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Introduction:  

Since Galenus (129-201 a.C., physician and philosopher in the Roman empire) approached 

the study of physical exercise and training of gladiators, classifying muscles and their function in his 

De Motu Musclorum, the assessment of motor activity and physical function has been the object of 

innumerate applied research. Great minds, such as Leonardo da Vinci (1452-1519), with his study of 

limb motion, and Galileo Galilei (1564-1642), in his De Animalium Motibus, opened the path to the 

systematic study of human motion, while Borelli, in his De Motu Animalium (1680; Figure 1), was 

the first to apply to a traditionally biological topic the rigorous analytic method developed by Galileo. 

 
Figure 1: Giovanni Alfonso Borelli, De Motu Animalium. 

From a scientific perspective, the assessment of motor activity entails the definition and 

measurement of objective descriptors (e.g., number of repetitions, durations, distances, angles), 

intended to characterize function, and the essential introduction of objective measurement tools 

demonstrated its disruptive potential since the pioneering studies by Etienne Jules Marey (1830-1904, 

physiologist and inventor) and Eadweard James Muybridge (1830-1904, photographer): their chrono-

photogrammetric method exploited the innovation of the time in photographic technology to quantify, 

for the first time, segmental kinematics of living subjects during the execution of different motor tasks 

and is considered the starting point of modern quantitative motion analysis (Figures 2 a and b). 



 

(a) (b) 

Figure 2: a) Chrono-photogrammetry (E.J.Marey and E.J.Muybridge); b) device for the 

quantification of foot pressure (E.J.Marey). 

Ever since, a number of different tools and approaches have been exploited to further develop 

and integrate the quantitative assessment of human motion, from the simple use of paper stripes and 

inked feet for the quantification of step and stride length, and chronographers for speed, to the more 

advanced technological solutions allowed by the spread use of personal computers in the early 1980s. 

The progressive advances in the field of electronics and computer sciences, together with the 

concurrent reduction of costs, led, in the following decades from the first two camera 

stereophotogrammetric systems, for the automatic quantification of segmental kinematics, to the most 

advanced modern systems integrating multiple cameras together with several other measurement 

devices, such as load cells and platforms for the quantification of reaction forces, electromyography 

for muscle activity, pressure insoles, and many others. 

Nowadays, integrated motion analysis systems have reached a high technological level and 

simplicity of use, becoming a de-facto standard for the detailed and accurate quantification of human 

motion in laboratory conditions. They are extensively used for the characterization of motor 

alterations, the design and evaluation of clinical interventions, and the monitoring of the follow-up in 

specific pathological conditions (e.g., arthritis, stroke, cerebral palsy, Parkinson disease), as well as 

for the evaluation of performance, the optimization of training, and the prevention of injuries in sport 

applications. 

Despite the valuable quantitative information provided by these systems, their use remains 

limited to laboratory, or, at least, to controlled environment conditions, while the assessment of motor 

activity and performance is expected to describe what people do in real life. 

The technological solution required to respond to this need must: 

• be un-obstructive and self-contained, not to alter the natural performance of motor activities 

in real life conditions; 



• allow long recordings with sufficient sampling frequency, to guarantee an appropriate 

description of motion and take into account physiological variability; 

• be simple to use and low-cost, to support extensive assessment by non-technical operators in 

different contexts. 

Despite the several attempts to produce measurement systems with these characteristics in the 

past decades (e.g., portable systems integrating electro-goniometers, foot-switches, pressure insoles, 

and/or electromyography), none of them actually satisfied all the afore-mentioned requirements. Only 

in recent years, the disruptive development of mobile technologies provided the first effective 

response to the need of pervasive real-time motor assessment. 

Wireless wearable sensors have become available on the market, ready to be exploited in a 

number of technological solutions aiming at the quantitative assessment of motor activity and 

performance. Among these, magneto-inertial measurement units have certainly gained a key role; 

providing miniaturized measurement units integrated in minimally invasive set-ups (i.e., a single 

wireless tri-axial sensor or a small network, mounted on bands or straps, with integrated power supply 

and data transmission), allowing the measurement and recording of real-time orientation, angular 

velocity and acceleration of body segments in free environment. They have found application for 

different types of motion analysis assessment, from activity monitoring to traditional motion analysis, 

also opening the path to novel approaches to the objective assessment of motor control (Figure 3). In 

addition to this, an innovation coming from the gaming industry (Kinect, Microsoft) has served 

motion analysis researchers with the first low cost video-based solution allowing the automatic 

reconstruction of segmental kinematics not requiring the placement of any markers on the analyzed 

subject. 

 

Figure 3: numerous wireless sensors and body worn locations 
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All these novel emerging technologies have readily found application and have the breaking 

potential of priming a new era in the field of motor assessment. They certainly have the advantage of 

providing informative, quantitative data for the application of traditional approaches, reducing work 

load in terms of time, improving inter- and intra-rater reliability, enabling systematic analysis and 

objective evaluation of concurring factors, facilitating population classification, characterization and 

longitudinal monitoring; but they are also opening the path to novel perspectives in the objective 

assessment of motion, as for the evidence-based characterization of specific aspects of motor control 

and development. 

As exciting as the potential provided by these innovative technological tools can appear, its 

effective deployment to applied research requires a certain level of critical awareness; specific 

advantages and the possible limitations have to be considered to support the informed selection of the 

most suitable solution for each specific application. Different technological solutions have become 

available for certain types of assessment, and, on the other hand, the same devices can be exploited 

for different applications using different computational approaches. 

Far from aiming to be conclusive, this chapter is intended to provide a synthetic overview of 

the broad and developing landscape of novel technological solutions for the measurement and 

assessment of youth physical activity. Considering the continuous on-going advances in the field, the 

authors want to provide a schematic scope-oriented out-line of the possible solutions, the basic 

references supporting further specific in-depth analysis, highlighting key advantages and limitations. 

 

A synthetic out-line of the state of the art: A brief overview of the literature 

 

Given the number of technological solutions proposed and available for the quantitative 

assessment of motor activity, they have been organized in a scope-oriented schematic out-line in 

Table 1 and Table 2, to summarize and organize the key concepts and terms, and introduce basic 

references. In particular, Table 1 outlines solutions proposed for quantitative activity monitoring, 

considering both product and process-oriented approaches, while Table 2 refers to quantitative motion 

analysis, which is a detailed process-oriented description of specific motor tasks. 

 



Table 1. Activity monitoring   
Scope Target Target variable Technology Computational Approach 

Activity 

monitoring 

Product  Space parameters Magnetometer (Barnes et al, 2018) Dynamic time warping; cross-correlation (Barnes et al, 

2018) 

Process Space parameters; time 

parameters 

Magnetometer (Barnes et al, 2018); Force 

sensitive resistor (Xiao and Menon, 

2014) 

Dynamic time warping (Barnes et al, 2018); contour 

mapping (Barnes et al, 2018); Extreme learning machine 

classifier (Xiao and Menon, 2014) 

Daily living Visual; time parameters; 

space parameters 

Electro-oculography (Bulling et al, 

2011); gyroscope (Leutheuser et al, 

2013); Radio frequency identification 

(RFID) (Spinney et al, 2015) 

Support vector machine (Bulling et al, 2011; Leutheuser et 

al, 2013); k-Nearest Neighbor classifier (Leutheuser et al, 

2013); classification and regression tree (Leutheuser et al, 

2013); linear correction (Spinney et al, 2015) 

PA intensities  Visual; tangible; frequency 

parameters  

Magnetometer (Crossley et al, 2018); 3-D 

printing (Khot et al, 2014); micro 

electromechanical system (Clark et al, 

2016; 2017) 

Vector of dynamic body acceleration (Crossley et al, 

2018); visual inspection (Crossley et al, 2018); arithmetic 

mean (Khot et al, 2014), spectral density (Clark et al, 2016; 

2017), Fourier transformation (Clark et al, 2016; 2017). 

PA type/characterisation Time parameters; space 

parameters; visual 

Heart rate + calorimeter (Duncan et al, 

2011); video sensor (Zhang et al, 2011; 

Loveday et al, 2016); force sensitive 

resistor (Fulk and Sazonov, 2011); 

inclinometer (Crouter et al, 2018) 

Feature extraction (Duncan et al, 2011); Machine learning 

(Duncan et al, 2011); Good features detector (Zhang et al, 

2011); binary coding (Loveday et al, 2016); Support vector 

machine (Fulk and Sazonov, 2011); feature extraction 

(Crouter et al, 2018) 

Global position Space parameters WiFi Real-time locating system 

(Loveday et al, 2016); Global positioning 

system (Holliday et al, 2017); WiFi + 

accelerometer (Kjaergaard et al, 2012) 

Proximity (Loveday et al, 2016); location features detector 

(Holliday et al, 2017); hierarchical cluster analysis 

(Kjaergaard et al, 2012). 

 
Definitions. Magnetometer:  a device measuring the direction, strength, or relative change of a magnetic field at a given location; terrestrial magnetic field is usually assumed as 

reference. Force sensitive resistor:  a material whose resistance changes when a force, pressure or mechanical stress is applied.  Electro-oculography: a device for measuring the 

corneo-retinal standing potential that exists between the front and the back of the human eye.  Gyroscope: a device used for measuring or maintaining orientation and angular 

velocity.  Radio frequency identification:  the use of electromagnetic fields to automatically identify and track tags attached to objects. 3D printing: is where material is joined or 

solidified under computer control to create a three-dimensional object. Micro electromechanical system: microscopic devices merged at the nano-scale. Calorimeter: an object or 

device used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity.  Inclinometer: an instrument used for 

measuring angles of slope, elevation, or depression of an object with respect to gravity's direction.  WiFi Real-time locating system: uses a wireless network to automatically 

identify and track the location of objects or people in real time, usually within a building or other contained area. Global positioning system: a system that uses satellites to 

provide autonomous geo-spatial positioning. Accelerometer:  a device which measures the acceleration of a body in its own instantaneous rest frame.



Activity monitoring  

Process-oriented assessment is considered an important tool in the development of children’s 

physical activity programmes, motor competence and indeed physical development. Problematically, 

traditional assessments of child motor competence and physical activity have been conducted with 

either direct observation, or accelerometers, in the case of the latter. Technological development has 

progressed to a point where multi-disciplinary teams are utilising engineering-based tools or analyses, 

applied to human movement, and whilst in its infancy, promising developments have prompted novel 

perspectives.  In Barnes et al (2018), a magnetometer, which measures magnetism—either the 

magnetization of a magnetic material like a ferromagnet, or the direction, strength, or relative change 

of a magnetic field at a given location, affixed to the dominant wrist on children (10-12y), was worn 

during a motor competence assessment. The raw signal output was treated with novel analytical 

techniques, namely Dynamic time warping (DTW), which enables two signals to be artificially 

matched, (i.e., where children complete identical tasks but over a shorter or longer time-frame), 

facilitating direct comparison between signals, or, in this case, children, removing time-based 

discrepancies. Pairwise comparison across a cohort produces a similarity matrix of all child to child 

correlations. Visualisation of the relative performance in 3-dimensions, using multi-dimensional 

scaling of the similarity matrix, shows a ‘performance sphere’ (Barnes et al, 2018) in which children 

sit on concentric shells of increasing radius as performance deteriorates. The relative distance 

between children within the multi-dimensional scaling can then be used to create an automated 

sensor-based rank scoring. This technique was also shown to provide “product” assessments, by 

reducing the dimensionality, removing process measures, product can be efficaciously plotted against 

time (Barnes et al, 2018). Further work highlighting our potential to assess process-oriented measures 

was demonstrated by Xiao, et al. (2014), who utilised a force sensitive resistor, and applied it to the 

upper extremities to analyse force myographic signals of the forearm. The authors were able to 

accurately identify upper extremity movements during a controlled drinking task (92% accuracy). 

Xiao, et al. (2014) also utilised a form of machine learning to learn and classify the data, an extreme 

learning machine (ELM) classifier, where a training approach was taken, where the ELM classifier 

was ‘taught’ or ‘trained’ to model the force myography trace.  

 

Daily living 

 

Developments have not only ensued for short-term, acute bouts of activity. Technological 

advancement and integration have facilitated novel perspectives into daily free-living activities. 

Bulling, et al. (2011) reported an accuracy of 76% when identifying activities such as text copying, 

reading a printed paper, taking hand-written notes, watching a video, and browsing the web. The 



authors assert that recording the movements of human eyes, otherwise termed ‘electrooculography’, 

can successfully be used to identify certain activities and may be feasible in wider applications, such 

as accurately identifying non-traditional activities (e.g., rock climbing), which would inherently be 

missed by common sensing modalities. However, whilst promising, further investigations to 

corroborate the effectiveness of this technique are required in order to up-scale this technology. The 

application of cameras, in different forms, to characterise activity has demonstrated variable success 

when complemented with novel analyses. Leutheuser, et al. (2013) utilised machine learning, in 

combination with feature extraction, on gyroscopic data and could correctly identify basic free-living 

physical activities with up to 89.6% accuracy. The use of machine learning with gyroscopic signals 

appears to allow identification of specific movements with high accuracy. However, at present 

activity classification using this method appears to only be able to identify basic movements. 

Notwithstanding potential drawbacks, when integrated with more traditional sensor-based devices, 

(e.g., accelerometers), the limitations of this approach are somewhat ameliorated (Leutheuser et al, 

2013). Further evidence exists, not only in the form of wearables, but rather, ‘nearables’; Spinney et 

al (2015) used Radio-frequency identification (RFID) to successfully demonstrate patterns of 

physical activity, standing, and sitting by office workers. This study highlighted the relationship 

between location, light physical activity and sitting, across multiple office environments, and 

although preliminary, the explanatory power of the technique is promising. 

 

Physical activity intensities 

 

Magnetometers have not only been applied in the assessment of process-based metrics, but 

preliminary studies in children have shown them to be useful in the assessment of turning, or altering 

direction (Crossley et al, 2018). Recently, it has been suggested that turning is power intensive; and 

given the sporadic and irregular movement patterns of children, may be an important consideration 

for physical activity assessment. Crossley et al (2018), firstly highlighted significantly higher energy 

expenditure when the angle and speed of turn was increased, then demonstrated that magnetometry 

can be used to highlight where and when such turns take place. By incorporating accelerometry with 

novel technology (i.e., magnetometry), the additional energy expenditure as a result of turning can be 

taken into consideration. Additional wearable-based technology, in the form of micro-

electromechanical systems devices (MEMS), which are microscopic fabrications such as 

accelerometers or magnetometers, has shown promise in the assessment of physical activity 

intensities. MEMS devices were applied in either a controlled fitness test (Clark et al, 2016), or in 

free-play (Clark et al, 2017), in children aged 3-11 y. The novel, microscopic technology was 



complemented with novel analytical procedures, where Fourier transformations facilitated the use of 

the frequency domain (as opposed to traditional time-space), in addition to hierarchical clustering of 

metrics. The resultant technology-analytics combination demonstrated that frequency-based metrics 

cluster with motor competence and physical activity levels (Clark et al, 2017), are indicative, and 

potentially predictive, of physical fitness (Clark et al, 2016). Novel wearable technology has been 

showcased to provide novel insights, however, ‘tangible’ technology has been shown to not only to 

measure and enhance physical activity, but also improve knowledge and understanding of personal 

activity levels (Khot et al, 2014; Crossley et al, 2019), where the Precaution Adoption Process Model 

(Weinstein, 1988), from the Stages of Change (Procahska and DiClemente, 1992), suggests that an 

individual is unlikely to proceed to the contemplation stage unless they become aware that their 

behaviours are inadequate. Khot et al (2014) advocate a novel approach of representing physical 

activity in the form of material, 3-D printed, artefacts, where a 3-D printing device was located in 

households, and manufactured three-dimensional “print-outs” of corresponding heart rate data. This 

novel contribution of this work is the first to highlight a conceptual understanding of the relationship 

between material representations and physical activity, and is promising, given the suitability of being 

located across households, rather than research labs, potentially reducing participant burden. Further 

work, by Crossley et al (2019), has also reported that, when supplied with 3-D representations of 

physical activity, the majority of children and adolescents are able to identify whether they did or did 

not meet, or how close they were to meeting, PA guidelines, and encouraged a healthier, more active 

lifestyle.  

 

Physical activity characterisation/type 

 

A further example of instruments used when attempting to characterise human movement with 

novel analytics is force sensitive resistors, which contains a material whose resistance changes when 

a force, pressure or mechanical stress is applied. Fulk and Sazonov (2011), for example, mounted the 

device in the footwear of participants to measure plantar pressure and record the acceleration signal, 

thereby inferring postural activity in stroke victims. The raw signal from the device was analysed 

using a support vector machine, which is a supervised machine learning technique that can use 

training examples to learn the dependencies in the data. The computer was taught how the signals 

from the sensors can predict postural activities, and the learned model was then applied to the 

recognition of previously unseen data (Fulk and Sazonov, 2011). Across all participants, accuracy in 

identifying postural activity of 99-100% was found, indicating that with a modest sample size, and 

applying the combination of acceleration and pressure traces, postures may confidently be assessed. 



Conversely, when focussing more broadly on inferring activity type, and not specifically falls or basic 

movement, Duncan, et al. (2011) achieved 97% accuracy in the assessment of walking and running 

in the laboratory and 84% accuracy in the field, using feature recognition. This particular method 

appears to be increasingly successful when energy expenditure assessment in combined, in order to 

infer activity type, rather than the accelerometer signal alone. However, once in field testing was 

performed, the accuracy falls by 13 percentage points, indicating reliability issues outside of a 

controlled setting, and highlights the need for more robust machine learning techniques to be 

developed for free-living activity. 

 

So far, novel technology has been showcased in the form of MEMS, 3-D printing, force 

sensitive resistors, RFID, gyroscopes and magnetometers. A further novel technology being 

pioneered in the assessment of physical activity in children is inclinometers, which measure angles 

of slope, elevation, or depression of an object with respect to gravity's direction. Crouter et al (2018) 

demonstrated, in a comprehensive evaluation of time spent in sedentary behaviours, utilising 

inclinometers, accelerometers and indirect calorimetry, that inclinometers can facilitate precise 

estimates of sedentary behaviour during free-living activity in youth. 

 

Global position 

 

Up to this point in the chapter, it is clear that refining and developing emerging technologies 

should remain a strong focus, so that adequate levels of accuracy and confidence may be established 

and further improved upon. Moreover, it is clear that the technologies and techniques by which 

physical activity can be measured will continue to proliferate. Cluster analysis has been utilised for 

the assessment of frequency-based metrics for microscopic technology (Clark et al, 2016; 2017). This 

analytical technique involves the use of algorithms to separate a population into clusters or groups 

based on various parameters, such as activity behaviours. Kjaergaard et al (2012) employed the same 

analytical protocol, yet focussed on group activity, rather than individual activity, using ‘flock 

detection’ (i.e., multiple persons forming a cohesive whole) and Wi-Fi signals to identify and track 

pedestrian flocks with 87% accuracy. Whilst the novel application of this technology is promising, 

problems emerged regarding flock proximity (i.e., the ability of the cluster analysis to successfully 

differentiate between flocks was encumbered when various groups become entwined or proximity 

was too high). This indicates that the mathematical modelling process applied to the novel technology 

requires further refinement.  

 



The importance of location-based information, to better inform physical activity, has recently 

come to the fore, whether that be restricted to specific locations, such as an office, or wider. Holliday 

et al (2017) sought to highlight necessary wear time for global positioning system devices. They 

demonstrated that in general, minutes of all physical activity intensities spent in a given location could 

be measured with over 80% reliability, including fitness facilities, schools, and footpaths (Holliday 

et al, 2017). However, in order to accurately monitor location-based activity in parks and roads, a 

wear time minimum of 5 days is required, and PA assessment in homes and commercial areas 

necessitates over 19 days of monitoring to yield accurate results (Holliday et al, 2017). Furthermore, 

this approach for the assessment of free-living PA in youth is likely feasible as current, global 

surveillance practices already utilise multi-day accelerometry, such as the National Health and 

Nutrition Examination Survey (NHANES) in the USA (Freedson and John, 2013), Brazilian birth 

cohorts (da Silva et al., 2014), the Growing up in Australia Checkpoint (Wake et al., 2014), and 

Biobank investigations in the UK (http://www.ukbiobank.ac.uk/about-biobank-uk/). Moreover, 

numerous accelerometers include global positioning attachments, compatibility or in-built 

functionality, which represents the opportunity for a relatively straightforward adoption.  

Finally, global position work in the form of WiFi real-time locating systems, showcased in 

Loveday at al (2016), can be used to enable remote assessment of intervention adherence. The 

proximity-based assessment indicated that office workers may spend a proportion of working hours 

outside of their office. This, evidently, has implications for assessing the efficacy of office based 

environmental interventions; and could be extended to children’s time spent in classrooms, and 

adherence to location-based interventions. This novel technology may provide more robust means of 

assessing intervention efficacy, as opposed to comparatively time consumptive, participant 

burdensome, and inaccurate self-report measures. Although refinement and development are clearly 

necessary, the adoption of novel technologies will provide researchers with a more complete 

understanding of physical activity behaviours than has previously been available. 

Video based  

 

Whilst actigraphy-based sensors have become the de facto tool for the objective assessment 

of physical activity, the use of other sensors (i.e., cameras, force sensitive resistors, 

electrooculography) to achieve the same, or advancing outcomes has grown. It is evident that the aim 

of many emerging analytical technologies and techniques has been to aid in better detecting the 

quality and type of activity that a person is undertaking. Zhang, et al. (2011) incorporated motion 

cameras to automatically recognise patterns of movement, albeit in young adults, and demonstrated 

that basic motor movements could be recognised with 85% accuracy. Notwithstanding this promising 

http://www.ukbiobank.ac.uk/about-biobank-uk/


accuracy, Zhang, et al. (2011) assert that this upper limit of accuracy could be an artefact of the 

device, as acquired images are often blurry and ineffective in capturing feature points, which may be 

an inherent limitation of cameras. Furthermore, contemporary work has also demonstrated that 

wearable cameras can be used to assess children’s physical activity and behaviour recall (Everson et 

al, 2019). However, particularly with respect of children and adolescents, wearable cameras carry 

some ethical and technical challenges, as Everson et al (2019) highlight, parents and children reported 

that wearable cameras are burdensome and invade privacy. 

Further vison-based approaches for the assessment of physical activities has been showcased 

by Loveday et al (2016). Whilst there is a plethora of reasons for the prevalence of sedentary 

behaviours, a possible contributing factor to our lack of intervention success is the current lack of 

behavioural context offered by accelerometers and posture sensors. Utilising concurrent electrical 

energy monitoring and wearable cameras as measures of television viewing, Loveday (2016) found 

that, on average, televisions were switched on for 202 minutes per day, yet only visible in just 90 

minutes of wearable camera images with a further ~50 minutes where the participant is in their living 

room, but the television is not visible in the image. The authors highlight that the high number of un-

codeable images from the wearable cameras (deployed on a lanyard or fixed to clothing) may 

therefore not be conducive to a reliable measure of television viewing. In order to counteract this 

limitation, the method of camera affixation, and therefore resultant field of view, must be acutely 

considered, but remains a promising novel technology in the assessment of physical activities. 

Within the same study, Loveday (2016) utilised indoor monitoring with the same video 

monitors, to assess where individuals accumulated their sedentary time. Utilising this novel 

technology and approach, quantifying time spent in specific rooms, or communal areas becomes a 

realistic accomplishment. Given the potential, it would be advantageous to investigate the utility of 

this technology in settings which may offer more location possibilities with populations such as 

children and adolescents, who are likely to spend their time in varied locations. 

 



 Table 2. Motion analysis 
Scope Task Target Target 

variables 

Technology Computational Approach 

Motion 

analysis 

Gait Gait events (foot 

contact and toe-off) 

and temporal 

parameters (stride, 

step, stance, swing 

time) 

 

Acceleration; 

angular 

velocity; 

plantar pressure 

Wearable: 

accelerometers (Caldas, Mundt, Potthast, Buarque de Lima 

Neto, & Markert, 2017; Pacini Panebianco, Bisi, Stagni, & 

Fantozzi, 2018; Taborri, Palermo, Rossi, & Cappa, 2016); 

gyroscopes (Caldas et al., 2017; Pacini Panebianco et al., 

2018; Taborri et al., 2016); 

Foot switches (Taborri et al., 2016); foot pressure insoles 

(Taborri et al., 2016) 

Non wearable: 

Markerless 2D video camera (Castelli, Paolini, Cereatti, & 

Della Croce, 2015; Verlekar, Soares, & Correia, 2018); 

Kinect (Latorre, Llorens, Colomer, & Alcañiz, 2018) 

Wearable: 

Peak identification (Pacini Panebianco et al., 

2018); threshold identification(Pacini 

Panebianco et al., 2018; Taborri et al., 2016); 

artificial intelligence (Caldas et al., 2017); 

machine-learning (Taborri et al., 2016)  

Non wearable: 

2D markerless technique(Castelli et al., 2015); 

Kinect-based methods (Latorre et al., 2018)  

 

Kinematics Joint angles  

 

 

Wearable: 

IMUs (Caldas et al., 2017; Picerno, 2017; Teufl, Miezal, 

Taetz, Fröhlich, & Bleser, 2018) 

Non wearable: 

Markerless 2D video cameras (Colyer, Evans, Cosker, & 

Salo, 2018) Depth-sensing cameras (narrow-baseline 

binocular-stereo camera systems or active cameras) (Colyer 

et al., 2018) 

Wearable: 

artificial intelligence (Caldas et al., 2017); 

sensor fusion (Teufl et al., 2018) 

Non wearable: 

Machine learning; Generative or  

discriminative algorithms (Colyer et al., 2018) 

Motor control 

performance 

Variability 

structure of 

trunk/limb 

kinematics 

Wearable: 

IMUs (Stergiou, 2016) 

Non wearable: 

Markerless 2D video camera (Verlekar et al., 2018) 

Wearable: 

Non-linear measures of human motion 

(Stergiou, 2016) 

Non wearable: 

Markerless 2D video camera (Verlekar et al., 

2018) 

Posture Postural sway 

parameters 

Trunk sway 

(acceleration 

and 

displacement) 

Accelerometer (Mancini et al., 2012; Palmerini, Rocchi, 

Mellone, Valzania, & Chiari, 2011) 

Frequency domain and time domain analysis 

(Mancini et al., 2012; Palmerini et al., 2011) 

Other tasks of daily 

living  

 

Space-time 

parameters; joint 

kinematics; body 

segment kinematics 

Joint angles; 

foot contacts; 

time events 

IMUs (Bergmann, Mayagoitia, & Smith, 2010; Bergmann, 

Mayagoitia, & Smith, 2009; Camomilla, Bergamini, 

Fantozzi, & Vannozzi, 2018; El-Gohary et al., 2013; 

Filippeschi et al., 2017; Fino, Frames, & Lockhart, 2015) 

Computational approaches applied to the 

different gait target variables 

 
Definitions – Footswitch: a pressure sensor used to detect on-off of ground contact of specific points under the foot. IMU: Inertial measurement unit, a device integrating a 3D 

accelerometer and a 3D gyroscope.  



Motion analysis 

Human motion analysis, with particular reference to the evaluation of gait, was traditionally 

process oriented, aiming at the quantitative assessment of joint kinematics and kinetics in time, to be 

compared with reference normality patterns for biomechanical analysis, diagnosis and/or follow-up 

evaluation. Gait analysis is extensively used for the quantitative assessment of motor function in basic 

research as well as clinical and sport applications. The traditional implementation of motion analysis 

relies on laboratory instrumentation, stereophotogrammetry and force platforms being just the basic 

laboratory set-up, but the availability of inertial measurement units (IMU) rapidly gained a primary 

role for the ecological assessment out of the lab. Wearable, cheap and self-contained, IMUs are now 

extensively exploited for the ambulatory evaluation of gait, as described through spatio-temporal 

parameters, joint kinematics, as well as newly proposed metrics for characterization of the underlying 

motor control (e.g., variability, stability, complexity, automaticity). 

 

Spatio-temporal parameters (IMUs) 

 

Gait timing is considered of primary importance for the characterization of gait alterations. 

The quantification of gait temporal parameters (GTP) (i.e., step and stance times) requires, first of 

all, to identify gait events (GE) (i.e., heel strike and toe off). GE can be estimated from measurements 

obtained using various portable sensing technologies, such as foot-switches, pressure insoles (in both 

cases identifying when the contact pressure under a specific area of the foot crosses a certain 

threshold), as well as IMUs. In particular, segment angular velocity and acceleration as quantified by 

IMUs led to the need for appropriate gait segmentation methods (Taborri et al., 2016) and to the 

development of a number of algorithms. These were proposed and applied in different conditions, 

exploiting different sensor positions, analysing different variables, with different computational 

approaches. A recent work (Pacini Panebianco et al., 2018) analysed all these different 

implementation characteristics, highlighting how all these factors affect GE and GTP estimation. No 

proposed algorithm is generally preferred over the others, and specific characteristics have to be taken 

into account based on the experimental conditions (e.g., number/type/placement of sensors) and 

research questions (e.g., mean/variability of the selected gait variable). 

 

Kinematics (IMUs) 

Body-worn IMUs were also proposed for the estimation of segment orientation and joint 

angular kinematics (Picerno, 2017; Teufl et al., 2018). Using sensor fusion algorithms (e.g., variations 

of the Kalman filter or optimization based methods (Teufl et al., 2018), or artificial intelligence 



methods (Caldas et al., 2017)), it is possible to estimate the IMU’s orientation in reference to a global 

coordinate system (Picerno, 2017; Teufl et al., 2018). Combining more IMUs attached to linked body 

segments, it is possible to estimate the joint kinematics of the specified segments. Commercially 

available solutions usually provide a 3D sensor’s orientation or even protocols for estimating 3D joint 

kinematics during gait. In this case, the user must be aware of the issues related to ferromagnetic 

disturbances, to sensor-to-segment alignment and to the proprietary sensor fusion algorithm’s 

accuracy when estimating the 3D sensor’s orientation. 

The drawbacks concerning IMU systems when measuring human motion are mainly that 

IMU-based orientation estimation suffers from drift due to the integration of noisy gyroscope 

measurements, and that the incorporation of magnetometer measurements is typically based on the 

assumption of a homogeneous magnetic field, which is often violated (Teufl et al., 2018). The main 

approaches (Picerno, 2017) proposed in literature for drift correction are (1) kinematical reset or 

sensor fusion), (2) by using a mixed approach of the two previous methodologies, and (3) by using 

neural network prediction. These approaches have been proven efficient in particular for the 

evaluation of low-frequency cycling gestures like walking. For the second limitation, there are efforts 

to develop methods for handling magnetic disturbances or completely omit magnetometer data but 

still no gold standard method has been identified because environmental settings are unpredictable 

and not very standardisable from this point of view. 

 

Other tasks  

Similarly, wearable sensing supports the quantitative assessment of other non-gait human 

daily tasks (e.g. posture, stairs, turns), with the aim of assessing and defining the functional status of 

a person. Quantitative measures of (process) task performance, mainly proposed and used for clinical 

purposes (El-Gohary et al., 2013; Fino et al., 2015; Mancini et al., 2012; Palmerini et al., 2011) can 

be applied in several different contexts (e.g., for monitoring how personal postural oscillations vary 

during the day, after sports, and in relation to tiredness). For example, if static posture is accurately 

recognized during daily activities, a number of quantitative measures could characterize the quality 

of the postural oscillations, by means of one accelerometer positioned on the trunk. These measures 

allows quantification of postural displacement, acceleration and, if of interest, tremor (e.g., in 

participants with Parkinson disease (Mancini et al., 2012; Palmerini et al., 2011)).  

Continuous monitoring of turning, in terms of anatomical joint angles (El-Gohary et al., 2013), 

and type of turns (turning on the ipsilateral or on the contralateral turn, respectively) (Fino et al., 

2015) during spontaneous daily activities were proposed to help clinicians and patients determining 

who is at risk of falls and could benefit from preventative intervention. A similar approach have been 



proposed for assessing the quality of stair ascent, allowing the identification of gait events (initial 

contacts)  (Bergmann et al., 2010) and lower limb joint angles (Bergmann et al., 2009). Last but not 

least, it is possible to focus on upper limb movement, in order to track and assess the quality of upper 

limb joint kinematics during the day (Filippeschi et al., 2017).  

 

The above tasks are only some of the possible examples. By extracting classic biomechanical 

parameters (Camomilla et al., 2018), or developing specific algorithms for assessing limbs 

coordination (Bisi, Pacini Panebianco, Polman, & Stagni, 2017) based on body segment 

acceleration/angular velocities, an automatic evaluation of subjective performance during physical 

activity and/or specific motor tasks is possible (e.g,. for children motor competence assessment (Bisi, 

Tamburini, Pacini Panebianco, & Stagni, 2018; Grimpampi, Masci, Pesce, & Vannozzi, 2016; Masci 

et al., 2013; Masci, Vannozzi, Getchell, & Cappozzo, 2012)). 

 

Video based motion analysis 

Recently, vision-based motion analysis methods within sports and rehabilitation applications 

have evolved substantially thanks to innovative (markerless) techniques developed primarily for 

entertainment purposes. This allowed biomechanical research to contribute a vast amount of 

meaningful information in sports and rehabilitation applications (Colyer et al., 2018). Literature 

shows that some of these systems are capable of measuring sagittal plane angles to within 2°–3° 

during walking gait (Colyer et al., 2018). However, accuracy requirements vary across different 

scenarios and the validity of markerless systems has yet to be fully established across different 

movements in varying environments.  

 

The four major components of a markerless motion capture system are (1) the camera systems 

that are used, (2) the representation of the human body (the body model), (3) the image features used 

and, (4) the algorithms used to determine the parameters (shape, pose, location) of the body model 

(Colyer et al., 2018). Body pose on a given image is inferred by algorithms, which can be classified 

as ’generative‘ or ’discriminative‘:  Generative algorithms use model parameters to generate a 

hypothesis that is evaluated against image data and then iteratively refined to determine a best 

possible fit; discriminative algorithms start from image data to directly infer model parameters 

(Colyer et al., 2018). 

 

Each of these components have limitations and, depending on the specific implementation choice, 

influence the final accuracy and validity of the reconstructed motion data. Accuracy evaluation, 



performed by comparing kinematic output variables obtained by markerless system and by marker-

based optoelectronic ones was mostly evaluated on slow movements (typically walking gait), 

highlighting that transverse plane rotations are currently difficult to extract accurately and reliably by 

markerless technologies. To verify the utility of these approaches in physical activity applications, 

much quicker movements need still to be thoroughly assessed.  

 

Key and Emerging Issues  

Activity monitoring 

Research into physical activity is expanding to incorporate a multitude of different 

technologies and analytical techniques, and within each approach exists a series of constraints that 

must be considered. This chapter has identified an array of technological developments, showcasing 

high accuracies across physical activity measurement, with success in activity classification, success 

in identifying global position, success in quantifying intensity of movements, and even daily living; 

all whilst using various wearable, nearable or tangible technology.  

Notwithstanding, the application of such novel technology remains in its infancy; many of the studies 

were exploratory, under-powered or require further development to establish reliable, accurate 

measures across larger samples, and this raises a number of key and emerging issues. Based on the 

findings highlighted in Table 1, four key issues were emergent, with reference to activity monitoring: 

(1) developing performance, reliability and constraints, (2) scaling up of datasets/sample size, (3) 

utilisation of interventionist study designs, and (4) integration of technologies.  

Firstly, an important consideration when classifying data is that large datasets obtained through novel 

sensing units will result in multiple features, which necessitates time-consuming data analysis, and 

may significantly impact the classification methods. In fact, large feature sets may need huge datasets 

for training computational methods that could be unavailable (the so-called curse of dimensionality) 

and, notwithstanding, would slow down the development of the classification system. This issue of 

developing the performance, reliability and constraints from novel technology is exacerbated by the 

relatively small sample sizes currently recruited, given that a number of participants’ data is often 

‘withheld’ to ‘train’ appropriate analytical frameworks.  

Given that usage of some technology for PA assessment is in its infancy, it is unsurprising 

that there exists an over-propensity of cross-sectional study designs, and a dearth of interventionist 

studies. This is likely an artefact of the stage of development and refinement. In order to progress the 

application and acceptance of novel technology for PA assessment, the performance and reliability 

of the technology and data output must be affirmed in response to interventions, to elucidate whether 

such novel outputs can be positively (or negatively) impacted, and likewise, to detect change and 



normative values over time, through the course of motor development, thereby highlighting the 

constraints novel technology operates within.  

A further, emergent issue, manifest in the activity monitoring literature is one of technology 

integration. Some studies utilised novel technology in isolation, yet a number of groups have 

advocated the combination of technology of different types, to better measure physical activity (Table 

1). Novel technological approaches to PA measurement may be tentatively demarcated into wearable 

– specific to body-worn technology such as inclinometers or magnetometers, nearable – technology 

located ‘near’ participants, usually, to define position or proximity, and tangible – a physical output 

that the participant can feel and touch, where the physical form of the output is defined by preceding 

activities or intensities of movement. Whilst integration of these technology types is pragmatic and 

attractive, the integration of multiple inputs and outputs brings difficulties, including time-alignment 

of sensor outputs, harmonization of different data, the pairing of data measured in different space, 

(e.g., time vs frequency domain), and indeed, time taken to process multiple data sources. 

Notwithstanding the self-evident challenges, the integration of such technology is intertwined with 

the development of performance, reliability and constraints, which must remain a strong focus. 

Motion analysis 

As presented in the previous section, IMUs are a promising wearable solution for the 

characterization of different motor tasks out of the laboratory and during daily living activities. 

Among the analysed tasks, gait is surely the most widely investigated in literature and, thus, is an 

example of the current and crucial issues with respect to motion analysis.  

First, most of the developed algorithms for the estimation of (gait) space-temporal parameters were 

validated for healthy subjects in controlled environments. Thus, before effective widespread use of 

these methods, there are still some relevant question to answer. For example, to what extent are the 

developed solutions ecological valid (Pacini Panebianco et al., 2018)?; How does their performance 

(in terms of sensitivity, specificity, accuracy, repeatability) change when used by people with an 

altered (gait) pattern (e.g, children, older adults, etc) (Pacini Panebianco et al., 2018)?. Recently, 

researchers started addressing these questions, suggesting that there is no ‘perfect’ algorithm fitting 

for all conditions, but probably compromises are necessary depending on the specific goal. Clearly, 

further investigation is still needed in this area. 

 

With respect to the estimation of segment orientation and joint angle kinematics, the main 

limitations concerning IMU systems are the drift affecting the numerical integration of the gyro-based 

segment’s orientation and ferromagnetic disturbances. Sensor fusion methods and kinematical resets 

(Picerno, 2017) are the two main approaches used to efficiently handle the drift, especially during 



low-frequency cycling gestures like walking. On the other hand, compensation for ferromagnetic 

disturbances remains the biggest issue, because any alteration of the local magnetic field may 

introduce errors in the estimation. The unpredictability of ecological environment for a continuous 

activity monitoring remain an unsolved issue, that cannot be handled using sensor fusion algorithms. 

The best solution thus far seems to be, when possible to avoid using magnetometers at all, but by 

settling for a two-plane approach rather than 3D joint kinematics in order to have a significant signal-

to-noise ratio (Picerno, 2017). 

Beside kinematic analysis, in the last few years, IMUs have also been proposed for estimating 

ground reaction forces (GRFs) during movement, paving the way to kinetic analysis and sport 

performance testing outside of labs (Ancillao, Tedesco, Barton, & O’Flynn, 2018). This aspect in 

considered ‘emerging’ and not presented in the previous section given the major open issues that still 

need to be addressed. As outlined in the review by Ancillao et al (Ancillao et al., 2018), the literature 

demonstrates the possibility of predicting GRFs from IMU data by using  biomechanical models in 

conjunction with Newton’s second law of motion, or machine learning approaches. These methods 

have been proposed for several motor tasks like walking, running, jumping, squatting. 

The most critical aspects in estimating GRF from kinematic data were synthetized as follows 

(Ancillao et al., 2018): 

(1) The number of sensors/body segments required for the biomechanical modelling 

(2) Knowledge of the inertial properties of each body segment 

(3) Determining the antero-posterior and medio-lateral components of GRF 

(4) Determining the GRF acting on each foot in double support conditions and evaluating 

loading asymmetry 

(5) Even if a correlation between predicted and directly measured GRF exists, it is difficult to 

estimate. 

Clearly, despite the above-mentioned open issues, the design of a small non-invasive wearable 

system or sensor network to estimate GRF represents a significant research challenge for physical 

activity assessment. Such a device would enable smart monitoring of training and of injuries or 

fatigue related to repeated loads on the lower limbs. 

 

Beside the standard methods of movement analysis (kinematic and kinetic analysis of 

movement), a growing number of novel approaches have been proposed aiming at revealing 

intriguing properties of the motor control system and introduce new ways of thinking about 

variability, adaptability, health, and motor learning. These methods, often referred to as Nonlinear 

Analysis Methods for Human Movement Variability (Stergiou, 2016), have been proposed as 



descriptors of specific features characterizing the motor control underlying said realization of motor 

pattern. Examples of such Nonlinear assessments include; pattern regularity (recurrence 

quantification analysis, RQA (Sylos Labini, Meli, Ivanenko, & Tufarelli, 2012)), motor complexity 

(entropy-based measures (Bisi & Stagni, 2016; Costa, Peng, Goldberger, & Hausdorff, 2003)), gait 

stability (short Lyapunov exponents,(Rosenstein, Collins, & De Luca, 1993)), and rhythmicity or 

symmetry (harmonic ratio (Menz, Lord, & Fitzpatrick, 2003)). They have been often applied on trunk 

acceleration data, collected by a single IMU, for the investigation of postural control, gait, motor 

control, and motor development, in healthy adult populations (e.g., evaluating the influence of 

environmental conditions (Tamburini et al., 2017)), in developing children (Bisi & Stagni, s.d.; Bisi 

et al., 2018), and in elderly and pathologic patients (Stergiou, 2016), offering new insights about how 

conditions/development/age/pathology influence motor performance. 

However, despite the promising and intriguing results that these measures are revealing in 

several contexts, further research is needed to assess the influence of experimental implementation 

parameters on the estimated measures, in order to ensure their reliability and, to understand their 

physiological correlates. 

Wearable systems research to date has focused more on analysis and less on intervention as 

only a low number of works focused wearable feedback. While wearable sensing enables gait 

assessment, wearable feedback can facilitate intervention. Wearable feedback has been proposed to 

facilitate gait changes in foot progression or joint loading, to improve postural stability for the elderly, 

and to assist in a variety of human learning tasks such as drumming, snowboarding and jump landings 

(Shull, Jirattigalachote, Hunt, Cutkosky, & Delp, 2014). 

Most studies of this type have been published in the last few years, and further research is 

needed to investigate on the effective advantages that this approach have in different context. 

However, it is plausible that the growth of wearable systems will extend into a diverse array of human 

movement applications (Shull et al., 2014). 

When comparing wearable versus vision-based approaches, different advantages and/or 

limitations are present. Vision based methods have the advantage that the setup is usually less 

complex (the subject needs to only move in front of the camera without any wearable sensors). On 

the other hand, IMUs-based solutions allow an assessment without space restriction. Nowadays, 

IMUs-based sensor system showed a better performance and a higher reliability than vision systems 

for the estimation of space time parameters and joint angles (Kyrarini, Wang, & Gräser, 2015). 

As introduced in the previous section, markerless techniques are evolving rapidly thanks to 

developments in computer vision methods, but it is not yet clear exactly what accuracy can be 

achieved and whether such systems can be effectively utilised in field-based and therefore, more 



externally valid settings. Accuracy requirements vary across different scenarios and the validity of 

markerless systems has yet to be fully established across different movements in varying 

environments. In particular, accuracy and validity of markerless approach has been investigated 

mainly on low speed movement (gait, stairs (Oh, Kuenze, Jacopetti, Signorile, & Eltoukhy, 2018), 

single leg stance (Asaeda, Kuwahara, Fujita, Yamasaki, & Adachi, 2018)) with results that are task 

specific and dependent on the variable of interest (e.g., joint angle, time parameters, etc). For physical 

activity and sports applications, much quicker movements need still to be thoroughly assessed.  

 

Recommendations for research, researchers, and practice  

Overall, the novel technology available in the field, acutely juxtaposed with the historical 

beginnings in the ancient Roman empire, presents researchers with hitherto unseen options in the 

assessment of physical activity. Yet, this availability and ubiquity comes with both positives and 

negatives. As evidenced in this chapter, novel technology, in the form of IMU’s, magnetometers, 

gyroscopes, foot switches, RFID, Wi-Fi, inclinometers, oculography, 3D printing and more, can be 

used to proffer new insights into how (well), why, where, and when we move, beyond that of current 

de facto standards. However, with novelty, often comes naivety, and there remains a number of 

outstanding issues to be resolved or improved upon, in order to advance assessment through novel 

technology. Following the presentation and discussion of key issues, above, there emerged three, 

broad recommendations for research, researchers and practice.  

Firstly, given the innumerable technological and analytical options available, open source 

development, data and analytics are essential to facilitate global benchmarking of novel technology 

and incumbent data. Second, there exists an over-predominance of cross-sectional based empirical 

studies when novel technology is used. As such, a clear, realistic goal for research, researchers and, 

eventually, practice, is to conduct interventionist and longitudinal studies of data emergent from novel 

technology, in addition to advancing the application of such techniques from the lab, and into free-

living environments. These study priorities will facilitate our understanding of the technology, and 

their eventual outputs. Third, the integration of technologies is both an attractive and powerful 

prospect, and if successfully operationalised, would facilitate a greater, clearer picture of physical 

activity, theoretically enabling objective assessment of how (well), where, why and when activity 

behaviours are performed (or not). 

It is clear that the technology we use is a large piece of the ‘physical activity’ puzzle, however, 

concomitant to the technology, is the analytical approach undertaken, and as such, researchers must 



be acutely aware that any decision made in the analytical process will impact the outcome of any 

technological output, giving further credence to the assertion that open source and transparent 

reporting and development, and inter-disciplinary collaboration between sport and exercise scientists, 

computer scientists and engineers, among many others, is essential. 
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