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ABSTRACT 

The goal of this thesis is to address the urgent industrial need for energy efficient 

Computer Numerical Control machining systems by developing effective empirical energy 

consumption models and optimisation approaches for energy efficient machining 

processes.  

In the thesis, a comprehensive literature survey has been conducted to identify industrial 

needs, the state-of-the-art energy consumption modelling and optimisation methods. 

Related research has been analysed and benchmarked. Based on the survey, research gaps 

have been identified. 

To develop effective energy consumption models is an essential step to achieve 

sustainable machining processes. Based on literature survey, it is recognised that there is a 

lack of models suitable for various types of machining processes, in particular, milling 

processes. In this thesis, based on Main Effect and Interaction Plots techniques, qualitative 

analysis has been made to establish relationships between critical machining parameters 

(including spindle speed, feed rate, depth of cut and width of cut) and the energy required 

for machining. Effective energy consumption models that can be configurable for various 

machining processes have been developed. Two different model structures are proposed 

according to the model selection criteria used. 

Application of sensible optimisation methods will be imperative for implementing energy 

efficient machining processes. In this thesis, based on the energy consumption models, 

two optimisation methods have been developed to identify optimal machining parameters 

to achieve the minimum energy consumption during machining processes. 

It is concluded that new and effective models and optimisation methods have been 

developed in the thesis. Future research directions have been summarised in the thesis. 

Keywords: Sustainable Manufacturing, Energy Consumption, Optimisation, Milling 

Process, Modelling  
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Chapter 1:  INTRODUCTION, MOTIVATION AND 

OUTLINE 

1.1 Introduction and Motivation 

Manufacturing is the backbone of economies in industrialised nations (Rao 2011). The 

increase in energy demand, with the associated environmental and economic aspects, has 

been a worldwide concern in recent decades, and the manufacturing sector is at spotlight 

of energy usage. According to U.S. EIA (2010), this sector was responsible for 

approximately one-third of the primary energy usage and 38% of CO2 emissions globally. 

Moreover, government leaders are increasingly aware of the urgent need to make better 

use of world’s energy resources. A series of policies, commitments and guidelines on 

lifecycle energy/carbon-related management have been launched towards a reduction in 

greenhouses emissions, which have encouraged and supported efficiency improvements 

by industrial firms (Geller et al. 2006). Therefore, a reduction in energy demand of 

production systems is of prime importance. 

Since the third industrial revolution, in the early 1970s, Computer Numerical Control 

(CNC) machines and machining became predominant in industry, especially in high-

precision automotive and aerospace sectors. Furthermore, according to Liu et al. (2013), 
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CNC machines are identified as the basis energy-consuming devices in manufacturing 

systems. For this reason, CNC machine and machining processes have been the focus of 

research communities all over the world.  

Machining process planning is the stage that defines the operation sequences and the 

appropriate machine tools, cutting tools and machining parameters, which greatly 

determines the quality and energy consumption of production. The success of machining 

operations depends on the selection of machining parameters via process planning, which 

is usually done based on the planner engineer or operator’s experience and/or handbooks 

recommendations. However, it is not easy to choose the optimal parameters in order to 

obtain the best machining performance, even for experienced machinists. 

Currently, the global scenario highlights the urgent need for energy savings as well as 

more sustainable manufacturing processes. This scenario together to the wide use of CNC 

machines in the industry sector, the high impact of those on the energy demanded by 

production systems and the current way that machining process planning is decided, 

demonstrate that studies on optimisation of CNC machining operations yet in the planning 

stage is imperative and urgent. 

To date, some energy consumption modelling and optimisation approaches for the process 

planning stage for CNC machining processes have been developed – this will be further 

described in the following chapters. However, CNC machining processes are complex in 

terms of various machining parameters, tooling selection, machining strategies and 

operations. For this reason, knowledge gaps are still existent indicating that effective 

modelling and optimisation approaches need to be employed to achieve better solutions 

for the problems.  

In addition, as the world, industry and customer requirements would embrace more 

sustainable best practices and industrial regulations, approaches for process planning 

optimisation must comply with the energy-saving objectives and constraints imposed by 
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the sustainable trends. As a consequence, more effective energy consumption modelling 

and optimisation algorithms, techniques, solvers and methods are imperative to be 

developed. 

A common issue found in existing research in this area is the applicability of models and 

optimisation approaches, and also the reproducibility. Usually, those are either too 

complex or too specific to a particular experiment. This fact also describes the challenge 

within this research area itself, once machining processes are wide and the existent 

operations have many particular specifications, which make it difficult for one single 

model to be generalised to all operations. 

Thus, in response to this scenario, this research is motivated to accomplish with effective 

predictive energy consumption models for milling operations, which can aid in the 

machining planning stage to achieve sustainability during production. Moreover, based on 

the empirical models, optimisation approaches to support energy efficient process 

planning should be also developed. The research issue found in this area will be addressed 

by the developed models and approaches that are easy to be adopted by industry and can 

be replicated and extended to different cases. 

1.2 Aim and Objectives 

The primary goal of this thesis is to develop empirical modelling and an optimisation  

approach for CNC machining processes. Case studies are carried out with the main goal to 

validate the developed research. Furthermore, this research focuses on a detailed 

development of an empirical model for energy consumption, and further an optimisation 

approach to identify the best machining cutting parameters for milling processes. 

The main aim of this thesis is divided into the following three objectives: 
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I. To conduct comprehensive literature surveys on the research areas to identify the 

research status, gaps and further directions. 

II. To develop a statistical technique-based predictive energy consumption model for 

qualitative analysis of a set of machining operations experimental data so as to 

provide an effective means for machinists to determine the machining variables 

during process planning qualitatively in order to achieve energy saving during 

productions. 

III. To develop optimisation approaches and compare performance and results of the 

two different optimisation approaches so as to facilitate machinists to achieve the 

minimisation of energy consumption quantitatively. 

1.3 Thesis Outline 

The logical flow of the research work reported within the thesis has a top-down structure, 

where the development presented in one chapter are predecessors of the development 

carried out in the following chapter (and chapters) as illustrated in Figure  1-1. 

The outline of the presented research work is given chapter by chapter in the order as 

they appear in the thesis. 

Chapter 2: This chapter provides the essential background and literature review of the 

research area of this thesis. Only the necessary background is provided here. Such 

background starts with a survey of key aspects that lead the research development trends 

related to the manufacturing sector and CNC machines in this sector. Then, a 

comprehensive survey of research development related to energy consumption and 

efficiency of machine tools is presented, followed by an overview of the need for modelling 

and optimisation of machining processes. The literature survey is finalised by presenting 

the research approaches on energy consumption modelling of machining processes. Part 

of this chapter is presented in (Moreira et al 2015). 
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Chapter 3: This chapter presents the predictive energy consumption model and the 

empirical modelling framework designed based on the modelling process carried out in 

this thesis. It starts with a literature survey on CNC milling processes and empirical 

modelling, in addition to a background of modelling methods. Subsequently, the 

methodology brings the details and steps used to achieve the aim of this chapter: to 

propose a modelling framework and a predictive model for energy consumption as a 

result of its implementation. Followed by a detailed model development, including 

qualitative analysis. After that, the results and discussion are presented, and, finally, the 

chapter conclusions. 

Chapter 4: In this chapter, the predictive model, developed in Chapter 4, will be used for 

the optimisation approach proposed to find optimal values for cutting parameters with the 

objective to minimise the energy required by cutting processes. The chapter begins with a 

literature survey on optimisation approaches related to machining processes, including 

methods applied, optimisation goals and decision variables. Then, the methodology brings 

the details and steps used to achieve the aim of this chapter. Followed by the 

implementation of the optimisation problem, its results and discussion, and, finally, the 

conclusions. 

Chapter 5: Conclusions and further work. The research is concluded, the research 

contributions are highlighted, and the future research is outlined. 
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Figure  1-1: Schematic diagram of the logical flow of chapter’s dependency in the thesis. 

1.4 Boundaries of Case Study 

In this work, sustainability in manufacturing systems is enhanced on the process planning 

stage by implementing the energy consumption modelling and optimisation approaches 

hereby presented. Furthermore, case studies for the implementation of the modelling 

methodology and optimisation approach proposed are used to validate the research. 

Regardless the fact the specific operation, the methodology proposed can be replicated 

and extended to different cases and operations in future. 
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Chapter 2:  BACKGROUND AND LITERATURE 

REVIEW 

2.1 Research Background 

2.1.1 Manufacturing Industry Trends on Energy Efficiency 

According to a report published by BP Energy Outlook 2035 (2014), primary energy 

demand will increase by 41% between 2012 and 2035, with growth averaging 1.5% per 

year. The 2002-2012 decade recorded the largest ever growth of energy consumption in 

volume terms over any ten-year period.  

This report clearly suggests that energy consumption is a factor of high concern for the 

upcoming years. Responsible for one-third of the total primary energy consumption in the 

world (EIA 2010), manufacturing companies have been under increasing pressure to 

provide more sustainable production systems. 

From the economical perspective, rises in energy, raw materials and wages price are three 

important factors that justify the urgent need for smarter and more energy efficient 

processes in manufacturing industries. Furthermore, to remain competitive in a global 

manufacturing scale, manufacturing companies need to be aligned with legal and 
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environmental regulations. In addition, to comply with new customer and market 

requirements. Customer environment awareness has led to a green consumer behaviour, 

in which individuals consider environmental or social issues while making purchasing or 

non-purchasing decisions (Peattie 1992). This describes the increasing trend for greener 

products. Therefore, companies are striving to improve productivity and quality, while 

maintaining a clean and sustainable environment (Gupta et al. 2015).  

Sustainability can be implemented in the manufacturing sector in different manners. In 

industries where machine tools are the core of manufacturing processes, the adoption of 

sustainable techniques such as reduction of manufacturing steps by employing advanced 

or alternative techniques, use of eco-friendly lubricants and more sustainable lubricant 

techniques while machining, minimum waste of material and the energy consumption 

reduction are of great importance to achieve eco-friendly machining processes (Gupta et 

al. 2015). 

Leading countries in the manufacturing sector, such as China, Germany, the US and Japan 

have reported a high significance of the energy consumption of their manufacturing 

sector. China, which presents the fastest economic growth rate recently, emerged as the 

key contributor to the growth of energy consumption over the last decade. Moreover, in 

this country, the manufacturing sector is responsible for approximately 50% of the entire 

electricity produced and generates at least 26% of the total CO2 emissions (Tang et al. 

2006). The industrial production in China increased 6% in July of 2015 over the same 

month in the previous year. It has averaged 12.84% annual growth from 1990 until 2015 

(China statistical yearbook 2014). Together, the U.S. and China account for over one-third 

of global greenhouse gas emissions (White House fact-sheet 2014). As the world's third 

largest emitter, India is coming under increasing pressure to comply with commitments 

and targets (India’s NAPCC 2008). Moreover, the industry sector in Germany consumes 

around 46% of the country’s overall energy (König 2010). For comparison, in 2013, the 

industry sector accounted for 25.1% of the final energy consumption in Europe. 
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According to IEA’s World Energy Outlook (2014), effective policy commitment to energy 

efficiency is essential. In addition, without this policy commitment, international efforts to 

help and assist developing countries will not be able to fully succeed (Janssen 2010). A 

number of policies and agreements have been launched by governments in the past 

decades, Table  2-1 brings a few important commitments and initiatives related to climate 

change and energy efficiency that affect the manufacturing sector, established in recent 

years.  

Table  2-1: Recent policies, commitments and initiatives for energy saving. 

Country/Region Content 

Worldwide “United Nations Climate Change Conference Paris COP21” (2015): keep the 

rise in temperature below 2°C per year (COP21 2015). 

Europe “2030 Framework” (2014): new energy efficiency target of 27% or greater 

by 2030 (European Commission 2014). 

China and USA “US-China Clean Energy Research Center (CERC)” (2014): 150 million USD - 

CERC primarily researches advanced coal technologies, electric vehicles, and 

enhanced energy efficiency (Climate nexus 2014). 

Germany  “Energy Concept 2050” (2010): Greenhouse gas emissions should have been 

reduced by 40% by 2020, 55% by 2030 and at least by 80% by 2050 

(Climate Action Plan 2050 2015). 

India “National Mission for Enhanced Energy Efficiency” (2008): an initiative to 

address national problems of inefficient energy use (India’s NAPCC 2008). 

China “Premier Wen Jiabao speech” (2008): target to reduce energy consumption 

for every 10,000 yuan (1,298 U.S. dollars) of GDP by 20% by 2010, while 
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pollutant discharge should drop by 10% (Chow 2008). 

United Kingdom “CRC Energy Efficiency Scheme” (2007): is a mandatory carbon emission 

reporting and pricing scheme to cover large public and private sector 

organisations (Carbon Trust 2015). 

From Table  2-1, it can be seen that countries must continue to apply efforts to reduce 

energy consumption and that energy efficiency is a spotlighted topic. 

According to CIMA (2010), the manufacturing sector is seen as a source of stronger and 

more sustainable growth. As a major source of energy consumption in manufacturing 

systems, CNC machines can be an important key to promoting more sustainability in this 

sector. For this reason, different research approaches for CNC machines and machining 

processes have been carried out and appeared to be of great value to support the 

challenges faced by the industry sector. 

2.1.2 CNC Machines in the Manufacturing Industry Sector 

Production systems can be divided into two main energy consuming sources: 

transportation and transformation of raw material. The third industrial revolution, on the 

early 1970s, landmarked the migration from manual production to automated systems, in 

which machines controlled by computer hardware and software have become 

predominant to enhance productivity and/or quality of machining processes. Moreover, 

with the rise of employment costs and the economy slowdown of most western countries 

in the same decade, CNC machines become predominant in manufacturing processes, 

displacing older technologies such as hydraulic tracers and manual machining (CNC 

cookbook 2015). 

Nowadays, there are different types of CNC machines which can be found on a small scale 

to a large manufacturing companies. It can be used in industries for removing materials, 

where machining operations such as turning, milling, drilling, boring and so on are 
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performed; for transforming materials, where the machining processes are performed on 

thin metal plates and machines perform processes such as bending, shearing, plasma 

cutting, punching, laser cutting, forming, welding, etc., in addition to, Electro-Discharge 

Machining (EDM) industries, where sparks burn the material to be removed. 

Research in machine technology, machine and product design, process planning and 

machining strategies have been achieved in past years. Nevertheless, the requirements 

that machining processes have to meet change accordingly to new environmental and 

energy efficiency aspects, as well as to the economic scenario, as previously mentioned. 

Such requirements make the need for continuous improvements of machining equipment, 

process planning and machining strategies towards sustainability to be imperative. 

In this regard, an important action was taken by the International Organization for 

Standardization (ISO) to develop the standard Environmental evaluation of machine tools 

(ISO14955-1 2014). The standard includes three main parts: 1) eco-design methodology 

for machine tools; 2) methods for testing of energy consumption of machine tools and 

functional modules; and, 3) test pieces/test procedures and parameters for energy 

consumption on metal cutting machine tools. This ISO shows that different approaches can 

be adopted to improve the performance of machine tools.  

In the last years, various research projects have been addressed to improve CNC 

machining processes, which are commonly evaluated in terms of energy consumption, 

productivity and surface quality. Table  2-2 lists some topics and related research work on 

the field. 

Table  2-2: Research topics on energy consumption of machining. 

Research topic Related work 
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Eco-design of machine 

equipment/product. 

Braungart et al. (2007), Lopes De Lacalle et al. (2011), 

Kok-Soo and Sheng (2010), Rossi et al. (2013) 

Analysis of machining 

parameter/machining configuration. 

Newman et al. (2012), Rajemi et al. (2010), Xue et al. 

(2010) 

Machining operation sequence/tool 

path optimisation. 

Qudeiri et al. (2007), Lazoglu et al. (2009), Kong et al. 

(2011) 

Machining behaviour/motion 

evaluation. 

Avram and Xirouchakis (2011), Lv et al. (2015), Tang 

(2012) 

Machining monitoring. Wang (2013), Segreto et al. (2013), Behrendt (2013), 

Hu et al (2012) 

Multi-objective optimisation of 

machining parameters. 

Wang et al. (2015), Yan and Li (2013)  

Cloud manufacturing. Wang (2013), Xu (2012) 

According to Lv et al. (2015), accurate characterization of the energy consumed by 

machining processes is a starting point to improve manufacturing energy efficiency and 

reduce their associated environmental impacts. Therefore, it is of utmost importance to 

comprehend how energy consumption factor in machining processes has been addressed 

in order to enhance the energy efficiency in production systems. 

2.2 Literature Review 

2.2.1 Research topics on energy consumption of CNC machines 

Energy consumption is a topic of concern in the boardroom and of significant research 

interest in the last five years (O’Driscoll and O'Donnell 2013). By integrating energy 

consumption criteria into a process planning and operating structures, a reduction in 

process energy demand is to be expected. Consequently, energy modelling of machine 

tools operations for energy consumption prediction is of prime importance. In the last 

years, the great amount of publications in this area has shown that lots of effort have been 
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applied to the development of research with respect to the energy consumed by CNC 

machining processes. For that, different approaches were found and categorised into two 

stages of the Product Life Cycle Energy Efficiency Enhancement, see Table  2-3. 

Table  2-3: Research approaches related to energy efficiency of machining. 

Product Life Cycle Energy Efficiency Enhancement Approaches 

1. Production Design 

stage 

Product design strategies 

 

• Strategies for more sustainable 

part design 

• Waste material reduction 

• Easy-to-perform shapes 

Machine tool innovation 

design 

• New mechanical parts 

technologies 

• New parts design 

• New controllers 

Machine tool auxiliary 

components innovation 

design 

• Cooling systems 

strategies/technology 

• Chip conveyor manners 

• New cutting tools (shape, 

technology, material) 

2. Production 

Execution stage 

Non-productive 

machining 

• Reduction of idle time: 

• Tool path topology/strategy 

• Process planning and 

scheduling strategies 

 Machining performance • Strategies for cutting: 

• Tool path geometry 

• Number of passes 

• Tool selection 

• Machining cutting 

parameters selection 

The Production design stage, shown in Table  2-3, is aimed at implementing sustainability 

through the new design of machine components and auxiliar components, for further 

information refer to (Braungart et al. 2007). The second stage Production Execution 

focuses on refining the strategies to enhance the performance of machining processes, 

using the resources (machine, tools, product design, etc.) currently available, for further 
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information refer to (Avram, O. I. and Xirouchakis, P. 2011). Despite the divergence in 

focus, both research directions are complementing and converge to the same impact on 

the future of manufacturing: more efficient production processes. 

Some topics and respective related work published recently are presented in Table  2-4. 

Table  2-4: Research publications topics on energy consumption and efficiency of 
machining. 

Research topic Related work 

1. Eco-design of machine 

equipment or product. 

Braungart et al. (2007), Lopes De Lacalle et al. (2011), 

Kok-Soo and Sheng (2010), Rossi et al. (2013) 

2. Analysis of machining 

parameter, machining 

configuration. 

Newman et al. (2012), Rajemi et al. (2010), Xue et al. 

(2010) 

3. Machining operation 

sequence, tool path 

optimisation. 

Qudeiri et al. (2007), Lazoglu et al. (2009), Kong et al. 

(2011) 

4. Machining behaviour, motion 

evaluation. 

Avram and Xirouchakis (2011), Lv et al. (2015), Tang 

(2012) 

5. Machining monitoring. Wang (2013), Segreto et al. (2013), Behrendt (2013), Hu 

et al (2012) 

6. Multi-objective optimisation of 

machining parameters. 

Wang et al. (2015), Yan and Li 2013)  

7. Cloud manufacturing. Wang (2013), Xu (2012) 

The scope of this research project is limited to investigations within the Production 

Execution stage - the execution stage is investigated in order to support the development 

of smarter approaches to aid in the process planning phase of machining processes. Many 

research work has been published in the past years in which researchers’ goals are to 

achieve better machining performance as well as an understanding of CNC machining 

operations. The work summarised in Table  2-4 from Topics 2 to 7 are, mainly, within the 

stage 2, Production Execution. Nonetheless, in Topic 1 some related work on the 

Production Design stage is provided. In addition, findings from research on stage 2 may 

support research & development on the topics from stage 1. 
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Furthermore, understanding the relationship between inputs (machining variables) and 

outputs (e.g., energy consumption) can be taken as a preliminary topic for the 

development of the research topics listed in Table  2-4. 

In such topic, a behaviour of a chosen output is studied by the selection of different input 

variables. The knowledge construction process lies on the relationship modelled between 

independent and dependent variables – input and output, respectively. In other words, 

machining variables (usually 2 up to 4) are chosen for experimental designs, in which the 

behaviour of the output (energy consumption) variable will be observed or measured 

during the experimental tests. The measurements obtained, together to the experimental 

design, allow a relationship and analysis to be drawn. 

2.2.2 Need for Modelling and Optimisation of Machining Processes 

In the current manufacturing environment, many large industries use highly automated 

and computer-controlled machines as their strategy to adapt to the ever-changing 

competitive market requirements (Rao 2011). Due to the high capital and manufacturing 

costs, besides the legal and environmental aspects, there is an urgent need to operate 

these machines as efficiently as possible in order to obtain the required payback, as well as 

to attend the overall requirements of such dynamic and globalised market.  

Furthermore, according to (Rao 2011, Newman 2012), the success of manufacturing 

processes depends on the selection of the optimum process parameters. This step is of 

paramount importance for defining the quality of the machined part, shop floor 

productivity and production costs. Despite its role in the output of manufacturing 

processes, the selection of process parameters is still done based on machinists’ 

experiences and machining handbooks. 
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Consequently, considering the significance of such step together to the economic, legal, 

social and environmental aspects in which the manufacturing sector has to deal with, may 

researchers have been addressing this problem in order to provide more intelligent and 

sustainable solutions that can support this decision-making process. However, 

(Shunmugam and Narendran 2000, Rao 2011) highlights that modelling and optimisation 

of process parameters of any manufacturing process are not an easy task, and some 

aspects have to be considered, such as knowledge of manufacturing process, empirical 

equations to develop realistic constraints, development of an effective optimisation 

criteria, as well as knowledge of mathematical and numerical modelling and optimisation 

techniques. 

It is known that the performance of machining processes is affected by many factors and a 

single parameter change can influence the process in a complex way. Because of the many 

variables and the complex (see Figure  2-1 for a detailed variables network scheme) and 

stochastic nature of the process, achieving the optimal performance, even for a highly 

experienced and skilled machinist is rarely possible (Rao 2011). 

In this thesis, the focus of modelling and optimisation of machining process lies on finding 

the optimum machining cutting parameters that generate the lowest energy consumption 

for the machining process. Thus, in the next section, a comprehensive survey of the 

research approaches on energy consumption modelling of machining processes is 

provided. 
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Figure  2-1: Variables network Banyan tree of machining operations. (Source: Author) 

2.2.3 Research Approaches on Energy Consumption Modelling of 

Machining Processes 

Investigations on ways to increase the energy efficiency of machining have lied on the 

energy consumption modelling approach used for such processes. Energy consumption 

models are used to describe the relationship between a part to be machined and the 

energy demanded by the machine to do the job, which according to (Rao 2011), is the first 

step for process parameter optimisation. The relationship described by a model can be a 

function of different aspects (or variables), which varies according to the approach and 

strategies used. 

Although the main goal is equivalent – to enhance the energy consumption efficiency of 

machining process – modelling approaches and strategies differ according to different 

modelling purposes, resources available, process specifications, as well as models’ 
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application. However, the literature shows there are two main approaches commonly 

applied: empirical and mechanistic approaches. These represent the roots of several 

research branches, characterised by the use of different methods and techniques for 

modelling. 

A classification of the existent approaches and calculation structures for developing and 

applying, respectively, the energy consumption models and its analysis is provided in 

Table  2-5. In Table  2-5, the inputs for developing the model and for running the 

calculations are described. Moreover, an analysis based on the advantages and 

disadvantages of each approach is presented. 

The decision to choose the best modelling approach depends on the modelling reason as 

well as the application of the model. Hence, different purposes for developing an energy 

consumption model lead to the selection of different methods and calculations structures. 

It is essential that the question ‘Why/What for modelling’ is answered prior to defining 

‘How to model’. Therefore, it is critical that prior to selecting the modelling approach to be 

used, the modelling whys and wherefores and its application are well clear. This includes 

specifying which type of energy consumption would be modelled (if total or specific), and, 

if total, define the energy consumption decomposition within a machining process. 

Table  2-5: Approaches and structures related to energy consumption models. 

  Type Description Advantages Disadvantages 

A
P

P
R

O
A

C
H

E
S

 

1. Empirical 
modelling 

Energy consumption (EC) model 
is developed using statistical 
techniques to fit an equation to 
data obtained from experimental 
tests. This method has been used 
for the direct energy (DE) – 
required by the entire machine 
tool system (MTS) – or limited to 
the cutting process (SEC) – 
specific energy for cutting. The 
inputs for the equation are 
usually the machining 
parameters such as depth of cut 
(ap), width of cut (ae), feed rate 
(f) and cutting speed (vc) 

- With the use of 
coefficients, it can 
be adaptive to 
different 
workpiece 
materials/cutter 
tool. 

- It requires 
running several 
experiments and 
accurate data 
measurements to 
be developed. 

- Usually, presents 
good accuracy. 

- Some models 
are limited to the 
conditions used 
in experiments. 
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Development inputs - 

experimental data. 

- Practical for the 
decision maker in 
the planning stage. 

- Some models 
have coefficients 
that require 
experiments to 
be obtained. 

Calculation input: - machining 

parameters. 

- Can be easily 
created if data is 
available. 

  

2. 
Mechanistic 
modelling 

EC model considers the cutting 
force (usually as the main 
spindle’s torque), cutting speed 
and time, to estimate the energy 
required to remove the 
unwanted material. 

- It can be used to 
process for 
different 
machining shapes 
(features) with the 
same tool. 

- The model 
validation 
process requires 
experimental 
tests. 

The inputs depend on the 
mechanistic model developed, 
but, in general, it requires the 
uncut chip cross-sectional area 
(A), rake angle (α), depth of cut 
(ap), number of tool flutes (Z) 
and workpiece material’s 
hardness. 

- More robust than 
empirical. 

- Lack of 
flexibility with 
different cutter 
tool geometries. 

Development inputs: - 

machining parameters. 

    

Calculation input: - machining 

parameters. 

    

S
T

R
U

C
T

U
R

E
 

A. 
Machining-
state based 
modelling 
(analytical) 

The machining process is divided 
into operational states. EC model 
is the sum of each states’ energy 
consumption – which is equal to 
the power required times the 
time.  

- It’s structure is 
useful for 
optimisation of 
machining 
operational states 
– reducing idle 
and monitoring 
machining 
efficiency and 
performance. 

- It depends on 
additional 
equations to 
estimate the EC 
of operational 
states. 

The inputs vary according to 

the equations used for each 

operational state - empirical 

or mechanistic. 

- Provide detailing 
information for 
machining process 
for a better 
understanding and 
planning. 

- It takes a little 
bit longer to give 
a response. 

B. NC code 
based 
modelling 

The model structure is based on 
the information extracted from 
the NC Code generated to run a 
machining process. 

- This structure 
allows 
'modularization' of 
the machining 
process, for 

- Differences in 

NC Codes 
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example, toolpath 
can be a 
configurable and 
optimised 
variable. 

generation can 

be a limitation. 

The inputs vary according to 

the equations used for each 

operational state - empirical 

or mechanistic. 

- Flexible: Several 
inputs can be 
taken, which 
means different 
formulas can be 
used depending on 
the desired output 
or process. 

  - Easy to be 
implemented in 
cloud platforms. 

- Requires 
generation of NC 
code for running 
calculations. 

The two approaches presented in Table  2-5, i.e., empirical and mechanistic, have strengths 

and weaknesses and also require different resources for obtaining the outputs required 

for developing the model. For the mechanistic approach, for example, a dynamometer for 

measuring the cutting force during the machining process is usually necessary for data 

collection and/or model validation. In this approach, the power required by the machining 

process is a function of the machining forces involved in the material removal process and 

the machining speed. 

Based on the above two approaches, detailed energy consumption models for both the 

entire machine tool (DE) and specific energy consumption (SEC) of CNC machining 

processes have been developed. The related work is summarised in Table  2-6. 

Table  2-6: Energy consumption models. 

Author Type Machining Model 

1 (Wang et al. 

2014) 

DE ����� = ��������	 +  �����.
������ + �����.���������	
+  �����.�	���� 

2 (Peng et al. 

2013) 

DE � =
 ∑ ������ =��!"
 ∑ ∑ �����	#,��%���	��& =  ∑ ∑ '����	#��%���	��(  ∙ ��%(!"��!"%(!"��!"   
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3 (Balogun 

and 

Mativenga 

2013) 

DE � = '* ∙ �* + �'* + '�� ∙ �� + '��� ∙ ���� + �'* + '� + '���� + + ∙ ,� ∙ �� 

Where Pb, Pr, Pcool and Pair represent the basic and ready state powers, 

coolant pumping power and the average power for a non-cutting 

approach and retract moves over the component, respectively; tb, tr, 

and tc are the basic, ready and cutting times respectively; tair is the 

total time duration of the non-cutting moves; k (kJ/cm3) is the specific 

cutting energy; v (cm3/s) is the rate of material processing. 

4 (Newman et 

al. 2012) 

SEC ℯ
=  '

.. ℎ. 0 

Where P is the power demanded; f and h are feed rate 

and depth of cut, respectively; and D is the total volume 

removed. 

5 (He et al. 

2012) 

DE ������ =  �������	 +  �1		� + ����� +  ����� + �1�2   

This can be expanded to: 

������ =  3 '%4� +  3 '�
�56

�57

�86

�87
4�

+  9 3 '�4� + '��������� +  '��������	 − �����
�;7

�;6

%

�!"
+ <'�	�=� + '1��>��	 − ��� 

6 (Avram and 

Xirouchakis 

2011) 

SEC �?@ = ��A + �BA + ��A + ���� + ����  

This can be expanded to: 

�?@ = 3 '�A4� + 3 'BA4� + 3 '�A4� + 3 '���4� + 3 '�4�
�CD

�CE

�CF

�CG

�CF

�CD

�CD

�CE

�CE

�CG
 

 

7 (Mori et al. 

2011) 

SEC H
=  −10 KLM ∑ N���"

O

Where yi (Wh/cc) is the power consumption per 

material removal unit, and n is the number of 

experiments per condition. 

8 (Kong et al. 

2011) 

 

DE �%�����	 = ������ + �������%	�������	�� + �������%	���	��P + ����  

The total energy consumption required by a machining process was 

divided into four types: constant, run-time-transient, run-time-ready 

and cut. 
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SEC ����
= Q��� ∙ R
∙ S ∙ T�
∙ ,1

"�� ∙ O� 

Where vf is the feed rate, n is the rotational speed 

of the spindle, w is the width of cut, b is the depth 

of cut, z is the number of flutes of a cutter, and p 

and Kcut are empirically determined fitting 

constants. 

9 (Diaz et al. 

2011) 

DE � = '�=� ∗ ∆�
= �'��� + '����
∗ ∆� 

 

Where Pavg is the average power demand and ∆� is 

the processing time. '���  and '���  are the cutting 

and air power, respectively. 

SEC ����
= + ∗ 1

�WW + S 

Where k is the machines constant, MRR is the 

material removal rate and b represents the steady-

state specific energy. 

10 (Li and Kara 

2011) 

SEC X�Y
= YZ + Y"

�WW 

Where C0 is the coefficient of the inverse model, C1 

is the coefficient of the predictor, and MRR is the 

material removal rate. 

11 (Draganesco 

et al. 2003) 

SEC ���
= '�

60H\ 

Where Pc is the necessary cutting power at main 

spindle (kW), Z the material removal rate 

(cm3/min) and Ecs the specific consumed energy 

(kWh/cm3). 

12 (Li et al. 

2013) 

SEC X�Y
= +Z + +"
∙ O �WW⁄
+ +^ �WW⁄  

Where k0 is the specific energy requirement in cutting 

operations, k1 is the specific coefficient of the spindle 

motor, k2 is the constant coefficient of machine tools 

and equals the sum of standby power and the spindle 

motor's specific coefficient; n is the spindle speed in rpm. 

Ehmann et al. (1997) traced the historical evolution of research in machining process 

modelling and found that, in general, analytical models do not accurately predict the 

dynamic forces. Mechanistic and numerical methods are of more recent origin and rely on 

empirical models and computer simulation techniques. The latter include both 

mechanistic and finite element methods. It was concluded that a combination of these 

methods is typically needed to obtain a working model and that mechanistic models 

showed the most predictive power compared to other methods. For this reason, most 

current research is steered towards the mechanistic force models (Kadi et al. 2014). 

Nonetheless, such modelling process usually requires specific equipment and a great effort 

is required for providing a very specific output. In this thesis, empirical modelling was the 
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selected approach due to the favourable trade-off when taking into account development 

time, resources available and demanded output. 

This shows that in spite of empirical models have been widely applied, the modelling 

procedures need to be revised and improved in order to provide more models that 

describes the process more precisely and realistically. Hence, next section will describe 

the empirical modelling process carried out in this thesis based on face milling 

experimental data. 
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Chapter 3:  ENERGY CONSUMPTION 

MODELLING 

3.1 Aim and Objective and Chapter Organisation 

The aim of this chapter is to develop an empirical model for energy consumption as a 

function of machining parameters by combining different statistical techniques and 

methods for both qualitative and quantitative analysis. For that, an empirical model 

development framework is proposed, which shows the steps for achieving the aim above. 

As a result, the best-fit energy consumption model for milling operations is achieved. 

This chapter is organised as follows: Section 3.2 provides the introduction and 

background. Section 3.3 presents the methodology carried out for the energy consumption 

model development. Followed by the model development details shown in Section 3.4. 

Finally, the results and discussion are provided in Section 3.5, followed by the chapter 

conclusions in Section 3.6. 

3.2 Introduction and Background 

In the modern industry sector the goal is to be able to produce with the lowest energy 

consumption and cost, highest quality and within the shortest time. These can be 
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described as efficient and sustainable processes. CNC machining processes are at the 

spotlight of efficiency enhancement, and, furthermore, milling is the second most common 

method (after turning) for metal cutting (Bernardos and Vosniakos 2002). This operation 

is further described in the next section. 

3.2.1 Milling Operations 

In CNC machining, milling is the machining process in which the unwanted metal is 

removed by a rotating multiple cutter tool in order to obtain the final shape desired. As the 

cutter rotates, each cutter tooth (or flute) removes a small amount of material from the 

advancing work for each spindle revolution. Milling is the second most common method 

for metal cutting (Bernardos and Vosniakos 2002). 

 

Figure  3-1: Face milling operation. 

Face milling operations are used to obtain the final height of a machined part. It can be 

described as a process of removing material by feeding the workpiece past a rotating 

multi-point cutter to generate a surface (Shunmugam et al 2000).  

Figure  3-1 shows a milling operation. Some independent and dependent variables for 

milling processes that have been applied in research publications can be seen in Table  3-1. 
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Table  3-1: Example of variables used in machining experimental designs. 

Machining process experimental variables 

Independent Variables Dependent Variables 

• Feed per tooth (SZ) 

• Feed rate (f) 

• Cutting speed (vc) 

• Spindle speed (S) 

• Depth of cut (ap) 

• Width of cut (ae) 

• Tool diameter (D) 

• Number of tool flute (N) 

• Tool Helix angle 

• Tool Rake angle 

• Tool engagement 

• Cutting tool path 

• Total energy consumption (TEC) 

• Specific energy consumption (SEC) 

• Cutting force (CF) 

• Surface finish (SF) 

• Productivity (time) (P) 

• Material hardness (MHar) 

• Tool wear (TWea) 

• Tool vibration (TVib) 

• Residual Stress 

3.2.2 Empirical Modelling 

The empirical approach for modelling machining process outputs has been frequently 

adopted and proved to deliver accurate models. A framework for the empirical modelling 

process is described in Figure  3-2. 

 

Figure  3-2: Empirical modelling process. (Source: Author) 
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Several methods and techniques have been used in each of the stages comprised in the 

empirical modelling process. The selection of the methods to be used depends on the 

modelling objectives. Some methods that have been employed, its stage of application and 

related work are shown in Table  3-2. 

Table  3-2: Methods and techniques of empirical modelling. 

Stage Method/Technique Related Work 

Design of 
experiment 

Taguchi DoE (Peng and Xu 2013), (Camposeco-
Negrete 2013), (Nalbant et al. 2007), 
(Yan and Li 2013) 

Data analysis & 
treatment 

ANOVA, Main effect analysis, 
Interaction plots, CoMoS, 
Canonical Analysis, Taguchi 
Signal-to-Noise ratio, Grey 
relational analysis 

(Morri et al 2011), (Li and Kara 
2011), (Li et al. 2013), (Bhattacharya 
et al. 2009), (Nalbant et al. 2007), 
(Camposeco-Negrete 2013) 

Model development Regression analysis, Curve 
fitting, Response Surface 
Methodology, Artificial Neural 
Network, Taguchi Signal-to-
Noise, Fuzzy sets, Least Squares 
Method 

(Li and Kara 2011), (Diaz et al. 
2011), (Wang S. et al. 2014), 
(Calvanese et al. 2013) 

Model analysis ANOVA, Sensitivity analysis (Winter et al. 2013), (Lee et al. 
1998) 

In this work, the empirical approach was chosen for the energy consumption model 

development. The selected techniques and methods employed during the modelling 

process are further described in the following sections. 

3.2.3 Statistical Techniques for Data Analysis 

The data analysis stage of the empirical modelling process is an essential step for further 

exploring the existent and non-existent relationships between machining parameters and 

the response analysed – machining energy consumption. This analysis provides important 

information that should be known prior to the modelling stage, such as potential 
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multicollinearity between independent variables, the degree of significance of machining 

variables to the outputs under analysis and so on.  

In this thesis, the techniques chosen for analysing the data collection are main effect 

analysis and the interaction plots. The choice is due to their simplicity and efficiency in 

obtaining the desired information before starting with the modelling stage. 

3.2.3.1 Main Effect Analysis 

This statistical technique is commonly used to examine differences between level means 

for one or more factors within a data range. The main effect is existent when different 

levels of a factor affect the response differently. A main effects plot graphs of the response 

mean for each factor level connected by a line (Minitab 2016). With this technique, the 

significance of the mean of the independent variables spindle speed (S), feed rate (f), depth 

of cut (ae) and width of cut (ap) on the cutting energy consumption will be investigated. 

3.2.3.2 Interaction Plots 

Interaction plots are employed to study the multicollinearity (or covariance) between 

factors when analysing a specific response. It is used to visualise possible interactions. 

Parallel lines in an interaction plot suggest that there is no interaction between factors. 

Moreover, the greater the difference in slope between the lines, the higher the degree of 

interaction.  

However, the statistical significance of possible interactions cannot be obtained from this 

method. This drawback can be minimised by using a statistical technique, such as main 

effect analysis, before generating the interaction plots in order to visualise the significant 

multicollinearities that can be further analysed using the interaction plots. 

In this work, main effect analysis is used to filter the significant multicollinearities 

between the independent variables and then, interaction plots will be applied to further 

explore those. 
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3.2.4 Statistical Techniques for Data Modelling 

The modelling stage is comprised of two main steps: model structure and parameter 

estimation. Several methods can be applied to obtain the desired model, as mentioned in 

the previous section. In this work, two methodologies for the modelling stage were chosen 

for comparison sake, that is, response surface methodology and curve fitting with least 

squares method. The details of each technique and the reason for selection are provided in 

the following sub-sections. 

3.2.4.1 Response Surface Methodology (RSM) 

RSM is an extensively used technique for modelling and optimisation problems in 

engineering. It is a collection of statistical and mathematical methods that describe 

response(s) as a function of inputs process parameters. In manufacturing, RSM is used to 

model and optimise processes from data collected through experimental tests (Rao 2011). 

In the RSM, all the input process parameters are assumed to be measurable and the 

corresponding responses can be expressed as follows: 

 ( )1 2, , , ky f x x x ε= +…   (3.1) 

where y  is the response, f  is the unknown function of response, 
1 2, , , kx x x…  denote 

the independent parameters (or variables) respectively, k  is the number of independent 

(or input) variables and, finally, ε  is the statistical error that represents other sources of 

variability not accounted for f . It is generally assumed that ε  has a normal distribution 

with mean zero and unit variance (Boyaci and Bas 2006). 

Moreover, in this methodology, it is assumed that the independent variables are 

continuous and controllable by experiments with minor errors. It also requires that a 
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suitable approximation for the relationship between independent variables and responses 

is found. RSM quadratic model is a second-order regression model and is given as: 

 
2

1 1

1

0

1

k k

i i ii i

k k

ij i j

i ji ii

x xy x xβ β ββ
==

−

>=

= + + +∑ ∑∑ ∑   (3.2) 

where y  is the response and 
ix  and jx  are the coded levels of k  independent variables. 

And 
0β , 

iβ ,
iiβ  and ijβ  are the regression coefficients for constant, linear, quadratic and 

interaction terms, respectively.  

The system of equations given above is solved using the standard linear least squares 

method (LSM). The RSM contains other three types of modelling, which are linear, 

interaction and pure quadratic. The linear type is comprised of intercept and linear terms. 

Then the interaction one has intercept, linear and interaction terms, and, finally, pure 

quadratic presents intercept, linear and squared terms only. 

The reason for selecting the RSM lies on its advantages compared to classical experimental 

methods, in which one variable at a time is used, and also due to its capability of providing 

a large amount of information from a limited number of experiments. In addition, it 

considers the interaction effect of the input variables on the response. Also, the empirical 

model developed by this methodology can be used to obtain information about the 

machining process. 

However, the major drawback of this technique is to fit the data to a second order 

polynomial. It cannot be secured that all responses containing curvature would be well 

accommodated by a second order polynomial. Nonetheless, to overcome this, the data can 

be treated and converted to a form that a second order model would be of good fitness, 

such as using logarithmic transformation. 
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3.2.4.2 Curve Fitting 

Curve fitting, also known as regression analysis, is used to find the best-fit line or curve for 

a series of data points. The curve fit produces an equation that allows finding points 

anywhere along the curve. Thus it makes curve fitting as a simple and effective technique 

useful for manufacturing process data description, parameter estimation and control. 

Consequently, in this work, this technique was chosen for data collection prescription, in 

order to find the best fit model for the relationship between independent variables (the 

machining parameters: Spindle speed, feed rate, depth of cut and width of cut) and the 

outputs (energy consumption). 

3.2.4.3 Least Squares Method (LSM) 

One of the applications of the least squares method (LSM) or method of least squares is 

parameter estimation. Basically, this method optimality criterion is to minimise the sum of 

squares of residuals between actual observed outputs and output values of the numerical 

model , built from an experimental data, such as in the case study developed in this thesis. 

Linear LSM is applied for estimating the parameters in the RSM and Curve fitting 

modelling methodologies chosen in this work. For the RSM case, the matrix notation of the 

RSM model, which is solved using the standard linear LSM, is expressed as: 

 

� � �

1 11 12 1 0 1

2 21 22 2 1 2

1 2

1

1

1

k

k

n n n nk k n

y X

y X

y x x x

y x x x

y x x x

β ε

β ε

β ε
β ε

β ε

= +
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⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯
�����������

  (3.3) 

In LSM, it is assumed that random errors are identically distributed with a zero mean and 

a common unknown variance and that they are independent of each other. The difference 
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between the observed and the fitted value (ŷ) for the ith observation ˆ
i i iy yε = −  is called 

the residual and an estimate of the corresponding 
iε . Following the method optimality 

criterion, 
iβ  is estimated considering the minimised sum of the squares of the residuals, or 

sum of squares of the errors, denoted by SSE, and described as: 

 ( )
2

2

1

ˆ
n

i i i

i

SSE y yε
=

= = −∑ ∑   (3.4) 

After the regression coefficients are obtained, the estimated energy consumption can be 

easily calculated using the model. 

3.2.5 Statistical Techniques for Analysis of Model Performance 

3.2.5.1 Root Mean Square Error (RMSE) 

This technique is frequently employed in model evaluation studies to describe the 

differences between values predicted by a model and the values actually observed. In 

other words, the RMSE represents the sample standard deviation of the differences 

between the predicted and measured values.  

The RMSE of estimated values ˆ
iy  for experiment i of an actual measure variable 

iy  is 

computed for n different predictions as the square root of the mean of the squares of the 

deviations: 

 resSS
RMSE

n
=   (3.5) 

where the sum of squares of residuals is given as: 

 ( )2

1
ˆ

n

res i ii
SS y y

=
= −∑   (3.6) 

Thus, 
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( )2

1
ˆ

n

i ii
y y

RMSE
n

=
−

=
∑

  (3.7) 

For the RMSE value, the closer to zero, the less the sum of errors, thus, the better the 

model is. The selection of RSME to evaluate the models presented in this work is that 

according to (Chai 2014) this technique is more appropriate to use when the model errors 

follow a normal distribution. Consequently, this method will be used to evaluate the 

different models developed using RSM later in this Chapters. 

3.2.5.2 Coefficient of Determination ( 2R )  

This statistical coefficient is commonly applied to evaluate how well the observed 

outcomes are replicated by the statistic model developed. The coefficient is obtained by 

solving: 

 
2 1 res

tot

SS
R

SS
= −   (3.8) 

INSERT FORMULA FOR R2 ADJUSTED TO DO 

Where 
totSS  is described as the total sum of squares: 

 ( )2

1
ˆ

n

tot ii
SS y y

=
= −∑   (3.9) 

where y  is the mean value of y . 

R-squared presents two fields: ordinary (unadjusted) and adjusted. The former supposes 

that every independent variable in the model explains the variation in the dependent 

variable, whereas the latter gives the percentage of variation explained y only those 

independent variables that in reality affect the dependent variable. Furthermore, 

(Investopedia 2015) states that  
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”the adjusted R-squared compares the descriptive power of regression models that 

include diverse numbers of predictors. Every predictor added to the model 

increases 2R and never decreases it. Thus, a model with more terms may seem to 

have a better fit just for the fact that is has more terms, while the adjusted R-squared 

compensates for the addition of variables and only increases if the new term 

enhances the model above what would be obtained by probability and decreases 

when a predictor enhances the model less than what is predicted by chance. In an 

overfitting condition, an incorrectly high value of R-squared, which leads to a 

decreased ability to predict, is obtained. This is not the case with the adjusted R-

squared.” 

The equation for the adjusted R2 is given as: 

( )( )2

2
1 1

1
1

R N
R

N p

− −
= −

− −
 

Where N and p are number of samples and numbers of terms in the model, respectively. 

The better the regression fits the data in comparison to the simple average, the closer the 

value of 2R  and/or 2R  is to 1. 

3.3 Methodology 

The methodology to achieve the aim presented in this chapter has been carried out for 

quantitative and qualitative analysis. Statistical techniques are used to analyse and build 

the basis understanding of the experimental data collected from milling experiments, such 

as Main effect analysis and Interaction plots. Furthermore, Curve fitting is used to aid in 

the selection of the model structure and modelling methodology. 

After that, Response Surface Methodology (RSM) is employed to develop the empirical 

energy consumption models and estimate its parameters using Least Squares Method 

(LSM). Moreover, statistical techniques such as Root mean sum of errors (RMSE) and 
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Coefficients of determination ( 2R ) are applied to analyse the models obtained with RSM 

and to select the best fit model to be used in its further application – optimisation 

algorithm to obtain the best machining parameters in order to achieve the least energy 

consumption. The framework of the energy consumption model development carried in 

this theses is shown in Figure  3-3.  
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Figure  3-3: Empirical model development framework. (Source: Author) 

3.4 Energy Consumption Model Development 

As according to the model development framework provided in Figure  3-3, the first step of 

the modelling process is to define the reason(s) for developing the model and its future 

application if any. The former definition – why modelling – decides the design (input) 

variables and the response (output) variables to be represented by the model. In this 

thesis, the modelling objective is to describe the specific energy consumption – or 

machining energy – of a milling process as a function of the cutting parameters (input 

variables): spindle speed ( )S , feed rate ( )f , depth of cut ( )pa  and width of cut ( )ea . This 

model is to be applied to an optimisation approach, targeting to find the optimum 
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machining parameters to obtain the least energy consumption, this way, proposing to 

enhance the sustainability within machining process. 

The empirical modelling approach was selected for the model development, as mentioned 

previously. Thus, the energy consumption model can be obtained by following the 

empirical model development framework proposed in Figure 3-3. 

3.4.1 Experimental Data Collection 

In this work, the model development is based on experimental data published in (Yan and 

Li 2013), obtained from measurements of a machining process. The experimental data is 

the result of a fractional factorial design using Taguchi orthogonal array L27, for a three 

level four factors design of experiments, see Table  3-3 for factors and levels details. For 

more details about Taguchi Design of Experiments (DoE) please refer to (Roy 2001). The 

27 experimental tests were performed on a CNC micromachining centre (Hurco CNC BMC-

20LR Vertical Machining Centre) with 5.6kW spindle power and a maximum speed of 

6000 rpm.  

Table  3-3: Input variables and its levels. 

N FACTOR LEVEL 

A B C 

1 Spindle (S) [rpm] 1000 1500 2000 

2 Feed (f) [mm/min] 200 250 300 

3 Depth (ap) [mm] 0.2 0.3 0.4 

4 Width (ae) [mm] 5 10 15 

The machining process details are provided in Table  3-4. The power measurement system 

consisted of a three-phase power sensor WB9128-1 and the sampling frequency was set to 

be 10 Hz. 
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Table  3-4: Machining process details. 

M. Specifications 

Cutter Tool material: Carbide 

 Diameter (D): 24mm 

 Number of teeth (N): 3 teeth 

Workpiece Material: Medium carbon steel (C45) 

Feature Milling: Face Milling 

The results of the 27 experimental sets and the respective cutting energy measurements 

are used to implement the empirical model development framework proposed in this 

work. Firstly, the data is analysed using statistical techniques in order to build the 

understanding and knowledge necessary regarding the performance of the machining 

process, including the significance of the selected machining parameters (input variables) 

on the cutting energy demanded, and to investigate the existence of covariance between 

these input variables. Next section will present a qualitative analysis based on statistical 

results of the data collected. 

3.4.2 Data Analysis One: Qualitative Understanding 

The qualitative analysis based on statistics is necessary to form the understanding of the 

machining process based on the results of the experimental tests. Two statistics 

techniques are employed in this section: main effect analysis and interaction plots. The 

former provides information to understand the significance of the machining parameters 

on the mean cutting energy demanded, and the latter gives the plots that show the 

covariance behaviour between those independent variables. 

3.4.2.1 Main Effect Analysis 

Minitab software was used to develop the main effect analysis on the experimental data 

collection. The experimental design and the cutting energy required by each experiment, 

measured during the experiments, were used as inputs for the calculation of the effect of 



Energy Consumption Modelling 

 
 

39 
 

 

each factor on the mean cutting energy. Figure  3-4 shows the effect of each level of the 

four factors (S, f, ap and ae) on the mean Cutting Energy (CE), in kJ, analysed individually. 

 

Figure  3-4: Main effects of input variables on Cutting Energy (CE). 

In general, the plots in Figure  3-4 show that all factors affect the cutting energy required 

during the machining process, once the lines are not horizontal. Furthermore, it also 

suggests that the mean response is affected differently by each factor, for example, spindle 

speed shows a lower effect on the mean CE for its different levels when compared to other 

factors. 

An analysis of the main effects plot of each factor is provided as follows: 

• Factor 1: Spindle speed (S) 

There is a decrease of approximately 5% in the mean CE from the first (1000 rpm) to the 

second level (1500rpm). Then, the response CE showed an increase of, approximately, 

10% from the second to the third, and highest, level (2000 rpm). Considering that the 

smaller the better, i.e. the smaller the mean CE the better the result is, 1500 rpm (second 
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level) appears to be the best spindle speed value, ceteris paribus. In the machining 

operation perspective, the spindle speed may not have presented a substantial effect on 

the mean CE due to the characteristic of the machining operation – face milling. From the 

experimental design, the cutter tool did not have a great engagement onto the workpiece 

(levels of depth of cut are 0.2, 0.3 and 0.4). Even though the workpiece’s material, medium 

carbon steel (C45), is a considerably hard to machine material, a significant change despite 

the level of spindle speed was not seen. In addition to, the results suggest that when on 

level 2000 rpm, a greater amount of energy was required, but with less efficiency. 

• Factor 2: Feed rate (f) 

The mean CE presented significant changes for the three levels of feed rate. Moreover, it 

shows to be inversely proportional to the increase of feed rate levels. The lowest level of 

feed rate (200mm/min) required a CE, approximately, 27% higher than the mean CE of 

the medium level (250mm/min). Then, the CE drops approx. 20% further, with the 

increase of feed rate to the highest level (300mm/min). Considering that the smaller the 

better for the response under analysis, the highest level of feed rate – 300mm/min – 

showed to be the optimal level, ceteris paribus. For the face milling operation, feed rate 

plays an important role on the total machining time, once in this process the cutter tool is 

continuously fed onto the workpiece. From the results, it can be seen that the trade-off 

between the load applied to the machine axis, which comes from the material removal 

process when the cutter tool is engaged onto the workpiece, and the total time for cutting 

due to the increase in feed rate levels is positive in terms of mean CE. 

• Factor 3: Depth of cut (
pa ) 

The main effect plot of depth of cut shows significant drops on the mean CE with the 

increase in levels, despite the fact that the level’s interval is 0.1 mm. The most substantial 

drop is seen from the first to second levels, in which the latter shows 44% less mean CE 

than the former. Furthermore, the third level shows the lowest mean CE, which is 25% 
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lower than the second level. Consequently, it suggests that ap = 0.4 mm is the optimum 

level of depth, considering that the smaller the mean CE the better, and all the factors kept 

constant. In the machining planning stage, the depth of cut defines the number of passes 

necessary for the total material removal process, which has a direct impact on the total 

time for cutting, as well as on the total load applied to the machine axis and the main 

spindle. The results from the main effect plot suggests that for the levels of depth given, 

the higher loads on axis and main spindle due to the increase in depth are not as 

significant as the time for cutting (the higher the depth, the less the number of passes to 

finish the part, thus, the less the time for finishing the part), thus, show a positive trade off 

in terms of mean CE for the face milling operation. 

• Factor 4: Width of cut ( ea ) 

In the width of cut plot, the most significant effect is seen from the first to the second level, 

5 mm to 10 mm, respectively, in which the mean CE decreases from approximately 380 kJ 

to 205 kJ – a drop of 46%. These two values of width correspond to, approximately, 20 and 

40% of the tool diameter, respectively. Another decrease is noticed from the second to the 

third level (15 mm, approx. 2/3 of tool engagement), which represents the lowest mean 

CE. For this reason, the third level of ae is shown to be the optimal value, ceteris paribus. 

Moreover, this factor is found to present the most substantial effect on the mean CE, based 

on the highest and lowest mean CE values and the effects due to changes in width levels. 

Planning engineers and machinist operators define the width of cut to decide how much 

the cutter tool will engage onto the workpiece radially. For face milling processes, this 

variable plays a crucial role on the final tool path, total load on the feed table and main 

spindle, in addition, it can have a significant impact on the total cutting time – the latter 
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will depend on the workpiece geometry (or volume of material to be removed) and 

selection of tool path strategy. 

In summary, from this analysis, it can be concluded that the changes in S did not 

substantially affect the mean energy required for cutting and that the second level 1500 

rpm is shown to demand the lowest mean CE. Besides that, the overall effect of the factors 

f, ap and ae on the response mean CE is that the latter decreases with the increase in the 

factors’ level. Moreover, the width of cut is the most significant factor in terms of the mean 

cutting energy. These conclusions draw the understanding scenario of cutting process in 

face milling operations. 

The next section will present the results and analysis for the interaction plot, which shows 

the interrelationship between the machining parameters based on the results obtained 

from the experimental tests. 

3.4.2.2 Interaction Plot Analysis 

The interaction plots in Figure  3-5 provide valuable information for understanding the 

behaviour of responses considering the relationship between different factors. The plot 

displays the three levels of one factor on the x-axis, on each column, together to a different 

line for each level of the compared factor, on each row. In addition, the mean CE values are 

displayed on the y-axis of each row. 

The interaction plots show that there are multicollinearities between input variables on 

the plots II, III and VI, which correspond to the covariance between machining parameters 

spindle and depth of cut, spindle speed and width of cut, and, finally, depth of cut and 

width of cut. The latter presents a lower level of interaction when compared to the former 

ones. 
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In plot I. *S f , the lines the describe the feed levels vs the spindle speed levels (x-axis) 

show that the behaviour of mean CE is similar when the levels of each factor vary in level – 

note that the lines are in parallel. 

 

Figure  3-5: Interaction plots of input variables and mean CE. 

Moreover, this behaviour suggests that there is no covariance between those variables. 

Furthermore, this means that if the spindle speed is changed does not affect the mean CE 

for any value of feed rate, and vice-versa. Also, the graph suggests that the sweet spot in 

terms of energy consumption is found when spindle speed is 1500 rpm and feed rate is 

300 mm/min, for the face milling processes carried out in the experiments. This is due to 

such cutting parameters combination requires the least energy consumption for 

machining the part. 

Alike behaviour can be seen in plots IV and V, which stand for * pf a  and * ef a , 

respectively. However, the plots show that the lines present not an entire linear parallel 
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behaviour, which suggests there is some interaction, which will be better understood later 

from the mathematical analysis. Such behaviour found for * pf a  interaction may be 

explained by the small values of the depths’ levels, that did not cause significant difference 

in the load carried by the machine axis (which feeds the cutter tool on the workpiece) and, 

thus, did not influence the mean response from the feed factor when changing the levels of 

depth, and vice-versa. Plot IV also suggests that the highest levels of f and pa , together, 

gives the optimal mean response. 

For the plot V, in which feed rate and width of cut show low correlation, the results 

obtained are not as expected. In general, for face milling processes, the percentage of 

engagement of the cutter tool onto the workpiece (described by the width of cut together 

to depth of cut) should have a significant effect on the total load on the machine axis, 

which would be described by a strong relationship between 
ea  and f . However, once 

more the experimental values for this factors may have lowered such interaction level. 

Nonetheless, the interaction terms to be modelled on the next section will show such 

relationship in mathematical terms. This will clarify and complement this analysis. 

The strong relationships described in plots II and III which represent * pS a and * eS a , 

respectively, can be explained by the different loads in the main spindle speed. In b, it can 

be seen that locking the first level of pa – blue line – and increasing the spindle speed, the 

mean CE decreases. Then, locking the second level of pa  – red line – and increasing the 

spindle speed, the mean CE decreases when spindle reaches its second speed level, 

followed by a substantial rise from the second to the third speed level. This rise can be 

explained by the lack of efficiency of the machine tool when increasing the spindle speed 

to the third level 2000 rpm, which is one-third of its maximum limit. The best combination 

of these factors, according to the smallest mean CE, is shown to be 0.4pa = mm and 

1000S = rpm. 
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Plot III shows how spindle speed and width of cut interact. The strong interaction between 

these variables is suggested by the crossing lines of 
ea  levels. When locking the first level 

of 
ea  – blue line – and increasing the spindle speed, the mean CE presents a decrease till 

second speed level, and then an increase to the third level – this increase is believed to be 

lack of efficiency of the machine tool when operating on these levels. Then, locking the 

second level of 
ea  – red line – and increasing the spindle speed, the mean CE increases 

when spindle reaches its second speed level, then falls with the 2000 rpm speed. It 

suggests that the highest speed presents a better performance when the width is set to be 

10 mm, compared to the average speed. The third level of 
ea shows that the mean CE 

increases according to the spindle speed, and that the lowest mean CE is achieved when ap 

= 15 mm and S = 1000 rpm. This final observation states that despite the higher load on 

the main spindle due to the greater cutter tool engagement, the optimal speed and width 

are the lowest and the highest levels, respectively, and that not necessarily a faster spindle 

speed is the best, as commonly assumed by machinists. 

The relationship between depth and width of cut (ap*ae), displayed in plot VI, showed 

some interaction in both second levels – red line. This interaction will be further 

investigated later in this Chapter. 

3.4.3 Data Analysis Two: Model Structure 

The decision about the model structure is very important when modelling a data set. In 

this work, Curve fitting statistical technique was chosen to support the decision making 

upon the model structure that suits best the experimental data collection. 



An Innovative Method for Process Planning for Sustainable Manufacturing 

  46 

For that, specific samples from the data set – presented in Appendix A – were strategically 

selected in order to build the mathematical model for each design variable – S, f, ap and ae, 

individually – against the respective cutting energy consumption measured. 

The results obtained from Curve fitting are displayed in Figure  3-6 to Figure  3-9, where 

the effect of spindle speed, feed rate, depth and width of cut, respectively, on the cutting 

energy, ceteris paribus, are shown – level A of the other factors were locked. From the 

graphs shown in those figures, the relationship between each machining parameter vs 

cutting energy could be mathematically described. The resultant models of cutting energy 

as a function of input variables, individually, can be seen from (3.10) to (3.13). 

 

Figure  3-6: Effect of Spindle speed on Cutting energy. 

 
2( ) 0.00021* 0.93* 1300CE S S S= − +   (3.10) 

The norm of residuals, which is the measure of the deviation between the correlation and 

the data, of (3.10) is 5.934x10-13. 
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Figure  3-7: Effect of Feed rate on Cutting energy. 

 ( ) 20.0091* 6.3* 1400CE f f f= − +   (3.11) 

The norm of residuals of (3.11) is 6.653x10-13. 

 

Figure  3-8: Effect of Depth of cut on Cutting energy. 

 ( ) 21300 * 9900 * 200p p pCE a a a= − +   (3.12) 

The norm of residuals of (3.12) is 1.594x10-12. 
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Figure  3-9: Effect of Width of cut on Cutting energy. 

 ( ) 25.1* 1500 * 1200e e eCE a a a= − +   (3.13) 

The norm of residuals of (3.13) is 5.155x10-13. The norm of residuals have demonstrated a 

very good polynomial fit. However, it is important to note that the fact that only three 

levels per factor were selected influenced for obtaining such results. This observation 

suggests that three points only are not enough for obtaining a realistic curve fitting. 

Furthermore, this reflects directly on the quality of the experimental design – but this is 

not scope of analysis at this moment. 

Applying the superposition SUM of the polynomial equations from (3.10) to (3.13), the 

model that describes the cutting energy as a function of the machining parameters can be 

obtained and is given as: 

 
( ) 2 2 2 2, , , 0.00021* 0.0091* 1300* 5.1*

0.93* 6.3* 9900* 1500* 4100

p e p e

p e

CE S f a a S f a a

S f a a

= + + +

− − − − +
  (3.14) 

In matrix form, this model can be presented given as: 
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 ( ) [ ]2 2 2 2

4100

0.93

6.3

9900

, , , 1 * 1500

0.00021

0.0091

1300

5.1

p e p e p e
CE S f a a S f a a S f a a ε

 
 − 
 −
 
− 

  = +−   
 
 
 
 
 
 

  (3.15) 

The CE model (3.14) obtained from Curve fitting analysis built an acceptable model 

structure that shows how the energy consumption can be modelled based on the four 

three-level factors fractional experimental design, with an interval of confidence of 95%. 

Furthermore, the coefficient of each term defines the significance of the variables. But it is 

important to note the difference of values between the levels of each input variable. 

It can be seen that (3.15) is comprised of squared, linear and constant terms. Such 

structure is equivalent to the pure quadratic function from the RSM. Consequently, the 

obtained model suggests that RSM would be a good selection for the model development 

using experimental data collection used in this work. 

Nonetheless, the qualitative analysis performed previously showed the existence of 

covariance between the input variables. Such multicollinearities should not be 

disregarded in the CE mathematical model due to its impact on the final estimated value, 

which will be crucial for the decision making later when utilised on the optimisation 

approach. Although the curve fitting used did not mathematically mensurate those 

interactions, it is known that RSM can model data considering the interaction between 

factors. Thus, the next section will show the implementation of RSM to develop different 

models for describing ( ), , ,p eCE S f a a . Furthermore, an appraisal of the obtained models 
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based on the adjusted coefficient of determination (adj R-sq) and RMSE is provided, as 

well as a model refinement is proposed considering the findings from the qualitative 

analysis and significance of terms coefficients.  

Again, it is important to note that the results obtained are not very realistic because only 

three data points could be used from the data range available, in which any second order 

polynomial could be fitted in. However, this analysis focuses on a framework of statistical 

analysis that can be later expanded to a larger data set. 

3.4.4 Energy Consumption Models and Performance Analysis 

3.4.4.1 Estimated Models for Cutting Energy 

According to the statistical analysis performed, a pure quadratic RSM model should 

provide a good description of the cutting energy in terms of spindle speed, feed rate, depth 

of cut and width of cut. Although, the qualitative analysis showed that it is worth 

considering the interaction between these input variables. Consequently, for comparison 

sake, the four modelling types from the RSM (linear, interaction, pure quadratic and 

quadratic) will be developed and evaluated. For the selection of the best fit, the future 

application of the desired model is also taken into account. 

a. Model One: RSM linear 

Using MATLAB/Simulink rstool, which is able to read the experimental data and model it 

into the selected model structure, the linear model that fits the DoE of cutting energy (CE) 

in terms of S, f, ap and ae was found to be as in (3.16), with five terms in total (intercept + 

first order terms). 

 ( , , , ) 908.45 0.0073* 0.922 * 775 * 21.6 *linear p e p eCE S f a a S f a a= + − − −   (3.16) 

The equation organised in matrices is shown in (3.17). This way provides a better 

visualisation of the coefficients estimated for this model type. 
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 ( ) [ ]linear

908.45

0.0073

, , , 1 * 0.922

775

21.6

p e p eCE S f a a S f a a ε

 
 
 
  = +−   
− 

 − 

  (3.17) 

b. Model Two: RSM interaction 

The RSM interaction function obtained is given as in (3.18). The model is comprised of 

eleven terms: intercept, linear and interaction terms. 

 

interaction ( , , , ) 1427 0.23* 2.6256*

1121.5* 117.9* 3.13 5* * 1.081* *

0.018* * 3.049* * 0.0836* * 143.08* *

p e

p e p

e p e p e

CE S f a a S f

a a e S f S a

S a f a f a a a

= + −

− − − − −

+ + + +

  (3.18) 

In matrix, it can be organised as: 

 

( )

[ ]

interact , , ,

1427.1

0.23

2.63

1124.5

117.9

1 * * * * * * * 3.13 5

1.081

0.018

3.049

0.0836

143.08

p e

p e p e p e p e

CE S f a a

S f a a S f S a S a f a f a a a e ε

=

 
 
 
 −
 
− 

 −
 

  +− −  
 −
 
 
 
 
 
 
 

  (3.19) 

c. Model Three: RSM pure quadratic 

As described previously, the pure quadratic model structure contains the intercept, linear 

and squared terms. The CE model obtained is comprised of nine terms and is given as:  
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pure_quad

2 2 2 2

( , , , ) 1587.4 0.157* 2.73* 2051.4*

61.94* 0.0000547* 0.0036* 2127.3* 2.0165*

p e p

e p e

CE S f a a S f a

a S f a a

= − − −

− + + + +
  (3.20) 

 

( )

[ ]

pure_quad

2 2 2 2

, , ,

1587.4
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  (3.21) 

d. Model Four: RSM quadratic 

The experimental dataset used in this work is not large enough to develop a quadratic 

RSM model using MATLAB/Simulink rstool, however, Minitab software could do so by 

removing the interaction term ap*ae, once the coefficient β for this term could not be 

estimated by LSM due to not enough data – which reason is the use of fractional factorial 

design for running the experimental tests. This way, the coded RSM quadratic model 

obtained for the cutting energy is given as: 

 

quad

2 2 2 2

( , , , ) 155.27 3.64* 46.10* 94.17 * 91.73*

0.78* * 32.68* * 33.34* * 15.25* * 20.89* *

13.67 * 9.03* 37.94* 66.75*

p e p e

p e p e

p e

CE S f a a S f a a

S f S a S a f a f a

S f a a

= + − − −

− + − +

+ ++

+

+

  (3.22) 

Transforming (3.22) into matrices structure, it becomes: 
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  (3.23) 

The uncoded coefficients for the RSM quadratic can be given as: 
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  (3.24) 

For the selection of the best model, firstly, two criteria were defined in order to evaluate 

those which are: sum of residuals and accuracy of estimation, to be determined by 2R ; 
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RMSE; and, number of terms in the model. The latter criteria will have a lower analytical 

weight on the decision-making process, once the goodness of fit is assumed to be more 

important than the computational time required by the optimisation algorithm – further 

application of the selected model – which can be influenced by the number of terms. 

3.4.4.2 Analysis of Variance of Models and Model Selection 

Consequently, the four models obtained using RSM were evaluated using the two statistic 

methods adjusted R-squared and RMSE using MATLAB/Simulink, the results are shown in 

Table  3-5. The experimental tests sets from the 27 samples were used as input for the 

models, and the estimated values were compared to the actual (measured) values. 

Table  3-5: ANOVA of RSM models developed. 

Model Type R-sq adj RMSE No of Terms 

Linear 0.8840 36.0173 5 

Interaction 0.9634 17.8792 11 

Pure quadratic 0.9407 23.9226 9 

Quadratic 0.9955 9.2497 14 

The quadratic structure for the model is found to provide the most accurate model, note 

that it has the higher R-sq adjusted, 0.9955. 

Adjusted R-squared was used because this performance statistical indicator takes into 

account the number of terms of each model, this way, providing a more realistic model 

fitness value. 

The results presented in Table  3-5 suggests that the RSM quadratic proposed the best fit 

model for estimating the energy consumption based on the experimental data, regardless 

the fact that the interaction coefficient of the term *p ea a  could not be estimated due to 

limited size of data and, consequently, it had to be removed from the model structure. 

The number of terms contained in the model is also a criterion considered in the model 

appraisal, although this is not as important as the model fitness. Considering that the best-
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fit model contains fourteen terms, which can be considered as a large number of terms 

when the exhaustive search takes place, for example, the qualitative analysis built in the 

previous section, together to the p-value calculated for the models’ terms, will be used to 

refine the model. This process evaluates the model in a way that only the significant terms 

will be kept, i.e. it checks the terms that do not have a significant effect on the estimated 

response: cutting energy. 

3.4.4.2.1  Refining Best Fit Model 

Minitab software was used to aid in the refining process by generating the ANOVA table 

for the RSM quadratic model selected in (3.22). In this analysis of variance, the significance 

of each term contained in the model is statistically evaluated by p-values. If the p-value is 

less than (or equal to) α, reject the null hypothesis in favour of the alternative hypothesis. 

If the p-value is greater than α, do not reject the null hypothesis – the term is significant to 

the model.The results obtained by ANOVA are displayed in Table  3-6. 

Table  3-6: ANOVA of RSM quadratic model. 

Term Coded 

Coefficient 

Uncoded 

Coefficient 

p-

value 

Constant 155.27 2318 0.000 

S 3.64 -0.2116 0.083 

f -46.10 -4.431 0.000 

ap -94.17 -4.961 0.000 

ae -91.73 -72.63 0.000 

S2 13.67 0.000055 0.001 

f2 9.03 0.00361 0.019 

ap
2 37.94 3794 0.000 

ae
2 66.75 2.67 0.000 

S*f -0.78 -0.000031 0.747 
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S*ap 32.68 0.6535 0.000 

S*ae -33.34 -0.01334 0.000 

f*ap 15.25 3.049 0.000 

f*ae 20.89 0.08357 0.000 

The coded coefficients were added to Table 3-6, because coded units allow the comparison 

of the size of the coefficients (on a common scale) to determine which factor has the 

largest impact on the response. 

From the results obtained, it can be seen that two terms presented higher value than α, 

which is 0.05 – confidence level of analysis is 0.95. These are the linear term for spindle 

speed ( )S  and the interaction term spindle speed*feed rate ( )*S f  which p-values are 

0.083 and 0.747, respectively.  

The analysis carried out in 3.2.1 showed that changes in S levels had no substantial effect 

on the mean CE (see Figure  3-4), however, it was explained that the reason for that, in the 

machining process perspective, can be due to the values of depth and width selected, 

which would not affect the load on the main spindle considerably. Therefore, it is assumed 

that the results obtained for this term are not enough to make a conclusion upon its 

removal from the model, thus, this term will be kept. 

Nonetheless, the p-value of the term *S f  suggests a low statistical significance on the CE, 

which was also visualised through the interaction plot in section 3.2.1 (see Figure  3-5a). 

Consequently, this term will be removed from the model for the sake of simplification. 

The refined empirical model for the ( ), , ,p eCE S f a a  with 13 significant terms is given as: 

 

refined_quad

2 2 2 2

( , , , ) 2329.7 0.2194* 4.4784* 4960.8*

72.635* 0.6535* * 0.0133* * 3.0491* *

0.0836* * 0.0000547 * 0.0036* 3794.3* 2.67 *

p e p

e p e p

e p e

CE S f a a S f a

a S a S a f a

f a S f a a

= − − −

− + −

+ ++

+

+ +

  (3.25) 
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The R-square and RMSE of the refined RSM quadratic CE model are given in Table  3-7. The 

results show a better accuracy and a lower RMSE of this model compared to the original 

RSM quadratic. 

Table  3-7: ANOVA of refined quadratic energy consumption model. 

Model Type R-sq adj RMSE No of Terms 

Refined Quadratic 0.9955 5.7269 13 

Figure  3-10 shows a plot between the CE estimated by the refined quadratic model, given 

in (3.25), and the actual values of CE – which were measured from the experimental tests. 

The experimental design samples were used as input data for calculation. From this graph, 

the fitness of the refined RSM quadratic model can be visualised. 

 

Figure  3-10: Actual CE vs Estimated CE from refined model. 

In the next section, the conclusions of this chapter are drawn. 

3.5 Conclusions 

This chapter presents an empirical modelling framework for machining operations, which 

was used to develop a case study for milling processes. A predictive energy consumption 
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model was obtained as a result, with R-sq adj and RMSE equal to 0.9955 and 5.7269, 

respectively. 

The qualitative analysis using the Main Effect and Interaction plots techniques was crucial 

for the knowledge construction process in regards to face milling operations. This analysis 

revealed that, for milling operations: 

• Spindle speed had the lowest effect on the mean CE when switching speed levels, 

and 1500 rpm was the optimal value, ceteris paribus, considering the smaller the CE 

the better. 

• Width of cut has shown as the most significant parameter, showing substantial 

drops on the mean CE when increasing the levels from A to C. 

• Spindle speed presented very low interaction with feed, but a more significant 

correlation with depth and width of cut. 

• Feed and depth presented significant interaction, but no strong interaction between 

feed and width was found. 

The quantitative analysis using Curve fitting supported the selection of RSM as the 

modelling method for the CE predictive models’ development. Furthermore, R-sq adj and 

RMSE were the decision makers on the best fit model selection and showed to be simple to 

implement and efficient. Moreover, the p-value from ANOVA was a good parameter and 

validated the findings from the qualitative analysis. It helped in refining the CE model in 

order to be more efficient for its further application into an optimisation approach. 

In summary, the framework proposed provides good guidance when modelling machining 

operations. Furthermore, the steps of the framework intend to extract the maximum 

understanding and knowledge from the modelling process, as well as to promote a more 

critical analysis for the modelling method selection and the best fit estimated model. 
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In the next chapter, the refined RSM quadratic model will be applied to an optimisation 

approach to obtain the optimal cutting parameters with the goal to minimise the energy 

required for the cutting process. 



 

60 

Chapter 4:  OPTIMISATION OF CNC MACHINING 

PROCESSES 

4.1 Aim and Objectives and Chapter Organisation 

Machining processes cover a wide range of operations, which depends on a series of 

machining specifications and details, as presented in the previous chapters. Accordingly, a 

series of optimisation problems have been addressed in order to enhance the performance 

of different machining operations. Despite the numerous research findings published in 

the past years, there are still knowledge gaps that must be addressed by further 

investigations of other optimisation goals.  

Energy consumption has been of great concern in the manufacturing industry sector, 

especially in regards to CNC machining processes, due to the considerable energy 

demanded by the material removal process performed by CNC machines. Thus, the use of 

optimisation approaches to aid in the decision making of machining process planning 

stage is a plausible way to promote sustainability into manufacturing systems. 

In this work, an optimisation approach will be described using two different optimisation 

methods that will be employed to find the optimal machining parameters that require the 

minimum energy consumption for face milling processes. The estimated energy 
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consumption model developed using RSM, presented in the previous chapter, will be used 

as the objective function for the optimisation problem. 

This chapter is organised as follows: Section 4.2 introduces the research. Section 4.3 

presents the background necessary for developing the proposed optimisation approach. 

After that, Section 4.4 provides the methodology, implementation details of the 

optimisation problem addressed and the results and discussion. Finally, the conclusions 

are presented in section 4.5. 

4.2 Introduction 

A great effort has been developed by the research community worldwide to address 

complex manufacturing scenarios, which involve environmental, legal, economic and 

quality requirements. Optimisation methods and algorithms have been noticeably evolved 

to deal with the complexity of manufacturing problems.  

In specific, manufacturing industries have attempted to achieve lower costs of production, 

higher productivity and better final product quality in manufactured products (Rao 2011). 

Moreover, manufacturing industries have been increasingly aware of the importance of 

energy efficiency in their production systems. This aspect together with the forthcoming 

Industry 4.0, have boosted related research by applying numerical solutions and 

computational methods, such as simulation and optimisation algorithms, to address 

sustainability requirements of manufacturing systems. 

Based on the empirical modelling process framework developed in Chapter 3, effective 

optimisation approaches are developed in this chapter. Two optimisation approaches, i.e., 

Branch and Bound for mixed integer solutions and Genetic Algorithm (GA), are introduced 

for achieving energy efficiency in CNC machining processes. As a result, optimal machining 
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parameters with the objective of minimising the energy consumption of machining 

processes are obtained. Comparisons between the two approaches are made. 

4.3 Optimisation Problems of CNC Machining Operations 

Various optimisation problems have been formulated for different purposes in regards to 

machining operations. Common objectives for such problems recently seen are  

productivity, quality, energy consumption and wear of cutter tool. Furthermore, these 

objectives are designated based on manufacturing or machining aspects such as material 

removal rate (MRR), surface roughness (Ra), specific energy for cutting (SEC), and so on. 

These are further described by machining variables and/or intermediate responses that 

would define the decision variables of the optimisation problem. Frequently used decision 

variables  are machining parameters such as spindle speed, feed rate, depth of cut, width 

of cut, and/or intermediate responses such as machining cutting force. Accordingly, 

different solvers and algorithms have been addressing manufacturing optimisation 

problems. Table  4-1 shows some methods used for machining processes optimisation. 

The decision upon which optimisation method to employ for a given single optimisation 

problem starts with two main points:  

• To identify the type of the objective function (linear, quadratic, sum-of-squares, etc.), 

and, 

• To identify the type of the constraints (un-constrained, bound, linear, discrete, etc.). 

In the case of a multi-objective optimisation problem, please refer to (Hwang and 

Masud 1979) for more details. 

Figure  2-1 presented a network-based scheme that showed the various variables that 

machining operations depend on. This is why some requirements must be fulfilled before 

formulation an optimisation problem. Sonmez et al. 1999 have highlighted some 

requirements, these are: 
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• Knowledge of the machining processes under analysis. 

• Empirical (or mechanistic) equations of the objective(s) and constraint(s) to define 

the optimisation problem. 

• Specifications for the CNC machine capabilities. 

• Draw an effective optimisation criteria and the problem formulation. 

• Knowledge of mathematical and numerical optimisation techniques. 

Table  4-1: Related work on the use of optimisation methods for machining processes. 

Related Work Optimisation Method(s) Objective 

function(s) 

Decision Variables 

Wang (2013) Neural network-based 

approach 

Production rate, 

Operation cost and 

Quality 

S, f, ap and ae 

Wang et al. 2015 Pattern search (PS), GA 

and Simulated annealing 

(SA) 

Energy 

consumption and 

Productivity 

S, vc, ap and ae 

Sonmez et al. 

1999 

Dynamic programming 

and Geometric 

programming 

Production rate vc and Sz 

Shunmugam 

(2005) 

GA Total production 

cost 

Number of passes, ��, S 

and f 

Choi and Yang 

(1999) 

Proposed new algorithm Tool wear Cutting force pattern 

and �� 

Tandon et al. 

2012  

PSO Machining time Cutting force, S and f 

Wang et al. 2015 GA and SA Production time vc and f 

Ozcelik et al. 2005 GA Surface roughness vc, f and ap (axial and 

radial) 

Reddy and Rao 

(2005) 

GA Surface roughness Tool geometry (radial 

angle and nose radius), S 

and f 

Sreeram et al. 

2006 

GA Tool life �� 

Baskar et al. 2006 GA, Hill climbing 

algorithm and Memetic 

Maximum profit S and f 
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algorithm 

Table  4-1 reveals some of the optimisation methods that have been applied to machining 

processes. It also shows that GA is a commonly chosen method for identifying optimal 

solutions.  

Recently, cutting force (or called machining force) models have been often used as an 

intermediate response for optimisation purposes. The reason for that is due to cutting 

force is a response that involves most of the machining variables and settings, and is well 

correlated to the outputs of machining processes, such as surface finish, the power 

required (due to load on the main spindle and axis), tool wear and cutting time. Thus, it 

represents a high potential to promote better performance in CNC operations. A drawback 

of using cutting force, is the measuring equipment (dynamometer) for CNC machines are 

usually quite costly. 

As objectives and variables have increasingly been seen in optimisation approaches with 

the goal to enhance the performance of machining processes, the list of optimisation 

solvers and algorithms have also been progressively developed to overcome the 

weaknesses of the available methods as well as creating new opportunities to achieve 

better results benefiting from the innovative mechanisms. 

Thus, based on the key identification points described above, two optimisation methods 

were chosen to carry out the optimisation problem of this work, which are: Branch and 

Bound for Mixed Integer Problems and GA. A brief background of the optimisation 

methods selected is provided next. 

4.3.1 Mixed Integer Nonlinear Programming 

Mixed Integer Nonlinear Programming (MINLP) denotes for mathematical programming 

with continuous and discrete variables and nonlinearities in the objective function and 

constraints (see the type of constraints in Table  4-2). In other words, MINLP is an 
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approach that aids in the problem formulation process which it is necessary to optimise an 

objective function considering a set of decision variables or equations. The general form of 

an MINLP is given as  

 

( )

( )

Minimise

Subject to :  A

A

  

  

i

j

f x

x b

eqx beq

lb x ub

C x d

Ceqx deq

X

X

≤

=

≤ ≤

=

=

∈

∈

ℝ

ℤ

  (4.1) 

Where ( )f x  is a scalar function containing the nonlinear objective function, which is 

subject to given constraints. The type of constraints is shown in Table  4-2. 

Table  4-2: Different type of constraints for MINLP. 

The goal of this approach is to minimise the objective function by selecting an optimal 

value of X that also satisfies all constraints. For more details about this method, please 

refer to (Lee and Leyffer 2011). 

Type of Constraint Details 

Linear inequalities A is a m n× sparse matrix, b is a 1m × vector. 

Linear equalities Aeq is a k n× sparse matrix, beq is a 1k × vector. 

Decision variable 

bounds 

lb and ub are nx1 vectors, and stand for lower and upper bound, 

respectively. 

Nonlinear 

inequalities 

C is a 1u × vector of functions containing nonlinear inequality 

constraints, d is a 1u ×  vector. 

Nonlinear equalities Ceq  is a 1v × vector of functions containing nonlinear equality 

constraints, deq is a 1v × vector. 

Integer constraints 
iX are decision variables which must be an integer number. 

Binary constraints 
jX are decision variables which must be a real number. 
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In the case of problems described by MINLP, an improved Branch and Bound (B&B) 

algorithm for solving mixed integer solutions can be employed as the optimisation 

method. For more details about B&B please refer to (Borchers and Mitchell 1994). 

4.3.2 Genetic Algorithm (GA) 

GA is a popular evolutionary algorithm in terms of diversity of applications. This method 

can solve both constrained and unconstrained optimisation problems, and many of well-

known problems have been tried using GA (Yang 2014). 

This algorithm works by continuously modifying a population of individual solutions. At 

each step, it randomly chooses individuals from the current population and uses them to 

be the parents that will produce the children for the next generation (MathWorks 2016). 

This characteristic represents the difference from GA to classical algorithms (such as 

Simplex, B&B, etc.). 

The schematic representation of the optimisation procedure of GA algorithms is shown in 

Figure  4-1. 
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Figure  4-1: Pseudo code of genetic algorithm. 

GA can also be used to solve problems that involve integer-valued variables. This makes 

this solver a suitable method for the optimisation approach hereby addressed.  For a 

further understanding of the GA procedures and concepts, please refer to (Yang 2014). 

4.4 Methodology 

The methodology to achieve the goal of this chapter is based on the application of the 

predictive energy consumption model developed in the previous chapter as the objective 

function for the optimisation problem. According to the characteristics of the optimisation 

problem (type of objective function and its goal and type of constraints), two different 

optimisation methods are selected, i.e., GA and Branch and Bound for mixed integer 

solutions. After that, the optimisation problem is re-structured to comply with each 

method’s scheme. Then, finally, the optimum machining parameters, suggested by each 

method, are compared considering the output cutting energy consumption, along with the 

computation time, this way evaluating the performance of each method. The results 

obtained are further analysed considering the machining perspective. 

4.4.1  Optimisation Problem 

4.4.1.1 Problem formulation 

The goal of this section is to minimise the energy consumption required by the cutting 

process performed in face milling operations. This is to be achieved by optimising the 

estimated CE model in order to obtain the optimal decision variables (or optimised 

variables). These variables are described as 
1x , 

2x , 
3x  and 

4x , which denote for spindle 
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speed, feed rate, depth of cut and width of cut, respectively. Considering the selected 

refined model ( )refined_quad 1 2 3 4, , ,CE x x x x , obtained in the previous chapter, the general form 

of the optimisation problem can be expressed as: 

 
( )1 2 3 4

1 2 3 4

, , ,

Subjec

Minim

t to : ( , , , ) 0

ise : x x x x

g

f

x x x x




≤
  (4.2) 

where the objective function ( )f x  is the estimated energy consumption model, defined as 

the refined RSM quadratic model ( )refned_quad 1 2 3 4, , ,CE x x x x  and given in (3.25), and 

1 2 3 4( , , , )g x x x x  represents the inequality constraint function. 

4.4.1.1.1  Objective function analysis 

In this chapter, the pure quadratic and the refined quadratic models, presented in Chapter 

3, are used as objective functions and separately applied in the optimisation approach. The 

pure quadratic model was also selected for further investigation of the efficiency of the 

optimisation methods selected and for comparison sake. 

The two CE models selected are given in (3.20) and (3.25), which are described, 

respectively, as: 

pure_quad

2

2 2 2

( , , , ) 1587.4 0.1567 2.7279

2051.4 61.944 0.0000547

0.0036 2127.3 2.0165

p e

p e

p e

CE S f a a S f

a a S

f a a

= − −

− − +

+ + +

 

refined_quad

2 2 2 2

( , , , ) 2329.7 0.2194 4.4784

4960.8 72.635 0.6535

0.0133 3.0491 0.0836

0.0000547 0.0036 3794.3 2.67

p e

p e p

e p e

p e

CE S f a a S f

a a S a

S a f a f a

S f a a

= − −

− − + ⋅

− ⋅ + ⋅ +

+

⋅

+ + +

 

These estimated models describe the energy required for the cutting process as a function 

of the machining variables spindle speed, feed rate, depth of cut and width of cut, for face 

milling operations. 
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• Pure quadratic function analysis 

The CE model obtained using RSM pure quadratic structure, shown above, can be 

expressed in terms of 
ix  as: 

 

4

pure_quad 0

1

2

,1 ,2

( ) i

i

i i i i i

CE x CE

CE x x

α

α α
=

= +

= +

∑
  (4.3) 

where α0 is the intercept term and 
ix  is the ith optimisation variable and the index 

1, 2,3, 4i =  represent spindle speed, feed rate, depth of cut and width of cut, respectively, 

while ,0 ,1 ,2, andi i iα α α  are the model coefficients, and set according to (3.20). Consequently, 

(4.3) can be expressed as: 

 

2 2

pure_quad 1 1 2 2

2 2

3 3 4 4

( ) 1587.4 0.1567 0.0000547 2.7279 0.0036

2051.4 2127.3 61.944 2.0165

CE x x x x x

x x x x

= − + − +

− + − +
  (4.4) 

 (4.4) shows that the CE model is a sum of four sub models. Each sub model is a quadratic 

polynomial. Furthermore, it has been realised that each sub model is a convex function 

because the second 
ix  derivative of each sub-model in (4.3) generates a positive constant 

value: 

 
2

2
1

,  0
n

i
i i

i i

CE
C C

x=

∂
= ≥

∂∑   (4.5) 

where 
1 1.0940e-04C = ,

2 0.0072C = , 
3 4.2546e+03C =  and

4 4.0330C = . 

Since the sum of convex functions produces a convex function, 
pure_quad ( )CE x  is a convex 

function. This observation is of great significance in assisting the selection of the 

appropriate optimisation solver. Furthermore, this means that the local optimal solution 
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for minimising each sub-model 
iCE  is the global optimal solution because there is only 

one solution. Consequently, the optimum value of each variable when obtaining the global 

solution for minimising (4.4) is the same optimal variables of each submodel case.  

In addition, the optimal machining variable denoted *

ix of 
iCE  for generating the global 

minimum can be obtained by satisfying 0i

i

dCE

dx
= , allowed by the convex definition of sub-

models.  

Accordingly, the results obtained for the pure quadratic function are *

1 1435.1x =  in rpm,

*

2 379.1667x =  in mm/min, *

3 0.9822x =  in mm, *

4 15.3583x =  in mm, and 

*

pure_quad
( ) -9.9191CE x =  in kJ. It can be noted that the output cutting energy consumption 

obtained shows a negative value. Intuitively, this is practically not correct. Nonetheless, 

this can be explained by the extension of the upper bound constraints, which provided 

that the optimal variables for feed rate, depth of cut and width of cut values are not located 

in the range of values used for the model development – not in between the lowest and 

highest levels of factors. Thus, this result suggests that there is a need to consider 

constraints where the optimal variables must be located. 

4.4.1.1.2  Constraints 

In machining processes, the lower and upper bounds, denoted as lb and ub, respectively, of 

spindle speed and feed rate are usually defined by the minimum and maximum values 

accepted according to the machining operation. This is along with the machining 

specifications of the workpiece material and the cutter tool material and shape. 

The equations that define the acceptable ranges of speed and feed for a machining process 

are, respectively: 

 
1

1000 cvx
Dπ
×

=
×

  (4.6) 
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2 1zx S N x= × ×   (4.7) 

where 
1x is given in rpm and 

2x  in mm/min. Moreover, 
cv  and 

zS  refer the variables 

cutting speed and feed per tooth, respectively and they are given by machine and tool 

manufacturers. 

However, in this work, the experimental design minimum and maximum levels of each 

factor (decision variable), addressed in the experimental data in (Yan and Li 2013), will be 

used as lower and upper bound constraints. Thus, the constraints of this optimisation 

problem are given as: 

 

31 2 4

1 2 3 4

1 2 43

:: : :

Constraints: 2000 300 0.4 15

1000 200 50.2

xx x x

x x x x

x x xx

 
 

≤ ≤ ≤ ≤ 
 ≥ ≥ ≥≥ 

  (4.8) 

Additionally, the values of spindle speed and feed rate are considered to be positive 

integer 1 2( , )x x +∈ℤ  and 
3x  and 

4x  are positive real 3 4( , )x x +∈ℝ . 

Therefore, the nonlinearity of the objective function along with the type of constraints: 

bound constraints with integer and real values, of this optimisation problem, 

demonstrates that MINLP is a suitable approach to structure the problem formulation, 

furthermore, that GA and Branch and Bound for solving MINLP solutions are suitable 

methods for the optimisation approach. 
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4.4.2 Optimisation of Machining Variables using GA and Branch and 

Bound for Mixed Integer Solution 

The problem formulation presented in the previous subsection showed that MINLP 

approach can be used for structuring it prior to the optimisation process. Consequently, 

the mathematical programming structure in MINLP can be expressed as: 

 

( )1 2 3 4

1

2

3

4

1 2

3 4

Minimise , , ,

Subject to :

1000 2000

200   300

0.2    0.4

5       15

,   

,  

CE x x x x

x

x

x

x

x x

x x

+

+

≤ ≤

≤ ≤

≤ ≤

≤ ≤

∈

∈

ℤ

ℝ

  (4.9) 

The structure presented in (4.9) proposes that Branch and Bound for solving mixed 

integer solutions and GA methods are suitable for addressing this problem. Consequently, 

these are used to implement the optimisation problem formulation hereby presented. The 

selection of two different methods is mainly for comparison reasons between the outputs 

obtained from one gradient-based and one sampling-based method. 

Moreover, the CE models selected – pure quadratic and refined quadratic – to be the 

objective functions and the constraints, defined in the previous subsection, were 

individually applied to each optimisation method. The choice of implementing these two 

models is due for further investigations in order to define the trade-offs between the effect 

of the number of terms in the objective function and the R-square of each model on the 

optimisation outputs obtained – efficiency of calculation and optimal values found. 

Figures X and Y below show the flowchart of each optimisation algorithm implemented – 

GA and B&B. GA was implemented using the MATLAB/Simulink optimisation tool box. For 

the implementation of Branch and Bound, the BNB20 algorithm in MATLAB/Simulink was 
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used. This algorithm uses fmincon for solving the sub problems and simple heuristic rules 

for branching variable selection. 

 

Figure 2 - Genetic Algorithm flowchart. 

 

Figure 3 - Branch and Bound flowchart. 

Therefore, the results obtained using the problem formulations with the selected models 

and selected methods are presented in Table  4-3 and Table  4-4. 
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Table  4-3: Results from GA optimisation where *

1x , *

2x , *

3x  and *

4x are given in rpm, mm/min, 

mm and mm, respectively. 

Estimated 

Model 

No of 

Terms 
R2 

Genetic Algorithm  

Optimal machining 

variables  
Response Performance 

*

1x  *

2x  *

3x  *

4x  CE [kJ] CT*[s] 

Pure 
quadratic 

9  0.9407 1434 250  0.4   15 63.4333 0.671599  

Refined 
quadratic 

13 0.995 1147 250 0.4 12.5 63.1018 0.679059 

*CT stands for calculation time. 

Table  4-4: Results from Branch and Bound optimisation. 

Estimated 

Model 

No of 

Terms 
R2 

 Branch and Bound for Mixed Integer 

Optimal machining 

variables  
Response Performance 

*

1x  *

2x  *

3x  *

4x  CE [kJ] CT*[s] 

Pure 
quadratic 

9  0.9407 1433 250  0.4   15 63.4332 0.419749 

Refined 
quadratic 

13 0.995 1138 250 0.4 12.5 62.7193 0.436203 

*CT stands for calculation time. 

The results displayed in Tables 4-3 and 4-4 showed that the number of terms in the model 

did not substantially influence on the computational time required for convergence to the 

optimal solution in either approach. In addition, that there wasn’t a significant difference 

between the optimal response values found using B&B and GA, although, the refined 

quadratic model suggested a more optimal cutting parameters mix, conclusion taken 

based on the lowest value obtained for the required cutting energy. Moreover, B&B 

demonstrated to be more efficient than GA for the optimisation problem addressed in this 

case study. 

In the next section the results will be analysed and discussed. 

4.4.3 Results and Discussion 

The implementation of the optimisation problem formulated in this case study using the 

two objective functions and both the optimisation methods selected showed that the 
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number of terms had no significant effect on the computational time for finding the 

optimal solutions in both methods used. Moreover, the GA approach required a larger time 

compared to the Brand and Bound. This can be explained due to the nature of the methods 

used, in which GA is a sampling-based technique while Branch and Bound is a gradient-

based technique. The latter converges to the optimum value faster than the former. 

Furthermore, Table  4-3 and Table  4-4 showed that the refined CE quadratic model 

implemented using the Branch and Bound method proposed the optimal results amongst 

the optimum machining variables found on both methods using the two equations. This 

was suggested by the lowest response given,  62.7193CE = . Consequently, the optimal 

machining variables for spindle speed, feed rate, depth of cut and width of cut are, 

respectively, 1138 rpm, 250 mm/min, 0.4 mm and 12.5 mm for face milling operations, as 

seen in Table  4-4. Moreover, this result unveils the importance of the interaction terms, 

which are included in the refined CE quadratic model, in the final response, which 

promotes a more accurate estimation, described by the higher R-sq adj.  

In summary, the trade-off between the number of members and the accuracy of the model 

when considering the computational time showed that accuracy is indeed more significant 

than the former when selecting the objective function since the most optimal result was 

found by the estimated refined RSM quadratic model for the cutting energy. 

4.5 Conclusions 

In this Chapter, a case study for an optimisation problem was addressed. Two estimated 

models for the cutting energy, developed in the previous Chapter, were employed as 

objective functions in order to investigate and compare both model structures and 

optimisation methods selected. The criteria considered are the optimal solution found and 
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the computation time, considering the number of terms and accuracy (defined by R-sq adj) 

of each model. 

During the problem formulation, the objective function analysis carried out was an 

important step for the problem formulation structuring method and for the constraints 

definition. It showed that the estimated pure quadratic model is a sum of convex 

submodels and, therefore, is also a convex model. This way, allowing MINLP to be used as 

the mathematical representation of the optimisation problem. Furthermore, it proved that 

the global optimum variables of the entire pure quadratic model are the same as the 

optimum variable of each of its submodels. In addition, the constraint boundaries were 

refined in accordance with the experimental design specifications, otherwise, a negative 

value for the objective function CE could be obtained as an optimal solution – which is 

inadequate, once negative energy consumption cannot be accepted. This observation 

emphasised the importance of understanding well the constraints of the optimisation 

problem. 

The investigation on the methods performance as well as the trade-off between the 

number of terms and the accuracy of the two estimated models selected – pure quadratic 

and refined quadratic – considering the computational time and quality of output as 

criteria, showed that accuracy of the model is more important for this case. This is 

explained by the non-substantial difference between the time required for the search 

between each objective function when using both methods. 

Moreover, Branch and Bound method showed to be more efficient than GA for the problem 

solved, once it provided the most optimal solution within the shortest time. The optimum 

machining variables unveiled are: spindle speed=1138 rpm, feed rate=250 mm/min, 

depth of cut=0.4 mm and width of cut =12.5 mm, for face milling operations. These 

optimum values give a resultant CE 26% lower than the required if the initial 

recommended cutting parameters were used – feed rate of 250 mm/min, a spindle speed 

of 1500 rpm, a cut depth of 0.2 mm and cut width of 10 mm, as given in (Yan and Li 2013).  
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Chapter 5: CONCLUSIONS AND FURTHER 

RESEARCH DIRECTIONS 

5.1 Conclusions 

The main goal of this thesis is to address the urgent need for more energy efficient 

machining systems by proposing a framework for empirical modelling of energy 

consumption during machining processes and, furthermore, to develop an energy 

consumption optimisation approach. So that, the optimal machining parameters that 

provide the least energy consumption for machining operations could be obtained. The 

optimal values provided an estimated energy saving of 26% when compared to the 

traditionally recommended values. 

Knowing that energy consumption modelling of machining processes is an essential step 

for promoting energy savings, a cautious analysis of experimental data must be taken. 

Based on this, the modelling process presented was comprised of a series of statistical 

analysis divided into qualitative and quantitative aspects. 

The qualitative analysis, based on Main Effect and Interaction Plots techniques, has 

provided valuable information for a deeper understanding of the relationships between 

the machining parameters spindle speed, feed rate, depth of cut and width of cut and the 
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energy required for cutting, on milling operations. The main findings of this analysis are as 

follows: 

• Spindle speed and width of cut appeared as the least and the most significant 

variables in the mean CE, respectively. 

• There was a considerably weak interaction between the variables spindle speed and 

feed rate, and strong interactions between feed*depth and feed*width. 

The quantitative analysis using Curve Fitting was reasonably supportive for the selection 

of the modelling method to be used. The right choice of the modelling methodology is 

crucial for the quality of the estimated model. RSM was found to be a suitable method, 

since the shape of the curve described by the plots of each factor against energy 

consumption, ceteris paribus, presented to be quadratic. Consequently, four estimated 

models have been developed using the functions available in the RSM tool. 

A comparison using R-sq adj and RMSE has showed that the quadratic model, in which all 

terms are included, presented the highest estimation accuracy and lowest RMSE. This 

model was further refined considering ANOVA p-value, which demonstrated a low 

significance of the interaction term Speed*feed in the model, p-value higher than α, as 

expected, and, consequently, was removed from the model. The coefficients (or 

parameters) for the new estimated refined RSM quadratic model was obtained using Least 

Squares Method. The ANOVA results for the refined model presented an R-sq adj equal to 

0.9955, which suggests high estimation accuracy. 

From the resultant estimated model obtained, the proposed framework provides good 

guidance when modelling machining operations using the empirical approach. The steps 

defined in the modelling framework aim to extract the maximum understanding and 

knowledge of the modelling process, which may bring good contributions to the research 
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and industry communities. In addition, it promotes a more critical analysis for the 

selection of the modelling method and, furthermore, for the selection of the best fit model. 

Two of the models developed using RSM, i.e., pure quadratic and refined quadratic, have 

been further used as objective functions of the optimisation problem addressed in this 

thesis. Two steps were considered critical when developing the optimisation approach: 

• During the problem formulation, the objective function analysis carried out was an 

important step for the selection of the problem formulation structuring method 

and for the constraints definitions. From this analysis, the pure quadratic model is 

found to be convex because it is comprised of convex sub-models. 

• The constraints must be well known and well defined in order to obtain realistic 

results. 

The nonlinear objective function and bound constraints of the optimisation problem 

suggested the use of Mixed Integer Nonlinear Programming for the mathematical 

representation of the problem formulation. Furthermore, it indicated that GA and Branch 

and Bound solver for the mixed integer solutions method are suitable for finding the 

optimal solution for the optimisation problem. 

The results of the investigation carried out considering these two methods and the two 

selected models have shown that: 

• The number of terms in the model did not significantly affect the computation time 

in both methods. 

• The selection of the refined quadratic model as the objective function for the 

optimisation problem provided better solutions in both methods, compared to the 

pure quadratic model. 

• The method Branch and Bound showed a better performance, faster convergence 

and the best optimal solution, compared to GA. 
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Additionally, the optimisation approach has unveiled the optimum machining variables 

are: spindle speed=1138 rpm, feed rate=250 mm/min, depth of cut=0.4 mm and width of 

cut =12.5 mm, for the most energy efficient milling operations for the case study. These 

optimum values give a resultant CE 26% lower than the required if the initial 

recommended cutting parameters were used. 

An important observation from the research developed in this work is in regards to data 

collection. In this thesis, the modelling process started from the data analysis stage. 

Nonetheless, when applying the statistical techniques for the quantitative analysis it was 

noticed that the Design of Experiments (DoE) is a critical step in the empirical modelling 

for the quality of the estimated model development. The quantitative analysis carried out 

in this theses showed that the number of levels for each factor (cutting parameter) must 

meet the mathematical requirements for a realist modelling procedure and, furthermore, 

it showed that three data points (or levels) are not enough for such analysis.  The overall 

conclusion is that the data collection should be larger (both in terms of levels and 

sampling number), which is due for the following reasons: 

• To avoid numerical problems: limitations were found when describing the 

interactions of each factor on the mean response CE in mathematical terms. To 

address this problem, the DoE should contain more samples in which one factor was 

changed while the others were kept constant. 

• To aid in the selection of the model structure: more data points, which would come 

from more factor levels, would have provided a better picture of the shape of the 

curve when analysing the data using the Curve Fitting technique. This would provide 

a more precise structure for the function that can describe the data plotted. In this 
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work, only three data points were available per factor, in which for such case a 

seconded order polynomial could be easily fitted. 

• To provide a larger range of level per factor: it is important to make sure that the 

lower and upper bound constraint values defined on the problem formulation are 

the minimum and maximum values acceptable by the machining process. It’s 

important to note that the larger the level’s range, the more variables can be 

searched by the optimisation method and, consequently, it increases the chance of a 

convergence to the best optimal solution.  

In summary, the experimental set defines the data collection structure (design variables 

vs. response) for analysis. Moreover, the mathematical procedures are all based on this 

structure (or experimental design Taguchi array). Accordingly, lack of data collection leads 

to poor modelling procedures, which would develop a low quality estimated model. 

Furthermore, a low-quality model leads to a non-reliable optimisation process, since the 

objective function and/or constraints are described by, accurate, but low-quality 

equations.  

Additionally, a non-reliable optimisation process leads to fake optimal solutions, which 

can cause misunderstanding or, even worse, poor quality machining processes. Therefore, 

this analysis also suggests that R-squared criteria for describing the model accuracy is an 

efficient representation in theory. However, if the model is to be applied in practice, it 

should be validated with real experimental tests, i.e. not only validated based on the 

comparison between actual measured data and the obtained values from the estimated 

model, by using the matrix of designed variables as inputs. 

5.2 Further work 

As further work, the proposed optimal machining variables should be validated through 

practical experimental tests. Also, it is suggested that different equality and inequality 
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constraints and objectives should be considered in the optimisation problem. In addition, 

the proposed modelling framework should be applied to develop models for other 

machining operations, such as end-milling and pocketing, as well as another machining 

process, such as turning. Furthermore, designing an experiment considering a different 

type of materials. 

Also, the machining processes are described by static variables, which means the current 

value does not depend on the previous values and is not the most precise approach to 

consider in such processes, since the dynamics of these, such as heating and vibration, are 

important aspects to be considered in machining processes. Moreover, the modelling 

framework could be extended to address more complex model development. 

In addition, the predictive model should consider different variables in order to become 

more realistic, such as cutter tool, workpiece material properties, angle of engagement, 

etc.  And, finally, a smart Design of Experiments should be done to provide the information 

needed to meet the mathematical requirements for developing an accurate, reliable and 

realistic model – by selecting more levels or varying dynamically the values of cutting 

parameters, for example 
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APPENDIX A 

Table A. 1: Experimental data collection, given in (Yan and Li 2013). 

Sampl

e No 

Spindle speed 

(S) [rpm] 

Feed rate (f) 

[mm/min] 

Depth of cut(

pa ) [mm] 

Width of cut (

ea ) [mm] 

Cutting 

Energy CE 

[kJ] 

1 1000 200 0.2 5 555.802 

2 1000 200 0.3 10 204.929 

3 1000 200 0.4 15 108.519 

4 1000 250 0.2 5 446.109 

5 1000 250 0.3 10 166.05 

6 1000 250 0.4 15 89.823 

7 1000 300 0.2 5 381.832 

8 1000 300 0.3 10 142.976 

9 1000 300 0.4 15 73.988 

10 1500 200 0.2 10 357.042 

11 1500 200 0.3 15 162.727 

12 1500 200 0.4 5 319.031 

13 1500 250 0.2 10 289.604 

14 1500 250 0.3 15 133.648 

15 1500 250 0.4 5 258.476 

16 1500 300 0.2 10 233.559 

17 1500 300 0.3 15 112.551 

18 1500 300 0.4 5 213.109 

19 2000 200 0.2 15 264.303 

20 2000 200 0.3 5 445.797 

21 2000 200 0.4 10 185.62 

22 2000 250 0.2 15 213.939 

23 2000 250 0.3 5 358.579 

24 2000 250 0.4 10 151.343 

25 2000 300 0.2 15 180.886 

26 2000 300 0.3 5 306.85 

27 2000 300 0.4 10 128.147 

 




