a satisfactory degree,

stimulation of the system is required to actualise some data. As part

of this testing process, techniques that have been used in the past to

expose vulnerabilities in analogous domains could be used as starting

points to probe an unknown system.

Although not intentional, many vulnerabilities are actually designed

into an application. For example, test instrumentation - where pro-

gramme interfaces are added for testing purposes - are sometimes

not closed or resolved. Ports could be left open or unsecured, or de-

fault configurations could be weak or contradictory. The diagnostics

port on a vehicle is a prime example; it made vehicular diagnostics

far simpler, but also exposed internal networks to the outside world,

potentially without any gateway to filter or otherwise act on the re-

ceipt of malicious messages. This could lead to a whole spectrum of

problems, ranging from monetary loss (i.e. theft) to actual physical

harm should the vehicle’s controls be significantly impaired.

Other techniques include side channel attacks such as timing at-

tacks to deduce cryptographic keys as demonstrated by [91], as well

as fuzzing which could be used to compromise the vehicle, as demon-

strated by [93]. Unanticipated user input such as reserved words,

escape characters, long strings or boundary values could all cause

problems. The modern vehicle, especially with modern infotainment

systems, is not immune to this: a study [36] has demonstrated how

Bluetooth and cellular wireless technologies can be exploited to gain
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complete control of the automobile using buffer overflows in order to

leverage an authentication weakness.

This relatively small number of techniques forms the basis for many

of the popular attacks seen against services and software (such as

buffer overruns) [60]. These have since been encoded in attack patterns
[52], a taxonomy based approach which contains set descriptions of

the vulnerabilities found in a system. These descriptions largely com-

prise information regarding the vulnerability’s location, targets, con-

text and countermeasures, and can be created based on an attacker’s

point of view [52]. Note that there needs to be sufficient detail to

form these patterns [60] and that, even if the theoretical attacks are

determined, practical attacks can still fail due to lack of entry points,

information or testing opportunities [52]. However, using such a per-

spective could greatly increase the chances of enumerating problems,

especially if the system is a black box.

The routes through the attack tree as used in this doctoral research

is analogous to such an approach (and could even provide details

for future pattern formation), as the techniques used are based on

common patterns from known security testing techniques such as

flooding. The penetration testing approach used (see Chapter 4) is

compatible with studies like that of [52]. The process is performed

on a specific target interface (Bluetooth and its implementation), in a

specific context (on a vehicle), although the countermeasures are yet

to be determined.

2.1.2.4 Black Box Testing

Based on the discussions above surrounding the scarcity of technical

information, it is clear that a black box approach is necessary. Thus,

systematism and structure provides greater coverage (although actual

quantification is not possible). Test cases are based on foreseeable

abuse cases (since generating test cases from models is not possible

in this research). The techniques used are based on known attacks

from literature (both vehicular and otherwise) and are analogous to

using attack patterns.

Black box testing uses the outside to inside approach and is a gen-

eral process that is used to probe an opaque system with various

inputs [124]. This approach requires only the running system. In an

automotive context, there is often no detailed technical information,

or information regarding the internal “coherence” of the system [72].
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The typical approach has been to concentrate on a specific component

or interface, using information that can be acquired through public

spaces such as forums or manuals. This approach lends itself to a

specialised form of black box testing called penetration testing (see

Chapter 4).

2.1.2.5 Summary of Comparative Methods

Whilst the coverage of related work seems scattered, they actually

represent the facets of testing security. Formal methods are usually

the most rigorous. However, as discussed previously, in an emergent

field such as automotive cybersecurity, the models or the information

necessary to create models to carry out such testing are not readily

available. Other methods are less robust, yet they allow us to move

closer to enumerating the system and threats to its security. Where

tests were performed on real vehicles (such as the demonstrated ex-

ploits), the element of realism and proof of a vulnerability’s existence

could lead to a reconsideration of design elements by those who have

access to the resources required for formal modelling. We explore this

in Chapter 8.

2.2 standards and projects

With the appearance of experimental analyses on (and attendant ap-

pearance of vulnerabilities in) the vehicle, as well as the well-established

importance of security testing, the automotive industry has recog-

nised that there is a need to effectively employ both formal and infor-

mal testing in a single structured process. Ideally this process should

be deployed at every stage in the development, implementation and

maintenance lifecycles. As of the time of writing, many of these con-

cepts were incorporated into the seminal “E-safety vehicle intrusion

protected applications” (EVITA) project (Section 2.2.1) and the J3061

Cybersecurity Guidebook for Cyber-Physical Systems (Section 2.2.2).

2.2.1 EVITA

The “E-safety vehicle intrusion protected applications” (EVITA) project

[55] ultimately aims to provide a secure architecture for automotive
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on-board networks and evaluates the realisation of this using two

“views”, the magnified view and the compositional view.

The magnified view is of especial interest, since within this view,

automotive-specific systematic methods of evaluation described. At-

tack tree modelling (discussed further in Section 4.1) is used to sup-

port these processes, although the end goal of verifying whether as-

sets are really protected somewhat differs from the aim of the study

which is to identify unprotected assets through a methodical evalua-

tion.

EVITA elaborates on some of the possible usages of the attack

tree method under the detailed functional path and mapping ap-

proach. Deliverable 2.3 also includes an outline in which security re-

quirements could be traced back to the attack tree, along with what

could be gathered from a threat mitigation perspective [133]. This is,

broadly, along similar lines to the work done in this project (although

our process begins with less knowledge of functionality and other

requirements). Additionally, the “dark-side scenario analysis”, which

is closest to our security testing process, places particular emphasis

on risk assessment, whereas the purposes of our own methodology

would be to identify specific insecurities relating to an attack goal

without looking at the motivations behind it (a necessity for calculat-

ing risk).

The compositional view deals with looking at attack categories

(and related security guarantees) to ensure that omitted attacks are

minimised. The latter is a valuable exercise, however, where a sys-

tem already exists with unknown properties (and therefore unknown

guarantees) as is the case in this study, the ability to analyse coverage

in such a way is limited.

Of particular interest is the classification of the severity of various

outcomes (Table 1), which could be use in future security assurance

cases (see Chapter 6.6).

The classes described in Table 1 denote the potential concerns for

stakeholders [55]:

• Safety Unauthorised interference with vehicle systems or com-

munications that may impact on the safe operation of the sys-

tem in question

• Privacy Unauthorised acquisition of data relating to vehicle or

driver activity, data, vehicle design or implementation
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• Financial Fraudulent commercial transactions or vehicle theft,

• Operational Unauthorised interference with vehicle systems or

communications that may impact on operation performance of

system in question

There are some seeming mismatches with regards to the translation

of severities laterally across the four categories, which might have

resulted due to the perspective of manufacturer liability. For exam-

ple, the classification for severe and life threatening injuries appears

comparable to identification of vehicle or driver in the privacy class.

Despite this, as part of the seminal standard in the field (J3061), it

provides some guidance on framing and contextualising experimen-

tal results.

Severity levels have also featured in other projects, such as the

“Healing vulnerabilities to enhance software security and safety” (HEAV-

ENS) project [143]. This project aimed to provide threat analysis and

risk assessment to facilitate security requirements engineering. It uses

the popular threat modelling method STRIDE (a mnemonic for Spoof-

ing, Tampering, Repudiation, Information disclosure, Denial of Ser-

vice, Elevation of Privilege) for threat analysis, ending with the as-

signment of risk levels based on threat, impact and level of security

needed [2]. Its severity levels are similar to EVITA’s, in both struc-

ture and content, and forms an alternative example of an automotive

risk assessment framework [2]. However, there has not been much re-

cent activity as the project completed in 2016 and much of the project

information remains confidential.

2.2.2 J3061

The seminal (if emerging) standard for cybersecurity in the automo-

tive context is the SAE J3061 Cybersecurity Guidebook for Cyber-

Physical Vehicle Systems [135]. This standard draws from various con-

cepts known to the automotive industry, such as EVITA and ISO26262

(Functional Safety for Road Vehicles [79]) amongst others. Methodi-

cal evaluation methods are also presented in this standard, although

information provided has been examples thereof rather than applica-

tion to a system. Specifically, J3061 also outlines the use of attack trees

(in reference to EVITA). The standard also notes that it may only be

possible to consider high-level concepts early in the product develop-
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Table 1: EVITA Severity Classification for Automotive Security Threats

Severity
Classes

Classes of harm to stakeholders

Safety Privacy Financial Operational

0 No injuries No
unauthorised
access to data

No financial
loss

No impact on
operational
performance

1 Light or
moderate
injuries

Anonymous
data only

Low-level
financial loss

Operational
impact not
discernible to
driver

2 Severe and
life-
threatening
injuries
(survival
probable) or
light/moder-
ate injuries for
multiple
vehicles

Identification
of vehicle or
driver

Moderate
financial loss,
or low losses
for multiple
vehicles

Driver aware
of
performance
degradation,
or
indiscernible
operational
impacts for
multiple
vehicles

3 Life
threatening
(survival
uncertain) or
fatal injuries,
or severe
injuries for
multiple
vehicles

Driver or
vehicle
tracking, or
identification
of driver or
vehicle for
multiple
vehicles

Heavy
financial loss,
or moderate
losses for
multiple
vehicles

Significant
impact on
operational
performance,
or noticeable
operational
impact for
multiple
vehicles

4 Life
threatening or
fatal injuries
for multiple
vehicles

Driver or
vehicle
tracking for
multiple
vehicles

Heavy
financial
losses for
multiple
vehicles

Significant
operational
impact for
multiple
vehicles

ment cycle, a view that has been supported in other studies such as

that of Schmittner, Ma, Reyes, et al. [139], who demonstrated the ap-

plication of J3061 to an ECU with remote access capabilities. In light

of this, end users such as security analysts or designers could use the

systematic evaluation as presented in this thesis as a way of gathering

more low-level requirements for the next design iteration.

Work is underway to identify and include integration points in

well-established standards such as ISO26262 [74], [139] so that the

safety process can be integrated with other processes such as those

for security. The converse is also true, in that projects such as J3061
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and HEAVENS discuss or refer to parallels in ISO26262. Plans are

also underway to update the J3061 standard to further reflect and

detail current state-of-the-art surrounding countermeasures to new

exploits, the continuing development of the vehicle towards true au-

tonomy and the raft of security testing methodologies and standards

(some of which are listed in J3061’s Appendix G) from other domains.





3
B L U E T O O T H

In this chapter, an overview of the Bluetooth protocol is given (Sec-

tion 3.1). This is followed by a discussion around known vulnerabili-

ties as well a brief exploration of the state-of-the-art regarding threats

to Bluetooth security (Section 3.2). A discussion about how Bluetooth

in vehicles differs from conventional computing systems is presented

in Section 3.3.

Finally, a threat intelligence study to gain situational awareness

surrounding both the automotive Bluetooth interface and attached

Bluetooth-enabled aftermarket devices is presented in Section 3.4.

This also substantiates the motivation of this research, using Blue-

tooth as a case study.

3.1 overview

Bluetooth is a peer-to-peer wireless communication technology, spec-

ified and managed by the Bluetooth Special Interest Group (SIG)

[24]. It is more complex than most wireless standards, due in part

to the Frequency Hopping Spread Spectrum (FHSS) mechanism de-

signed to reduce narrowband interference. Channel hopping occurs

once every 625µs and in some cases also uses Adaptive Frequency

Hopping (AFH), whereby channels that can cause interference are

avoided [31]. Data whitening is also performed by XOR-ing each

packet with a pseudorandom sequence, in order to facilitate signal

transmission. For communication to be established between two (or

more) devices, nodes are required to synchronise their “hops” and

this is done through a process called pairing [66] (see Section 3.1.1),

for which there are several different mechanisms (such as entering a

PIN).

Bluetooth has a complex protocol stack (see Section 3.1.2), with a

wide variety of services, although implementations are free to ignore

many or all of these. At pairing, an implementation communicates

available services through the Service Discovery Protocol profile (see

23
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Section 3.1.4). Each device has a unique address (discussed in detail

in Section 3.1.3).

3.1.1 Pairing

The pairing process uses one of two mechanisms:

• Legacy pairing: The pairing exchange involves the derivation

of a link key from the Bluetooth address, the PIN and a ran-

dom number. This link key is then stored locally and used in all

subsequent authentication and encryption processes.

The PIN is the sole source of entropy for this shared secret [64],

and the weakness of this is compounded by the fact that many

devices use four digit PINs [120]. However, even with the use

of 16-character alphanumeric PINs, there have been many man-

in-the-middle (MITM) attacks demonstrated[64], [82], [97]. This

has been superseded by Simple Secure Pairing (SSP) in the Blue-

tooth 2.1 specification, although many old or simple platforms

still use the legacy pairing mechanism.

• Secure Simple Pairing (SSP): was introduced in the Bluetooth

version 2.1+EDR specification [19], and improved on the secu-

rity of the pairing process by employing Elliptic Curve Diffie-

Hellman public-key cryptography [76]. The link key is gener-

ated using both public and private keys, nonces and the Blue-

tooth address of connecting devices.

Further MITM protection is afforded by either Out-Of-Band

(OOB) association, such as using Near Field Communication, or

by requiring user interaction [76] as is the case with the Passkey

Entry and Numeric Comparison models. Such user-in-the-loop

processes are posited to increase security [164]. A fourth asso-

ciation model, called ‘Just Works’ is usually reserved for pair-

ing with devices that have neither input nor output capabilities,

and is the weakest of the four models. However, its importance

cannot be overlooked as many aftermarket devices (such as On-

Board Diagnostics (OBD) dongles, which afford direct access to

the vehicular internal network) may pair in just such a manner.

It should be noted that regardless of the pairing mechanism used,

there is no absolute security. Even the use of SSP would not com-
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pletely negate the risk of eavesdropping, as an adversary could use

a wideband receiver (which monitors all channels simultaneously) in

order to gather information. However, there is a significant cost bar-

rier to such devices (upwards of £10,000), and therefore defenders are

afforded some breathing space in terms of risk.

3.1.2 Protocol

The protocol stack (Figure 1) can be loosely categorised into two

classes: the Bluetooth controller (generally the chipset) and the Blue-

tooth host, with the Host Controller Interface (HCI) acting as an in-

terface to the Bluetooth chipset [162].

Figure 1: Bluetooth protocol stack (adapted from [142])

The controller deals with the frequency hopping mechanisms, base-

band encapsulation and returning the appropriate information to the

host, whilst the host is responsible for the protocols in the layers

above (Table 2). Descriptions of the profiles sitting on top of RF-

COMM and L2CAP are given in Table 5.

3.1.3 Bluetooth Address

An essential piece of information in the investigation of this interface

is the Bluetooth device ID, also known as the Bluetooth address. This

is a 48-bit number used to identify a Bluetooth enabled device, similar

in nature to a MAC address. Although theses addresses are suppos-

edly globally unique, counterfeit products (which are not registered
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Table 2: Key Bluetooth protocols and their functions (adapted from [142],
[162])

Protocol Class Description

Link Manager

Protocol (LMP)

Controller Handles negotiation of low-level encryption,

authentication and pairing, and is responsible for

regulation of master and slave roles.

Baseband Controller Specifies characteristics such as transmission rate

and whether the channel is used for transmitting

and receiving packets. Generally inaccessible

without appropriate bespoke tools.

RF controller Controller The Bluetooth radio interface.

Host Controller

Interface (HCI)

Link Acts as a command interface to both baseband

controller and link manager, and is generally

accessible without custom hardware.

Logical Link

Control and

Adaptation

Protocol (L2CAP)

Host Used to transport protocols such as RFCOMM to

higher level protocols, using a system of channels

(where each channel ID or PSM represents a

logical endpoint on a Bluetooth device). It can be

considered analogous to the User Datagram

Protocol (UDP) in that it provides a simple but

unreliable, datagram-based transport mechanism,

although connection-oriented services are also

available [142].

Service Discovery

Protocol (SDP)

Host Identifies and determines services available on

devices using a request-response model. SDP

runs on top of L2CAP.

Radio Frequency

Communications

(RFCOMM)

Host Provides emulation of serial ports, with up to 60

simultaneous connections between two devices

possible [142]. Can be used to transport files

using the object exchange (OBEX) protocol, send

AT commands to phones and supports the IP

stack over the Point-to-Point Protocol (PPP).

Object Exchange

Protocol (OBEX)

Host Communications protocol that allows for object

exchange between connected devices.
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with Bluetooth SIG, or otherwise licensed) could sometimes repeat

addresses [68].

The importance of the address lies in the fact that it is used to estab-

lish identity, and is important in authentication and synchronisation

processes. Furthermore, within a piconet of devices, all slaves trans-

mit using the master’s address [31]. Slave to slave communication is

not possible; all information is routed through the master device.

As such, the foundation of many of the attacks is predicated on

knowledge of this address. If a device is set to discoverable, its address

is broadcast in the clear. If set to limited discoverability or hidden,

then the device will respond to a direct inquiry. Otherwise a device

is known as invisible. However, even when the whole address is not

known, scanning even a small range of 100 to 200 addresses could

potentially identify devices in the vicinity should some of the address

bytes be enumerated [65].

Figure 2: Bluetooth address structure [31]

The address is made up of three parts (Figure 2). The non-significant

address part (NAP) comprises the first 16 bits, and as the name sug-

gests, is not involved in any of Bluetooth’s functionality. The next 8

bits constitute the upper address part (UAP), used for error checking

in packets, and the last 24 bits make up the lower address part (LAP).

The NAP and UAP together stand as a manufacturer identifier (also

known as the Organisationally Unique Identifier or OUI). The last 24

bits are assigned by the manufacturer, ensuring that they are (suppos-

edly) unique within the device set.

The NAP and UAP information could be used to identify the man-

ufacturer of either the device or the Bluetooth chipset integrated into

the device (a list is publicly available on IEEE’s Standards Register

[77]). This is a precursor technique to determining manufacturer spe-

cific issues or flaws that could be used in exploitation planning. Con-

versely, because brute-forcing to determine the entire 48 bit address is

not feasible, a manufacturer’s identity could be used to narrow down

the field of possible addresses [65] using a tool such as RedFang [156].
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3.1.4 Profiles

Sitting on top of various base protocols are Bluetooth profiles, which

generally describe end user applications and their general behaviours.

Profiles consist of information regarding dependencies, user interface

formats and specifically required stack protocols to be used by the

profile [20]. Bluetooth standards specify various service profiles that

could be used in order to customise the technology, whether that be

to enable “hands-free” communication, allow file transfers or grant

access to phonebooks and messages [20]. This information is vital in

detailing what the device is capable of doing, and, from an adver-

sary’s point of view, also gives information on potential weaknesses.

Profiles can be standard (as specified by Bluetooth SIG), or bespoke

according to the needs of the manufacturer. Discovery of these pro-

files is usually performed through the use of the Service Discovery

Protocol (SDP). A list of profiles typically found in vehicles is given

in Section 3.3. A list of currently adopted and supported profiles can

be found online [20].

3.2 vulnerabilities

There are many attacks that could be performed. These attacks can be

classified into several categories including surveillance, data access,

man-in-the-middle (MITM) attacks, denial of service (DoS), obfusca-

tion, fuzzing and sniffing (Table 3).

As an entry point, Bluetooth has much potential as a viable target:

the initialising stages are particularly vulnerable, due to the use of

“discoverable” modes (where devices broadcast their existence), the

lack of hopping during these stages and potentially weak encryp-

tion during the pairing process [64]. These are all well researched,

however, the focus has been predominantly on the technology itself,

rather than how it applies with regards to the implemented system

in the vehicle. Attacks such as brute-forcing the PIN has already been

demonstrated (in experimental settings) to lead to privacy attacks or

attacks on in-vehicle networks [36].

There are fundamental assumptions in many implementations of

Bluetooth that can be exploited as part of any testing process. For

example, the assumption that the short range of Bluetooth provides
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a measure of security, or that once a connection is established (i.e. as

a trusted device), the connection remains permanently secure.

The attacks described in Table 3 echoes the trends apparent whilst

surveying the Common Vulnerabilities and Exposures (CVE) database

(Table 4), as well as the literature surrounding Bluetooth vulnerabili-

ties.

Many of the attacks are older (dating back to 2004), with the vast

majority targeting the pairing system, including brute-forcing the PIN

[36] or sending inaccurate information about the capabilities of each

device to force a ‘Just Works’ association model (the No Input No

Output or NINO attack), which has, relatively, very little security [76].

How devices store information is also targeted by tools such as

nOBEX [113], which performs fuzzing through Bluetooth’s synchro-

nisation process, or by using long device (HCI) names to cause detri-

mental effects. The more severe attacks focused on the Object Ex-

change (OBEX) protocol, especially with the presence of the File Trans-

fer Profile (FTP) [111], as this allows binary object exchange. A few

used crafted applications and packets, such as transmitting a Trojan

through a paired Android phone [36]. There has also been a vulner-

ability recorded on gaining access to a Bluetooth enabled device by

misrepresenting the user interface and allowing an attacker specified

message, thereby tricking a user into granting the necessary permis-

sions (CVE-2006-1367). This is also known as a Blueline attack and is

a particularly interesting point when considering the fact that the au-

tomotive front-end does not give a great deal of feedback even when

actions are being performed on it. More information on Bluetooth

security testing tools and methods is presented in Chapter 5.

Table 4: Relevant recorded CVE Bluetooth vulnerabilities [145]

CVE ID Platform Vulnerability and method

2004-
0143

Nokia 6310 Causes DoS via sending of malformed OBEX mes-
sages.

2005-
0681

Nokia Symbian
60

Cause DoS by configuring device with long Host
Controller Interface (HCI) name.

2005-
1333

Before Mac OSX
10.3.9

Directory traversal by exploiting undisclosed
OBEX vulnerability.

2005-
2250

Nokia Affix 2.1.2 Execution of code via buffer overflow caused by
long HCI name.
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Table 4: Relevant recorded CVE Bluetooth vulnerabilities [145]

CVE ID Platform Vulnerability and method

2005-
2547

Bluez 2.16-2.18 Use of shell metacharacters in device HCI name.

2005-
3093

Nokia 7610, 3210 Cause DoS via use of certain characters in filename
when transferring files via OBEX.

2006-
0670

Bluez hcidump
1.29

Cause DoS via sending of malformed L2CAP pack-
ets.

2006-
1367

Motorol PEBL
U6

ASCII Terminal (AT) level access for data extrac-
tion by tricking user into granting permissions via
user interface misrepresentation.

2006-
6895

Sony Ericsson
T60

Obtain unauthorised enquiry responses via ex-
ploitation of improperly implemented “limited dis-
coverable” mode.

2006-
6898

Before Wid-
comm Bluetooth
for Windows
4.0.1.1500

Allows listening and recording of all information,
via passkey guessing based on manufacturer. Re-
quires static PIN in implementation. Also known
as “CarWhisperer”.

2006-
6908

Widcomm 3.x Cause DoS or execution of code via buffer overflow
in Bluetooth stack COM server.

2007-
0521

Sony Ericsson
K700i, W810i

Cause DoS via repeated pushing of file via OBEX
push.

2007-
0522

Motorola MO-
TORAZR V3

Cause DoS via repeated pushing of file via OBEX
push.

2007-
0523

Nokia N70 Cause DoS via repeated pushing of file via OBEX
push.

2007-
0524

LG Chocolate
KG800

Cause DoS via repeated pushing of file via OBEX
push.

2007-
3753

iPhone 1.1.1 Cause DoS or execution of code via crafted Service
Discovery Protocol (SDP) packets.

2008-
4295

Windows Mo-
bile 6

Cause DoS by configuring device with long HCI
name.

2009-
0244

Windows Mo-
bile 6 Pro

Directory traversal using ../ [dot dot slash] in file-
name when using OBEX file transfer protocol.

2011-
4276

Android 2.3-
2.3.6

Obtain contact data via AT phonebook transfer,
also known as “Bluesnarfer”.
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Table 4: Relevant recorded CVE Bluetooth vulnerabilities [145]

CVE ID Platform Vulnerability and method

2014-
4354

Before Apple
iOS 8

Undisclosed exploitation if Bluetooth is enabled
when upgrading platform.

2014-
4428

Before Mac OS X
10.10

Spoof previously paired device through lack of re-
quirement for encryption in low energy human-
interface devices.

2014-
7914

Before Android
4.4.0

Issue HCI commands without pairing via crafted
OOB handover.

2015-
1106

Before Apple
iOS 8.3

Data extraction through discovery of passcodes by
reading the lockscreen.

2015-
3683

Mac OS X
10.10.4

Execution of code via crafted application.

2015-
3847

Before Android
5.1.1 LMYA8T

Allows removal of stored SMS messages via
crafted application.

2015-
6613

Before Android
5.1.1 LMYA8X
and 6.0

Allows sending of commands to a debugging port
to gain privileges via crafted application.

2017-
0423

Between An-
droid 5.0.2 and
7.1.1

Allows remote privilege escalation through a sep-
arate exploit on the Android Bluetooth stack.

3.3 bluetooth in vehicles

The wireless nature of Bluetooth has been attractive to automotive

manufacturers as a way of reducing weight and wiring in the vehicle,

along with the hands-free services that Bluetooth can offer. The latter

is driven in large part by the advent of regulations barring the use

of mobile phones in vehicles in the United Kingdom. Its flexibility

means that manufacturers can offer customised features to end users.

These advantages mean that Bluetooth is now a ubiquitous technol-

ogy in vehicles and is deployed in millions of cars.

A summary of the standard profiles typically included in vehicles

is summarised in Table 5, and where they sit on the Bluetooth proto-

col stack can be seen in Figure 1. The list given here is by no means

exhaustive, but is an indication as to the standard features imple-

mented in automotive headunits. Note that even though the profiles
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Table 3: Bluetooth attack classification (adapted from [44])

Attack
classification

Threats

Surveillance Includes general scans (or war-nibbling), inquiry
scans and brute scans to determine
non-discoverable addresses. Manufacturers can be
profiled using organisationally unique address bits.
Also includes service enumeration.

Range
extension

Most consumer devices (including automotive
implementations) are Class 2, with a range of up
to 10 metres. Range can be extended through the
use of external directional antenna or passive radio
locators.

Obfuscation Includes spoofing or cloning a device name, class,
address or service profile fingerprint. Can serve to
further other actions such as man-in-the-middle
attacks.

Fuzzing Injection of arbitrary or malformed data.

Sniffing Using Bluetooth narrowband or wideband
receivers or tools in order to dump raw data from
a connected Bluetooth interface.

Denial of service
(DoS)

Flooding with data, or jamming signals to cause
applications or devices to freeze or crash or battery
exhaustion.

Malware Infection from malicious programs via Bluetooth
interface.

Unauthorised
direct data access

Includes targeting hard-coded default PINs, brute
forcing PINs, targeting vulnerable
implementations of APIs, sending commands via
covert channels to extract data, or using loopholes
in the object exchange (OBEX) protocols.

Man in the middle
(MITM)

Masquerading as a trustworthy entity, or injecting
oneself in the middle of a communication in order
to eavesdrop on or modify data, as described by
[64].
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themselves may still be in use, profile versions could still be depre-

cated, especially if vehicles use legacy Bluetooth specifications.

Bluetooth implementation on vehicles differs from conventional

computing and mobile platforms. The software present on vehicles

may not have been updated in years and older chips are in use even

in newer vehicles, with many still using legacy pairing, or having

backwards compatibility to legacy pairing. Presented information is

customised by device and not by users (so no distinction is made

between users of the same remote device) with user information po-

tentially centrally held on the infotainment unit [127].

Although it has been posited that requiring user interaction within

the authentication process increases security [164] (for example with

numeric comparison), many vehicles use other pairing mechanisms

such as passkey entry (some with a default universal static PIN [44],

[119]). The front-end of the system may not ask for user confirmation

or display alerts as might be expected in other embedded systems,

such as mobile phones. This is likely due to the node containing the

screen or other outputs being separate from the ECU containing the

actual operating system. An example of this is where the pairing of a

device (that is not categorised as a smartphone) is sometimes absent

from the “paired devices” list on screen, even where there is an active

connection.

Additionally, a vehicle is mobile and is rarely stationary with the

ignition or engine turned on. This, combined with a relatively short

range of ten meters could pose a challenge to an attacker. However,

range extension (see Table 3 in Section 3.2) has been used successfully

to extend the range to about a mile, which led to the testers being

able to inject audio and eavesdrop on in-cabin conversations [167].

Furthermore, compromise could also occur pre-travel (for example in

a car park or a garage) for possible disruption later on. With premed-

itation and preparation, an attack could also involve following the

target vehicle so that it stays within range.

The majority of built-in infotainment systems either search for a de-

vice to pair with or require a user to actively enable Bluetooth [120],

though the seeming security of the latter is diminished given that

not every vehicle limits the time in which the interface is discover-

able. Additionally, many implementations look for previously paired

devices and may initiate a connection without switching on the dis-

coverable mode; potential attackers could also test for the existence of
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Table 5: Typical Bluetooth profiles in vehicles. All information comes from
Bluetooth SIG [20] and the Open Mobile Alliance [144]

Profile Abbrv. Function
H

an
ds

-F
re

e
an

d
A

ud
io Hands-Free Profile HFP Provides voice connections and re-

mote control of the connecting device
in conjunction with a hands-free de-
vice.

Headset Profile HSP Provides support for audio between
two devices (headset and mobile
phones). Has limited AT command
support.

Audio/Video
Remote Control
Profile

AVRCP Provides remote control functional-
ity to any accessible audio or video
equipment.

Advanced Audio
Distribution
Profile

A2DP Provides procedures for distribution
of high quality audio (which is dis-
tinguished in the specification from
voice audio).

D
at

a
ex

ch
an

ge
/s

yn
ch

ro
ni

sa
tio

n Serial Port Profile SPP Provides the ability to create a serial
connection by emulating an RS-232

connection.

File Transfer
Profile

FTP Provides functionality for transferring
files between devices.

Phonebook Access
Profile

PBAP Provides the ability to exchange
Phone Book objects (such as contacts).

SyncML - Former name of an open information
synchronisation standard, currently
managed by the Open Mobile Al-
liance. The latest specification is dated
2007 (OMA SyncML v1.2.2), and no
further specifications have been an-
nounced or released. Provides infor-
mation synchronisation (such as cal-
endars or contacts) between mobile
devices.

Message Access
Profile

MAP Provides ability to exchange messages
between devices.
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a device via a name inquiry, to which a device in limited discoverable

mode will respond. An adversary could then wait for the opportune

moment once the existence of a device is known to pair and form a

connection with the target.

3.4 threat intelligence

This section presents a threat intelligence study with regards to the

availability and characteristics of Bluetooth devices in the automotive

context in real-world driving conditions.

The characterisation of Bluetooth devices within a certain range has

been studied [26], with data gathered in order to perform statistical

analysis on the location and frequency of types of Bluetooth devices

that might be found whilst driving. However, their primary focus has

been to concentrate on behaviours that could be used to build up to a

vehicle-to-vehicle or vehicle-to-infrastructure scenario. Whilst useful

for general awareness, the approach used here is based on a security

perspective.

Most work on Bluetooth security is on weaknesses inherent within

the Bluetooth standard itself, whether that be:

• Looking at vulnerabilities during the capability exchange phase,

where connecting devices inform each other as to their input

and output capabilities (i.e. the NINO attack) [76];

• On certain association models such as passkey entry [9] or ‘Just

Works’ [64];

• On aspects of the underlying communications protocol [32], [123].

However, practical implementation could also introduce security

problems to the underlying (operating) system, especially if it in-

cludes the use of legacy or deprecated specifications as is the case

in this research (see Chapter 7).

Experimental analysis of the automotive implementation of Blue-

tooth has been explored by a few studies [36], [161], although it has

been limited to a single version or implementation (see Section 2.1.1).

Similarly, work has been done on enumerating specific vulnerabilities

in a specific on-board diagnostic device [7], but do not concentrate on

where or when such a device might be encountered in normal driving

conditions.
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The closest work in gathering information security-specific infor-

mation from a large number of vehicular implementations is that of

Oka, Furue, Langenhop, et al. [120], who performed a survey on the

state of discoverability and the types of Bluetooth pairing in both ve-

hicles and aftermarket devices by examining publicly available man-

uals. They found that a significant proportion of vehicles still used

four-digit PINs (which were in some cases unchangeable) and that

the vast majority of aftermarket devices used legacy pairing. This

is extremely useful information, especially for situational awareness,

and the endeavour here is to build on this work by examining real

vehicles in real driving conditions.

3.4.1 Data Collection

Two surveys were used to investigate the versions of Bluetooth on a

vehicle, one, in-cabin inspection, required the knowledge of the ve-

hicle owner, and the other (war-nibbling) gathered information at a

broader (but shallower) level.

The easiest way to identify the pairing mechanism in use is through

the use of a sniffer. Even a low-cost Bluetooth transceiver can be used

to identify such devices, as the Bluetooth address and some of the

information about the device is publicly broadcast (if the device is

‘discoverable’) and available for inspection.

3.4.1.1 In-cabin inspection

To find the Bluetooth version (and to a certain extent the chip manu-

facturers) on a vehicle at a granular level, it was necessary for Blue-

tooth to be enabled and for the infotainment unit to be discoverable

and within range. This necessitated being inside the vehicle cabin.

With regards to generalisation, although each make and model may

have a different Bluetooth implementation, there are sufficient num-

bers of each type on the road to make the results meaningful.

The criteria for vehicle selection were the vehicle age (2010 or newer,

to ensure on-going relevance), and that it be road legal (i.e. not test

vehicles). Only Bluetooth-enabled infotainment systems were consid-

ered as we were interested in the default (Bluetooth) security status

of the vehicle. The inspection used the hcitool suite [94] to request

information from the headunit.
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3.4.1.2 War-nibbling

This method sets a tool on monitor mode to see all relevant devices

and is considered to be a subset of wardriving [44]. War-nibbling was

used as a general survey mechanism to find the number of vehicles

that:

• Allowed for discovery on the road in real driving conditions;

• Used legacy pairing and

• Were visible for a duration (which we have categorised as less

or more than a minute).

The third observation is especially significant from a threat intelli-

gence point of view, as the longer the duration, the more likely that an

attacker is able to connect and perform malicious actions. Anything

over a minute is enough to initiate a pairing, perform a port scan,

or perform flooding-type attacks, assuming some level of premedita-

tion and preparation on the part of the adversary (demonstrated in

Chapter 7).

Monitoring was repeated over 28 trips, ranging from 20 to 60 min-

utes long and encompassing mostly urban areas. This included two

carparks, two different highways and three different town centres.

Note that the number of vehicles or devices surveyed in any given

area could be increased by using range extension antennas [44], with

distances of over a mile reportedly possible [64]. However, this was

not feasible due to legal considerations.

Identifying information regarding a Bluetooth-enabled device that

has been set to discoverable mode includes the:

• Bluetooth address: which can be used to identify the Organi-

sationally Unique Identifier (OUI). Recall that this is the first

24 bits of a Bluetooth address that can be used to identify a

registered manufacturer. The register of OUIs can be accessed

publicly through IEEE’s Registration Authority directory [77].

• Bluetooth alias: also known as the Bluetooth name, which is

customisable by either manufacturer or user (if implementation

allows).

• Bluetooth class of device: takes the form of six hexadecimal

digits. These define the general functionality class for a device.
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There are 32 major classes (e.g. networking, rendering, telephony)

with any number of minor classes in the context of the major

class assigned to a device. Whilst this gives generally useful in-

formation regarding intended device usage, a device may con-

tain functionality beyond the advertised class.

• Bluetooth service profiles: includes specific capabilities that the

device is set to deliver. Recall that these profiles are specified by

Bluetooth SIG and are standard to anything that implements

the Bluetooth protocol. Note that manufacturers can choose the

combination of profiles to implement, as well as implement be-

spoke profiles.

As the scan picked up all Bluetooth devices in the vicinity (includ-

ing smartphones and laptops), devices deemed to be within scope for

this study were filtered based on the acquired Bluetooth information

fulfilling at least two of the following criteria for vehicles:

• If the Bluetooth alias contained the name of an automotive man-

ufacturer, vehicle model or licence plate number;

• If the Bluetooth class indicated that it was a hands-free device

with telephony, rendering, object transfer or audio capabilities

(generally device class 0x240408 or 0x340408);

• If the OUI indicated that the manufacturer is a known supplier

of automotive headunits.

Aftermarket devices were identified based on Bluetooth informa-

tion fulfilling at least one of the following criteria:

• If the Bluetooth alias contained the name of a known aftermar-

ket device (e.g. GPS, Radio, OBDII) or the name of an aftermar-

ket carkit;

• If the Bluetooth class indicated that it was capable of audio,

rendering or networking (generally device class of 0x200408,

0x240408, 0x280408, 0x340408 or 0x420300). This is the loosest

of the three criteria, as even something that indicates a GPS

unit could have a class of ‘uncategorised’;

• If the OUI indicated that the manufacturer is a known supplier

of aftermarket devices.
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This method allowed for greater numbers of vehicles to be sur-

veyed. The scan is based on area and range. Because close examina-

tion of the vehicle is not possible with this form of survey, the exact

age, make and model of the vehicles in question cannot always be de-

termined. Some of this information, however, can be inferred by look-

ing at the OUI of the Bluetooth address that is broadcast, the device

class and the device name (which may have manufacturer names in

the same way that broadcasting from a phone might lead to a phone

model being made known). Nevertheless, it is a useful starting point

in a real world situation, allowing for an approximate measure of the

proportion of vehicles on the road using the more insecure form of

legacy pairing.

Both the inspection survey and the war-nibbling were carried out

using a standard Kali Linux distribution [118], using the BlueZ 5.x
Bluetooth stack [15], with a Cambridge Silicon Radio Bluetooth 4.0

Class 2 transceiver.

3.4.2 Data Analysis

Presented below is an analysis of results from the two methods to

carry out threat intelligence as described above.

3.4.2.1 Inspection

A large variety of Bluetooth versions were seen in vehicles. As can be

seen in Table 6, there is a general trend towards the newer versions of

Bluetooth as the age of the vehicle decreases, although the insecure

version 2.0 (deprecated in 2014) was found in a 2016 registration.

Furthermore, we observed that some vehicles with Bluetooth ver-

sion 2.1 or higher offered backwards compatibility to legacy pairing,

complete with the use of a default four-digit PIN, although we did

not investigate this systematically1. This could allow an adversary an

easy connection to the target vehicle, especially if vehicles used easily

guessable PINs such as “0000” or “1234” [120]. Furthermore, there is

a significant lag between the year of vehicle registration and the year

that each version of Bluetooth was adopted (see Section 3.4.3.1).

There was no correlation between the price of the vehicle (as a

measure of whether it was a “premium” vehicle) and the version of

1 Further investigation would have required attempting to open active connections to
the vehicle, and not all vehicle owners gave this permission.
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Table 6: Survey of Bluetooth versions implemented in automotive infotain-
ment systems

©2017 IEEE

Bluetooth in the vehicle. There was also no pattern between chipset

or Tier 1 supplier and the versions of Bluetooth they provided.

We examined 11 different makes of vehicles, which corresponded

to 14 different headunit and six different Bluetooth chip providers.

This showed a wide variety of combinations of the three provider

types (vehicle, headunit and chipset). Furthermore, even though the

survey sample here was small, there are similar indicative trends even

within the same manufacturer (Table 7). Note also that each single ve-

hicle of a manufacturer and model observed represents a large num-

ber of vehicles on the road, which we reasonably assume would have

the same characteristics since production lines are standardised. How-

ever, we make no claims of statistical significance, but rather point out

interesting indications of possible trends.

3.4.2.2 War-nibbling

All devices found using this method were publicly broadcasting their

Bluetooth addresses. Hidden devices would require an active probe

Some materials have been removed from this thesis due to Third Party Copyright. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University. 
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Table 7: Bluetooth versions across registration years

©2017 IEEE

to a predetermined Bluetooth address. Generally, the duration in prox-

imity is too short for such an enquiry method when driving. A sum-

mary of the results can be seen in Table 8.

122 vehicles were found that broadcast their address within the 28

trips monitored. Like the inspection survey, one of the main points of

analysis in the war-nibbling exercise was around the number of de-

vices that used legacy pairing (thereby implying the use of Bluetooth

2.0 or older) as a proportion of discoverable devices.

The majority of vehicles found (53.2%) used legacy pairing exclu-

sively, which has been shown to be vulnerable to MITM attacks (see

Section 3.2). This was common across certain OUIs, which correspond

to potential Tier 1 suppliers. These may be indicative of the age of the

vehicle, especially if a large Original Equipment Manufacturer (OEM)

has used a different Tier 1 for each particular age range of vehicle

model. Similarly, the majority of aftermarket devices found (55.1% of

the 98) also used legacy pairing only and likewise had certain OUIs

in common.

Of the 122 vehicles found, 31 (25.4%) broadcast the name of the

device, which in all cases was also the make or model of the vehicle.

Two of these device aliases also contained personal names. One ve-

hicle broadcast what seemed to be a PIN number of ’1234’. A small

number (seven) also broadcast the services on offer through Blue-

tooth, with the most common being the Hands Free Profile (HFP),

Serial Port Profiles (SPP), Object Push Profile (OPP) and Phonebook

Some materials have been removed from this thesis due to Third Party 
Copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University. 
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Table 8: Survey of automotive Bluetooth devices through war-nibbling

©2017 IEEE

Access Profile (PBAP). The presence of SPP could also allow for com-

mands to be sent through via ‘attention modem’ (AT) commands (see

Section 7.4.2); this is also known as ‘Bluebugging’ [4]. The presence

of OPP has been shown to lead to Bluesnarfing (connecting to these

ports and spamming with data) [111].

Of the 98 aftermarket devices, 31 (31.6%) broadcast the name of the

device, which in all cases indicated the nature of the device. Three

of these devices broadcast license plate numbers, which enabled us

to find information such as tax status, engine size and even pictures

of the vehicle in question using a search engine. Three were named

’OBDII’, which indicated a device with a direct connection to the in-

ternal vehicular network. A further seven out of these 31 devices (all

navigation units) also broadcast the device serial number. There was

only one OUI in common between vehicular units and aftermarket

devices. Both vehicle OUIs and aftermarket OUIs varied greatly with

17 and 14 different manufacturers found respectively.

Bluetooth-enabled vehicles and aftermarket devices were more likely

to be found in town centres. This is where traffic is moving slowly

enough such that the short range is less of an issue. Many of the ad-

dresses found in car parks were that of aftermarket devices, which

Some materials have been removed from this thesis due to Third Party Copyright. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University. 
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could stay powered (if, for example, it is connected to an OBD port)

even when the vehicle itself is turned off.

Duration of visibility speaks more to the nature of the location

where data gathering took place. We would envision that an attacker

serious about compromising a vehicle would either follow the vehicle

within the necessary range, or use range extension methods. However,

it is useful to see whether the possibility exists and in what (general)

proportion compared to discoverable numbers. We found here a small

portion where visibility was long enough to at least initiate the pair-

ing sequence. As expected, they were generally in places where the

traffic was either slow-moving or static due to the short-range of the

Bluetooth scanning used.

The total number of devices found was only a small sample with re-

gards to the actual number of cars within the scan range; this could be

due to the use of relatively low-powered equipment. There was also

a more substantial prevalence of certain manufacturers (whether it be

built-in or aftermarket systems), although this could reflect the pop-

ularity of those makes and models. Additionally, the vehicles found

through scanning could be set to broadcast by default by certain man-

ufacturers. If that is the case, then that would skew what was found

towards those manufacturers. However, statistical analysis between

sales rates of makes and models and its relation to the vehicles found

is currently out of scope.

3.4.3 Discussion

This discussion encompasses two themes: Bluetooth implementation

in vehicles (Section 3.4.3.1) and the aftermarket devices that were

recorded during war-nibbling sessions (Section 3.4.3.2).

3.4.3.1 Bluetooth in vehicles

Although the trend is towards more secure forms of Bluetooth as

vehicle age decreases, even the oldest vehicles surveyed in this study

still have many years left on the road, with the average lifetime of

a vehicle ranging from ten to fifteen years [88]. This means that the

increased security risk from having implemented legacy pairing will

be present for some time yet. It should be noted that, although SSP

improves on the security of the pairing process, it is by no means

completely secure. There are demonstrated attacks on many aspects
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of both the pairing mechanism and the protocol itself (as discussed

in Section 2).

There is also the wider discussion of just how far technology imple-

mented in vehicles trails behind other contemporary embedded sys-

tems. Bluetooth version 1.2 (found in one 2010 vehicle) was adopted

by the Bluetooth Special Interest Group (SIG) in 2003 [24] and with-

drawn in 2009 [22]. Bluetooth version 2.0 (the last version to im-

plement legacy pairing), found in a vehicle registered in 2016, was

adopted in 2004 [24] and deprecated in 2014 [23]. Bluetooth 2.1 was

adopted in 2007 [23] with the headline feature being the switch from

legacy pairing to secure simple pairing. Bluetooth versions 4.2 and 5,

the most recent adoptions (in 2014 and end of 2016 respectively [24])

were found in none of the vehicles.

This technology lag could be due to many reasons. The long life-

time of vehicles [88] and the difficulty of updating vehicles [115]

would mean that by the time the vehicle left the road, the software

may be years old. Long vehicle design cycles [125] also contribute to

this lag, as adoption of specifications might not be realised in imple-

mentation until years later, by which point versions of the technology

adopted may have been updated, patched, deprecated or withdrawn

as is the case here. Furthermore, reuse across models and ages is a

common cost-saving approach [125] and could mean that legacy soft-

ware persists even in the newest vehicles.

3.4.3.2 Aftermarket devices

There was a plethora of different devices (see Table 9). Not all de-

vices are necessarily directly connected to the vehicle, however, any

tampering would still interfere with the driving experience.

Many of the aftermarket devices also broadcast the nature of the

device. Where a device name is available, a quick search on the Inter-

net reveals manuals and other such public documentation that could

be used to gain more information. For example, we found a particular

car kit brand (nine examples of which were found) where SSP was in

use by default, but which nevertheless stated openly in their manual

that ’0000’ as a PIN could be used should the connecting device use

legacy pairing only. Also of interest were those with legacy pairing

and named devices that have been demonstrated to affect the vehicle,

such as “OBD II” [36] or similar. Such devices are the most danger-

ous. Assuming this device stays within this range, pairing could be
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Table 9: Types of Aftermarket Devices Found

©2017 IEEE

initiated which could lead to access to the car’s internal network. In

these cases, access to the official CAN database used by that vehicle is

unnecessary. This is because there are public diagnostic test messages

or CAN messages that could be reverse engineered through trial and

error that could be used in a dangerous manner (see Chapter 7). Even

if no attacks were used, there may be privacy concerns, as the vehicle

could be queried wirelessly for details such as its Vehicle Identifica-

tion Number (VIN), the diagnostic command for which is standard

(see Chapter 7.4.4)).

Aftermarket devices present a problem in that manufacturers have

no control over their design or deployment, yet they extend the sys-

tem boundary of the vehicle another step outward. This is especially

dangerous if the connection is wireless, since an in-cabin presence

is not needed, thereby removing a physical barrier from an attacker.

Aftermarket devices therefore make a car more insecure for the fol-

lowing reasons:

• Firstly, if the vehicle had no wireless interfaces, these devices

open up a vehicle to possible wireless attack;

• Secondly, even if the vehicle was relatively secure on all fronts,

the introduction of an aftermarket Bluetooth-enabled tool with

dubious security could compromise the security of the car as a

whole, especially if the aftermarket device has a direct connec-

tion to the in-vehicle network; and

• Finally, the plethora of devices means that there is a threat to

privacy, as footprinting of individuals becomes easier (for ex-

Some materials have been removed from this thesis due to 
Third Party Copyright. The unabridged version of the thesis can 
be viewed at the Lanchester Library, Coventry University. 
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ample, if these devices broadcast license plates, serial numbers,

or even the unique Bluetooth address of the device itself). If the

device is a diagnostic or OBD-II connected device, then other in-

formation of value could be extracted, such as the VIN (Vehicle

Identification Number).

3.4.4 Conclusion

A large proportion of vehicles surveyed through inspection and war-

nibbling used legacy pairing exclusively. This was true across a range

of manufacturers, models and ages. The implication is that these ve-

hicles are more at risk of a pairing compromise than through the use

of SSP. Similarly the majority of aftermarket devices found were also

only capable of legacy pairing, and this represents an increased risk

as aftermarket devices can make a vehicle more insecure. Further-

more, even if SSP was the default pairing mechanism, publicly avail-

able information of such systems (through manuals) openly state the

use of default easily guessable PINs if the connecting device did not

have SSP capabilities. This means that these devices are susceptible

to a downgrade attack, and the risk of compromise is again increased.

Finally, the study here demonstrates a very real risk to vehicles in the

real world through Bluetooth interfaces, and therefore motivates and

justifies the research presented in this thesis.



Part II

S Y S T E M AT I C E VA L U AT I O N

“A computer once beat me at chess, but it was no match

for me at kick boxing.”

Emo Philips





4
M E T H O D O L O G Y

The methods in use in this thesis (attack trees and penetration testing)

are used to evaluate a vehicle through the use of a software tool. This

tool (which is detailed in Chapter 5) is designed to assist a security

tester by automating some parts of the systematic testing process. In

this chapter, an introduction to both attack trees and penetration test-

ing is given, focusing on the parts we make use of in later chapters.

The general definition of evaluation is the formation of a judge-

ment. This judgement is dependent on the nature of the evidence

collected and the assurance that can be derived from this. More specif-

ically, in this thesis, evidence gathering and the classification or sys-

tematisation thereof (the eponymous thesis title) forms part of the

security assurance case. Ultimately, the aim is to provide guidance as

to what and where the problem might be in the system under test.

The methods used in this doctoral research are empirical, and de-

rived from standard practice in the security industry, namely threat

modelling and analysis using attack trees, with penetration testing

techniques employed to populate these trees. The premise of these

methods is founded on testing a system from an attacker’s point of

view to identify system weaknesses and to reflect what an adversary

might face in reality. Attack trees (the foundations of which are de-

scribed in Section 4.1) were used to provide systematism and trace-

ability. Furthermore, the use of attack trees has been presented by the

cybersecurity standard J3061 (Chapter 2) as one of the more useful

techniques for security testing in the automotive context.

Because there is no technical information available for this research

regarding the systems under test, the process mapped out by these at-

tack trees is a specialised form of black box testing called penetration

testing, the concepts of which are further explored in Section 4.2.

4.1 threat modelling

Automotive security is a diverse field, with full functional specifica-

tions unlikely to be readily available due to commercial sensitivity.

49
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Combined with the fact that there is little work to build on (see Chap-

ter 2), the lack of information necessitates a black box approach.

Threat modelling is the process by which security threats can be de-

termined, analysed and documented [103]. Many threat models can

broadly be taken to represent the decision making process of a poten-

tial adversary. A threat can be defined as any potential harmful event

that could compromise an asset (an object of value) [51]. These assets

can be physical, digital or human. Combinations of attack vectors and

methods are usually employed in order to realise these threats.

This process typically follows the process of identifying a threat

(synonymous in this case with an attacker goal), which can be broken

down into sub-goals iteratively until individual actions are identified

[103]. Popular methods include Microsoft’s STRIDE (a mnemonic for

the threat categories of spoofing, tampering, repudiation, informa-

tion disclosure, denial of service and elevation of privilege), DREAD

(damage potential, reproducibility, exploitability, affected users and

discoverability) and visualisation tools such as Data Flow Diagrams

(DFDs) [99], [103] all of which help to classify, assess the risk of and

visualise the threat landscape. These methods can be used in com-

bination with constructions such as attack trees in order to further

enumerate the threat, such as in the work done by Klöti, Kotronis,

and Smith [89]. The attack tree used in the paper (which might be in-

stead subsumed under a different category of vulnerability tree [92])

explored exact paths to the pre-discovered vulnerability [89]. One cru-

cial difference here to such work, however, is that vulnerabilities had

already been identified in an emulated environment where the full

system was known, which is not the case here.

There are also structures other than attack trees that model security-

related testing processes. Examples include attack nets, which are

customised Petri nets with places representing states or modes of

interest, and transitions that represent events such as input or com-

mands [109]. Although eminently suited to singular activities, such as

bringing together seemingly unconnected flaws to form an individual

attack path, representing relationships between different attacks (es-

pecially on poorly documented systems) is more challenging [109].
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4.1.1 Definitions

Flaws are hard to define. Although a flaw can be described as any

“demonstrated undocumented capability, which can be exploited to

violate some aspect of the security policy” [155], this doesn’t strictly

capture all the nuances of exploitable vulnerabilities, including mis-

configuration, mismanagement or mishandling of error messages (re-

sulting in information leakage), or techniques such as spoofing, which

may not depend on the vulnerability of the spoofed system, but on

the peculiarities of the victim of the attack (which may be human

rather than a machine).

More accurate would be Bishop’s [13] interpretation of an insecure

system: any method, weakness, vulnerability or tool that forces a sys-

tem to enter a disallowed state, or results in a successful execution of

a disallowed action, as defined by a security policy, can be defined as

insecure. There are still ambiguities with the word “disallow”, since

this implies an “allower” who has knowledge of such states. The per-

spective taken in this thesis is instead a slight variation, that an inse-

cure system is one where it can be forced into either a disallowed or
unintended state.

Note that the words flaw, vulnerability and weakness are often used

interchangeably in many definitions. Since there is no consensus for

definitions of these words, for the purpose of this thesis, we use the

following:

• A weakness is an element or lack thereof in a system which

increases the risk of exploitation. This implies that not all weak-

nesses are exploitable.

• A weakness can be caused by an error in implementation or

could be inherent in primitive designs. Thus a security flaw is a

subset of a weakness.

• A vulnerability is a specific instance of that weakness (i.e. a

definite exploitation of weakness).

Pulling the above together, an example of a weakness in a system

would be the ability to write to a buffer with no boundaries. How-

ever, illustrating the point that a weakness is not always exploitable,

Checkoway, McCoy, Kantor, et al. [36] found an example of where a
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buffer overflow would not work in practice (with the aqLink telemat-

ics protocol) due to insufficient bandwidth.

Where exploitation is feasible, the presence of the ability to write

to a buffer with no boundaries (the weakness) then leads to the vul-

nerability: a specific buffer that can be overrun by sending in specific

content to achieve specific actions.

These terms and the example thereof are analogous to definitions

by Bishop and Bailey [14], which characterises a generic vulnerability

(i.e. a weakness) as a set of vulnerable states, with a specific vulnera-

bility characterising a specific vulnerable state. This is also reflected in

how databases such as the Common Weaknesses Enumeration [146]

and Common Vulnerabilities Enumeration [145] databases are set up,

with the former describing classes or categories of vulnerabilities, and

the latter describing specific vulnerabilities on specific implementa-

tions.

4.1.2 Attack Trees

Attack trees were first developed to describe the security of systems

[140] in a structured manner and are conceptual diagrams meant to

illustrate threats from an attacker’s point of view. Early versions of

the attack tree looked at taxonomies of attacks. Since then expressive

models have been developed in order to infer explicit or implicit links,

and develop causality. This makes it possible to simulate multi-stage

or co-ordinated attacks [39] , build multi-parameter attack trees [28],

adapt to executable test cases [104] and take into account imprecise

data [85]. However, many of these techniques have in common the

inability for full automation due to the human element involved in

many attacks.

These trees can be represented diagrammatically (Figure 3) or tex-

tually (Figure 4). Attack trees focus on abuse cases (in this case an

attack), and even in an informal capacity, can support threat assess-

ment. This information would usually need to be further formalised

(see Chapter 8), empiricised or investigated (if resources and available

data permits), but is nevertheless a useful starting point for threat

identification [121].

Enhancements are available for attack trees, a useful one conceptu-

ally being the Stratified Node Topology as proposed by [39], in which

parts of the hierarchy of the tree are assigned levels. The leaves are
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Figure 3: An example attack tree detailing how to open a safe [140] in [33]

Figure 4: Textual representation of an attack tree detailing how to open a
safe [140] in [33]. Notation has been used in other studies [30].

referred to as event levels (and are comparable to the attack methods

in our tree), the intermediate steps are called state levels (compara-

ble to attack patterns) with the root being the top level (synonymous

with attacker goal). Attack trees can also be considered analogous to

the more common concept (in automotive engineering) of fault trees.

The primary difference between the two structures can largely be at-

tributed to paradigm. Where a fault tree looks at random faults that

could cause an undesired event, the attack tree concentrates on in-

tentional malicious actions that could cause the system to enter an

undesired state [27].

The attack tree can be extended until all contextual requirements

are met [136]. This process begins with elucidating on the number of

conjunctive or disjunctive connections [108], i.e. whether the nodes

are connected by AND or OR logic [140]. An AND gate requires that

all steps (leaf nodes) be complete before the attack is complete, and
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an OR gate requires that at least one of the steps is complete before

the parent node can be considered complete. The tree can be further

refined by assigning more granular logic such as SEQUENTIAL AND

or SAND [46]. Leaf nodes can be assigned Boolean (such as possible

or impossible) or continuous (such as cost) values.

The structure is acyclic, requiring a root (attack goal), and is direc-

tional, which is significant. From a design perspective, a top-down

approach, where an attack goal is first identified followed by all sub-

sequent methods of achieving the goal, early in the development life-

cycle, is recommended [148]. From a testing perspective, however,

this is challenging because of the black box nature of security test-

ing. Since, in this case, the system already exists, the tree here is built

bottom-up tracing from leaf to root, based on observable entry points

and subsequent behaviours when probed, leading to potential attack

goals: the very process that penetration testing is based on. Note that

although the structure is acyclic, the process of security testing as pre-

sented here (requiring multiple iterative test runs) can be considered

cyclic.

As there are no real-world measures for detection of security inci-

dents on a vehicle, the primary method of validation remains domain

expert input (such as is the case for building the tree from bottom up

[158]) and data from practical applications; this best practice has been

used by others [30].

There are several assumptions usually inherent in the formation of

these trees [5]:

• A defender must have vulnerabilities

• An attacker must have enough resource to exploit these vulner-

abilities

• An attacker must gain some benefit from the attack

These assumptions, however, only cover what Wolf, Weimerskirch,

and Wollinger [160] describes as a rational attack; where the cost of

the attack does not exceed potential gains. In order to take this into

account, a number of studies support the use of “holistic” methods,

in that the results of these methods have more value when put in

context of the whole [12], [48], [73], [128]. This perspective is by no

means straightforward due to the complexity of automotive systems

with increasingly blurred system boundaries.



4.2 penetration testing 55

Although numerous examples of Bluetooth weaknesses have been

expounded upon (see Chapter 3.2), they have not generally been set

in the context of the automotive system, where the system is opaque,

the specifications absent or loose and information regarding imple-

mentation is scarce.

In conclusion, the priority of such a method would be a methodical

approach laying the groundwork for what Nilsson and Larson [116]

describes as defence in depth: a multi-layered approach that covers as

many attack surfaces as possible and addresses multiple, potential

attack scenarios.

4.2 penetration testing

One of the foundations of penetration testing is the flaw hypothesis

approach [109] which encompasses activities around generating and

confirming potential flaws after a study of the system under test [109].

The results of the actions taken to carry out these activities can be con-

sidered deterministic based on system implementation, configuration

and state [70].

This makes coming up with an accurate figure for test coverage

challenging, as the above implies a very large (possibly infinite) num-

ber of results based on any number of implementation-configuration-

state combinations (Figure 5) which are ever expanding in nature and

scope.
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A
ll known exploits

A
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table flaws in implem
entation

All actual implementations

All conceivable exploitsAll conceivable implementations

Figure 5: The security testing problem space
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Although enumeration of weaknesses and vulnerabilities are possi-

ble through this method, there are limitations:

• Firstly, proving the complete absence of insecurities in an im-

plementation is not possible, as tests only ever expose a limited

subset of vulnerabilities [59]. It can only be stated that under

certain abuse cases, these flaws were not present and that this

is acceptable security;

• Secondly, a method that does manage to end in exploitation

may not be the only method that does, however, the underlying

flaw is exposed and can be addressed for that particular method.

Abstracted patterns of this method can also be extracted to test

for similar weaknesses through other vectors. For example, a

buffer overflow exploit is mechanically the same whatever the

system.

• Finally, there are concerns with generalisation of a system since

such testing tends to rely on implementation. As automotive

production lines are standardised, we reasonably assume that

if the Bluetooth stack in a vehicle is flawed in some way, this

same vulnerability may appear in some other vehicle of same

age, make, model and software version (of which there may be

millions). Furthermore, reuse is a common approach to reduc-

ing cost in the industry [125], and as such flaws could be repli-

cated even in newer models. Even vulnerabilities that have been

patched in more modern embedded systems may be present in

newer vehicles, as software in an automotive system is updated

less frequently [115].

In addition to these drawbacks, penetration testing is expensive.

This is because there is one irreplaceable factor that cannot be auto-

mated: the human element.

Although the penetration testing process might involve the use of

automated scripts, software or hardware tools and frameworks, the

test generally hinges on the expertise and experience of the testers

themselves. Methods used are usually not prescribed, although some,

such as identifying machine addresses, are more common than others.

As evidenced by the reports of vehicle hacking, the reason for the lack

of automation lies in the unique nature of the human mind, which is

able to think laterally to bypass otherwise sophisticated countermea-
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sures, and work creatively to think within constrained environments

(such as is the case with embedded systems).

Despite the lack of a coverage metric and the expense, penetration

testing is still valuable. Firstly, considering the need to adopt the men-

tality of an adversary when using this methodology, system design-

ers may not be the best persons for such an effort, as cataloguing all

implicit assumptions (especially from a malicious viewpoint) made

during system development is extremely difficult. Hence, an external

security testing process [124] based around an adversary’s perspec-

tive could provide insight into potential weaknesses that may not

have been considered by system designers. Secondly, evidence com-

piled through the testing process can be used to provide a security

assurance case, subject to the limitations described above.

4.2.1 The Black Box Approach

Ultimately, in practical terms, the aim of any penetration testing exer-

cise is to assess the real-world security of a system from the viewpoint

of an attacker, by not just discovering vulnerabilities, but sometimes

actively trying to exploit them. Testing could take the form of white

box testing (where all necessary information including documenta-

tion, designs, diagrams and source code is made available) or black

box testing (where only investigation of the system is authorised, but

no further information is given). There are several aspects to consider

when using either approach. Having all the needed information and

data saves time and allows for scrutiny of code or documentation

that might otherwise be left unassessed or unconsidered. Conversely,

black box penetration testing may allow for a more realistic assess-

ment of the system, as testers would have only the same access as

a potential attacker. Finding the same flaws as those that would be

found through white-box testing, however, would likely take more

time. Nevertheless, it is important to note that either approach will

only ever provide points for improvement at that point in time. Nei-

ther approach is in itself a guarantee of future security.

In this thesis, the black box approach was taken with regards to

security evaluation, both because information on the system is re-

stricted due to trade confidentiality, and because it reflects reality on

three fronts:
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• Firstly, original equipment manufacturers (OEMs) traditionally

buy in components or subsystems from Tier 1 suppliers. Al-

though OEMs have access to the original specifications (which

may or may not have included security considerations), they

will have at best only partial sight of what has been imple-

mented due to commercial sensitivities.

• Secondly, criminals who wish to investigate the system would

also face similar constraints (although possibly less stringent

owing to the assumption that they do not operate within legal

or ethical bounds).

• Finally, the attacker experiences what [70] describes as “uncer-

tainty of state”, in that knowledge of the system to be tested is

usually incomplete. This accurately reflects our own experience.

In response to market demands, there has been a move towards

more complex processes within development of embedded systems

software, based on the added functionality surrounding comfort and

convenience. This is most apparent in vehicular infotainment systems.

Many of these added features are based around existing IT technolo-

gies such as Bluetooth. Because of this, certain principles could also

be adapted from existing security testing methods [147], such as the

use of “librarian” methods (executing a set of scripts that represent

known exploits) to find common errors.

4.2.2 Penetration Testing Execution Standard

The penetration testing process requires a degree of flexibility and

adaptation depending on scope, objectives, resources available, indus-

try practices and the nature of potential flaws. Technical standards

already exist, but come with various barriers to widespread adop-

tion, including the high information needs about testing environment

(ISO/IEC15408), or only addressing part of the whole challenge such

as is the case with the ISO/IEC 27001 standard on information secu-

rity management [90]. Nevertheless, recognition of the fact that there

had to be a broad common approach resulted in the proposal of

the Penetration Testing Execution Standard (PTES) [122]. Although

named as such, PTES is not a formal standard, but rather a techni-

cal methodological guideline to provide optimum test coverage; this,
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however, means that there is still a lack of a globally accepted method-

ology for penetration testing.

The advantage to these guidelines is that, although there is lack of

a concrete consensus on what constitutes a flaw, weakness or vulner-

ability, the process can, at least, be loosely categorised and ordered

around:

1. Scoping, whereby scope, objectives, aims and ground rules are

established and agreed to between all stakeholder parties,

2. Information gathering or reconnaissance, which involves a back-

ground study on the test subject looking for all possible weak-

nesses, whether that be through user, developer or system doc-

umentation, publicly available manuals, source code or results

of previous testing. This process can be passive (listening for

information) or active (probing in order to acquire a response)

depending on the aim of the test. An example of this could be

profiling the Bluetooth module or chip, where the NAP and

UAP information could be used to identify the manufacturer (a

list is publicly available in IEEE’s Standards Register [77]).

3. Formation of vulnerability hypotheses, which involves con-

structing hypotheses of possible vulnerabilities in the system,

determined via study of background information gathered as

well as by looking at abuse cases,

4. Threat modelling which involves the generation and modelling

of possible threats based on potential vulnerabilities identified,

5. Testing and exploitation, which is used to establish the pres-

ence of the vulnerability, determining the nature of the flaw,

whether it is repeated through the system and its security im-

pact,

6. Clean up and report, which involves creating or collating rec-

ommendations for discovered flaws. These are then presented,

along with a cleanup of the system to ensure that no inadvertent

flaws from penetration testing (such as malware or backdoors)

are left behind.

The categorisation above is not necessarily a step-by-step process.

Each stage (or series of stages) can be re-iterated as needed for the
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system or component being tested; threat modelling for example may

uncover a breadth of testing that might not necessarily be in scope,

which would mean re-visiting or re-writing the scope in order to

match any constraints more accurately.

Although a mass of information has been acquired regarding tools,

techniques and to some extent, motivation (in terms of attacker goals

and what they hope to gain), the issue of prioritisation and the com-

bination of circumstance that would result in the use of this tool or

that attack method can be covered by scenario building. In this re-

search, the latter is covered through the building of attack trees (see

Section 4.1).

4.2.3 Conclusion

Recall that penetration testing results can be considered determinis-

tic based on implementation, configuration and state. Despite this,

results can neither be predicted nor calculated when a black box per-

spective is employed, which made vehicle-based experimentation em-

pirical. Nonetheless, there is value in carrying out such research. The

complete list of vulnerabilities may be unenumerable, but corrective

action to address an observed vulnerability would reduce that list by

at least one, and the information from the testing process contributes

to a security assurance case (explored further in Chapters 6 and 7).

The results could also provide the owner of the system with informa-

tion for improvements or verification of current configurations, either

via a security assurance case or through further work involving for-

mal methods (see Chapter 8).
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A software tool was designed and created to aid in the semi-automation

of the systematic evaluation process (see Section 5.1).

This tool is the implementation and embodiment of the concepts

and methods described in Chapter 4. It is designed to be used in the

implementation testing phase of any development cycle. This can be

as early as prototype phases, right through to production line or as-

sembled devices. At this stage of development, the developed tool

helps the systematic search for weaknesses. A weakness can be de-

fined as a state that increases the risk of an attacker accessing or

exploiting a vulnerability [71]. Recall that a vulnerability can be de-

fined as a specific instance of a weakness (such as an insufficiently

protected buffer that allows for a buffer overflow). Tool development,

including workflow, the general algorithm and key features are dis-

cussed in Section 5.1.

As the systems under test are black boxes, any measure of code

coverage with regards to the system is not possible (see Section 5.1.5).

However, depending on the results, countermeasures developed to

address these weaknesses can be construed as (partial) assurance (see

Section 5.1.4), which can be described as a measure of security that

allows for reliable operations [61]. There is also no abstraction within

the tool when testing the target system as we are testing the imple-

mentation of Bluetooth technology deployed in a vehicle. The tool

was then benchmarked against systems with known behaviour (Sec-

tion 5.2).

5.1 tool development

The proof-of-concept tool created is an extension of the concepts em-

bodied by various other proof-of-concept, pre-alpha and beta Blue-

tooth security testing tools created since 2003 (Table 10).

Some examples of these early tools include redfang [156] (a proof-of-

concept tool created in 2003 for brute-scanning), CarWhisperer [167] (a

small tool created in 2005 to scan for manufacturers that implement

61
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hardcoded PINs and use that to connect to and inject audio into or

record audio from a vehicle), or Bluesnarfer [106] (a tool created to ex-

ploit a vulnerability discovered in 2003, using AT commands in order

to extract phonebooks from susceptible mobile phones). The most re-

cent release of nOBEX [113] can be construed as the most relevant as

it is directed at automotive headunits. However, functionality is cur-

rently limited to fuzzing and they make no claims as to automation.

Additionally, many of the features built by the author into the de-

veloped tool (see Section 5.1.4) were only publicly available as concep-

tual techniques in literature (such as the BlueSnarf++ [111] attack).

Still others had limited functionality due to use of old libraries, or

were built for Bluetooth implementations that are no longer preva-

lent (such as BTBrowser [11]).

The methods used to extract information are part of known litera-

ture. Use of AT commands, for example, forms part of the Bluebug at-

tack [4], directory transversal using OBEX FTP is also known as BlueS-
narf++ and is described in [111], whilst flooding receptive L2CAP

ports (also known as Bluesmack) was an attack identified by the Trifi-

nite group [149]. Although the methods of attack in themselves are

not novel, there are several aspects of our tool that contribute to the

research as presented in this thesis:

• The test suite itself is more comprehensive than any of the tools

listed in Table 10. It covers the possibility of using it for surveil-

lance, fuzzing, sniffing, DoS and direct data access in one tool.

Furthermore, the attacks that the tool performs have been sys-

tematised using attack trees (see Section 5.1.3), with the atten-

dant benefits (see Chapters 2 and 4.1).

• There are parts of the created tool that specifically deal with

the automotive diagnostics interface and the connection to a

Bluetooth-enabled vehicular aftermarket device (see Chapter 7).

These features were not found in any of the tools in our survey

above.

• Finally, the tool was also created such that semi-automatic sever-

ity classifications based on the SAE J3061 standard (see Table 1

in Chapter 2.2) could take place (see Chapters 6.6 and 7.5).

Note that the application to a vehicle (with black box systems) and

the systematic evaluation to establish a baseline security state, was the
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Table 10: Tool and technique survey adapted from [17], [44], [66]

Tools

Attack

type
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Description

bluez suite x x x Tools from the official Linux
Bluetooth protocol stack

bluecasing x Act of finding devices to intrude

redfang x Tool to find non-discoverable devices

bluesniff x x Bluetooth war-driving utility

BlueSniping x Long range version of Bluesnarf

Vera-NG x Range extension tool

bluetooone x External directional antenna
attachment for range extension

BluePass x Bluetooth fuzzing tool

BlueSmack x x The act of flooding open ports using
Bluetooth

BlueStab x Act of fuzzing by using malformed
Bluetooth device name

Tanya x Tool for flooding L2CAP ports with
large packets

CarWhisperer x x Tool to find and connect to devices
with hardcoded PINs

BTStackSmasher x Fuzzing tool

Ubertooth x Bluetooth sniffer

Merlin x Bluetooth sniffer

CommWarrior x Symbian Bluetooth worm

Cabir worm x Symbian Bluetooth worm

BlueBag x Covert infection of device

BlueSYN x Act of using and sending crafted
packets to cause DoS

BlueJacking x x Sending of unsolicited messages to
Bluetooth-enabled device

vCardBlaster x x Act of flooding remote device with
either valid or malformed contact
information

BTcrack x Bluetooth PIN cracker

Bloover x Tool that implements Bluesnarf

Bluesnarf x Theft of information from a device
through Bluetooth

BlueSnarf(++) x Directory traversal through use of
FTP

BlueBug x Act of pulling information from a
phone using AT commands

BlueSpooof x x Bluetooth address spoofer

spooftooph x Bluetooth address, name and class
spoofer

Printer-MITM x Technique used for MITM against
Bluetooth-enabled printers

obexstress x x Fuzzing tool used to send
malformed packets through OBEX
channels

l2ping x Tool for flooding L2CAP ports

nOBEX x Tool used to fuzz using phonebook
synchronisation profiles



64 implementation

focus of the tool, rather than the identification of novel attack meth-

ods. This was due to time constraints. However, the tool is modular

and extensible. As the attack tree grows, the number of techniques

encoded in the tool might result in the elicitation of a novel attack

method based on any combination of increasing attack tree nodes.

The proof-of-concept tool was developed using Python 2.7 on a

Kali Linux system. It requires the BlueZ Bluetooth stack (this tool was

developed and tested using BlueZ 5.x [15]) and the Bluetooth Python

extension module Pybluez [166]. The tree structure and the tree search

facility is enabled by the treelib library [37]. A full list of required

Python modules and libraries can be found in Appendix A.1.

The chip in use at the local interface is a Cambridge Silicon Radio

(CSR) Bluetooth 4.0 chip. Other Bluetooth adaptors were tested, but

other than the chips manufactured by CSR and Broadcom, most test

runs exhibited anomalous behaviour (such as being able to discover

devices, but not able to query device information). The tool was also

tested on a virtual machine. However, the virtualisation of the Blue-

tooth adaptor was a source of many problems (such as not being able

to discover device addresses), and so development was restricted to

a physical machine.

The tool does not require any extraneous or special processing

power or memory beyond that found in a standard Linux machine,

although a more powerful machine running the tool is advantageous.

This is especially relevant when testing a vehicle using aftermarket

devices that are attached to the OBD-II port, as vehicles generate a lot

of data very quickly. Root access on the machine that runs the tool

is necessary, as that is required by some of the local libraries the tool

makes use of.

5.1.1 Workflow

The workflow of the tool follows pre-determined attack trees (see

Chapters 6 and 7). The content of the attack tree depends on the

attack goal (synonymous with the ultimate aim of an attacker).

The initial construction of the tree was manual, with test cases

drawn from Bluetooth exploits in other areas (Table 10) as well as

descriptions of known vulnerabilities in Bluetooth in other domains

(Table 4). There is a one-off time and effort cost in building these trees,
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however, once constructed, the trees (or appropriate subtrees) can be

reused or expanded upon in future test runs.

As the tool runs through the test suite, there are points where the

user has the option to skip or redo a particular test with different

parameters. Also for the purpose of test case efficiency, the tool runs

through checks (for example, for open ports and certain profiles) be-

fore continuing. This is so that time is not wasted running an exten-

sive test - such as the port scan - if the device Bluetooth address is

not found or is invalid.

Logs are generated as each of the attack steps are run. The logs

saved are in either text or comma-separated values (.csv) format. The

text file format is used to simply log output as is displayed on the

terminal. The latter case is usually when there is large textual output

that may be of value to a tester, but has no specific set or list of values

to be mapped into a csv file. At the end of the test, the logs (including

historical logs) are collated locally in an appropriately labelled and

time-stamped folder.

An important part of the output is the populated tree structure.

This contains information about the tests run, with information on

which logs to view should that particular leaf node be of interest, as

well as suggestions (in the form of subtrees) for tests that have failed,

or returned no results. This is performed by referencing a pre-built

master tree which contains a master set of known possible actions for

each of the attack steps. Where the populated tree contains a NULL

indicator, the tool searches the master tree using width-first search

and displays the appropriate branch.

5.1.2 Conceptual Architecture

The general architecture of the tool is shown in Figure 6. At the top

level, the only input that is required is the Bluetooth address of the

device in question. This address can be acquired via scanning (also

incorporated into the tool) or from manual methods such as reading

a label. Further generation of input values is dependent on the results

of the tests preceding it, hence the sequential nature of the tree. Ex-

amples of this are the tests that require a certain service profile (such

as the OBEX FTP) to be available. The tool checks for the presence of

such profiles, before running subsequent tests.
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Figure 6: General architecture of the Bluetooth enumeration tool

There is also an element of fuzzing, especially with regards to the

data exfiltration tests (for example, by entering AT commands to see

what output can be acquired). However, these tests are meant to be a

qualitative indicator that the system is susceptible to such attacks; fur-

ther work would be required to ascertain the exact set of commands

that would elicit a desired response.

There are several points where manual intervention is required, for

example, to enumerate the type of SSP association model that might

be in place (this is discussed further in Section 5.1.4.2). Where in-

formation about a system cannot be found, or manual intervention

did not produce anything, suggestions from the appropriate sub-tree

(taken from a master attack tree) would be amongst the outputs.

Other outputs include logs of the service profiles, the port scans,

results of AT commands, results of denial of service floods, or output

when attacking a vehicle through an attached aftermarket devices.

The attack tree that the tool follows, populated by results of the test

(or where appropriate, the name of the log file) are also amongst the

logged outputs.
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The tool currently performs predefined actions as described by the

attack tree. The modular design of the tool means that as more in-

formation or data becomes available and is added to the tree, more

actions can be added to the tool, so that it runs in tandem with the

attack tree. This applies only to where the action required is software-

based rather than physical (such as stealing a device).

5.1.3 Algorithm

The process of investigating the headunit (Figure 7) begins at the

highest SAND gate and travels down each node of the tree, using the

appropriate logic gates, until it reaches the leaf nodes.

Following this, (again dependent on the logic gate), the tool car-

ries out the necessary testing steps, recording and outputting data to

the appropriate test run. Vehicle data here refers to any data that is

available from the vehicle, including personal data, vehicle-generated

data, or data about the vehicle itself.

Investigation of the vehicle through attached aftermarket devices

follows largely the same process, with reconnaissance performed in

the same fashion (although in this case, the reconnaissance involves

learning about both the aftermarket device and the vehicle to which

it is attached). Attacks are then performed on the car (or its compo-

nents) depending on the logic gates of the attack tree, with vehicle

data output to logs.

5.1.4 Key Features

The features of the tool can be categorised broadly into:

• Reconnaissance, which can be defined as a survey of the sys-

tem’s existence, configuration and capabilities (Table 11),

• Connection attributes, which includes information on pairing

mechanisms, transmission sizes and connection state (Table 11),

and

• Attack goal, which encompasses methods that would allow the

realisation of the attack goal (Table 12);
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input : Predefined attack tree

output : Vehicle data

1 initialization;

2 for AttackGoal do

3 foreach AttackTreeBranch in order do

4 foreach AttackTreeLeaf do

5 if AttackTreeLeaf is OR then

6 while attack fails do

7 AttackSteps on vehicle;

8 end

9 Record vehicle data;

10 if no vehicle data then

11 Display AttackSteps and AttackTreeLeaf;

12 else

13 Populate AttackTreeLeaf with vehicle data;

14 end

15 else

16 perform all AttackSteps;

17 Record vehicle data;

18 if no vehicle data then

19 Display parent nodes with children for AttackSteps;

20 else

21 Populate AttackTreeLeaf with vehicle data;

22 end

23 end

24 end

25 end

26 for AttackTreeLeaf do

27 if has vehicle data then

28 for AttackTreeLeaf do

29 Display AttackTreeBranch;

30 end

31 else

32 for Empty AttackTreeLeaf do

33 Display AttackSteps;

34 end

35 end

36 end

37 end

Figure 7: Algorithm used for testing the Bluetooth interface [33]
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Table 11: Proof-of-concept tool features (expanded version from [33])

Feature Method

R
ec

on
na

is
sa

nc
e

(A) Discovery of ‘discoverable’ de-
vice addresses

Inquiry scans for available Blue-
tooth addresses

(A) Discovery of ‘hidden’ devices Brute-force scanning (incrementing
the address bits by one before
sending an inquiry). Requires pre-
knowledge of the first three bytes
of the Bluetooth address (OUI) - or
other address bytes to be feasible.

(A) Determination of device manu-
facturer

Using the OUI to scan through
a database of stored OUIs (from
IEEE’s standard register [77])

(A) Determination of Bluetooth chip
manufacturer

Using device information supplied
by bluez

(S) Retrieves FCC ID information Retrieves relevant Federal Commu-
nications Commission (FCC) web
link if ID is known by user

(A) Determination of service pro-
files offered by device

Using the Service Discovery Proto-
col (SDP)

(A) Preliminary indication of device
operating system (OS)

Using indicators in discovered ser-
vice profiles

(S) Determination of whether device
uses legacy pairing

Checks Bluetooth version (version
2.0 or before means that legacy
pairing is in use, whilst version
2.1 or above means that use of ei-
ther legacy pairing or Secure Simple
Pairing (SSP) is possible)

(A) Determination of open ports Sending information to all possible
RFCOMM and L2CAP ports and
awaiting the appropriate responses

(A) Determination of filtered ports Sending information to all RF-
COMM and L2CAP ports and filter-
ing for specific error messages

C
on

ne
ct

io
n

A
tt

ri
bu

te
s

(A) Determination of pairing status With reference to local paired de-
vices list

(S) Pair or unpair the device as ap-
propriate

With reference to local paired de-
vices list, subject to appropriate au-
thentication

(S) Spoof a device Calls to installed spooftooph[43] pack-
age

(A) Checks for presence of OBEX
File Transfer Profile (FTP) service

With reference to discovered service
profiles

(A) Checks for presence of OBEX
Push Profile (OPP) service

With reference to discovered service
profiles

(A) Determines maximum transmis-
sion unit (MTU) for open L2CAP
ports

Sending increasing size of packets
until Bluetooth error 90, message
too long appears

(A) = fully automated, (S) = semi automated, requires manual intervention
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Table 12: Proof-of-concept tool features (continued) (expanded version from
[33])

Feature Method
A

tt
ac

k
G

oa
l

D
at

a
Ex

tr
ac

tio
n (S) Attempted extraction of informa-

tion from headunit
Using “attention modem” (AT) com-
mands through open RFCOMM
ports

(S) Attempted extraction of informa-
tion by browsing headunit filesys-
tem

Mounting the filesystem on a
“Filesystem in Userspace” (FUSE)
based filesystem type (if OBEX FTP
exists)

(S) Attempted extraction of informa-
tion

Using the dot-dot-slash (../) attack
to attempt directory traversal be-
yond the given restricted directory
(if OBEX FTP exists)

D
oS

(A) Attempted denial of service Flooding open L2CAP ports with
L2CAP echo requests

(S) Attempted denial of service Repeated data push through OBEX
channels

(S) Attempted denial of service Pushing of malformed data through
any RFCOMM channels

V
eh

ic
le

C
om

pr
om

is
e (A) Extract vehicle specific informa-

tion
Vehicle information based on AT
commands sent to an attached wire-
less Bluetooth-enabled OBD-II de-
vice

(S) Attempted extraction or denial
of service

Through injection or flooding us-
ing OBD-II protocol messages (see
Chapter 7). User specifies parame-
ters such as type and number of
messages and time intervals

(S) Attempted vehicle compromise Through injection or flooding using
raw pre-determined CAN messages
(see Chapter 7). User specifies CAN
header ID, CAN data payload, num-
ber of messages to be sent and time
intervals

(A) Vehicle data extraction Passive monitoring of all exposed
CAN buses on the OBD-II port

O
ut

pu
ts

(A) Scan logs Written to CSV or TXT files and col-
lated at the end of the test run

(A) Populated attack tree Displayed and logged with results
of the test run

(A) Subtrees Where test results have not been
found or entered, denoted by NULL,
appropriate subtrees (found using
width-first search) will be displayed
and logged.

(S) EVITA Severity classifications For each result in combination with
answers to tester queries, a sever-
ity classification based on the “pri-
vacy” and “operational” categories
(see Chapter 2) is given.

(A) = fully automated, (S) = semi automated, requires manual intervention
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• Reporting, including logs of all data gathering and tests run

(Table 12), parameters chosen by the tester (where appropriate)

and the severity classification (see Chapter 5.1.4.1)

Each of these categories is an individual component (with the in-

dividual attack steps forming sub-components). The attack goals in

this case were two examples of the attack classification as described

by [44] and are in line with the general accepted security testing goals

of violating confidentiality, integrity or availability (CIA).

This structure allows for different permutations (depending on the

attack tree desired), and for extensibility; new attack methods can

be added as steps (as sub-components) within each module. New

attack goals that come within test scope can also be added to the

tool as a different module. Since the beginning of every security test

begins with an inspection of the system, the reconnaissance module

can likewise be re-used at the beginning of every test run.

5.1.4.1 Severity Classification

Based on the EVITA severity classes as described in Chapter 2.2, the

diagnosis element of the tool assists in classifying severities of the

various data points discovered.

Although there are four classes, only the privacy and operational

classes were considered. This is because the safety classification would

need safety analyses (and the attendant processes by which to judge

its severity is outside the scope of this thesis). The financial category

pertains to two aspects of financial loss. Firstly, loss through financial

transactions within the vehicles, a feature that is not yet widely de-

ployed and not present on any of the vehicles tested. Secondly, the

financial rating could also be due to severity of loss through theft of

the vehicle. However, there is no definitive real world detection mea-

sure or tool to determine whether a (Bluetooth) vulnerability led to

this theft, even should the vehicle be recovered.

This part of the tool is semi-automated, in that there are several

questions for the user to answer (based on manual observations) in

conjunction with the results of the appropriate testing process. A

severity level (S0-S4) is then given to each of the findings (labelled

‘ACT’ for actual). Furthermore, a potential severity level (based on

worst-case scenarios should an attacker be able to carry through to

exploitation) is also given (denoted by ‘POT’). All of the above is tab-
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ulated with a rationale for each of the ratings (Figure 8). For specific

examples of questions asked and the results, please refer to Chap-

ters 6 and 7.

Figure 8: Example EVITA severity classification table

This process is incorporated into the tool to allow for some guid-

ance as to the security assurance required in the context of EVITA

and J3061 (see Chapter 2.2, Table 1), which, at this time, is the only

automotive specific cybersecurity standard. Improvements to the sys-

tem could be prioritised based on how high the actual or potential

severity levels are. Because these trace back to the attack tree, the hi-

erarchy of the attack tree can then be used to locate the root problem

to be addressed. An example of this is given in Chapter 8.3.

5.1.4.2 Automation

The tool is semi-automated, in that many aspects of the test suite

do not require manual intervention. This is true of the majority of

the reconnaissance and connection attribute determination features.

However, some manual decision making is required when perform-

ing any of the attack goal tests. Automation is difficult in these cases

as the target system is a black box, and the search for weaknesses in

such an environment comes with a large number of sequential deci-

sion making issues [70]. Indicators regarding level of automation for

each of the features are given in Table 11 and 12.

Subsequently, a key consideration during development of the tool

was the question of which aspect of the test suite could be auto-

mated. There were some aspects where non-trivial development was

required, when it would have been simpler to observe the target de-

vice (such as which of four SSP mechanisms were in use during pair-

ing), and others where manual intervention was required as the in-

formation is generally held physically. An example of the latter is the

device’s Federal Communications Commission (FCC) ID. This ID is
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granted when a device requiring any kind of radio frequency commu-

nications is to be sold or imported into the United States. Manufac-

turers are obliged to supply electromagnetic capability information,

block diagrams, functional tests and safety analyses (amongst others).

Not all of the information is publicly available. However, it provides

valuable information on the attributes of wireless communications,

and is usually printed on a physical label.

Some manual observation also plays a large part when running

through the test suite. The denial of service test for example was

tested against a phone call made, to see if there was any discernible

disruption in service or connection. Whilst the tool records the num-

ber of packets sent and transmission sizes, there was no non-trivial

way to quantitatively measure connection quality at the same time.

In summary, the tool, whilst being only semi-automated, provides

a significant head start with regards to establishing the security state

baseline for the target system. Furthermore, the attack tree methodol-

ogy underlying the tool also provides for a traceable and systematic

set of results.

5.1.5 Input Domain Coverage

The Bluetooth and OBD-II interface as explored in this thesis (see

Chapters 6 and 7) is of indefinite size and complexity, since no infor-

mation is available regarding specifications or execution paths. This

presents problems when looking at systems testing, and necessitates

careful consideration of input values and the sequence thereof.

This is similar to the problem of automation as discussed above,

and in a complete black box, testing for non-functional properties

such as security requires manual intervention and observation in or-

der to complete the test suites since execution paths are unknown.

The second problem within the testing space is that results of the

same test do not always present themselves, since the front end (with

the user interface) could be a separate on-board unit to that of the

back-end providing the software. Thus the front-end software could

be programmed to ignore exceptions, may not recognise exception

handling alerts or may call other (unknown) functions in the event

of invalid input. The back-end unit may also respond to errors in a

similar fashion, and of course, implementation differs from model to

model of vehicle.
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Therefore, although boundaries are commonly used in testing [157],

they are incredibly difficult to establish in this case. There is no knowl-

edge of minimum or maximum values (and therefore no knowledge

of what the extreme inputs might be), and tests to gather data on such

may only result in notices based on the Bluetooth standard rather

than from the underlying operating system. An example of this is

sending malformed characters through open RFCOMM ports. Send-

ing a value with a length of one byte or 10 bytes resulted in the

message “forbidden” in one vehicle, but in other vehicles there was

no response whatsoever.

In the case of the thesis, the attack trees are used as the test set by

which to evaluate Bluetooth interfaces in vehicles. The aim of this set

is to reveal undesirable behaviour (i.e. the attack goal). Since there is

no knowledge with regards to the controls, outputs or code interfaces

to be stimulated, we can only infer based on known vulnerabilities in

Bluetooth in other domains. Within this set, the subsets are each of

the main branches of the tree (reconnaissance, or connecting to the

target system). As long as each individual attack test is performed

in accordance with the appropriate logic and is successful, we can

assume that the undesirable behaviour exists. Note that the converse

does not hold true (in that if no undesirable behaviour is found, there

cannot be any guarantees or assumptions as to its existence).

Code coverage is not feasible in this study because of the black-box

nature of testing and complete coverage is typically impossible. We

make no claims that the attack trees used here are complete, but is

a representative sample that would allow us to achieve knowledge

regarding insecure, and therefore undesirable, behaviour.

5.2 benchmarking

The tool was tested against devices with known behaviours. An exam-

ple of this is the Nokia 6310i, known to be susceptible to Bluesnarfing
(the theft of information from a mobile device [106]). Testing was also

performed on other, more modern, mobile phones since these devices

have known responses to probing. This was performed both to verify

functionality of the key features, as well as to gather more informa-

tion on what could be included in the test suite.

The second set of tests were performed against a miscellany of

small embedded devices (including keyboards and aftermarket OBD-
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II dongles) to provide another benchmark (this time from less so-

phisticated devices, but with less transparency as to what might be

contained therein).

Although the functionality of the proof-of-concept tool was veri-

fied, direct correlation with insecure behaviours as described in early

Bluetooth security literature was difficult as many of the benchmark

Android phones used newer forms of Bluetooth. These phones all

issued notifications and asked for user confirmation, even with the

phone already paired to the test laptop. Furthermore, functionality

found in smartphones (and the other embedded devices) could differ

from what is found in vehicles (as versions of Bluetooth profiles may

differ). To truly test whether the presence of at least one vulnerability

was adequately addressed, a Nokia 6310i (introduced in 2002) was

also included in the test set. Further benchmarking was resource con-

strained. As many of the reported vulnerabilities are old (see Table 4),

not every device with confirmed vulnerabilities (some of which were

also old) could be acquired in working order.

The summary of all tests performed on benchmark devices are

given in Table 13. Since the tool is still at a proof-of-concept stage,

it is neither exhaustive nor complete. Its primary purpose was to

demonstrate and automate the systematic security evaluation of an

automotive Bluetooth interface.

5.3 summary

The tool created for this thesis is intended to aid in a systematic secu-

rity evaluation of the automotive Bluetooth interface. The tool follows

a pre-defined attack tree in a semi-automatic manner and logs the re-

sults for further analysis. The attack trees were built using the attack

goals of data extraction, denial of service and vehicle compromise

The test suites available in the tool were then benchmarked against

various devices, including mobile phones. This was to verify the func-

tionality of the created tool’s features as well as to gather more infor-

mation on what could be included in the test suite. The result was

a software tool suite that could be used for systematic testing as de-

scribed in the following chapters.
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Table 13: Test results from benchmark devices

OS OUI Chip Class Bluetooth
version

Observations
M

ob
ile

ph
on

es

Android
5.0

LG Qualcomm 0x5a020c 4.0 All reconnaissance proceeded
without problems (but if
phone was not paired, pairing
would be initiated during
port scans). Phones issue
alerts even if pairing is denied
by tester. All AT commands
worked, file system was
browsable (both subject to
user authorisation). No
directory traversal. No
observable effects from DoS
attacks.

Android
6.0

HTC Qualcomm 0x5a020c 4.0

Android
5.0

HTC Mediatek
Inc.

0x5a020c 4.0

Android
4.2

Motorola Qualcomm 0x5a020c 4.1

Windows
Phone 8

Nokia Qualcomm 0x78020c 4.0 Reconnaissance proceeded as
above. All AT commands
worked (with user
authorisation), but filesystem
was not browsable or
traversable (no FTP service).
No observable effects from
DoS attacks.

Blackberry
OS 7.1

RIM Texas In-
struments

0x7a020c 2.1

Nokia
6310i

Nokia Nokia 0x500204 1.1 This phone contained a propri-
etary operating system, and
was one of the first phones
(and the first from Nokia) to
have integrated Bluetooth. It
was also a phone that had
a confirmed vulnerability to
Bluesnarfing [65] (pulling data
from the phone using AT com-
mands), which was confirmed
by use of the proof-of-concept
tool.

Em
be

dd
ed

de
vi

ce
s

Device
type

OUI Chip Class Bluetooth
version

Observations

Keyboard No info Broadcom 0x002540 3.0 These devices were very
simple. The keyboard
required SSP Passkey Entry,
the dongle required a PIN of
1234 to be entered, the remote
control had no requirements.
Services offered were
extremely limited (the dongle
and keyboard only had one).
Therefore no active tests
could be performed.

OBD-II
ELM327

dongle

No info CSR No
class
given

2.1

Stereo
Remote
Control

Primax CSR 0x240404 2.0
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E X P E R I M E N TA L A P P L I C AT I O N : B L U E T O O T H I N

V E H I C L E S

Presented in this chapter are the experiments conducted with the de-

veloped tool (Chapter 5) on the infotainment units of eight real world

standard production line vehicles. Experimental objectives and setup

are presented in Sections 6.1 and 6.2 respectively. Results from the

tested vehicles (which were all registered in the last six years and

spanned seven different manufacturers with six different Tier 1 sup-

pliers) are given in Section 6.3. Analysis of results is presented in

Section 6.4.

There was no additional source of information regarding the Blue-

tooth implementation on these systems, other than what was publicly

available through the owner’s manuals. Only one of the vehicles was

a test vehicle (the others being either a shared resource or private),

and so the invasiveness of the tests performed had to be managed.

These limitations are further discussed in Section 6.5. Finally, how

this framework and the results thereof contribute to a security assur-

ance case is explored (Section 6.6).

6.1 objectives

This study had three objectives:

• Firstly, to establish a baseline security state of the vehicle, deter-

mining both capabilities and implementation specific details;

• Secondly, to extract information from and about the vehicle (in

line with the first attack goal specified); and

• Finally, to cause denial of service disruption to the vehicle or

vehicle’s infotainment unit, in line with the second attack goal

specified.

77
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6.2 experiment setup

Two attack trees (Figure 9 and Figure 10) with the attack goals of data

extraction and denial of service was predetermined using Bluetooth

techniques and attacks described in literature (see Chapter 3).

The experiments were carried out using a laptop with the proof-

of-concept tool developed on a standard Kali Linux 2.0 distribution

and a Cambridge Silicon Radio (CSR) Bluetooth 4.0 adaptor. For full

details of implementation of the proof-of-concept tool used, please

refer back to Chapter 5.

Vehicles were stationary and ignition was switched on, ensuring

that it was within the Class 2 (ten metre) range as no antennas were

used to extend range. If Bluetooth had to be enabled (which was

usually the case) then this was performed before the tool was run. In-

formation regarding each vehicle (with identifying features redacted)

is given in Table 14.

For this study, primarily “legitimate” connections were used. Legit-

imate is defined here as a straightforward connection to the vehicle

from a mobile phone, without any attempt to compromise the Blue-

tooth communications protocol. The reason for this was that the aim

of the study was to explore Bluetooth as implemented on the vehicu-

lar system, rather than the Bluetooth protocol itself, since the security

(or lack thereof) of the Bluetooth pairing mechanisms and the un-

derlying protocols are well studied [32], [64], [65], [97]. A connection

compromise would thus exacerbate the risk of malicious actions on a

vehicle rather than introduce a new risk. The latter is especially sig-

nificant since there are no access control policies on the vehicle, i.e.

access to Bluetooth services implemented was not differentiated by

user, but rather by device. Every device had access to every service

(assuming compatibility, a property we considered out of scope dur-

ing the testing process). There was no need to compromise the pro-

tocol to elevate privilege or gain access to restricted areas as might

be the case with a more traditional computing system. The single ex-

ception to this was the use of a spoofed device (at the local testing

interface), to observe whether the vehicle accepted the connection.
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Table 14: General information regarding test vehicles

Vehicle no. Reg. Year Vehicle type Tier 1* OEM*

1 (Table 15) 2013 Small hatchback A I

2 (Table 16) 2012 Small hatchback B II

3 (Table 17) 2015 Sport Utility Vehicle C III

4 (Table 18) 2011 Small hatchback B IV

5 (Table 19) 2016 Sport Utility Vehicle D V

6 (Table 20) 2016 Hatchback E VI

7 (Table 21) 2012 Estate F VI

8 (Table 22) 2015 Saloon D VII

*OEMs and Tier 1 suppliers have been given an alternate denomination
in order to anonymise the data

6.2.1 Attack goals

Two attack trees (according to two attack goals) were created for test-

ing on vehicles. They are discussed below.

6.2.1.1 Data extraction

Data extraction from a vehicle through Bluetooth is largely an exer-

cise in gathering as much information as possible. Although the most

overtly valuable is information regarding the user of the vehicle, data

from the vehicle itself (such as cornering speed) can be used to fin-

gerprint drivers [49].

Other information that may be of use include the age of the technol-

ogy (which may indicate legacy flaws), the chip manufacturer (which

may point to analogous vulnerabilities or bugs), pairing mechanisms

(where aspects such as using a fixed PIN might make a system more

insecure) or other reconnaissance data that could enable targeted at-

tacks. The attack tree used for this attack goal is shown in Figure 9.

6.2.1.2 Denial of Service

The denial of service goal involves flooding and fuzzing, as jammers

were not available at the time of testing. The aim was to cause disrup-

tion to the vehicle or any component therein, with the primary target

being the headunit (where Bluetooth implementations are usually de-

ployed). Because of the nature of denial of service, and because the

system under test is a black box, most of the results are based on
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Figure 9: Attack tree with data extraction as an attack goal (adapted from
[33])
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Figure 10: Attack tree with denial of service as an attack goal

observation whilst trying to perform normal actions (such as making

a phone call), or on what might happen on the graphical front end,

rather than anything being returned by the vehicle. The attack tree

used for denial of service is shown in Figure 10.

6.3 experimental results

A summary of results and observations is given for each vehicle

tested in Tables 15 to 22. Furthermore, an overall summary of test

effects of each of the attack goals is given in Table 23. Due to com-

mercial sensitivity, identifying information for each vehicle has been

redacted.
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Table 15: Experimental Results: Vehicle 1 [33]

Interface characteristics Observation

Address: xx:xx:xx:34:8A:2D

Version: 2.0

Class: 0x340408

Services: HFP, SyncML Server,

A2DP, AVRCP, PBAP (Client),

OBEX OPP, MAP MNS

Open ports: RFCOMM 1,4 and

L2CAP 1,3,23,25

Bluetooth version 2.0 means that vehicle

is using legacy pairing exclusively. Vehicle

produces dynamic 6 digit PIN. Device class

interprets to an audio/video hands-free

device

Services include a Synchronization Markup

Language (SyncML) Server (for phonebook,

message and calendar information synchro-

nisation). A SyncML client could be used to

extract personal information that is stored on

the vehicle (although connections through

this were unstable - no information was

found).

Tests Outcome

D
at

a
ex

tr
ac

tio
n AT Commands

Filesystem mount and directory

traversal

Responds to all AT commands sent on

channel 4 with AT+BRSF=39. Commands on

other channels end with errors such as 103,

Software caused connection abort.

No OBEXFTP, so filesystem cannot be

accessed through this vector.

D
en

ia
lo

fs
er

vi
ce Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Two responsive L2CAP ports found, with

maximum transmission unit (MTU) size of

4096 and 242 respectively. Flooding of the

port with the larger MTU resulted in discov-

erable mode disrupted intermittently when

trying to pair. Calls made had quality issues

or were dropped.

Additional observations

Time discoverable was limited to two minutes, and the user had to enable

Bluetooth. Audio and visual notice was given of successful pairing, and test

device was added to the paired list. User is not alerted to any of the attempted

actions beyond pairing. The vehicle recognised a spoofed device as one that has

previously paired, although authentication checks failed (probably due to incorrect

location on the test laptop of the link key acquired from a previously paired device).
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Table 16: Experimental Results: Vehicle 2 [33]

Interface characteristics Observation

Address: xx:xx:xx:C3:4A:64

Version: 2.0

Class: 0x340408

Services: Headset, Sync, HFP, OBEX

OPP, UPDATE, Vendor specific SPP1

and SPP2, PBAP (Client), A2DP,

AVRCP, OBEX FTP, PANU, Vendor

specific Audio Target and Audio Sink

Open ports: RFCOMM 3, 4, 5, 8, 9,

10, 12 and L2CAP 1, 15, 25, 27

Bluetooth version 2.0 means that vehicle is

using legacy pairing exclusively. Vehicle asks

for a 4-digit PIN to be entered on testing

device, with a default of 0000. Device class

interprets to an audio/video hands-free

device

This vehicle had five vendor specific profiles,

two of which were Serial Port Profiles (SPP).

These implies that the system could be

manipulated using AT commands, although

the bespoke aspect might mean that the AT

commands are also vendor specific. Another

interesting point is the Personal Ad-Hoc

Network User (PANU) profile, which is

used to receive Ethernet packets using the

Bluetooth Network Encapsulated Protocol

(BNEP).

Tests Outcome

D
at

a
ex

tr
ac

tio
n AT Commands

Filesystem mount and directory

traversal

Channel 5 returned AT+BRSF=63, other chan-

nels returned errors such as 38, Function

not implemented, 103, Software caused

connection abort and 104, Connection

reset by peer. Filesystem was mountable,

browsable and writable. There were two

directories already present, recorder and

update ftp. The latter might be connected to

the vendor specific UPDATE profile found.

D
en

ia
lo

fs
er

vi
ce Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port scans and flooding caused the vehicle

system to make a phone call to “Unknown

number”. L2CAP ports had very large MTUs,

especially 15 (with 1691 bytes) and 27 (with

2048 bytes). The entire headunit refuses to

respond thereafter (cannot hang up, physi-

cal buttons don’t respond and mutes any-

thing that is currently playing). Port flood-

ing also created intermittent 103, Software

caused connection abort” errors.

Additional observations

User had to enable Bluetooth, but discoverable time was not limited. A small visual

alert in secondary screen above the steering wheel is given, but no alert from the

main screen during pairing. No alerts were given for all subsequent reconnaissance

and data extraction actions. Testing device was added to the paired devices list.

The vehicle did not recognise spoofed devices.
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Table 17: Experimental Results: Vehicle 3

Interface characteristics Observation

Address: xx:xx:xx:7B:10:69

Version: 4.0

Class: 0x340408

Services: HFP, A2DP, AVRCP,

PBAP, MAP MNS, OBEX OPP,

Wireless iAP, JCI Reflash Server,

Pandora for Android & Blackberry,

Stitcher, AHA Radio, Android VDT

Open ports: RFCOMM

1,2,3,4,5,6,7,8,9,19 and L2CAP 1,23

Bluetooth version 4.0 means that vehicle is

capable of using SSP (in this case numeric

comparison). Vehicle produces dynamic 6

digit PIN. Pairing with SSP disabled on the

test laptop meant 0000 used as PIN. Device

class interprets to an audio/video hands-free

device

This vehicle featured an unusually large

number of services. Pandora, Stitcher and

AHA Radio were related to music-streaming

services. The presence of the Android VDT

profile seems to indicate that the vehicle runs

Android Auto. Wireless iAP is an Apple

proprietary protocol used for data transfer

through Bluetooth (there were three ports on

the vehicle). Finally, although there was no

information regarding “JCI Reflash Server”,

this service is suggestive of the ability to

write to the system.

Tests Outcome

D
at

a
ex

tr
ac

tio
n

AT Commands

Filesystem mount and directory

traversal

Responds to all AT commands sent on all

channels with error 12, Cannot allocate

memory, except on channel 2 where the

response was error 52, Invalid exchange.

There was no OBEXFTP and therefore

no access to the filesystem.

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

L2CAP 1 had an MTU of 246, the other

ended with error 111, Connection refused

after sending a packet of size 180 bytes. Sub-

sequent attempted denial of service actions

was prevented in all cases, denoted by error

104, Connection reset by peer.

Additional observations

Time discoverable was limited to three minutes, and the user had to enable

Bluetooth. Audio and visual notice was given of successful pairing, and test device

was added to the paired list. User is not alerted to any of the attempted actions

beyond pairing. The vehicle did not recognise the spoofed device
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Table 18: Experimental Results: Vehicle 4 [33]

Interface characteristics Observation

Address: xx:xx:xx:6E:DC:D5

Version: 2.0

Class: 0x340408

Services: Headset, Sync

Command, HFP, OBEX OPP, PBAP

(Client), Vendor specific SPP1 and

SPP2, OBEX FTP, PANU

Open ports: RFCOMM

2,3,4,5,8,9,10,11 and L2CAP

1,15,23,25,27

Bluetooth version 2.0 means that vehicle

is using legacy pairing exclusively. User

chooses the PIN. Device class interprets to

an audio/video hands-free device

Services include Sync Command, which

is used to initiate synchronisation from a

server, vendor specific serial ports as well

as Personal Ad-Hoc Network User, which

again indicates the ability to send in Ethernet

packets.

Tests Outcome

D
at

a
ex

tr
ac

tio
n AT Commands.

Filesystem mount and directory

traversal

AT commands returned AT+BRSF=63, AT+GMI

and AT+VGS=8. The latter two deals with dis-

playing the manufacturer for the GSM mod-

ule and the value of the gain of the speaker

respectively. It is unclear whether +GMI is

empty, or providing an instruction. It is also

an indication that there may be cellular ca-

pabilities within the vehicle. Filesystem is

mountable, browsable and writeable, with

two folders recorder and update ftp.

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port flooding resulted in headunit dialling

****, and thereafter calls could not be made.

Hanging up was not possible, but the rest

of the headunit operated normally. Fuzzing

on RFCOMM channels resulted in code=0x43

FORBIDDEN.

Additional observations

User had to enable Bluetooth, but discoverability has no time limit. Audio and

visual notice was given of pairing attempt, but no alert to successful pairing. Test

laptop was not added to the paired list. User is not alerted to any of the attempted

data extraction actions beyond pairing. The vehicle recognised a spoofed device

as one that has previously paired, although authentication checks failed (probably

due to incorrect location of the link key acquired from a previously paired device).
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Table 19: Experimental Results: Vehicle 5

Interface characteristics Observation

Address: xx:xx:xx:E5:88:55

Version: 2.0

Class: 0x340408

Services: Audio Sink, AVRCP,

PBAP (client), OBEX OPP, HFP

Open ports: RFCOMM 1 and

L2CAP 1,3,23,25

Bluetooth version 2.0 means that vehicle

is using legacy pairing exclusively. User

chooses the PIN. Device class interprets to

an audio/video hands-free device

Bluetooth functionality is restricted, with

no messaging services, and only standard

in-vehicle Bluetooth features enabled

Tests Outcome

D
at

a
ex

tr
ac

tio
n

AT Commands

Filesystem mount and directory

traversal

AT commands returned AT+BRSF=111 on

channel 1. All other channels responded

with error 16, Device or resource busy.

No OBEX FTP and therefore no access

to filesystem

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port flooding and fuzzing did not yield any

observable results.

Additional observations

User had to enable Bluetooth, discoverability limited to three minutes. Audio and

visual notice was given of successful pairing, and test device was added to the

paired list. User is not alerted to any of the attempted data extraction actions

beyond pairing. The vehicle did not recognise a spoofed device as previously

paired.
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Table 20: Experimental Results: Vehicle 6

Interface characteristics Observation

Address: xx:xx:xx:F0:E7:B8

Version: 2.1

Class: 0x260408

Services: PBAP (client), A2DP,

AVRCP, HFP, PANU, “None”

Open ports: RFCOMM 1,2 and

L2CAP 1,23

Bluetooth version 2.1 means that vehicle is

using SSP numeric comparison by default,

although pairing without SSP was possibly

with user choosing the PIN. Device class

interprets to an audio/video networking and

rendering device

Has PANU, which indicates that Ether-

net packets can be sent to the system.

Curiously, there was also a service labelled

“None” assigned to RFCOMM 1 which was

open.

Tests Outcome

D
at

a
ex

tr
ac

tio
n

AT Commands

Filesystem mount and directory

traversal

AT commands returned errors 40, Too many

levels of symbolic links and 12, Cannot

allocate memory on all open channels.

Filesystem could not be accessed as there

was no OBEX FTP

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port flooding and fuzzing did not yield any

observable results.

Additional observations

User had to enable Bluetooth, discoverability time was not limited. Audio and

visual notice was given of successful pairing, and test device was added to the

paired list, however it added a spoofed name rather than the actual name of the

device. User is not alerted to any actions beyond pairing. The vehicle did not

recognise a spoofed device as previously paired.
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Table 21: Experimental Results: Vehicle 7 [33]

Interface characteristics Observation

Address: xx:xx:xx:8A:81:20

Version: 2.0

Class: 0x300408

Services: PBAP (client), AVRCP,

OBEX OPP, SyncML Server, HFP

Open ports: RFCOMM 1,4 and

L2CAP 1,23

Bluetooth version 2.0 means that vehicle

is legacy pairing exclusively, with user

choosing the PIN. Device class interprets to

an audio/video device with object transfer

capabilities

Has PANU, which indicates that Ether-

net packets can be sent to the system.

Curiously, there was also a service labelled

“None” assigned to RFCOMM 1 which was

open.

Tests Outcome

D
at

a
ex

tr
ac

tio
n

AT Commands

Filesystem mount and directory

traversal

AT commands returned error 112, Host is

down on all open channels.

Filesystem could not be accessed as there

was no OBEX FTP

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port flooding and fuzzing did not yield any

observable results.

Additional observations

User had to enable Bluetooth, discoverability time was not limited. Audio and

visual notice was given of successful pairing, and test device was added to the

paired list. User is not alerted to any actions beyond pairing. Vehicle responded to

a SyncML client on test laptop requesting for contact synchronisation in location

text/v-card contacts, although no information came back, and the session ended

(possibly due to an unstable connection). The vehicle recognised spoofed device as

a previously paired device, but authentication failed (in this case it was expected

as the link key had not been acquired).
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Table 22: Experimental Results: Vehicle 8

Interface characteristics Observation

Address: xx:xx:xx:6F:6D:E6

Version: 3.0

Class: 0x360408

Services: OBEX OPP, Audio Sink,

AVRCP, HFP, MAP MNS, PBAP

(client)

Open ports: RFCOMM 1,2 and

L2CAP 1

Bluetooth version 3.0 means that vehicle

uses SSP, in this case numeric comparison,

with vehicle generating the six-digit PIN.

Device class interprets to an audio/video

device with networking, rendering and

object transfer capabilities

This service has only standard in-vehicle

Bluetooth profiles

Tests Outcome

D
at

a
ex

tr
ac

tio
n

AT Commands

Filesystem mount and directory

traversal

AT commands returned error 12, Cannot

allocate memory and 13, Permission

denied on all open channels.

Filesystem could not be accessed as there

was no OBEX FTP

D
en

ia
lo

fs
er

vi
ce

Flood L2CAP ports

Repeated data push through OBEX

channels

Fuzz open RFCOMM channels

Port flooding and fuzzing returned er-

rors 12, Cannot allocate memory and 13,

Permission denied. This may have been a

problem with setup (as the “permission de-

nied” error is apparently a common bug

[112] in the Bluez version used at the time).

Additional observations

User had to enable Bluetooth, discoverability time was limited to two minutes.

Audio and visual notice was given of successful pairing, and test device was added

to the paired list. User is not alerted to any actions beyond pairing. The vehicle did

not recognise a spoofed device as previously paired.
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Table 23: General summary of test effects on test vehicles

Vehicle No. Bluetooth

Attack Goal

Data Extraction Denial of Service

S P F S P F

1 v2.0 x x

2 v2.0 x x

3 v4.0 x x

4 v2.0 x x

5 v2.0 x x

6 v2.1 x x

7 v2.0 x x

8 v3.0 x x

S = Success (i.e. positive data which describes the system in some way, or complete compo-
nent failure), P = Partial success (i.e. only negative data such as errors, or publicly available
data, or some part of component service is compromised), F = Fail

6.4 experimental analysis

This section explores some of the apparent themes and common threads

from the experimental results on the eight vehicles tested. Implica-

tions of these themes are also discussed.

6.4.1 Characteristics

There were similarities between implementations of Bluetooth (based

on the combination and nature of services offered), not between vehi-

cles of the same OEM, but between vehicles who had the same Tier 1

supplier for the headunit. The converse, where vehicular implemen-

tations used different Tier 1 suppliers but were manufactured by the

same OEM having no similarities, was also true.

For example, vehicles 2 and 4 had different manufacturers, but the

same Tier 1 supplier (see Table 14) and clearly displayed the same

sets of vendor specific serial port profiles, as well as the PANU profile.

They even reacted in a similar way to port flooding (see Section 6.4.3).

Likewise, vehicles 5 and 8, which also share a Tier 1 manufacturer

but not an OEM also shared similar characteristics. However, without
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vendor specific profiles, this may be less straightforward to compare

without system specifications or information.

Conversely, vehicles 6 and 7 (being from the same OEM) had differ-

ent Tier 1 suppliers. Vehicle 6 had a PANU profile, and a nondescript

“None” service, whilst vehicle 7 had a SyncML Server profile. Both

returned different reactions to AT commands.

Although no statistics are available, there are indications here that

profiling or reconnaissance on Bluetooth implementations in automo-

tive headunits should be based on the Tier 1 supplier rather than the

manufacturer of the vehicle.

6.4.2 Pairing and connection

The pairing process differed (at least mechanically) on the vehicles

tested, with some generating PINs, others with hard-coded PINs, and

still others asking the users to select the PIN.

Five (vehicles 1, 2, 4, 5 and 7) out of the eight vehicles tested used

the legacy pairing mechanism exclusively. This is the more insecure

of the two pairing mechanisms specified by Bluetooth SIG (see Chap-

ter 3), and could be considered a design weakness. A passkey was

always required, although implementations differed in that some gen-

erated a PIN, whilst in other vehicles, the user was required to choose

the PIN. In one instance, the PIN was set to ’0000’ by default (vehi-

cle 2), although this was user customisable. The issue with the latter,

however, is that it is easily guessable and increases the risk of an

unauthorised connection, especially if the user did not change it.

Where the vehicles used SSP (where we observed that the mode

most in use is numeric comparison), disabling SSP on the test laptop

meant that pairing occurred with the legacy pairing mechanism (a

form of downgrading attack [9]). Here, too, there was an occurrence

of the default PIN being ’0000’ (vehicle 3). The other two required

the user to choose the PIN. The implication of this is that even where

the newer SSP pairing mechanism is in use, bypassing such measures

could be straightforward because of the weakness of the default PIN.

The number of open ports is usually dependent on whether a user

is paired or connected to the vehicle. However, the OBEX OPP profile

remained open in vehicles 1 and 2. Although data extraction through

this port was unsuccessful, techniques such as repeated pushing of

files through this port could help fulfil alternative attack goals (such
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as denial of service). The latter in this case was not performed due to

the invasiveness of the test and the risk of damage to the vehicle.

Once pairing and connection was established, all vehicles univer-

sally reconnected with the test laptop as soon as it came into range

(which could, of course, be extended). The ramification of this is that

an attacker would only need to go through (or compromise) the pair-

ing process once.

The window in which a vehicle remained discoverable also varied.

Half the vehicles tested (vehicle numbers 1, 3, 5 and 8) had a time

limit of either two or three minutes where the discoverability of the

interface was enabled. The other half held the discoverability window

open indefinitely, which may leave the vehicle open to opportunistic

adversaries. However, this is mitigated somewhat by the fact that in

all cases, the user had to enable Bluetooth discoverability which offers

some protection from the risk of exploitation. Note that it is only a

mitigation (rather than a true defence) as brute-force scanning (walk-

ing through the lower address part (LAP) of the Bluetooth address

and incrementing by one before sending a query [66]) is possible, and

a device will respond to an inquiry if queried directly. Feasibility of

this attack depends on having enumerated some of the address bytes

(for example, through knowing the address bytes of the OUI).

Vehicles 1, 4 and 7 recognised a spoofed device as a previously

paired device and automatically tried to reconnect as soon as the

spoofed device was within range. In two cases (vehicle 1 and 4), au-

thentication failed. Although the correct link key (which is calculated

during the pairing phase and used for all transactions thereafter - see

Chapter 3) was acquired, the location it was placed in the test laptop

might have caused the rejection of authentication. The latter is likely

a setup issue. Since Bluez (the Bluetooth stack on Linux) had no doc-

umentation regarding the manipulation of link keys, the process was

(and in the future will continue to be) trial and error. In vehicle 7,

authentication failure was expected since at the time we had not yet

acquired the correct link key.

6.4.3 Implementation weaknesses

An interesting finding was the ability to mount a filesystem with

read and partial write access; through this entry point, any num-

ber of crafted applications could be placed on to the vehicle to dis-
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rupt operations. There were directories already present (recorder

and update ftp on vehicles 2 and 4 (where both vehicles, incidentally,

also had the same Tier 1 supplier). The latter might be connected to

the UPDATE service profile found on vehicle 2. Although write access

was verified by creating directories, there was no attempt to place

malicious files or to fuzz (for example by using directory names con-

taining non-standard characters). This would have revealed vulnera-

bilities that stem from this design weakness. However, the owner did

not give consent for this. Further experimentation along these lines

could reveal more about this feature.

There were also vendor specific profiles found on three of the vehi-

cles. Vehicles 2 and 4 contained what appeared to be serial port pro-

files. AT commands elicited Bluetooth error 104, Connection reset

by peer, although its functionality was not probed further. Future

work may include traffic sniffing and analysis during normal course

of operations which might yield more information. The vendor spe-

cific profiles on vehicle 3 indicated profiles that allowed for various

streaming music services. Experimentation through Apple’s “Wire-

less iAP” synchronisation service could also reveal more (although

due to resource constraints, this was not tested at the time). There

was a particular profile named “JCI Reflash Server”. Although there

is no publicly available information, the name is suggestive of a fea-

ture that could be exploited. Further exploration would require send-

ing in information and seeing returned data through use of a traffic

sniffer or analyser.

Since hands-free phone calls are one of the more prominent fea-

tures of Bluetooth in vehicles, it was unsurprising to see the Phone

Book Access Profile (PBAP) on some of the vehicles. This allows

phonebooks to be synchronised from a mobile phone (or other de-

vice holding a phonebook in the correct format) to the vehicle. The

‘client’ status denotes that this only goes one way, from the remote

device to the vehicle. Tools such as nOBEX could be used to fuzz this

particular feature by uploading contacts or phone numbers that have

non-standard characters, or are past a certain length. However, there

was reasonable expectation from experimental analyses performed

on vehicles that this might damage the software on the headunit in

some form, so the latter was not tested.

Another feature of interest was that a synchronisation service pro-

file (SyncML Server, Sync, Sync Command) was present in many of
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these vehicles. These synchronisation profiles are generally used to

synchronise phonebooks and other personal information such as con-

tacts and calendars between phone and vehicle. Although there was

no personal data extracted, in at least one instance, a connection (al-

beit unstable) with an alternate SyncML client was established (Bluez

has no such support); the setup could be revised to try and correct for

this (for example by asking for contacts or other data from different

locations) and verify whether any data could be extracted through

this method.

The presence of the Personal Ad-Hoc Network User (PANU) pro-

file on two of the vehicles also bears some scrutiny. This service is

able to transfer Ethernet packets across a connection through the use

of the Bluetooth Network Encapsulation Protocol (BNEP). There are

three security modes used by this profile. The first is “non-secure”,

where a device does not initiate any security procedures. The second

is service-level enforced security, where security procedures are not

initiated before a channel is established at L2CAP level. Lastly, the

link-level enforced security mode initiates security procedures before

the link set-up at the LMP layer [18]. LMP controls the radio link be-

tween two devices. The mode used by the PANU profile in this case

is so far unenumerated, but represents a potential alternative method

to send in (Ethernet) packets that could compromise the headunit.

The denial of service attacks, particularly the port flooding ended

with vehicles 2 and 4 dialling either an “Unknown number” or “****”

respectively. These are implementation errors which have caused a

vulnerability to port scanning. In the case of vehicle 2, the entire

headunit refused to respond thereafter. This included the media and

CD player, radio, virtual buttons or physical buttons. This behaviour

also continued for three minutes after the entire vehicle was switched

off and locked. The headunit remained non-operational until the test

laptop disconnected the Bluetooth connection. Although the process

required pairing, some premeditation regarding pre-pairing (or using

an already paired device) could cause such behaviour, rendering a de-

nial of any information or entertainment service so long as the vehicle

stays within range. In the case of Vehicle 4, although there was similar

behaviour in dialling “****”, the infotainment system remained us-

able; menus could still be accessed and button presses worked as nor-

mal. However, none of the Bluetooth functionality was accessible (no

calls could be made, and contacts could not be accessed). In the con-
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text of a real-world attack scenario, an example could be that such an

attack could be used to interrupt or stop a driver from accessing emer-

gency calling services. Vehicle 1 showed no reaction to port flooding

attacks in the normal course of operations. However, calls made by

the headunit through the Bluetooth connection were dropped and call

quality suffered during these attacks, especially with ports with large

MTU sizes (above the default 672 bytes). This result was reproducible

but was not present in every test run. In the real-world context, this

could be used to interrupt calls that are made (for example, to emer-

gency services). This result could not be replicated in other vehicles,

although this could be explained by the fact that this vehicle had the

largest MTU (4096 bytes) of any of the vehicles tested, and therefore

flooding might have been more effective in this case.

6.4.4 Covert Actions

It has been posited that user interaction within procedures can im-

prove security [164], although there may be conflicts with regards to

safety, in terms of what feedback is given to the driver of the car,

especially during drive time.

The first general observation, however, is that, beyond the pair-

ing process, the human is not usually alerted nor in the loop when

other actions were performed. Thus, AT commands, filesystem mount-

ing or port floods generally went unacknowledged at the graphical

front end. The exception to these were where port flooding caused

the headunit to dial unknown numbers (vehicles 2 and 4), although

these were not alerts, but rather alerting events. The implication is

that attacks could be attempted on the vehicle without the driver be-

ing any the wiser, and the results thereof (such as data exfiltration)

could likewise be covert. All are weaknesses in implementation. Miti-

gation could be provided through a situational awareness display, or

through knowledge of what protections are available. Although this

is still conceptual, the mandatory use of a “cyber dashboard” has al-

ready been proposed by impending legislation such as the US SPY

Car Act 2017 [1].

There was an instance of a vehicle which did not add the test lap-

top to the paired devices list (Vehicle 4), despite the fact that there

was a successful pairing and an active connection. Reconnection to

the system under test with different device classes were attempted.
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Most smartphones, for example have a class device of 0x5a020c, and

spoofing this from a laptop caused several vehicles to recognise the

laptop as a smartphone (rather than as a media player which was

usually the case). Whether this changes the behaviour of the vehicles

or affects whether it is placed on the paired devices list could not be

ascertained. This presents an increased risk, as not only covert attacks

would be possible, but there would be no record (at least on the sur-

face) that would point to an unauthorised device having paired or

connected.

6.5 constraints

Discussed in this section are the constraints on the experiments per-

formed.

6.5.1 Commercial Confidentiality

Organisations such as Information Sharing and Analysis Centres (ISAC)

have been around since 1999 (in the US) [114], but the addition of an

automotive specific centre has only been a recent development [8].

However, even with the publication of best practices, and with OEM

involvement, the centre still emphasises anonymity regarding infor-

mation that is shared and disseminated [8]. This is telling of the cur-

rent nature of the automotive industry. Because of this, technical spec-

ifications, source code, binary files and other information that might

be helpful for a white-box investigation are unlikely to be available.

This impact is felt on all experiments performed in this thesis, and is

the primary reason for taking a black box approach.

6.5.2 Risks to Vehicles

There are areas of further interest beyond the work that was done

here. Many of the tests designed could not be performed as the po-

tential integrity of the vehicles (and thereby its safety) was a concern.

Assurances were given to owners of the vehicles that none of the tests

would be excessively invasive. This meant that, by necessity, many

tests (primarily involving fuzzing) were not performed.
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There were also many services that could be explored further. This

includes the IrMC Sync command (via Infrared), the Personal Ad-

Hoc Network User Service (which allows for Ethernet packets to be

sent via encapsulated Bluetooth packets), as well as PBAP synchro-

nisation (dealing with how the phone book is synchronised between

devices). Several other tools have since been created since the incep-

tion of this method. One of the most relevant is nOBEX [113], which

allows the manual fuzzing of the automotive headunit via manipula-

tion of contacts and calendar items. However, uploading malformed

data may have caused the headunit to malfunction (as has happened

in studies such as that undertaken by Checkoway, McCoy, Kantor, et
al. [36] and Miller and Valasek [110]).

One of the vehicles appeared potentially susceptible to spoofing at-

tacks, in that it recognised an illegitimate device with the same Blue-

tooth address as a previously paired device. Authentication did not

proceed (as discussed in Section 6.4.2). However, the location of the

link key on the vehicle (assuming access to a previously paired phone

is restricted) can be derived from where it is usually stored on conven-

tional Windows or Linux installations (assuming the vehicle is using

Microsoft Windows Auto Embedded or QNX). This subject requires

more exploration, which at this point in time was not in scope as it

would require invasive investigation involving physical removal and

bit-by-bit imaging of the automotive headunit.

An implication of the work here is that privacy could be compro-

mised. However, there were no explicit circumstances in the vehicles

that were tested where privacy was affected (although an attack tree

could be created with the attack goal of privacy violation as a direc-

tion for future development of tests). Thus, other tests could include

tracking the address, name and class of device, along with the map-

ping the signal (RSSI) strength to a variety of physical distances. This

would also feed into the range extension attacks, as the initial distance

(usually 10 metres in a class 2 device) could affect the extent to which

such devices would remain within range. This would have required

legal advice regarding both the use of antennas and the co-operation

and knowledge of the drivers. At this point in time, such an exercise

was deemed out of scope for this thesis.

There were other potential vehicles that were used for the threat

intelligence study (Chapter 3.4) which could have been investigated

further. However, owners did not always give permission to form an
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active connection (or send data) to the vehicle. Because of the expense

of these systems, the number and nature of vehicles that we could do

even truncated tests on was limited.

6.5.3 Limited Number of Vehicles

Vehicles are expensive, and because the ones of most interest are the

vehicles containing sophisticated software, this expense is amplified.

Facilities are also needed to house these cars, and because of the ex-

pense, is also likely to be a shared resource.

There is also a safety concern with regards to the vehicles tested.

Experimentation on both the headunit and through aftermarket de-

vices (as described in the next chapter) caused intermittent issues,

such as constant battery drainage which led to battery damage, ac-

tive and persistent diagnostic problem indicators and slowdown of

the headunit software.

The above becomes an especial issue where the vehicle is privately

owned. Because of these risks, the number of vehicles available were

limited. To that end, eight cars is a small number to test, but the

findings still give a useful baseline insight into what might be imple-

mented on the vehicle.

Work is underway to create testbeds [53] using industry standard

tools that could mitigate these risks, but still give a trustworthy plat-

form on which to test and analyse attacks. However, these are still

nascent, and much of the information required to accurately emulate

a vehicle remains publicly unavailable.

6.6 security assurance

A security assurance case necessarily requires that a claim (such as

“a system is acceptably secure”) should be accompanied by evidence.

The framework and the results from the application thereof would

form part of this case.

There are three aspects of the framework described in previous

sections that could be used to support a security assurance case:

• Firstly, a baseline state could be obtained with what is currently

in production, reflecting realistically what an adversary who is

not an insider might find;
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• Secondly, a similar test could be run iteratively (and indeed, the

tool is designed to be run many times) and the results could be

compared after countermeasures and controls are put in place.

This would result in a differentiation in ratings that could serve

as evidence of improvement;

• Thirdly, many of the tests were not run to completion because

of the constraints and limitations based on lack of technical in-

formation as well as risks to test vehicles. To mitigate this and

give guidance as to the test cases that could be used should cir-

cumstances allow, potential ratings could also be given based

on the worst case scenario; and

• Finally, the severity classification scheme as described in Chap-

ter 5.1.4 could be used as a relative measure to ascertain which

risks should be addressed before others (i.e. evidence for priori-

tisation). This is discussed further below.

6.6.1 Case Study

The severity classification method (and its validation) was, by neces-

sity, created later in the study. As such, seven of the eight vehicles

previously tested on for data extraction and denial of service were no

longer available for use. The real world aspect of this study is thus

limited to the single test vehicle available.

6.6.1.1 Severity classification: data gathering of manual observations

Each rating is given as Spi, Soi where Sp represents the privacy sever-

ity rating, and So the operational severity rating and where i ∈ {0− 4}.

Once the test runs were completed, questions were asked of the

tester with regards to:

• Service profiles and its nature:

– Were there profiles that are named suggestively?

– Were there vendor specific profiles?

– Were there synchronisation profiles?

– Were there Personal Ad-Hoc Network (PAN) profiles?

Certain service profiles mean that personal information can be

synchronised between two devices, which might impact pri-
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vacy. Others may offer more access to the system itself, either

by broadening the attack surface (such as by allowing Ether-

net packets through e.g. through the PAN profile) or bespoke

services which may have implementation flaws. Suggestive pro-

files (such as “Reflash Server”) may help narrow the scope or

provide a target for an adversary. These affect the privacy rating

and potentially the operational rating.

• PIN behaviour:

– Was the PIN dynamic?

– Was the PIN customisable by user?

– Was the PIN easily guessable?

Each of these questions (depending on a positive or negative

answer) would affect the risk of an adversary being able to com-

promise the Bluetooth connection through, for example, eaves-

dropping. In the worst case scenario of a static, fixed and easily-

guessable PIN, the risk would be far greater than if the PIN had

been dynamic or customisable. This would affect both opera-

tional and privacy ratings.

• Data returned by the vehicle:

– Was there information about the vehicle returned?

– Was there information about the user of the vehicle re-

turned?

These questions would affect the privacy ratings given, with the

latter being the highest severity.

• The behaviour of the vehicle during testing:

– Was there discernible operational impact on the system

during testing?

– Was there a reaction on the user interface?

These questions were both used to discern the impact on the

system, and whether any alerting effects resulted. This affects

the operational rating during classification.

Other aspects such as vehicle tracking through the Bluetooth ad-

dress (which affects privacy), and whether there were open ports

(which potentially affects operations) are pulled from the logs created
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on the findings and classified automatically. Thus, the combination of

answers used in conjunction with the findings of the tests resulted in

ratings given to each aspect of the test.

This particular part of the tool also checks through the tree to give

automatic ratings. For example, where there is no OBEX FTP, the

mounting and traversal attacks were not performed. This would au-

tomatically result in an Sp0 and So0 rating.

Recall that only the privacy and operational aspects of the EVITA

classification scheme were considered, since safety (and safety analy-

sis) is considered out of scope for this thesis. Financial ratings were

also considered out of scope as mechanisms for financial transactions

on vehicles are not yet widely deployed, and exploring financial loss

from vehicle theft would also require information that is not available.

6.6.2 Assignment of Severity Classifications

The severity ratings that were assigned for the data extraction and

denial of service attack goals are given in Figure 11 and Figure 12

respectively.

Figure 11: Severity classification ratings for the data extraction test suite

The address, as a unique identifying factor of the headunit, could

also be used to track a vehicle. In terms of the OUI, the fact that this

organisation is known could then lead to further reconnaissance (in-

cluding research into known bugs or software defects), which could

lead to significant impairment. The operating system could not be

enumerated by the tool in this case, and so an automatic rating of 0
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on both privacy and operational fronts was assigned. This could be

adjusted based on the results of manual observation.

The services were all generic (no suggestive or bespoke services),

with no PAN services identified. Again, this is all anonymous data

(Sp1), but operationally has no impact. Legacy pairing was identified,

and so given an actual operational rating of So1, since the impact is

indiscernible, but still presents a weakness. Potentially of course, the

rating is much higher since compromising the pairing could lead to

any number of attacks (including against privacy).

The presence of open ports meant that an actual operational rating

of So1 was assigned, since this allowed us to acquire system informa-

tion. However, operationally, the right AT commands or number of

packets to send could be enumerated and this may result in a higher

potential rating. Since there was no OBEX FTP service on the vehicle,

both the mounting and directory traversal attacks were not carried

out, and therefore both were automatically assigned Sp0, So0 on all

fronts.

Figure 12: Severity classification ratings for the denial of service suite

The first sets of results from the denial of service tests in Figure 12

are identical to the data extraction results since the reconnaissance

aspects were performed in the same vehicle. They are included in the

figure for clarity. For the purposes of the denial of service tests, only

the last two sets of results are discussed.

Flooding caused no discernible impact, however, we were able to

enumerate the maximum transmission units of the open L2CAP ports

on the vehicle, therefore system information was available. This re-
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sulted in the assignment of Sp1 (for anonymous data acquired), but

since there was no discernible impact, the operational rating was set

at So0. Potentially, however, further testing (with more specific unit

sizes, or with more packets or over a longer period of time) could

cause a denial of service in any number of Bluetooth functionalities

in the worst case scenario.

Likewise, stressing open RFCOMM ports caused no impact, al-

though again system information was required (even if it was the

fact that the action was forbidden) and therefore given the same rat-

ing as above. Potentially, finding the right combination and length of

malformed data could also cause denial of service, and the ratings

adjusted accordingly.

Having no information regarding internal paths or interfaces pre-

cludes us from formal verification and validation. There are also no

set of expected outputs in the given context of automotive systems,

since vehicular experimental analysis has typically concentrated on

other technologies (discussed in Chapter 2.1.1). Thus, this severity

classification was validated by two domain experts (biographies are

available in Appendix A.2).

6.6.3 Theoretical Ratings

Although the practical testing to semi-automatically assign ratings

could only take place on one vehicle, information (both manual ob-

servations and logs) are available such that we can form theoretical

classifications by manual means. The ratings follow the same classifi-

cations as described in the SAE J3061 standard (see Table 1 in Chap-

ter 2.2.1).

An example of the theoretical rating is given in Figures 13 (for the

data extraction attack goal) and 14 (for the denial of service attack

goal).

The Bluetooth address is unique to each headunit and by extension

the vehicle. Such an ability to identify a vehicle justifies an Sp2 rat-

ing. Operationally, the severity was set at So0 as there was no opera-

tional impact. Since identification is possible, tracking is also possible.

Hence, the potential severity of Sp3 was assigned.

There were no suggestively named or bespoke services, however

synchronisation services were found. This in itself is anonymous data

which had no operational impact discernible when probed which led
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to the Sp1,So1 ratings. Potentially, this could lead to unauthorised

synchronisation or fuzzing, which resulted in the POT Sp3,So3 rat-

ing. Legacy pairing likewise is anonymous data with no operational

impact discernible (Sp1,So1). Compromising the pairing mechanisms

could lead to driver or vehicle tracking, and could potentially cause

a performance degrade (in the head unit) and so a rating of Sp3,So2

was assigned.

The ability to elicit system information using AT commands as well

as being able to mount the filesystem both led to an ACT rating of

Sp1,So1, but could potentially affect both privacy and performance.

AT commands could be used to extract phone numbers, and mount-

ing with read/write access could mean the injection of malicious files.

This led to the POT rating for these aspects at Sp3,So3.

Open ports are also a danger, as flooding these ports led to the

headunit being hung on a call, with none of the virtual or physical

buttons responding (hence the So3 rating).

Although the assignation was completely manual in these instances,

the exercise serves as a useful point of comparison to the practical ex-

ample carried out above.

Figure 13: Theoretical classification of vehicle 2 for data extraction

As with the case study above, the ratings vary between S0 and

S3 as we are testing individual headunits rather than anything that

could affect multiple vehicles. In this case, it becomes quite easy to

pick out that a successful mount could lead to compromise of the
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Figure 14: Theoretical classification of vehicle 2 for denial of service

headunit and that the availability of vendor specific profiles and the

PAN profile enlarges the number of attacks or techniques that could

compromise the system.

Similarly, Figure 14 shows that privacy is less of an issue (from the

perspective of only trying to cause a denial of service as per the attack

goal), but that there was definitely discernible impact by flooding the

open ports.

Compared to the classification of the first vehicle, this vehicle seems

on the surface to be more insecure; the vehicle presented more effects,

and there are more avenues for further investigation that could lead

to a more severe compromise. However, it should be noted that the

vehicle from which the theoretical results were put together is signif-

icantly more advanced, with richer feature sets. This should be taken

into consideration if direct comparison between the systems-under-

test is required.

6.7 discussion

As can be seen from the results of the classification, there are some

aspects that can be used almost immediately.

Anything that is classified as Sp0,So0 can be added to the security

assurance case as low risk, and therefore low priority. Conversely,

anything with a classification of S4 in any aspect can be targeted

for the development of countermeasures since this rating indicates a
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risk to multiple vehicles. When this process is considered complete,

comparisons can be drawn with the initial rating, and if considered

acceptably addressed, can also be added to the security assurance

case as evidence of risk analysis and risk reduction.

Everything else in the middle would most likely depend on the

components being targeted. These tests are performed on the head-

unit where personal data is most likely to be stored, so privacy might

potentially be given more precedence. For example, given a choice

between Sp1,So2 and Sp2,So1, the latter might be the more likely can-

didate to target for improvement. This may seem intuitive given only

two parameters, but in the event where all four aspects of the EVITA

classification scheme are in play, this could aid in the decision making

process.

Once these classifications take place, they could be used as evi-

dence in security assurance cases not dissimilar to the Automotive

Security Assurance Levels (ASEALs) as proposed by studies such as

Bayer, Enderle, Oka, et al. [10]. Placing it in such a structured manner

could also help scope the breadth and depth of tests to be performed,

in addition to the priority of the testers or the owners of the system-

under-test.

Finally, the rationale given for the worst-case scenario (or the po-

tential ratings) is intended to be a guideline to the starting point for

new test cases based on the information acquired during the recon-

naissance phase. These also provide a feedback pathway to threat

analysis and risk assessment as required by J3061 during the concept

development phase. Alternatively, these can be used as guidance to

what might be performed by a malicious adversary to complete the

attack, since many of the tests pull up just short of an invasive attack

due to the risk to test vehicles (see Section 6.5.2).

6.8 conclusion

It is not inconceivable that each of the weaknesses found here could

lead to a specific exploit. For example, being able to mount and

browse the filesystem with read-write abilities could lead to any num-

ber of buffer overflow, fuzzing or flooding attacks to the detriment of

safety. Being able to bypass secure simple pairing with a default eas-

ily guessable PIN would mean that the risk of unauthorised access

to the system is increased, with covert actions taken on the vehicle
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demonstrated to be possible. Freezing the headunit, or being able

to flood ports (some of which are open even without pairing) could

mean that vital services such as emergency calls (i.e. “eCall” services,

mandated by the EU and to be deployed on all vehicles by 2018 [50])

could either be dropped or not get through at all.

Once testing is complete, the severity ratings that are assigned can

be used to prioritise development of countermeasures, to add evi-

dence to a security assurance case and the rationale behind the worst-

case scenario ratings could be used as guidance for further tests.





7
E X P E R I M E N TA L A P P L I C AT I O N : A F T E R M A R K E T

D E V I C E S

Highlighted in this chapter is a case study and experiments illus-

trating the potential threat that an aftermarket device connected to

the Onboard Diagnostics (OBD-II) port may pose to the vehicle as a

whole.

An overview of the context as well as the vehicular communica-

tions technology in use here is given in Sections 7.1 and 7.2 respec-

tively, followed by the objectives of the experimental analysis in Sec-

tion 7.3.

Experimental setup, results and analyses are presented in Section 7.4

followed by an exploration of what these results might mean in a se-

curity assurance context in Section 7.5. Finally, discussions and con-

clusions are given in Sections 7.6 and 7.7.

7.1 overview

The OBD port is used to provide diagnostic data for regulatory of-

ficials, Original Equipment Manufacturers (OEMs), mechanics and

consumers. Initial experimental analyses (such as that performed by

Koscher, Czeskis, Roesner, et al. [93]) used a wired connection. How-

ever there has been a proliferation of wireless aftermarket devices

which attach to this port, some of which have been used in illegal

activities such as programming a new key in order to steal the car

[29].

The devices being used to test the vehicle (also known as dongles)

connect to the OBD port for communication with vehicular systems

from external sources. This is a method popular with black-box insur-

ance telematics devices (whereby insurance premiums are reduced in

return for “good” driving, measured by this device using “driving

style”). The determination of good driving style is usually established

through usage patterns, typically drawing from parameters such as

acceleration, cornering speed and harshness of braking [67]. Market

109
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forecasts predict that up to 60% of vehicles in the UK will have some

kind of insurance telematics attached by 2020 [67].

Vehicle data that is available through the OBD port is neither en-

crypted nor typically access controlled, either physically or digitally.

Beyond the legal requirement for the OBD port, manufacturers also

use it for maintenance, diagnostic tests or other manufacturer specific

purposes.

7.2 communications

Typically, messages that are sent into the OBD port are either raw

Controller Area Network (CAN) or diagnostic messages. These two

areas of intra-vehicular communications are introduced below.

7.2.1 CAN Messages

The CAN protocol is the primary mode of communication inside the

vehicle. The latest version is CAN 2.0, first specified in 1991 [129]

and embodied as an ISO standard (ISO11898) in 2003. These CAN

messages carry much of the information needed for the operation

and control of the vehicle.

The standard CAN packet comprises (up to) 11 bits for the message

ID, followed by (up to) 8 bytes of data, then a cyclic redundancy check

(16 bits) for error detection. The extended CAN frame format uses 29

bits instead for the message ID with slightly different configurations

of bits to allow for this. We concentrate here on the standard CAN

message only. The full standard CAN frame format can be found in

Table 24, with descriptions of each set of bits in Table 25. The full

8 bytes of data need not be used. Information for a door sensor, for

example, may only require 1 bit. Conversely a message can be spread

across many frames, with various data lengths and offsets.

1-bit 11-bit 1-bit 1-bit 1-bit 1-bit 4-bit 6 64-
bit

16-bit 2-bit 7-bit 7-bit

SOF IDE RTR IDE r1 r0 DLC Data CRC ACK EOF IFS

Table 24: CAN frame format [129]

Arbitration, should nodes on the CAN network transmit simulta-

neously, is based on message prioritisation. This prioritisation is de-

termined using the message ID, with the lowest ID being the high-
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est priority. That being the case, implementation usually means that

mission-critical messages are the ones assigned lower IDs.

Assignment of IDs along with data payload is manufacturer spe-

cific, however, reuse is common to save on the cost of redesigning a

network [125]. Although CAN data is not typically encrypted, reverse

engineering can be a difficult process considering the volume and va-

riety of content that is transmitted. This is especially the case without

a CAN database, which contains definitions for every message and

signal. This file is often highly confidential. However, specific CAN

messages for discrete events (such as unlocking doors) can be ob-

tained in a relatively straightforward manner through trial and error

experiments.

CAN data is transmitted on a CAN network in a bus configura-

tion. Therefore any Electronic Control Unit (ECU) on the network

has access to all messages. There is no addressing; instead each ECU

is programmed to listen to a set of CAN IDs, which triggers some

pre-determined functionality.

7.2.2 Configuration and Diagnostic Messages

Parameter IDs (PIDs) are used to perform diagnostic functions or re-

quest data from the vehicle specifically through the OBD-II port. This

is done through a query-response mechanism, where a PID query

comprises the CAN ID 7DF, followed by a number of (typically three)

data bytes. The first byte is the data length (usually 02) with the sec-

ond byte being the mode and the third byte typically being the PID.

The combination of modes and PIDs can then be sent into the CAN

bus, and a response should be received from whatever in-vehicle

module is responsible (if any). The response CAN ID is typically 8

(in hex) higher than the message ID that the responding ECU an-

swers to. A response of NO DATA usually indicates that the vehicle has

not returned anything, a response beginning with 7F in byte 2 means

that the vehicle does not recognise the request (with qualifying fac-

tors). For example, the vehicle might return 7F if the requested data

could not be obtained due to a malfunctioning sensor.

The first ten modes (01 to 0A, described in SAE J1979 (E/E Diagnos-

tic Test Modes) [134]), are standard and generic to all compliant vehi-

cles. In these standard modes, the PID is only the 2nd byte, with the

3rd to 8th byte unused. With non-standard modes, the PIDs could ex-
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Acronym Description

SOF Start of File

IDE The Identifier Extension establishes the priority of

the message. The lower the binary value of the

ID, the higher its priority. A CAN message frame

with an 11-bit ID is a standard frame. One with a

29-bit ID is an extended frame.

RTR Remote Transmission Request; if this bit is domi-

nant (i.e. 0), more information is necessary from

another node

r0/r1 Reserved bits originally, but now in use in some

implementations to identify XOR masked CAN

messages

DLC The Data Length Code contains the number of

data bytes to be transmitted

CRC Cyclic Redundancy Check for error detection

ACK The Acknowledge bit is overwritten (from reces-

sive (1) to dominant (0)) to acknowledge validity

EOF End of File

IFS The interframe space contains time required to

move a received frame to the message buffer area

Table 25: CAN frame format descriptions [129]
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tend to the 3rd byte. Manufacturers are not obliged to implement all

standard commands and additionally could also define functions for

non-standard PIDs. There is much information that could be gathered

using PIDs to interrogate the vehicle. For example, sending the mode

09 with PID 02 retrieves the Vehicle Identification Number (VIN). The

VIN is unique to the vehicle and is used for many activities, from ve-

hicle maintenance to recovery of a stolen vehicle.

Another set of (related) diagnostic messages called Unified Diag-

nostic Service (UDS) messages are embodied in ISO 14229-1 (Road

Vehicles - Unified Diagnostic Services) [80]. This standard specifies

the requirements for diagnostic services independent of the data link

connection between vehicle and remote device.

Like the J1979 OBD-II messages, UDS works to a request-response

system. Particular service IDs (SIDs) are sent to the vehicle (more

specifically to ECUs that support a particular service) in order to trig-

ger a pre-determined functionality, whether that be to start a Diagnos-

tic Management Session, interrogate UDS-compatible ECUs or reset

the ECU. Again, although the standard determines what some of the

UDS messages do (such as the ones given in the examples above),

manufacturers are able to define their own SIDs.

7.3 objectives

The objectives of these sets of experiments were:

• Firstly, to determine whether it was possible to transmit into the

vehicle using one of these OBD-II devices;

• Secondly, whether these messages would have an effect on the

vehicle (Section 7.4.1) and

• Finally, to systematically enumerate other messages that could

compromise vehicle operations (Section 7.4.4).

The proof-of-concept tool (see Chapter 5) was used to systemati-

cally test a vehicle. Because of the risk of damage to vehicles, the tool

was only run against a designated test vehicle.
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Table 26: OBD scanning devices (dongles) tested

©2017 IEEE

7.4 experimental analysis

Five OBD dongles (Table 26) were connected in turn to the test vehicle,

which was a small hatchback from a major manufacturer, registered

in 2013. Because of the commercially sensitive nature of these mes-

sages, we have redacted identifying information about our test vehi-

cle. Each dongle was used to test message injection into the vehicle’s

internal CAN bus (Figure 15).

Note that, although there are industry standard CAN tools (such

as PEAK’s CAN tools) for vehicle network analysis, the examination

of CAN traffic was not our primary purpose. The slower and less effi-

cient dongles (with ELM327 chips) were used because they were Blue-

tooth enabled. This increased the risk of compromise by adding an

extraneous wireless interface (see Chapter 3.4). This aspect justified

further investigation and thus gave rise to our objectives as stated in

Section 7.3.

7.4.1 Case Study: Experimental Setup

These aftermarket devices work as an OBD to RS-232 interpreter. The

signal conversion from the vehicle CAN bus to RS-232 is performed

via a CAN transceiver chip and an ELM micro-controller [45]. The

Some materials have been removed from this thesis due to Third Party Copyright. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University. 
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OBD dongle
(OBD to
RS-232

interpreter)

Vehicle
network

Laptop
or phone

(AT
Terminal)

Diagnostic
or

CAN
messages

Send diagnostic
or CAN messages
(via Bluetooth)

Vehicle information
(via Bluetooth)log vehicle

response
(if any)

Figure 15: Vehicle with aftermarket devices attached: case study setup
©2017 IEEE

ELM chip allows a serial connection to be created between data ter-

minal equipment (DTE), such as a computer or smartphone, and

data communication equipment (DCE), which are, in this case, the

OBD dongles. The dongle exposes the RS-232 port via Bluetooth’s

Serial Port Profile (SPP) (see Chapter 3). Attention Modem (AT) com-

mands, which are used to configure an RS-232 device, can then be

sent through this serial channel via any terminal program.

7.4.2 Case Study: Experimental Results

Presented below are results and observations based on the experi-

ments carried out in the case study.

The first observation of interest was that every dongle bar one (the

OBDLINK MX) started broadcasting its address as soon as it was

connected to the vehicle’s OBD-II port. This was true regardless of

whether the ignition was turned on. In the case of the OBDLINK

MX, the device remained powered and could be communicated with,

even with the vehicle battery at seven volts. Thus, even with the rel-

atively small Bluetooth Class 2 range of ten metres, there is a clear

security risk, especially with fixed PINs and the discoverable mode

permanently enabled. Security in this regard is improved with the

OBDLINK MX, where the dongle had a two minute discoverable win-

dow.

The second observation was that the low cost dongles used the

more insecure legacy pairing mechanism, with the PIN being almost

invariably ’1234’, in line with those found by [120]. The OBDLINK
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MX tool asked for a comparison with a dynamically generated six-

digit PIN on the phone; however, the dongle contained no screen

and therefore no basis for comparison. Just selecting ‘confirm’ was

enough to allow pairing to proceed. There was communications en-

cryption and authentication, via the Bluetooth standard, between the

serial terminal (computer or cellphone) and dongle. However, the se-

curity was greatly diminished by the fact that the PINs were short,

fixed and easily determined. Furthermore, once a phone or other de-

vice was paired, it remained trusted by the dongle indefinitely and

re-connected automatically once within range. The significance of this

is that the phone or laptop and dongle could be pre-paired, and then

planted in the vehicle afterwards.

As can be seen from Table 26, there were also several dongles that

had an ELM chip version of 1.5. This is a non-existent version [45]

as the version after ELM 1.4b was ELM version 2.1 and could be in-

dicative of a counterfeit chip. Although this did not affect our exper-

iments, the probable counterfeit ELM chips were not able to accept

the full ELM AT command set nor did they correctly implement some

of the commands.

Once devices were paired, a series of AT messages were sent in

order to configure the dongle and monitor the traffic from whatever

CAN bus was exposed on the OBD port. The appropriate messages

were then sent to the dongle via a simple terminal program. The

commands used are summarised in Table 27.

The modes and PIDs used in this experiment were not standard

and would have been set and specified by an individual OEM. This

seeming obscurity does not negate the danger as many diagnostic

functions could potentially induce dangerous effects and every com-

bination of mode and PID could be cycled through to try and brute

force the combinations that could cause adverse reactions from the

vehicle. Not every diagnostic message elicits a physical response or

logical response, however, anything that comes back from the CAN

bus could be used in future reverse engineering endeavours.

The results of trials with one non-standard diagnostic message that

did produce a physical response are summarised in Table 28. The

experiment was performed by sending the message both within and

outside the vehicle cabin (within a five metre range) with the same

results.
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Table 27: Commands sent to the OBD connected dongle

©2017 IEEE

Also seen from Table 28 is that sending mode and PID in a con-

tinuous stream caused functionality to flicker, rather than to stop al-

together. This was probably because CAN traffic on the bus network

continued to be generated on the vehicle. Essentially, messages that

were sent through into the network from an external source had to

contend with still flowing data. Unless the native CAN traffic is sup-

pressed, flickering behaviour is to be expected. Furthermore, as CAN

performs error checking, as soon as the messages stopped, the ve-

hicle returned (physically) to its original state. Note that we have no

knowledge of the state internally, although the diagnostic indicator of

“Engine Malfunction” could signify that something within the system

under test has been adversely affected.

7.4.3 Systematic Evaluation: Experimental Setup

Having fulfilled the first two objectives (to determine whether mes-

sages could be sent into the CAN bus and affect the vehicle), we now

concentrate on what other combinations might cause a reaction. This

section describes the setup of the systematic evaluation of a vehicle

through an attached Bluetooth-enabled OBD-II device.

Some materials have been removed from this thesis due to Third Party Copyright. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University. 
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Table 28: Results of sending a non-standard diagnostic message to a test
vehicle

©2017 IEEE

Some materials have been removed from this thesis due to Third Party Copyright. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry University. 
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The OBDLINK MX dongle was connected to a single test vehicle.

This particular device was chosen as we could be sure that the ELM

chip was not counterfeit and that it is able to accept the full AT com-

mand set (a full list of supported commands can be found in Spark-

fun Electronics [141]). Physical setup was the same as that of the case

study. From here the proof-of-concept tool used a pre-determined at-

tack tree (shown in Figure 16) to run through the entire aftermarket

device test suite, recording all outputs as described in Table 11.

Baudrate was set at 115200, which was the maximum based on

the ELM device (with the default connection being set at 9600). Time

intervals for all messages was set at 0.5 seconds in order to ensure that

the OBD-II device had time to read and transmit the data, although

this is user customisable using the proof-of-concept tool. Although a

serial connection is slow compared to the speed CAN busses could

operate at (40Kbit/s to 1Mbit/s for high-speed CAN for example),

the set interval was enough to be able to flood the bus with enough

messages to cause adverse reactions. Lower level bit-by-bit attacks,

however, would not be feasible using this method.

The systematic test was first performed with ignition on (but not

engine), with the assumption that, as long as the appropriate target

ECUs were powered, that the vehicle would respond. Deciphering the

content of the response was considered out of scope at this point in

time, as we had no manufacturer CAN database available to interpret

the CAN data acquired from the bus. The experiments were then

repeated with the engine on with the modes and PIDs that either

returned CAN data or caused a physical reaction from the vehicle.

7.4.4 Systematic Evaluation: Experimental Results

Recall that modes and PIDs refer to the OBD-II diagnostic test modes

as embodied in the standard SAE J1979 (see Chapter 7.2.2).

Of the standard suite of modes, the vehicle returned information

from the vehicle in three modes: [134]:

• 01, which corresponds to “Show current data”;

• 06, which corresponds to “Test results, oxygen sensor monitor-

ing for CAN only” and

• 09, which corresponds to “Request vehicle information”
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Figure 16: Attack tree used to test vehicles which have an aftermarket OBD-
II device attached
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Of the non-standard suite of modes, the vehicle returned informa-

tion for nine different modes with all other modes returning NO DATA.

Note that there were modes and PIDs where the vehicle returned NO

DATA, but that there was a physical effect on the vehicle as observed

in the case study (Section 7.4.2).

A summary of results can be seen in Table 29. Because non-standard

modes are manufacturer dependent, the exact modes and PIDs found

to affect the vehicle are not given.

Select raw CAN messages were also sent into the vehicle. These

packets were pre-determined through trial and error, but consisted of

messages that were known to cause an effect when trialled through a

wired connection to the OBD-II port. Unlike the diagnostic messages,

some of the raw CAN messages sent through only needed to be sent

once to cause an effect. A summary of these results can be seen in

Table 30.

7.5 assignment of severity classifications

Following the same process as testing through the native headunit

connection (Chapter 6.6), the severity classification was created based

on findings and observations (recall that Sp is the privacy severity

rating, and So the operational severity rating).

The table given in Figure 17 gives an overview of the severity classi-

fication for each of the results in conjunction with manual observation

for tests performed with aftermarket devices.

Figure 17: Severity classification from tests with aftermarket devices

As can be seen from the results, no personal data was acquired.

This was to be expected since we are interfacing with the CAN bus

and its connected ECUs, rather than the infotainment system where

any personal data is most likely to be stored. Only system informa-

tion was acquired, which is the reason for the Sp1 ratings. This may

not hold true in a worst case scenario as CAN traffic can be used to
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Table 29: Results of systematic testing. The modes and PIDs refer to the
OBD-II diagnostic test modes as described in SAE J1979

Modes
found

Result Description

First mode CAN data
returned
for 2 PIDs

The first PID caused the headunit screen
to display “Diagnostics Mode On”,
the second PID caused the engine to
refuse to start and the hazard lights (on
the cluster only) to flash, but required
message flooding.

If engine is on, this causes the engine
to stall. Vehicle remains unresponsive
thereafter as long as message flooding
continues. Once flooding stops, the
instrument cluster restarts but not the
engine.

Second
mode

CAN data
returned
for 1 PID

The first PID had no physical effect,
the second returned NO DATA, but the
electronics cut out, with the instru-
ment panel and ignition button non-
responsive.

Third
mode

Not recog-
nised

7F returned by vehicle

Fourth
mode

CAN data
returned
for many
PIDs

12 of the PIDs each had 16 frames worth
of CAN data returned by the vehicle

Fifth mode Not recog-
nised

7F returned by vehicle

Sixth to
ninth
mode

Not recog-
nised

7F returned by vehicle
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Table 30: Results of systematic testing (CAN messages)

Action Observation

Unlock doors Vehicle did not return any data, doors did
not unlock, both with key in-cabin or external
to the vehicle

Sending Unified Di-
agnostic Service mes-
sages

Hazard lights came on, “crash” was dis-
played on the secondary screen above the
steering wheel. Vehicle doors continuously
locked and unlocked. The former happened
if message is sent once, the latter if message
flooding is performed

Changing speed and
RPM indicators on the
instrument panel

CAN message flooding to this particular mes-
sage ID caused the needles to fluctuate

Disabling power steer-
ing

Successful, but only if the vehicle was sta-
tionary. This message only needed to be sent
once. Further message flooding had no effect.

profile individual drivers through usage patterns [49]. Therefore the

potential privacy rating was set at Sp4.

The VIN number was acquired, which allows for the identifica-

tion of the individual vehicle and its characteristics including make,

model, year of registration, airbag type and more. With this, vehicle

tracking may also be possible, as there are many online tools such as

determining tax status that makes use of this number.

Finally, the last characteristic deals with whether there was signifi-

cant operational effect on the vehicle. As could be seen from the case

study as well as from the systematic evaluation, almost anything is

possible on the vehicle should the correct CAN message be deter-

mined. Reverse engineering the right CAN message (including any

diagnostic message) allows for significant operational impairment of

the vehicle, hence the potential indicator of So3.

Potentially, many of these devices (being small and the OBD-II port

hidden from general view) could be planted, and a signal sent to ev-

ery device within range. This led to the assignment of the potential

indicator of Sp1 (for anonymous data acquired) and So4 (for possi-

ble significant impairment on multiple vehicles - even simultaneously

should they all be in range at once).
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Like the classification in the preceding chapter, prioritisation could

take place depending on the results. The edge cases of Sp0,So0 and

any S4 rating could be dealt with straightaway. The former could be

used as evidence in a security assurance case that there is low risk

associated with that aspect of the component, or as evidence that

there are sufficient countermeasures in place. The latter (as it affects

multiple vehicles severely) would be a priority in any case.

The middle cases (S2 and S3 ratings and combinations thereof)

would usually have other factors weighting it. Since we are testing

the internal CAN network here, operational factors might be given

precedence, as typically there is very little personal data available on

the CAN bus.

Recall that validation of a black box with unknown inputs and no

set of expected outputs is very difficult. The black box nature also

means that formal verification is extremely challenging due to lack

of knowledge of internal behaviours. Therefore validation of the clas-

sification scheme was also performed through domain expert review

(reviewer biographies are available in Appendix A.2).

7.6 discussion

Like the classifications in the preceding chapter, the severity ratings

can be used to assign precedence for development of counters, as evi-

dence in security assurance cases and the rationale behind the worst-

case scenario could again be used as a guideline for future tests.

The attacks that could be performed through these devices are sig-

nificantly more severe then the ones identified against the headunit.

This is to be expected since an attachment to the OBD-II port gives

us remote access straight into the intra-vehicular CAN network. Al-

though safety was not a factor in this instance, the effects of some

of the diagnostic attacks (such as stalling the engine) are clear failure

modes, and so these tests could also be used to inform safety analysis.

The systematic evaluation is also able to enumerate as many manu-

facturer specific modes as possible, and allows a tester to observe

which were most devastating to the operation (and therefore safety)

of a vehicle.

The above highlights the need to consider security by design, and

investigate where in the design and implementation process this could
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be avoided. For example, manufacturers of devices should consider

using at least Bluetooth version 2.1 to enable use of SSP.

Discoverability is also an issue, as many attacks begin by trying

to enumerate the Bluetooth address. Our war-nibbling study found

over a hundred vehicles broadcasting their address, even with a low-

powered method (see Chapter 3). Being able to detect devices for over

a minute means that exposure to (especially automated) attacks is in-

creased, even if SSP is used. User interaction should be introduced

(where it hasn’t already), for example through asking the owner to

actively enable Bluetooth activity so that broadcasting and duration

of visibility is limited. Additionally, the number of concurrent con-

nections to the vehicle should also be restricted unless explicitly over-

ridden by the user.

Manufacturers should also consider hardening their architecture,

so that even if an attacker manages to compromise the aftermarket

device, there is no pathway to mission-critical systems. An example

would be to scrutinise which CAN busses are exposed on the OBD-

II port, and consider either removing the exposure, or installing an

appropriately secure central gateway [159]. Application level informa-

tion from a peripheral device could be secured using a secure session

layer such as that proposed by [40]. The in-vehicle network could also

be tested (with aftermarket devices attached) via an analysis platform

or testbed such as the ones proposed by [53] to further enumerate

threats.

7.7 conclusion

In conclusion, a systematic evaluation enumerated manufacturer spe-

cific implementation details regarding the diagnostics port, and by

injecting both OBD-II specific and raw CAN messages were able to af-

fect the vehicle. A severity classification for these results was created

and validated using domain expert review. Finally the wider issues

of Bluetooth discoverability, and what manufacturers could consider

was explored.





Part III

W H AT N O W ?

“The future is uncertain but the end is always near.”

Jim Morisson
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T O WA R D S I N T E G R AT I N G F O R M A L M E T H O D S

Empirical work in previous chapters allowed for enumeration of some

of the weaknesses in vehicles, as well as the acquisition of evidence

for a security assurance case. However, the real challenge is robust-

ness and rigour. This confidence could be obtained through the use

of formal methods.

In this chapter, two aspects of formal work that could be performed

based on the knowledge and tools that we have built up over the pre-

vious chapters are explored. The notation and semantics that we use

in this chapter are given in Section 8.1 and 8.2 respectively. Following

this, we explore how information from an informal attack tree can

be used to inform future design specifications via a formal analysis

process (Section 8.3). Finally, we explore the concept behind the trans-

lation of an informal attack tree to a formal structure, which would

allow for model based security testing (Section 8.4). This allows for

further automation of the systematic security evaluation process as

described in previous chapters, even if the system specifications are

unknown.

8.1 notation

The process algebra Communicating Sequential Processes (CSP) is

used to describe the models that we use below. We choose CSP be-

cause as a process algebra it is able to represent and combine the

message passing choreography expected by individual components.

We give here a brief overview of the subset of CSP that we use.

Given a set of events Σ, CSP processes are defined by the following

syntax:

P ::= Stop | e → P | P1 2 P2 | P1 u P2 | P1; P2 | P1 ‖
A
P2 | P1 ||| P2

where e ∈ Σ and A ⊆ events.

For convenience, the set of CSP processes defined via the above

syntax is denoted by CSP.

129
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To mark the termination of a process, a special event X is used.

In the above definition, the process Stop is the most basic, which

does not engage in any event and represents deadlock. In addition,

Skip is an abbreviation for X → Stop. It only exhibits X and then

behaves as Stop.

The prefix e → P specifies a process that is only willing to engage

in the event e , then behaves as P .

The sequential composition P1; P2 initially behaves as P1 until P1
terminates, then continues as P2.

The generalised parallel operator P1 ‖
A

P2 requires P1 and P2 to

synchronise on events in A ∪ {X}. All other events are executed inde-

pendently.

The interleaving operator P1 ||| P2 allows both P1 and P2 to execute

concurrently and independently, except for X.

CSP has two mechanisms to introduce branching into a process,

internal choice and external choice. The external choice P1 2 P2 be-

haves either as P1 or as P2 with both operands made available to

the environment. The internal choice P1 u P2 the choice is made

non-deterministically to offer either operand.

Finally, if α is an alphabet of events, the process CHAOSα behaves

in the most chaotic way possible over these events. At any stage it

may offer any or none of these events.

8.2 trace semantics

There are different semantics models for CSP processes [131]. For the

purpose of this chapter, we recall the finite trace semantics.

A trace is a possibly empty sequence of events from Σ and may ter-

minate with X. As usual, let Σ∗ denote the set of all finite sequences

of events from Σ, 〈〉 the empty sequence, and tr1 a tr2 the concatena-

tion of two traces tr1 and tr2; then the set of all traces is defined as

Σ∗X = {tr a en | tr ∈ Σ∗ ∧ en ∈ {〈〉, 〈X〉}}.
The trace tr1 is a prefix of a trace tr2, written as tr1 6 tr2, iff ∃ tr ′ :

tr1 a tr ′ = tr2. Events in A ⊆ Σ∪ {X} may be abstracted away from a
trace tr by a hiding operator, written as tr \ A and defined as

tr \ A =


〈〉 if tr = 〈〉

〈a〉a (tr ′ \ A) if tr = 〈a〉a tr ′ ∧ a /∈ A

tr ′ \ A if tr = 〈a〉a tr ′ ∧ a ∈ A.
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For convenience, when A = {a}, we shall simply write tr \ a . In

general, the trace semantics of a process P is a subset traces(P) of Σ∗X

consisting of all traces which the process may exhibit. It is formally

defined recursively as follows:

traces(Stop) = {〈〉};

traces(e → P) = {〈〉}∪ {〈e〉a tr | tr ∈ traces(P)};

traces(P1 2 P2) = traces(P1)∪ traces(P2);

traces(P1; P2) = traces(P1)∩ Σ∗

∪ {tr1 a tr2 | tr1 a 〈X〉 ∈ traces(P1) ∧ tr2 ∈ traces(P2)};

traces(P1 ‖
A

P2) = {tr ∈ tr1 ‖
A

tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}

where tr1 ‖
A
tr2 = tr2 ‖

A
tr1 is defined as follows with a , a ′ ∈ A and b, b ′ /∈ A:

〈〉 ‖
A
〈〉 = {〈〉}; 〈〉 ‖

A
〈a〉 = ∅;〈〉 ‖

A
〈b〉 = {〈b〉};

〈a〉a tr1 ‖
A
〈b〉a tr2 = {〈b〉a tr | tr ∈ 〈a〉a tr1 ‖

A
tr2};

〈a〉a tr1 ‖
A
〈a〉a tr2 = {〈a〉a tr | tr ∈ tr1 ‖

A
tr2}

〈a〉a tr1 ‖
A
〈a ′〉a tr2 = ∅ where a 6= a ′;

〈b〉a tr1 ‖
A
〈b ′〉a tr2 = {〈b〉a tr | tr ∈ tr1 ‖

A
〈b ′〉a tr2}∪

{〈b ′〉a tr | tr ∈ 〈b〉a tr1 ‖
A
tr2}

traces(P1 ||| P2) = {tr ∈ tr1 ||| tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}
where tr1 ||| tr2 = tr1 ‖

∅
tr2.

Therefore, traces(P1 ||| P2) = traces(P1 ‖
∅
P2).

A process P is said to trace-refine a process Q (written Q vT P ) if

traces(P) ⊆ traces(Q). There are other flavors of refinement, but we

restrict ourselves to trace refinement below.

8.3 integration into future design

The context of the work in this section is the way in which various

components are combined to achieve the final vehicle product.

Components are often generic, with many general purpose features.

This promotes their reuse, which drives overall costs within the sup-

ply chain down. Larger components are often provided as whole “off-

the-shelf” (OTS) subsystems (for example, an infotainment unit), with

each component therein originating with a different manufacturer.
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Within the automotive supply chain, system integrators often do

not have the final detailed designs of the components, especially where

these components represent intellectual property such as source code.

One proposed solution to the problem that integrators face when

trying to build secure systems out of unknown components is based

on testing [47]. In this case, though, testing cannot be a full solution

as the component output in response to an input may not be well

defined. For example, acknowledging, ignoring or rejecting the input

may all present in the same way. Part of this problem could be due

to the testing interface, however, absent or loose specifications could

also lead to ambiguity in terms of what the response should actually

be. In some cases, components also include behaviours that cause

the larger system to be insecure. Furthermore, as each component of

each tier of supplier integrates with another subsystem, another layer

of obscurity is added with regards to the overall system.

Discussed in this section is a methodology that uses the systematic

and semi-automated penetration testing process as described in pre-

ceding chapters in order to identify additional security requirements.

These requirements are over and above the functional and integra-

tional requirements that already exist for the system, and can be used

to improve the design of the system with respect to security.

The motive for beginning the process with testing is to acquire con-

fidence with regard to the overall implementation. The testing pro-

cess moves knowledge of the component along the black-white spec-

trum, where we can then extract requirements for secure behaviour

in the given context to help negate security flaws in subsequent de-

sign processes. This is particularly valuable where a system contains

many third party components of which even the manufacturer may

not have complete sight, because of commercial sensitivities.

8.3.1 Method Overview

In this section we present our proposed methodology for combining

third party components securely. An overview of the methodology is

given in Figure 18. Since the example in Section 8.3.2 is that of an

infotainment unit being accessed over its Bluetooth interface, the first

and last boxes in figure 18, which represent the starting and ending

states of the system, are populated with a simplified infotainment
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unit (comprising an operating system and its Bluetooth interface) and

its updated version respectively.

Infotainment
unit

Bluetooth

Operating
system

Undesirable
behaviours

(with attack
tree subset that
led to these
behaviours)

1

Inferred
requirements

2

Suggested
specifications

3
Infotainment
unit’

Bluetooth’

Operating
system’

4,5

Figure 18: Overall proposed methodology for integration into future design.
The numbers refer to their respective steps in list below

The methodology has four steps, that correspond to the numbers

1-4 in Figure 18. The steps are further detailed below.

8.3.1.1 Step 1: Security Testing

Recall that full functional specifications are unlikely to be available in

the automotive domain due to concerns regarding intellectual prop-

erty. Additionally, because of the tiered supply chain common in the

automotive industry, systems become even more obscured with every

tier up the supply chain. It is for this reason that we begin with secu-

rity testing. In the context of this chapter, initial attack trees are first

defined, with the root of every attack tree being an attack goal. These

goals can be as low level (flood an open port with appropriate data)

or high level (denial of service) as needed and tailored to the target

interface or component.
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8.3.1.2 Step 2: Inferring requirements

Requirements can be “inferred” from whichever attack proved suc-

cessful. This is a process of inference, and is essentially a negation of

observed undesirable behaviours from the testing process above. The

determination of security requirements at this stage can be traced

and cross-referenced back to the attack tree. This allows for specific

insecurities to be addressed (even if we did not possess full func-

tional specifications) as well as separation of security requirements

from other types of requirements, which is known to be useful for

interaction analysis [95], [130].

8.3.1.3 Step 3: Suggesting specifications

Once the requirements gathering phase is considered complete, pos-

sible specifications could be suggested using an automated process

such as design space exploration [58]. There may be a number of

different design choices (and therefore specifications) that could be

made to mitigate the threat. These derived specifications could be

cross-referenced with other subsets of specifications (such as func-

tion or safety), and where there are contradictions, could help clarify

design choices depending on what could be deemed an acceptable

risk.

Where there are no conflicts, whatever derived security specifica-

tions from our process could be added to the overall set of specifica-

tions. If this is the case, each of the suggested security-focused design

choices could also be cross-referenced to the attack tree to tackle the

root of the problem (see case study in Section 8.3.2).

8.3.1.4 Step 4: Incorporating into design

Once specifications have been agreed upon, there are several options

available. These specifications could be sent onto a tier one manu-

facturer (or a supplier further down the supply chain) for them to

address or incorporate. Alternatively, the end user could follow up

with model-based design and testing processes if they are already be-

ing carried out in-house. We discuss the latter within the context of

our case study. The reason for keeping this step flexible is to enable in-

corporation of this methodology into the wider processes that might

be carried out by the designer, OEM or analyst, which may help save

on time and cost.
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8.3.1.5 Step 5: Verification

Since we now have a specification of the security measures we want

to have in place (or a negation of undesirable behaviours), we can use

formal methods to verify against a model. For example, we could ver-

ify that our suggested inferred security specification prevents the sys-

tem from entering an undesired state. If verified, this means that that

particular undesired behaviour has been overcome (see Section 8.3.2.5).

8.3.2 Case Study

Within the automotive industry, OEMs integrate various bought-in

systems in order to create the working vehicle. For this paper we

concentrate on the infotainment unit, where various diverse technolo-

gies (including external facing interfaces such as Bluetooth) are in-

tegrated to deliver functionality such as hands-free communication,

radio and satellite navigation. A generic head unit would typically

comprise a System-on-a-Chip (SoC), containing the operating system,

some memory, chips for wireless communications (such as a Blue-

tooth chip), connections for other interfaces such as Universal Serial

Bus (USB), antennas and transceivers for Controller Area Network

(CAN) bus data (see Figure 19).

We demonstrate the proposed methodology discussed above using

a case study below. Although this case study came from a single ve-

hicle, it can be reasonably assumed that vehicles of the same make,

model and age would share the same weaknesses and vulnerabilities

as production lines are standardised.

8.3.2.1 Step 1: Security Testing

We tested eight vehicles empirically (see Chapter 6), from which a

number of undesirable behaviours were found, including, in two

cases, the ability to mount the filesystem of the infotainment unit

with read and write access. This was possible because of the presence

of the OBEXFTP service (see Chapter 3). This behaviour is highlighted

as an example for this case study.

There are three possible usages covered under the File Transfer

Profile (FTP) [21]:

• Browsing of the object store (i.e. the filesystem) of another Blue-

tooth device
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Infotainment unit

USB

Data

Bluetooth
chip

CAN
Tx/RxData CAN data

System-on-a-chip

Memory

Figure 19: The contents of a generic automotive infotainment unit

• Transfer of objects between Bluetooth devices

• Manipulation of objects on another Bluetooth device (including

deletion and creation of objects)

The workings of the profile are based on a client-server process,

with the client being the device that initiates the process, pulls or

pushes objects to and from a server, or instructs the server on actions

to perform on objects. The server is responsible for providing the

object exchange (OBEX) server and folder browsing capabilities.

It is worth noting that the latest spec for FTP is from 2015, but

that the software implemented on a vehicle is often older than the

registration year of the vehicle, the implication to this being that it

may not be the latest (or most secure) software that is currently on

the vehicle.

Another important distinction is that we are not attacking the Blue-

tooth protocol (or any other protocols involved between the Bluetooth

stack and the operating system) in any way. There was no compro-

mise of the pairing mechanism, the operating system or of the initi-

ating or remote Bluetooth enabled devices. The behaviour was com-

pletely legitimate and in keeping with the functionality of the Blue-

tooth protocol.

Additionally, all users of the Bluetooth system in this test vehicle

(and more generally across all vehicles) have the same authorisation

levels. In other words, all services are available to all paired and

connected users regardless of who they are (although support for

differing levels of access exists). Authentication thus becomes irrele-
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vant, with authorisation simply comprising services offered to either

paired or unpaired devices.

8.3.2.2 Step 2: Inferring Requirements

Consider the case study and the steps that led to being able to mount

the infotainment unit’s filesystem.

First, reconnaissance is performed to determine the characteristics

of the Bluetooth interface, including its Bluetooth address and the ser-

vices it offers. A summary of these characteristics from this particular

test vehicle is given in (Chapter 6, Table 16).

A connection was then made to the interface using a legitimate

pairing and device (that is to say that the connection, vehicle or de-

vice had not been tampered with in any way), and mounted the file

system.

Since being able to mount the filesystem and read or manipulate

objects is undesirable, our inferred requirement from this would be

“no unauthorised external agency should be able to see or influence

the operating system’s filesystem”.

8.3.2.3 Step 3: Suggesting Specifications

Being able to mount the filesystem through Bluetooth could lead to

injection of malware, directory traversal and data extraction, manip-

ulation or destruction. Each of these dangers (leaf nodes) could be

prevented by not allowing for the mounting (at least on the Blue-

tooth interface) in the first place. Based on our attack tree, the design

decision could be narrowed to removing the implementation of the

OBEXFTP service so that this action is not possible (and thereby rul-

ing out all leaf nodes). If there is a genuine need for such functionality,

then design decisions could be expanded to mitigate each of the lower

tier of actions that could lead to compromise.

Thus, based on the case study attack tree (Figure 20), we could

either create specifications that:

• remove the ability to request files or data (which might conflict

with functional requirements of the infotainment unit)

• remove the ability to mount the filesystem (by removing the

OBEXFTP service, which, likewise, might have functional or

cost implications)
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• or allow the above, but remove support for extracting, deleting

or creating (injecting) files (which would conflict with the re-

quired functionality of the FTP server role as specified by Blue-

tooth SIG [21]).

Figure 20: Attack tree: a representative example for this case study [35]

Here a small example is presented, however, the number of sugges-

tions when scaling up could be beyond manual means. In these cases

a mechanical method of choice, such as design space exploration [58],

could be used instead. This would require further research that is

currently beyond the scope of this study.

8.3.2.4 Step 4: Model-based Design

There have already been studies which formally analyse the Blue-

tooth protocol with regards to authentication and secrecy properties

[6], [32], [123]. However, it is not the protocol being attacked, but

rather it is a probe into the larger system in which it resides, using a

legitimate connection and a legitimate device. The Bluetooth specifica-

tion would not fail on its own. This is an example of two components

in themselves being secure, but exhibiting insecure behaviour when

combined into a larger system. The kind of analysis that would there-

fore be more appropriate is a reachability analysis, to demonstrate

that such an insecure system state could not be reached through spe-

cific pathways (specifically the pathways dictated by the attack tree).

The specification for the Bluetooth FTP is available [21] and so we

develop a small illustrative CSP model:

channel pair , connect , advertise service , service discovery

channel service1, service2, displayfs

channel obexftp : OBEXFTP CMD

datatype OBEXFTP CMD =

Selectserver | NavigateFolder | MountFS | Push | Pull |
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CreateFolder | Copy | Move | Rename | Delete | SetPermission

BT = pair → connect → advertise service → OFFER SERVICE

OFFER SERVICE =

service1→ OFFER SERVICE

2 service2→ OFFER SERVICE

2 . .

2 obexftp?cmd

if cmd == MountFS then

displayfs → OFFER SERVICE

else OFFER SERVICE

USER = pair → connect → service discovery → USE SERVICE

USE SERVICE =

service1→ USE SERVICE

u service2→ USE SERVICE

u . .

u obexftp!mountfs → displayfs → USE SERVICE

IMPL = BT ‖
αBT∩αUSER

USER

For details on the mechanisms behind pairing as well as informa-

tion on service profiles, please refer to Chapter 3.

8.3.2.5 Formal Verification

We then developed a suggested specification from our inferred re-

quirement, such as never displaying the filesystem:

SPEC = CHAOSαIMPL\{displayfs}

assert SPEC v IMPL

Result: FAIL (using FDR [150], see Figure 21)

which fails during the analysis process (Figure 21). If, however, we

removed the OBEXFTP service (which was one of the design options

discussed in Section 8.3.2.3), and assuming none of the other services

offered the ability to mount a filesystem, it would verify correctly.

This exercise is used to show that the inferred requirement is not

met by the standard Bluetooth FTP specification. In fact, the Blue-

tooth FTP specification (that a server must respond to a request from

a client to respond to requests for “Folder Listing Objects”) is con-

tradictory to our inferred requirement. Because of this contradiction,

any attempt to remove support whilst still maintaining the profile

would be breaking Bluetooth’s specification. Additional countermea-

sures introduced outside of the Bluetooth specification to mitigate

this insecurity may introduce new dangers.
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Figure 21: FDR trace of the assertion on our Bluetooth FTP model [35], end-
ing in failure

In this case, the model and example specification is simplistic enough

to make it self-evident that the removal of OBEXFTP would allow

for successful verification. Circumstances under which this exercise

would be of additional value include:

• where there are sufficiently complex systems;

• where there is more data or information regarding the inner

workings of the system under investigation to create a more

accurate model, or

• where there is more than one path to mount the filesystem (or,

more generally, to achieve any other undesirable behaviour).

8.3.3 Discussion

This methodology has many benefits. It is suited for tiered supply

chains, as there is no need to have the complete specification of the

integrated item in order to test for security concerns and, furthermore,

reflects real world security issues that have arisen through the testing

process. The attack tree methodology allows for systematism, trace-

ability and documentation, especially where design choices are con-

cerned. These design choices could also be cross-referenced against

scenarios that were posited in attack trees but were not tested. Any

security requirements gathered can be kept separate for interaction

analysis and allows for reasoning about alternatives. The formal exer-

cise could allow for clarification of ambiguities, and using a verifier

leads to a higher level of confidence in the resulting design (albeit

dependent on the trustworthiness of the model constructed).
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Limitations include the fact that the initial creation of the attack

tree is manually guided due to the black-box nature of testing (as

discussed in Chapter 4). This can be mitigated through domain expert

input in reviewing the tree as well as through repeated testing over

various makes and models of vehicles. There is also a one-off cost of

building these attack trees, although these trees could be re-used in

any future design and testing process.

As testing scope or domain knowledge expands, the trees them-

selves could also become numerous and crowded, and to that end,

work could be done to index or navigate these trees (already search-

able through known algorithms such as breadth first and depth first).

Problems with scalability could also be mitigated using mechanical

tools such as those associated with design space exploration. A fur-

ther limitation is the data available to construct the model at the end

of the process which directly impacts the quality of the model created.

However, we envisage that analysts, designers and other end users

would either send the specific security requirements to the appropri-

ate supplier, or would themselves have the information required to

construct a more thorough model.

8.3.4 Summary

In this section, a methodology for securely combining third party

components into a wider system is presented, using the results of

systematic security evaluation as discussed above. Furthermore, a

demonstration of the application of this methodology is presented,

by applying it in the example context of an automotive head unit us-

ing Bluetooth as the test interface. Weaknesses were found through a

structured security testing process. Using the case study of being able

to mount the filesystem through Bluetooth, there is also a demonstra-

tion on how to infer security requirements and suggest specifications.

Both can be cross-referenced to other requirements, and traced back

using attack trees. A possible follow-on process is also illustrated.

We envision that end users such as security analysts would find this

constructive in fulfilling their goals to improve and strengthen the

security of their systems.
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8.4 translation of informal attack trees

The attack trees used in previous chapters were informal and man-

ually created. However, formality is possible, with the foundations

of formal descriptions laid by [108] and their process algebraic na-

ture recognised in works such as [154]. Recall that automotive spe-

cific attack trees have been discussed in literature; for example, [136]

looked at attack tree generation and gave formal descriptions of the

trees. This is orthogonal to our research (in translating low level at-

tack trees). In our case, the trees have already been pre-built based on

reconnaissance of a black box system, rather than the automatic gen-

eration of an attack tree from a fully specified system under test. Re-

call also that model-based security testing (MBST) focuses on testing

security properties, security mechanisms and system environments

(see Chapter 2).

8.4.1 Background

The conventional attack tree has conjunction (AND) and disjunction

(OR) operators, but extensions have since been proposed with the se-

quential conjunction (SAND) operator [83] (see Chapter 4.1 for more

information on attack trees). There are two types of ordering: time

dependent or condition dependent. In this chapter, we adopt the con-

dition dependent paradigm.

Following the formalisation of attack trees given in [83] and [108],

if A is the set of possible atomic attacker actions, the elements of

the attack tree T are A ∪ {OR, AND , SAND}, and an attack tree is

generated by the following grammar, where a ∈A:

t ::= a | OR(t , . . . , t) | AND(t , . . . , t) | SAND(t , . . . , t)

Attack tree semantics have also been defined by interpreting the

attack tree as a set of series-parallel (SP) graphs [83]. Definition of SP

graphs requires first the definition of source-sink graphs and here we

use the definitions from [83].

Definition 1: A source-sink graph over A is a tuple G = (V , E , s , z )
where V is a set of vertices, E is a multiset of edges with support

E∗ ⊆ V ×A×V , s ∈ V is a unique source and z ∈ V is a unique

sink, and s 6= z .
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The sequential composition of G and another graph G ′, denoted
by G ·G ′ results from the disjoint union of G and G ′ and linking
the sink of G with the source of G ′. Thus, if ∪̇ denotes the disjoint

union and E [s/z ] denotes the multiset of E where vertices z are
replaced by s , then G .G ′ can be defined as:

G ·G ′ = (V \ {z }∪̇V ′,E [s ′/z ′]∪̇E ′, s , z ′)

Parallel composition, denoted by G ‖ G ′ is similar (differing only

in that two sources and two sinks are identified) and can be defined

as:

G ‖ G ′ = (V \ {s , z }∪̇V ′,E [s ′/s ,z ′/z ]∪̇E ′, s ′, z ′)

Definition 2: The set GSP over A is defined inductively by:

For a ∈A, a−→ is an SP graph,

If G and G ′ are SP graphs, then so are G ·G ′ and G ‖ G ′.

Hence, the full SP graph semantics for attack tree T can be given

by the function:

J·KSP : T→ P(GSP)

This is defined recursively. If a ∈A, ti ∈ T, and 1 6 i 6 k , then

JaKSP = {
a−→}

JOR(t1, . . . , tk )KSP =
⋃k

i=1Jti KSP
JAND(t1, . . . , tk )KSP = {G1 || . . . || Gk | (G1, . . . ,Gk ) ∈ Jt1KSP × . . .× Jtk KSP}

JSAND(t1, . . . , tk )KSP = {G1 · . . . ·Gk | (G1, . . . ,Gk ) ∈ Jt1KSP × . . .× Jtk KSP}

where JtKSP = {G1, . . . ,Gk } corresponds to a set of possible attacks Gi

Since, in this thesis, the construction of the attack tree is based on

penetration testing techniques (see Chapter 4), all leaves on the tree

can be considered actions. The combination of these actions can be

translated into the processes that form part of a test case. This is con-

ducive to the use of process algebra such as Communicating Sequen-

tial Processes (CSP) and furthermore the equivalence of the semantics

(see Section 8.4.3) means that we can use synonymous operators to

transform a pre-built attack tree.
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8.4.2 Methodology

In this section, an overview of the methodology (Figure 22) is pre-

sented. Recall that vehicle manufacturers often incorporate off-the-

shelf (OTS) components into their work, and their specifications are

not always available. Manufacturers thus have to approach testing

with this uncertainty.

We begin by assuming a System under Test (SUT), which may be ei-

ther an OTS component or contain one. We also assume the existence

of a corresponding attack tree (see Figure 22). Section 8.4.5 illustrates

our approach with an attack tree developed for a vehicle network that

includes a Bluetooth connection. It is worth observing here that an at-

tack tree for Bluetooth systems essentially systematises the known

attacks on Bluetooth, and therefore although it may be updated as

new attacks are constructed, the development of the attack tree is a

one-off cost. The same attack tree will work for any Automotive Blue-

tooth system.

If a specification (or abstract model) of the SUT is available we

use it, but in many cases (including the example in Section 8.4.5) the

specification of the SUT is confidential or contains confidential com-

ponents. In this case we can under-approximate a specification to be-

gin the process. Successive iterations of the process allow us to refine

this under-approximation. We illustrate this under-approximation in

Section 8.4.4. The approach is to generate tests against this model.

Tests are automatically generated using FDR (the refinement checker

for CSP) and the specification and the attack tree are then compared.

Each possible route through the attack tree represents a potential at-

tack, and the Test Case Generator compiles a list of all the attacks

that the specification permits. Note that in the case of an under-

approximated specification all possible attacks will be permitted.

The next step is to convert the formal tests into implementation

tests. This process is detailed in Section 8.4.4.2. Note that these imple-

mentation tests are in fact attacks (or potential attacks) on the SUT.

Not all the test implementation tests generated from an attack tree

can be fully automated. The attack tree may contain nodes that re-

quire manual input, in which case the implementation tests will re-

quire (partial) manual interaction. The ones that do not require man-

ual input may be executed directly on a testbed. The report contains
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Figure 22: Using FDR and attack trees to generate test cases

the test results. Since tests are really attacks on the SUT, we consider

a test to be successful if the attack succeeds.

In the remainder of this section we present in more detail the trans-

formation of attack trees to CSP processes (Section 8.4.3), as well as a

proof of the equivalence of the semantic models.

8.4.3 Transforming Attack Trees into CSP Processes

In this section we use CSP to describe the attack tree. We choose CSP

because as a process algebra it is able to represent and combine the ac-

tions of the attack tree into a set of processes that could subsequently

be used for test case generation.

In principle, the logic gates of the attack tree can be considered CSP

operators [69] as follows:

• Since the AND logic gate demands that all actions must be suc-

cessful for the branch to be considered complete, the interleave

operator ( ||| ) is used. This operator joins processes that op-

erate concurrently but without them necessarily interacting or

synchronising.

• The sequential composition operator ( ; ) is used for the SAND

logic gate. The former echoes the SAND logic gate, in that the first

process must terminate successfully before the next is allowed;

• The external choice operator ( 2 ) (where any process could be

chosen dependent on the environment in which it operates) is

used for the OR logic gate.
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Thus formally, we define the following transformation function
trans : TSAND → CSP where Σ = A:

trans(a) = a → Skip for a ∈A;

trans(OR(t1, . . . , tn )) = trans(t1) 2 . . . 2 trans(tn );

trans(AND(t1, . . . , tn )) = trans(t1) ||| . . . ||| trans(tn );

trans(SAND(t1, . . . , tn )) = trans(t1); . . . ; trans(tn );

In order to show the correctness of the above transformation, it is

necessary to make the two semantics in GSP and Σ∗X compatible for

comparison. Recall from [83] that each SP graph represents a possible

way to carry out an attack. In such a graph, an AND vertex indicates

that actions along its branches must be executed. However, there is

no restriction on the order of their executions. In other words, their

executions are interleaving in general. Therefore, it is possible to se-

rialise the actions from a SP graph, where parallel compositions of

graphs is considered as interleaving and sequential composition as

concatenation.

Given G in GSP, let serials(G) denote the set of all possible ways

to serialise G , which is formally defined as follows:

serials( a−→) = {〈a〉};

serials(G1 ‖ G2) = {tr ∈ tr1 ||| tr2 | tr1 ∈ serials(G1) ∧ tr2 ∈ serials(G2)};

serials(G1 ·G2) = {tr1 a tr2 | tr1 ∈ serials(G1) ∧ tr2 ∈ serials(G2)}.

For convenience, we denote the set of all prefixes from serials(G)

by pserials(G), i.e., pserials(G) = {tr | ∃ tr ′ ∈ serials(G) : tr 6 tr ′}.
We also denote pserials(t) =

⋃
G∈JtKSP pserials(G) for all attack trees

t ∈ TSAND .

As SP graphs have no X action, we shall hide X when comparing

the semantics of SP graphs with CSP processes. Therefore, we denote

traces(P) \ X = {tr \ {X} | tr ∈ traces(P)}.

The correctness of transforming attack trees into CSP processes is

guaranteed by the following result: ∀ t ∈ TSAND , pserials(t) = traces(trans(t)) \

X.

The proof is done by induction on the structure of t .

Base case: Consider t = a ; then, JtKSP = {
a−→} and pserials(t) =

{〈〉, 〈a〉}. We also have trans(t) = a → Skip and traces(trans(t)) =

{〈〉, 〈a〉, 〈a ,X〉}. Hence, it is straightforward that pserials(t) = traces(trans(t)) \
X.

Induction step:

case t = OR (t1 , . . . , tn ) : It is straightforward that
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• JtKSP =
⋃

i=1,...,nJti KSP, and

• traces(trans(t)) = traces(trans(t1) 2 . . . 2 trans(ti )).

Then, we have

tr ∈ pserials(t) ⇔ ∃G ∈ JtKSP : tr ∈ pserials(G)

⇔ ∃ i ∈ {1, . . . ,n},G ∈ Jti KSP : tr ∈ pserials(G)

⇔ ∃ i ∈ {1, . . . ,n} : tr ∈ pserials(ti )

⇔ tr ∈ traces(trans(ti )) \ X by induction hypothesis

⇔ tr ∈ traces(trans(t)) \ X.

case t = AND (t1 , . . . , tn ) : It is obvious that:

• JtKSP = {G1 ‖ . . . ‖ Gn | Gi ∈ Jti KSP ∀ i = 1, . . . ,n}, and

• traces(trans(t)) = traces(trans(t1) ||| . . . ||| trans(ti )).

Then, we have

tr ∈ pserials(t) ⇔ ∃G ∈ JtKSP : tr ∈ pserials(G)

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ Jti KSP :

tr ∈ pserials(G1 ‖ . . . ‖ Gn )

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ Jti KSP, tr ′ ∈ serials(G1 ‖ . . . ‖ Gn ) :

tr 6 tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ Jti KSP, tri ∈ serials(Gi ) :

tr ′ ∈ tr1 ||| . . . ||| tn ∧ tr 6 tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃ tri ∈ traces(trans(ti )) \ X :

tr ′ ∈ tr1 ||| . . . ||| tn ∧ tr 6 tr ′ by induction hypothesis

⇔ ∀ i ∈ {1, . . . ,n},∃ tr ′i 6 tri ∈ traces(trans(ti )) \ X :

tr ∈ tr ′1 ||| . . . ||| t ′n

⇔ tr ∈ traces(trans(t)) \ X.

case t = SAND (t1 , . . . , tn ) : It is obvious that:

• JtKSP = {G1 · . . . ·Gn | Gi ∈ Jti KSP ∀ i = 1, . . . ,n}, and

• traces(trans(t)) = traces(trans(t1); . . . ; trans(tn )).
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Then we have:

tr ∈ pserials(t) ⇔ ∃G ∈ JtKSP : tr ∈ pserials(G)

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ Jti KSP :

tr ∈ pserials(G1 · . . . ·Gn )

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ Jti KSP, tr ′ ∈ serials(G1 · . . . ·Gn ) :

tr 6 tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ JtiKSP, tri ∈ serials(Gi ) :

tr ′ ∈ tr1 a . . .a tn ∧ tr 6 tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃ tri ∈ traces(trans(ti )) \ X :

tr ′ ∈ tr1 a . . .a tn ∧ tr 6 tr ′ by induction hypothesis

⇔ ∀ i ∈ {1, . . . ,n},∃ tr ′i 6 tri ∈ traces(trans(ti )) \ X :

tr ∈ tr ′1
a . . .a t ′n

⇔ tr ∈ traces(trans(t)) \ X.

8.4.4 Implementation

We provide a prototype implementation of our proposed methodol-

ogy. This implementation is built using Python 2.7 and requires as

input an attack tree and a formal model of the SUT. It then automati-

cally carries out three main tasks:

1. Translates an input (manually pre-determined) attack tree into

a CSP process;

2. Uses this process and the formal model of the SUT to generate

test cases; and

3. Executes all the generated (scriptable) test cases by associating

each one with a sequence of predefined primitive test scripts.

Task 1 is a straightforward implementation of function trans from

Section 8.4.3. In the rest of this section, we discuss the implementation

of tasks 2 and 3 in detail.

8.4.4.1 Test Case Generation

Let us assume that the formal model of the SUT is given as a CSP pro-

cess Sys . Furthermore, the behaviours of the attacker are also given
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in terms of an attack tree t , which is then transformed into a CSP

process trans(t). We shall use trace refinement in CSP to extract test

cases following [117]. To this end, trans(t) acts as a filter criterion to

select test cases among all possible runs of the system captured by

Sys . As in [117], we define a fresh event attackSucceed to mark the end

of an attack, which indicates that an attack is successfully executed.

We form the following filter:

TestPurpose = trans(t); (attackSucceed→ Stop)

which captures all attacks extended with the marking event attackSucceed
at the end. Then, we establish the following trace refinement:

Sys 2 TestCases vT Sys ‖
Σ\{attackSucceed}

TestPurpose

In this refinement, TestCases encodes test cases that have previously

been generated. By combining it with Sys using the external choice

operator, a fresh test case, i.e., different from the generated ones, will

be generated if one exists. Sys ‖
Σ\{attackSucceed}

TestPurpose encapsulates

all attack traces that can be carried out with respect to the formal

model Sys . These attack traces are ended with the marking event

attackSucceed, which does not belong to Sys , which, hence, gives rise

to counter examples of the refinement.

Initially, TestCases = TestCases0 = Stop (i.e. corresponding to

an empty set of test cases). This refinement is checked by calling

FDR [150]. If an attack trace exists, FDR will provide a counter ex-

ample of the form 〈a1, . . . , an , attackSucceed〉 where a1, . . . , an ∈ Σ \

{attackSucceed}. We encode this trace as a test case tc1 = a1 → . . . →
an → attackSucceed → Stop. After TestCases is rebuilt as TestCases =

TestCases1 = TestCases0 2 tc1, the above refinement check is called

again and again to extract further test cases tc2, . . . and to construct

TestCase2, . . . until no further counter example can be found.

In this implementation, the calls to checking refinements and ex-

tracting counter examples are facilitated by API functions provided

by FDR [150].
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8.4.4.2 Test Case Execution

Test cases that are generated can now be assigned programmatic func-

tions that would allow for execution. This is dependant on implemen-

tation of the system and so would necessarily be specific rather than

abstract. Furthermore, as the attack tree in this case is based on pene-

tration testing, not all actions (such as “social engineering”) are script-

able, largely due to requiring manual intervention. All such actions

are indicated in the implementation.

Given an attack tree t , let scriptable(t) denote the set of its script-

able leaves. Each scriptable leaf a ∈ scriptable(t) is associated with

a primitive test script script(a). A generated test case tc = a1 →
. . . → an → attackSucceed → Stop is automatically executable if

ai ∈ scriptable(t) ∀ i = 1, . . . , n .

Execution of an automatically executable test case means the exe-

cution of all test scripts script(a1), . . . , script(an) sequentially. If all

such scripts are executed successfully, the test case is called passed,

otherwise failed. Note that a passed test case means that the SUT is

not secure with respect to the attack encoded by this test case. If the

converse is true, then the SUT is impervious to this attack.

In this paper, we use the example of an aftermarket on-board di-

agnostics (OBD-II) dongle attached to the vehicle (this is further dis-

cussed in Section 8.4.4). Executable test cases are written in Python 2.7

to enable compatibility with Bluetooth functions on a generic Linux

distribution.

8.4.5 Case Study

We take here a case study of evaluating the intra-vehicular network

with the attack goal of vehicle compromise. The attack tree (see Sec-

tion 8.4.5.1) for this goal is based around access through a Bluetooth-

enabled aftermarket device that attaches to the vehicle’s on-board

diagnostic (OBD-II) port. Detailed information regarding the OBD-II

device and its communications can be found in Chapter 7.

8.4.5.1 Attack Tree Translation

The attack tree used for this case study is shown in Figure 23.
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Figure 23: Attack tree, with attack goal of compromising the vehicle through
an aftermarket Bluetooth-enabled OBD-II device

Figure 23 also lists test scripts corresponding to leaves in this attack

tree. If a leaf is not scriptable, it is denoted as a manual leaf.
The function trans(Vehicle Compromise) (see Section 8.4.3), gives

the translation of this tree into CSP:

channel action Determine pairing status

channel action Connect to serial port

channel action Change address of local device

channel action Find the link key from local or remote device

channel action Send flood with CAN messages

channel action Using OEM CAN database

channel action Using passive monitoring

channel action Using reverse engineering

channel action Run through standard

channel action Run through non standard

channel action Flood with set OBD messages

Attacker = Vehicle Compromise

Vehicle Compromise = Connect to device ; Cause Vehicle Compromise

Connect to device = Using legitimate device 2 Spoof previously paired device

Using legitimate device = Determine pairing status ; Connect to serial port

Determine pairing status = action Determine pairing status → Skip

Connect to serial port = action Connect to serial port → Skip

Spoof previously paired device =

Find the link key from local or remote device
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||| Change address of local device

Change address of local device =

action Change address of local device → Skip

Find the link key from local or remote device =

action Find the link key from local or remote device → Skip

Cause Vehicle Compromise =

Using OBD messages

2 Run through all messages

2 Flooding with raw CAN messages

Flooding with raw CAN messages =

Predetermine CAN messages ; Send flood with CAN messages

Predetermine CAN messages =

Using passive monitoring

2 Using OEM CAN database

2 Using reverse engineering

Send flood with CAN messages = action Send flood with CAN messages →
Skip

Using OEM CAN database = action Using OEM CAN database → Skip

Using passive monitoring = action Using passive monitoring → Skip

Using reverse engineering = action Using reverse engineering → Skip

Run through all messages = Run through standard ; Run through non standard

Run through standard = action Run through standard → Skip

Run through non standard = action Run through non standard → Skip

Using OBD messages = Flood with set OBD messages

Flood with set OBD messages = action Flood with set OBD messages →
Skip

Reconnaissance was defined to find as much information as pos-

sible (meaning the subsequently generated formal attack tree would

be much larger). Many of the steps were manual and non-sequential.

As such, reconnaissance actions were considered out of scope for this

exercise.

8.4.5.2 Results

We generate test cases using the implementation in Section 8.4.4.1.

Given the small size of the attack tree, we use the most abstract model

for the SUT where all behaviours are accepted (the most insecure

model), to generate a total of 15 test cases. Results from the run of

test cases against an actual implementation are given in Table 31.

Three of the test cases passed (i.e. they were executed successfully):
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TC (3) = action Determine pairing status →
action Connect to serial port →
action Flood with set OBD messages → attack succeed → Stop

TC (6) = action Determine pairing status →
action Connect to serial port → action Run through standard →
action Run through non standard → attack succeed → Stop

TC (8) = action Determine pairing status →
action Connect to serial port →
action Using passive monitoring →
action Send flood with CAN messages → attack succeed → Stop

Further analysis from this is possible. For example, with test case

3 (TC (3) above), the action of flooding with a particular diagnostic

message resulted in loss of function in the vehicle of both electronics

and engine (see Chapter 7 for empirical test results). This violates

the security property of availability by causing a denial of service.

Additionally, injection of messages into the CAN bus also changes

the stream of CAN bus signals that would normally be expected in

vehicles. This violates the security property of integrity (in which no

unauthorised modification should be allowed). Both these properties

could be addressed in a future model. The tree could also be run

against that model iteratively to check whether sufficient protection

has been afforded by the improved design.

Protecting against this could involve the addition of a gateway in

the SUT, which could either filter out floods of messages (by defin-

ing thresholds for the number of these messages that could be sent

through at any given time). Alternatively, such messages could be dis-

allowed by having the gateway only allow messages that have come

from an authorised source.

The other test cases (all involving permutations of finding a link

key, and changing the address) were not scripted because they re-

quired manual intervention. The former because it would need a re-

mote device set to enable logging on the Host Controller Interface

(not always possible) or to manually acquire data from a vehicle to

find where the link key has been stored (which would have required

hardware removal). The latter is automatable (for example, using the

tool Spooftooph [43]), however, either hardware removal or social ma-

nipulation is involved to find knowledge of an address that is already

stored on the vehicle.
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TC# Execution result

1 unexecutable action Find the link key from local or remote device

2 unexecutable action Change address of local device

3 Passed

4 unexecutable action Find the link key from local or remote device

5 unexecutable action Change address of local device

6 Passed

7 unexecutable action Find the link key from local or remote device

8 Passed

9 unexecutable action Using OEM CAN database

10 unexecutable action action Using reverse engineering

11 unexecutable action Change address of local device

12 unexecutable action Find the link key from local or remote device

13 unexecutable action Change address of local device

14 unexecutable action Change address of local device

15 unexecutable action Find the link key from local or remote device

Table 31: Test cases that were run against a real world vehicle

Other branches that were unscripted involves reverse engineering

a CAN message to inject, as this involves manual trial and error cur-

rently due to the sheer volume and variety of messages that are on

the CAN bus at any one time. Using an OEM’s CAN database would

enable (partial) automation, but availability is often non-existent due

to commercial confidentiality. The branch that ended with successful

test cases all involved using a legitimate device. That is, a device that

was under our control, which we could use to test the weaknesses in

the vehicular implementation.

8.4.6 Summary

We have demonstrated the translation of an informal attack tree into a

formal process algebra CSP and proved equivalence. We use this tree

to generate test cases automatically, and assign executions to script-

able test cases. We then execute the test cases on a real-world vehicle

(although this could be substituted with a testbed, with input from

an OEM to reflect a real architecture, without the cost or risk to a

test vehicle [53]). Thus, the full testing process is one step further



8.4 translation of informal attack trees 155

Figure 24: Ideas for further formal analysis

to automation, and furthermore, the formal model of the attack tree

could also be used for formal verification should the specifications of

the system-under-test be available. Limitations are around how a tree

is created (still largely manual) and certain actions within the attack

tree requiring manual intervention.

8.4.7 Future Challenges

The use of results in formal design and the translated attack trees

could potentially fill the chasm between the two streams of testing

and design. An extension of the above would require that additional

models be first created:

• a model using abstract specifications of the system under test;

• a security model (informed by potential security measures and

properties that we want to test against) and

• finally, an environment model informed by attack trees (as seen

above) and threat models.

These models could be built using a formal language (such as the

process algebra CSP) and, with appropriate filtering (taking into ac-

count of components and security properties to be tested), could then

be used to generate the appropriate test cases. We would then follow

through using normal model based testing processes. If necessary,

this can be performed concurrently with manual testing. Reports that
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are outputted from these tests (whether formal or manual) could then

be used to refine any of the three models described above.

The entire process would (at a very abstract level) thus appear as in

Figure 24, incorporating the work from earlier on in this chapter and,

if necessary, the empirical evaluation as performed in earlier chapters.

The work with testbeds (as in work done in [53]) as well as man-

ual testing could also continue to assist in further refinement of the

models created.

Once practicalities have been determined, the methodology could

then be used in-house as part of an already existing process and in

accordance with an industry standard of choice.
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C O N C L U S I O N S A N D S U M M A RY O F

C O N T R I B U T I O N S

In this chapter, the conclusions drawn from the research above are

presented (Section 9.1) followed by a summary of contributions (Sec-

tion 9.2). Finally, ideas for future direction and further work on all

aspects of the work in this thesis are outlined in Section 9.3.

9.1 conclusions

The threat landscape of the vehicle is evolving, primarily driven by

an increase in both functionality and connectivity. This has opened

a closed system to external influence, compounded complexity and

made it difficult to audit for security flaws and weaknesses. Many

studies have shown that the vehicle is fundamentally insecure, and

that systematic security testing is essential.

Bluetooth was taken as an example interface because of its ubiquity,

and because many Bluetooth-enabled vehicles and attached aftermar-

ket devices on the road could potentially be accessible to attackers.

A systematic approach is advantageous in that coverage is greater.

There are many related approaches, both formal and informal. How-

ever, specifications, source code or any detailed technical information

is scarce. This precludes many formal model-based testing methods

and leads to the evaluation as performed in this research: systematic

black box penetration testing supported by attack trees.

This was implemented as a semi-automated proof-of-concept tool

and tested on the native Bluetooth interface of eight vehicles, as well

as Bluetooth-enabled aftermarket devices attached to the vehicle’s on-

board diagnostics port. The systematic approach found many weak-

nesses, based on the attack goals of data extraction, denial of service

and, more generally for the aftermarket devices, vehicle compromise.

As attack trees systematise and document both tests and reactions,

the results of such testing could be used as evidence in security assur-

ance cases, or in future formal methods exercises. The latter could be

achieved by inferring requirements and generating additional speci-

157
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fications, which can be cross-referenced with other requirements and

traced back through the pre-determined attack trees. Alternatively,

model-based testing could be made possible through the translation

of informal attack trees into formal structures. Thus formal testing

could be performed, albeit with its correctness dependent on the avail-

ability of trustworthy system-under-test specifications.

We envision that end users such as security analysts and engineers

would be able to use this framework to assure and enhance the cyber-

security of vehicles.

9.2 summary of contributions

This doctoral research has laid the foundations for an automated sys-

tematic evaluation of an automotive interface. Summarised here are

the contributions addressing the research questions as laid out in Sec-

tion 1.2:

• The motivation for investigating vehicles from a security per-

spective, as well as the situational awareness regarding the state

of Bluetooth security in vehicles is addressed in Chapter 3.4,

with the contribution being a threat intelligence study detailing

both the technological lag found in vehicles as well as the num-

ber of vehicles and aftermarket devices that could be accessed

on the road even with a low powered device;

• Addressing the question of how to establish a baseline security

state, without technical specifications is the main contribution

of the thesis (detailed in Chapter 4): towards a systematic secu-

rity evaluation of the automotive Bluetooth interface (whether

that interface be native, or enabled through an aftermarket de-

vice). This evaluation is implemented as a proof-of-concept tool

(Chapter 5), which also contributes towards the automation of

the evaluation;

• The results of testing can be used to aid in security assurance

cases (described in Chapter 6 and 7), as well as be used in fu-

ture formal model-based testing or further iterations of design

(Chapter 8).
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9.3 future work

Along with the concepts presented in previous chapters, the research

as a whole in this thesis could also be further improved in the short-

term by:

• Extending on the number of test vehicles, and drawing more

comparisons between them, both with the severity classifica-

tion and the aftermarket devices. This would depend on the

availability of funding and facilities;

• Expanding the existing attack trees to include other attacks, in-

volving jamming, tracking through signal strength and incorpo-

rating output from a Bluetooth sniffer;

• Defining new attack goals (such as attacking privacy) and build-

ing the appropriate attack trees (and supporting tool chain); and

• Extending the tool to other wireless technologies such as WiFi,

and performing the same systematic testing in order to enumer-

ate security issues through other vectors.

The project also opens up several new (longer term) avenues of

research. The use of the severity rating process could be used as part

of the risk management process as described in J3061. Other studies

such as [158] have already looked at using similar methods in a risk

analysis process, and our methods could integrate with risk analyses

such as these to form a whole management process.

This would necessitate automation of some of the prioritisation pro-

cess, where the aspects with zero ratings and very high S4 ratings

could be automatically classified. Automation would also include the

calculation of priority of everything else in the grey areas. Informa-

tion regarding the type of component being tested and the priority of

the tester should be taken into account during these calculations.

Some aspect of safety analysis and risk to financial transactions

in a vehicle (assuming the availability of a car with this technology

deployed) could also be included in future classifications to more

accurately reflect what is stated in EVITA. This would also provide

further granularity in terms of the evidence attached to a security

assurance case.

Deployment of wireless technology and subsequently connectivity

is only increasing, both in the number and variety of interfaces and
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protocols used as well as bandwidth capacities. Going forward to

where vehicles become “smarter” and eventually autonomous [34],

the need to evaluate the security of wireless connections will never

be less than essential.



A N N O TAT E D B I B L I O G R A P H Y

The more that you read,
the more things you will know.

The more that you learn,
the more places you’ll go.

— Dr. Seuss

Presented below is an annotated bibliography. The annotations were drawn from notes and
summaries written about each paper as a memory aid. They were particularly helpful in the
case of exploits against and tools for working with Bluetooth, since they generally used a
variation of the word “Blue” and [insert word]. On a more serious note, these annotations
were incredibly useful throughout the course of my programme and are included here for easy
perusal.

[1] 115th Congress, S.680 - SPY Car Act of 2017, 2017. [Online].

Available: https://www.congress.gov/bill/115th-congress

/senate-bill/680 (visited on 2017-10-20),

New proposed legislation regarding security and privacy in the

vehicle, advocating and proposing mandatory steps taken to

protect vehicles against malicious attacks. It also proposes the

use of cyber dashboards for consumers so that they are informed

of the cybersecurity measures available in the vehicle.

[2] “A Risk Assessment Framework for Automotive Embedded

Systems,” in Proceedings of the 2nd ACM International Workshop
on Cyber-Physical System Security, Xi’an: ACM New York, May

2016, pp. 3–14,

Paper describing the HEAVENS project, the use of STRIDE

and how it fits within the various phases of automotive produc-

tion, especially in relation to ISO26262

[3] A. Aleksandrov, Bluetool, 2017. [Online]. Available: https://

github.com/emlid/bluetool (visited on 2017-05-05),

Source for a Python API for Bluetooth d-bus calls, used in the

proof-of-concept tool

[4] J. Alfaiate and J. Fonseca, “Bluetooth security analysis for mo-

bile phones,” in Proceedings of the 7th Iberian Conference on Infor-
mation Systems and Technologies (CISTI), Madrid, Spain: IEEE,

Jun. 2012, pp. 1–6,
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An article summarising, describing and exploring Bluetooth se-

curity in mobile phones. It contains information about many

of the common exploits and techniques used to compromise

Bluetooth-enabled mobile phones

[5] Amenaza Technologies Limited, Fundamentals of Capabilities-
based Attack Tree Analysis, Calgary, 2005. [Online]. Available:

http://www.amenaza.com/downloads/docs/AttackTreeFunda

mentals.pdf (visited on 2014-10-13),

This company creates commercial software for building attack

trees, and this page describes some useful concepts of attack

trees.

[6] K. Arai and T. Kaneko, “Formal Verification of Improved Nu-

meric Comparison Protocol for Secure Simple Paring in Blue-

tooth Using ProVerif,” in Proceedings of the 2014 International
Conference on Security and Management (SAM) at the Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), Las Vegas: World-

Comp, Jul. 2014,

Looks at formal verification of Secure Simple Pairing (specifi-

cally the numeric comparison association model) using a well

known tool called ProVerif. They show that it is susceptible to

attacks, propose countermeasures and verify its security (using

secrecy as a property).

[7] Argus, Argus Cyber Security Working With Bosch to Promote Pub-
lic Safety and Mitigate Car Hacking, 2017. [Online]. Available:

https://argus-sec.com/argus-cyber-security-working-

bosch-promote-public-safety-mitigate-car-hacking (vis-

ited on 2017-04-26),

Presents a demonstration by a commercial company interested

in cybersecurity of compromise of the SSP mechanism (Just

Works) model, as well as demonstration of a compromise of

vehicle through an attached OBD-II device on the vehicle

[8] Auto ISAC, Automotive Information Sharing and Analysis Centre,

2016. [Online]. Available: https://www.automotiveisac.com/

best-practices/ (visited on 2017-05-12),

http://www.amenaza.com/downloads/docs/AttackTreeFundamentals.pdf
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Annotated Bibliography 163

An organisation promoting and enhancing knowledge sharing,

specifically on cybersecurity issues, in the automotive indus-

try. However, despite its promotion of it, its regulations still

stipulate anonymity of data and origin unless it is absolutely

necessary for it to be otherwise.

[9] J. Barnickel, J. Wang, and U. Meyer, “Implementing an at-

tack on Bluetooth 2.1+ secure simple pairing in Passkey Entry

mode,” in Proceedings of the 11th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications,

Liverpool, Jun. 2012, pp. 17–24,

One of the many sources used when researching possible attacks

on Bluetooth. The attack involves eavesdropping on an ongoing

pairing process, recording all message exchanges. The session

is then interrupted through jamming, with the attacker now

able to calculate the passkey used in the interrupted session.

The calculation of link keys belonging to the legitimate devices

attempting to pair is dependent on the PIN being reused when

the jamming is stopped. If successful, the attacker is then a

man-in-the-middle and able to eavesdrop on communications.

[10] S. Bayer, T. Enderle, D. K. Oka, and M. Wolf, “Security Crash

Test – Practical Security Evaluations of Automotive Onboard

IT Components,” in Electronic Proceedings of the 2014 ESCRYPT
Automotive Safety and Security Conference, Stuttgart: ETAS, Apr.

2015,

Proposes a set of automotive security evaluation assurance lev-

els which describe what tests have been performed in order to

provide assurance.

[11] Benhui.net, Bluetooth (jabwt) browser midlet, 2003. [Online]. Avail-

able: http://www.benhui.net/bluetooth/btbrowser.html,

Old Bluetooth tool used to gather information from surround-

ing Bluetooth devices. Works on phones that support Java Blue-

tooth (targeted specifically at Nokia 6600)

[12] A. Bertolino, “Software Testing Research : Achievements , Chal-

lenges , Dreams,” in Proceedings of the 2007 Conference on Future
of Software Engineering (FOSE), Minneapolis: IEEE Computer

Society, May 2007, pp. 85–103,

http://www.benhui.net/bluetooth/btbrowser.html
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Presents a state-of-the-art regarding software testing research.

Not specifically dedicated to security, but with useful concepts

surrounding the challenges in software testing, including hy-

potheses, effectiveness and empiricism.

[13] M. Bishop, “What is computer security?” Security & Privacy,
IEEE, vol. 1, no. 1, pp. 67–69, Jan. 2003,

Explores at a high level what is meant by security requirements,

policy, mechanisms and assurance

[14] M. Bishop and D. Bailey, “A Critical Analysis of Vulnerability

Taxonomies,” University of California, Tech. Rep. September

Issue, 1996. [Online]. Available: http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA453251 (visited on 2017-05-23),

Technical report looking at the classification of vulnerabilities

into a set of tuples, aiming to provide a assistance in detect-

ing new vulnerabilities and collating classes of vulnerabilities.

Distinguishes between attack and vulnerability

[15] BlueZ Project, BlueZ, 2017. [Online]. Available: http://wwww.

bluez.org/ (visited on 2017-05-10),

The official Linux Bluetooth stack

[16] K. Blueriver, PTable, 2016. [Online]. Available: https://pypi.

python.org/pypi/PTable/0.9.0 (visited on 2017-03-14),

Tool used for creating and displaying ASCII tables

[17] Bluetooth Penetration Testing Framework, Bluetooth Penetra-
tion Testing Framework, 2011. [Online]. Available: http://bl

uetooth-pentest.narod.ru/ (visited on 2016-08-11),

This is more of a collection of links to useful Bluetooth inves-

tigation snippets and code examples, rather than an official

framework. There was no information on this site as to who

or when these snippets were put together.

[18] Bluetooth SIG Inc., Personal Area Network (PAN), 2003. [Online].

Available: https://www.bluetooth.org/docman/handlers/

DownloadDoc.ashx?doc_id=6554 (visited on 2016-12-16),

Details and specifications for the Bluetooth Personal Area Net-

work service profile

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA453251
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[19] ——, Bluetooth SIG: Core Version 2.1+EDR, 2007. [Online]. Avail-

able: https://www.bluetooth.org/docman/handlers/downloa

ddoc.ashx?doc\_id=241363 (visited on 2017-02-06),

Specifications for Bluetooth version 2.1+EDR

[20] ——, Bluetooth profiles overview, 2015. [Online]. Available: http

s://developer.bluetooth.org/TechnologyOverview/Pages/

Profiles.aspx (visited on 2017-04-13),

A list of profiles and services supported by the current version

of Bluetooth

[21] ——, File Transfer Profile (FTP) 1.3.1, 2015. [Online]. Available:

https://www.bluetooth.org/docman/handlers/DownloadDoc.

ashx?doc_id=309003 (visited on 2017-04-05),

Details and specifications for the Bluetooth File Transfer Profile

service

[22] ——, Bluetooth SIG: Deprecated Specifications, 2016. [Online]. Avail-

able: https://www.bluetooth.com/specifications/adopte

d- specifications/deprecated- specifications (visited on

2017-06-02),

A list of deprecated specifications for Bluetooth

[23] ——, Bluetooth SIG: Legacy Specifications, 2016. [Online]. Avail-

able: https://www.bluetooth.com/specifications/adopted-

specifications/legacy-specifications (visited on 2017-06-

02),

A list of legacy specifications for Bluetooth

[24] ——, Our History, 2016. [Online]. Available: https://www.blu

etooth.com/about-us/our-history (visited on 2017-02-06),

Presents information about the history of Bluetooth, version

adoption years and features that were added to new versions.

[25] D. Boddie, PyOBEX Python Package, 2015. [Online]. Available:

http://www.boddie.org.uk/david/Projects/Python/Py

OBEX/ (visited on 2016-10-10),

A Python wrapper for the Bluetooth OBEX functionality

[26] W. Bronzi, T. Derrmann, G. Castignani, and T. Engel, “Towards

Characterizing Bluetooth Discovery in a Vehicular Context,” in

in Proceedings of the 2016 IEEE Vehicular Networking Conference
(VNC), Columbus, Ohio: IEEE, 2016,

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc\_id=241363
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A large scale study conducted by wardriving, looking to char-

acterise any Bluetooth-enabled device that might be found on

a typical drive. Concentrated geographically in Luxembourg.

Security is only briefly mentioned towards the end, as the em-

phasis was on looking at Bluetooth as a possible V2V and V2I

communication protocol, but is useful as a basis for any other

wardriving exercises.

[27] P. J. Brooke and R. F. Paige, “Fault trees for security system de-

sign and analysis,” Computers & Security, vol. 22, no. 3, pp. 256–

264, 2003,

Fault trees are usually used for functional safety purposes. De-

scribes the building and analysis of a fault tree, and proposes a

use for fault trees in security and states that fault trees could be

used to explicitly identify relationships between events as well

as a realistic framework in order to build a security assurance

case.

[28] A. Buldas, P. Laud, and J. Priisalu, “Rational choice of security

measures via multi-parameter attack trees,” Critical Informa-
tion Infrastructures Security, vol. 4347, no. 1, pp. 235–248, 2006,

Aimed at improving the security of institutions through a risk

analysis based method involving attack trees

[29] P. Burnley, Electronic Theft Tool Identification Guide, Ryton: ACPO

Vehicle Crime Intelligence Service, 2014,

Presentation regarding devices and tools that can be used to

steal a car and are commonly in use today.

[30] E. Byres, M. Franz, and D. Miller, “The use of attack trees

in assessing vulnerabilities in SCADA systems,” in Proceed-
ings of the 2004 International Infrastructure Survivability Work-
shop (IISW’04), Lisbon: IEEE, 2004,

Applies attack trees to the problem of security in industrial

control systems, specifically looking at a common SCADA pro-

tocol called MODBUS. Sample trees are shown, and validated

by domain expert review.

[31] E. Chai, B. Deardorff, and C. Wu, “Hacking Bluetooth,” 2012,

[Online]. Available: https://css.csail.mit.edu/6.858/

2012 / projects / echai - bendorff - cathywu . pdf (visited on

2015-05-21),

https://css.csail.mit.edu/6.858/2012/projects/echai-bendorff-cathywu.pdf
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Working paper containing an outline of the workings of the

Bluetooth protocol, as well as detailing some of the more com-

mon attacks against this protocol

[32] R. Chang and V. Shmatikov, “Formal analysis of authentica-

tion in bluetooth device pairing,” in Proceedings of the 2007
Workshop on Foundations of Computer Security and Automated
Reasoning for Security Protocol Analysis (FCS-ARSPA), Wroclaw,

Poland, 2007, p. 45,

Presents a formal analysis of the standard Bluetooth pairing

protocol using ProVerif, and confirm a previously described

guessing attack. Particularly looking at numeric comparison

and out-of-band authentication. They also incorporate session

identifiers such that the authentication properties still hold in

the new model. The ultimate aim is towards automated formal

analysis authentication protocols that involve humans.

[33] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, “Towards

a systematic security evaluation of the automotive Bluetooth

interface,” Journal of Vehicular Communications, vol. 9, no. 2017,

pp. 8–18, 2017,

Describes, implements and demonstrates the systematic secu-

rity evaluation of the automotive Bluetooth interface, using at-

tack trees. A proof-of-concept tool is also present, contributing

towards the automation of the process, in the context of the

automotive native Bluetooth interface

[34] M. Cheah and S. Shaikh, “Autonomous Vehicle Security,” IET
Engineering and Technology Reference, vol. 1, no. 1, 2015,

Review paper regarding the positions around what could affect

the security of autonomous vehicles

[35] M. Cheah, S. Shaikh, J. Bryans, and H. N. Nguyen, “Combin-

ing third party components securely in automotive manufac-

ture,” in Proceedings of 10th International Conference on Informa-
tion Security Theory and Practice, Crete: Springer, 2016,

Conceptual methodology allowing for the use of results from

security testing (using attack trees and penetration testing) in

a future formal design method.
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[36] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,

S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,

“Comprehensive Experimental Analyses of Automotive Attack

Surfaces.,” in Proceedings of 20th USENIX Security Symposium,

San Francisco, CA: USENIX Association, 2011, pp. 77–92,

The authors perform experimental analyses around a variety

of external short range and long range wireless. Work based

around physical access to a car had already been addressed in

earlier work. Theory to understand the problem is primarily

around threat modelling and looking at related work such as

that done with the TPMS or RFID related attack. They proceed

to describe successful attacks through Bluetooth, cellular, CD

player, radio and OBD-II

[37] X. Chen, Treelib documentation (revision bd53bbdf), 2014. [On-

line]. Available: http://treelib.readthedocs.io/en/latest/

(visited on 2016-11-19),

Tool for building, displaying and searching trees in Python

[38] K.-T. Cho and K. G. Shin, “Error Handling of In-vehicle Net-

works Makes Them Vulnerable,” in Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security
- CCS’16, Vienna: ACM New York, NY, Oct. 2016, pp. 1044–

1055,

Paper describing how to turn error-handling functionality against

the CAN network, by inducing errors (by injecting invalid

packets). This results in the transmission error counters being

increased, which results in a mistakenly categorised “defective”

ECU, which triggers the CAN fault confinement to force victim

ECU(s) to shut down (i.e. bus-off state).

[39] K. Daley, R. Larson, and J. Dawkins, “A structural framework

for modeling multi-stage network attacks,” in Proceedings. In-
ternational Conference on Parallel Processing Workshop, IEEE Com-

puter Society, 2002, pp. 5–10,

Uses attack trees with an enhancement called Stratified Node

Topology, which looks at the levels of the attack tree and assigns

hierarchical levels (event level, state level and top level). The top

level seems synonymous with attack goal, with the state level

being the attack pattern and the event level the attack method.

A very useful way of looking at how to break down the trees,

http://treelib.readthedocs.io/en/latest/
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and was used to create the initial “map of the universe” attack

tree before the focus on Bluetooth.

[40] A. Dardanelli, F. Maggi, M. Tanelli, S. Zanero, S. M. Savaresi,

R. Kochanek, and T. Holz, “A security layer for smartphone-

to-vehicle communication over bluetooth,” IEEE Embedded Sys-
tems Letters, vol. 5, no. 3, pp. 34–37, 2013,

The contribution is a control system architecture which inte-

grates a phone with an embedded system (in order for the phone

to interact securely with a modern vehicle without requiring

any modifications). This is to address the problem of the exten-

sion of system boundaries over which a manufacturer has no

control.

[41] J. Dawkins and J. Hale, “A systematic approach to multi-stage

network attack analysis,” in Proceedings of the 2nd IEEE Interna-
tional Information Assurance Workshop, 2004, pp. 48–56,

Presents a framework for network attack modeling and analysis,

including modelling vulnerabilities and attacker capabilities. A

prototype is also presented which implements the framework,

supporting generation of attack tree and correlative analysis of

network vulnerabilities. Of interest here are the use of attack

trees in the use of various (potentially related) vulnerabilities,

although the context is very different.

[42] Department for Transport, “The Pathway to Driverless Cars :

A detailed review of regulations for automated vehicle tech-

nologies,” Department for Transport, Tech. Rep., Feb. 2015.

[Online]. Available: https://www.gov.uk/government/upload

s/system/uploads/attachment_data/file/401565/pathway-

driverless-cars-main.pdf (visited on 2017-06-05),

Technical report collating responses from the automotive and

insurance industries, legal professionals, technical institutions

and road users regarding attitudes and current regulations sur-

rounding testing of autonomous and highly automated vehicles.

Legislation in many other countries apparently prevents such

testing, which might allow the UK to fill the gap.

[43] J. Dunning, Spooftooph, 2012. [Online]. Available: http://tool

s.kali.org/wireless-attacks/spooftooph (visited on 2016-

09-12),

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/401565/pathway-driverless-cars-main.pdf
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Proof of concept tool used to change the Bluetooth address,

name and class of local HCI adaptor. The changing of the Blue-

tooth address can only be performed on CSR chips. The latter

is similar to what the hcitool suite can do.

[44] J. P. Dunning, “Taming the blue beast: A survey of bluetooth

based threats,” IEEE Security and Privacy, vol. 8, no. 2, pp. 20–

27, 2010,

As Bluetooth finds its way into millions of devices worldwide,

it also becomes a prime target for hackers. The author presents

a taxonomy for threats against Bluetooth-enabled devices, de-

scribes several of these threats, and identifies steps for threat

mitigation.

[45] ELM Electronics, ELM Electronics: OBD, n.d. [Online]. Avail-

able: https://www.elmelectronics.com/products/ics/obd/

(visited on 2017-12-04),

Company who manufacture the ELM327 chipsets that are inte-

grated in Bluetooth OBD-II dongles

[46] K. S. Edge, “A framework for analyzing and mitigating the

vulnerabilities of complex systems via attack and protection

trees,” PhD Thesis, Air University, 2007. [Online]. Available:

http://www.dtic.mil/cgi- bin/GetTRDoc?AD=ADA472310

(visited on 2015-03-15),

A thesis exploring vulnerabilities in complex systems using at-

tack and protection (countermeasure) trees. Good explanations

regarding attack trees and how they can be used, and a detailed

exploration of attack trees is available.

[47] S. Edwards, “A framework for practical, automated black-box

testing of component-based software,” Software Testing, Verifi-
cation and Reliability, vol. 11, pp. 97–111, 2001,

Presents a conceptual framework for the automation of black-

box testing. Also explores state-of-the-art regarding testing re-

search and concludes that automated black-box testing is feasi-

ble.

[48] S Eichler, “A security architecture concept for vehicular net-

work nodes,” in Proceedings of 6th International Conference on
Information, Communications and Signal Processing, Singapore:

IEEE, 2007, pp. 1–5,
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Part IV

S U P P L E M E N TA RY M AT E R I A L S





A
A P P E N D I X

a.1 required python libraries

The below lists the versions of the Python libraries used and is the minimum version
required for the proof-of-concept tool. A description is also given of the functionality
each of the libraries provides the tool [126].

Library Version Description

Python Standard Libraries [126]

re Python 2.7 Provides regular expression operations, used for
input validation

time Python 2.7 Provides ability to specify time intervals for input

subprocess Python 2.7 Allows for spawning of new processes

shutil Python 2.7 Provides operations for high level file manipulation,
used for manipulating created logs

os Python 2.7 Provides access to miscellaneous operating system
interfaces, used for file object creation

csv Python 2.7 Used to read and write to Comma-Separated Values
format files, used for manipulating created logs

stringIO Python 2.7 Provides ability to read and write strings as files,
used for logging functions

Bluetooth-related libraries

PyBluez 0.22 Python extension library providing access to system
Bluetooth resources [166]

bluetool 0.2.1 Python API for Bluetooth D-Bus calls, used for
pairing checks [3]

lightblue 0.4 Python library providing access to Bluetooth
operations [165]

python-obexftp 0.26 Python implementation for aspects of the OBEX
protocol [25], used for File Transfer Profile tests

pySerial 3.0 Python module encapsulating access to a serial port
[98], required for access to Bluetooth’s Serial Port
Profile

Other libraries

treelib 1.3.5 Tree data structure implementation in Python [37],
required to build, display and search tree structure

libfdr 4.2.0 FDR API (64-bit only) which exposes part of FDR’s
internals for external tool use

PTable 0.9.2 Python library to represent tabular data [16], used for
tabulating diagnosis results

PyFiglet 0.7.5 Creates ASCII art [84]
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a.2 domain expert reviewer biographies

Paul Wooderson is a Senior Functional Safety and Cybersecurity En-

gineer at HORIBA MIRA Ltd, responsible for cybersecurity research

and development. He is a Chartered Engineer with 15 years’ experi-

ence in embedded systems security in the automotive and smartcard

domains. Paul’s experience includes threat analysis and risk assess-

ment, security evaluation of cryptographic hardware and software,

secure design techniques and security certification. Paul is also a UK

Expert to the joint ISO/SAE working group on automotive cyberse-

curity engineering and a member of the SAE Vehicle Cybersecurity

Systems Engineering Committee.

Anthony Jude is a Senior Systems and Cyber Security Engineer

at HORIBA MIRA Ltd., with expertise in weapon systems, electronic

warfare, radio frequency communications and substation automation.

He has 12 years of experience in developing software centric systems,

five years in developing mechatronic systems to IEC61508 and two

years experience developing safety-related mechatronic systems to

ISO26262.
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1 Will any part of the project involve animal habitats or tissues or non-
human vertebrates? 
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2 Does the project involve any procedure to the protected animal whilst 
it is still alive? 

  

3 Will any part of your project involve the study of animals in their 
natural habitat? 
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natural setting that is outside the control of the researcher? 
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the behaviour of the animals available for observation? 

  

 If YES, please give details  

6 Is the species you plan to research endangered, locally rare or part of 
a sensitive ecosystem protected by legislation? 
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7 Is there any significant possibility that the welfare of the target species 
of those sharing the local environment/habitat will be detrimentally 
affected? 
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8 Is there any significant possibility that the habitat of the animals will be 
damaged by the project, such that their health and survival will be 
endangered? 

  

 If YES, please give details  

9 Will project work involve intervention work in a non-natural setting in 
relation to invertebrate species other than Octopus vulgaris? 

  

 If YES, please give details  
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Blood Sampling / Human Tissue Analysis 

 

Question Yes No 

1 Does your study involve collecting or use of human tissues or fluids? 

(e.g. collecting urine, saliva, blood or use of cell lines, 'dead' blood) 

 X 

 If YES, please give details  

2 If your study involves blood samples or body fluids (e.g. urine, saliva) 
have you clearly stated in your application that appropriate guidelines 
are to be followed (e.g. The British Association of Sport and Exercise 
Science Physiological Testing Guidelines (2007) or equivalent) and 
that they are in line with the level of risk? 

  

 If NO, please explain why not  

3 If your study involves human tissue other than blood and saliva, have 
you clearly stated in your application that appropriate guidelines are to 
be followed (e.g. The Human Tissues Act, or equivalent) and that they 
are in line with level of risk? 

  

 If NO, please explain why not  
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Travel 

 

Question Yes No 

1 Does any part of the project require data collection off campus? 

(e.g. work in the field or community) 

 X 

 If YES: 

You must consider the potential hazards 
from off campus activities (e.g. working 
alone, time of data collection, unfamiliar or 
hazardous locations, using equipment, the 
terrain, violence or aggression from 
others). Outline the precautions that will 
be taken to manage these risks, AS A 
MINIMUM this must detail how 
researchers would summon assistance in 
an emergency when working off campus. 

For complex or high risk projects you may 
wish to complete and upload a separate 
risk assessment 

 

2 Does any part of the project involve the researcher travelling outside 
the UK (or to very remote UK locations)? 

  

 If YES: 

Please give details of where, when and 
how you will be travelling. For travel to 
high risk places you may wish to complete 
and upload a separate risk assessment 

 

3 Are all travellers aware of contact numbers for emergency assitance 
when away (e.g. local emergency assistance, ambulance/local 
hospital/police, insurance helpline [+44 (0) 2071 737797] and CU's 
24/7 emergency line [+44 (0) 2476 888555])? 

  

4 Are there any travel warnings in place advising against all, or essential 
only travel to the destination? 

NOTE: Before travel to countries with 'against all travel', or 'essential 
only' travel warnings, staff must check with Finance to ensure 
insurance coverage is not affected. Undergraduate projects in high 
risk destinations will not be approved 

  

5 Are there increased risks to health and safety related to the 
destination? e.g. cultural differences, civil unrest, climate, crime, 
health outbreaks/concerns, and travel arrangements? 

  

 If YES, please specify  

6 Do all travelling members of the research team have adequate travel 
insurance? 

  

7 Please confirm all travelling researchers have been advised to seek 
medical advice regarding vaccinations, medical conditions etc, from 
their GP 
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