Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

ISSN 0378-7753

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Power Sources. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Power Sources, 492, (2021) DOI: 10.1016/j.jpowsour.2021.229594

© 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries

Shen Lia,*, Niall Kirkaldya, Cheng Zhangb, Krishnakumar Gopalakrishnanc, Tazdin Amietszajewb, Laura Bravo Diaza, Jorge Varela Barrerasa, Mosayeb Shamsa, Xiao Huaa, Yatish Patela, d, Gregory J. Offera, d, Monica Marinescua, d

* Corresponding author.
E-mail address: lishensean@gmail.com (S. Li).

Affiliations:

a. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
b. Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, United Kingdom
c. The Centre for Computational Science (CCS), 131 Christopher Ingold Building, University College London, London WC1H 0AJ, United Kingdom
d. The Faraday Institution, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom

Abstract

The ability to correctly predict the behavior of lithium ion batteries is critical for safety, performance, cost and lifetime. Particularly important for this purpose is the prediction of the internal temperature of cells, because of the positive feedback between heat generation and current distribution. In this work, a comprehensive electro-thermal model is developed for a cylindrical lithium-ion cell. The model is comprehensively parameterized and validated with experimental data for 2170 cylindrical cells (LG M50T, NMC811), including direct core temperature measurements. The validated model is
used to study different cell designs and cooling approaches and their effects on the internal temperature of the cell. Increasing the number of tabs connecting the jellyroll to the base of the cylindrical can reduce the internal thermal gradient by up to 25%. On its own, side cooling is more effective than base cooling at removing heat, yet both result in thermal gradients within the can of a similar magnitude, irrespective of the number of cell tabs. The results are of immediate interest to both cell manufacturers and battery pack designers, while the modelling and parameterization framework created is an essential tool for energy storage system design.

Keywords: Lithium-ion battery; Electro-thermal model; Cell design; Thermal management
1 Introduction

The global stock of electric vehicles (EVs) increased from just under 1 million in 2014 to around 7.2 million in 2019, and is forecasted to reach 116 million by 2030 [1,2]. The rapid growth of this industry has been linked to a significant reduction in the cost of lithium-ion batteries (LIBs) over the past decade [2]. However, to further reduce both the economic and environmental costs associated with LIBs, their performance and lifetime must be further improved [3].

Temperature is a key factor in the performance, lifetime and safety of cells [4–7]. For example, one study showed every degree of temperature rise shortens the lifetime of lithium-ion battery by 2 months over 30-40 °C [8]. Active cooling with a Thermal Management System (TMS) is usually required to ensure a battery pack operates within a suitable temperature range. However, due to heat transfer limitations, thermal gradients still exist between cells and within a single cell, especially during aggressive discharge or fast charging events, reducing the useable pack capacity and lifespan [9,10]. These adverse effects are caused or exacerbated by inhomogeneities in a) degradation [11], b) lithium concentration [7], c) current density [13], d) mechanical stress [14], e) microstructure [15], and f) chemical reactions [16].

Two thermal factors influence significantly the overall performance of a cell – a) the thermal boundary conditions, such as given by the choice of TMS [10] and b) the internal heat generation and transport, influenced by the cell design [17]. Studies on TMS design include configuration of air flow [18] and cooling plate [19], cooling factors sensitivity [20], cell spacing [21] and cell temperature imaging [22]. A distributed
two-dimensional pouch cell model has demonstrated that tab cooling results in a more uniform temperature gradient than surface cooling, albeit at the expense of a higher average cell temperature [23]. In the majority of cylindrical cell models that reveal the effects of electrochemical and thermal inhomogeneities [11,26,27], thermal boundary conditions are applied directly on jellyroll surfaces, while the contacts with the metal can are neglected. Recent thermal analysis indicates that the metal can has a significant influence on thermal gradients [28]. A comprehensive model that takes into account all geometrical components is needed for accurately predicting cylindrical cell electro-thermal behaviors.

Aside from the thermal boundary conditions, the internal cell design, such as the number and position of tabs, also plays an important role in the cell thermal behavior [17,29]. For cylindrical cells, prior simulation study [27] and experimental work [17] have shown that using more tabs leads to lower temperature rise and thermal gradients. Recently, Tesla Inc. has filed a patent on the fabrication of cylindrical cells employing a novel ‘continuous tab’ design, expected to significantly improve the cell’s performance through reduced heat generation [30].

To quantitatively study the effects of both cooling choice and cell design, a cell-level distributed model is needed, which can accommodate for temperature gradients within a cell, and their effects on local state of charge. There are two broad categories of models that could, in principle, serve as a basis for such a study: continuum models and equivalent circuit models. A cell-level pseudo two-dimensional (P2D) physics-based model [31–34] is computationally intensive. However, derived from the
P2D model, various Multi-Scale Multi-Dimensional (MSMD) models have been proposed to accelerate the simulation from electrochemical sub-domains up to the cell level [26,27,35–39]. Newman, Tiedemann, Gu and Kwon (NTGK) et al. [40–43] pioneered a semi-empirical model which has elucidated many aspects of cell behavior at the cell scale [44–46]. These types of models are notoriously difficult to parameterize with confidence, so they cannot be easily adaptable to different cells [47].

Owing to its ease of parameterization and low computational cost, the Equivalent Circuit Network (ECN) is an empirical type model and has been widely adapted for pouch cells [47,48]. For instance, a 2D electro-thermal ECN model with particular consideration of thermal boundaries was developed for pouch cells [23,29]. However, to the best of our knowledge, there hasn’t been studies developing reduced order models that take into account the structure of cylindrical cells.

Here we introduce a distributed electro-thermal coupled ECN model for a cylindrical cell. Importantly, this is the first cylindrical cell model to include the physical aspects of the cell structure and geometry, including the metal can, and the number and position of tabs. The model is flexible, allowing the user to vary with ease discretization, number of ECN branches and cell components. The proposed electro-thermal model is validated against experimental data from LG M50T cylindrical cells instrumented with a thermocouple placed in the core. These cells are relevant for automotive applications, as they contain the C/Si-NMC811 chemistry, and have the larger 2170 form factor. The validated model serves as the basis for a comprehensive evaluation of thermal management strategies, and helps identify the optimal combination of cooling schemes and cell
tab design. A new metric named ‘average function value’ is proposed to compare the efficiency of different thermal management strategies, by taking into account the cell cooling rate and the cell internal thermal gradients.

2 Model description

The cell-level distributed model is composed of coupled electrical and thermal domains and is implemented using an ECN framework in Python 3.7. Given the initial and boundary conditions, it describes a temporal and spatial evolution of various variables of interest, such as current density and temperature within the cylindrical cell.

Fig. 1 shows a schematic of the distributed model. A cylindrical jellyroll, consisting of interleaved electrode and separator layers, forms the computational domain, and is encapsulated by a metal can connected to external current-conducting tabs. The jellyroll core area is filled with separator and hollow space for the LG M50T cell according to the disassembly result shown in Fig. 2(b). The angular direction of the jellyroll is chosen as the x-axis. Any position on the spiral can be calculated via the Archimedes spiral equation. The axial and radial directions of the jellyroll correspond to the y and z axes respectively. The computational domain is discretized into multiple unit volumes; within each volume, all the constituent components (anodes, cathodes, separators and current collectors) are arranged in a stacked configuration. An ECN describes the electrical and thermal behavior within each element.
Fig. 1. Schematic representation of the cell-level model. Left: Cylindrical cell geometry containing jellyroll, tab and can. Middle: electrical model element containing electrode pair (anode, separator and cathode) and current collector components. Right: thermal model element containing electrode and current collector components.

2.1 Three-dimensional electrical ECN model

The conventional ECN model is adopted to describe the local electrical state, *i.e.* state of charge and resistances, with ECN models distributed over the jellyroll to capture inhomogeneities in electrical states. As shown in **Fig. 1**, the local ECN includes a voltage source E_s representing the Open Circuit Voltage (OCV), a series resistance R_0 representing the instantaneous ohmic resistance, and a set of Resistor-Capacitor (RC) branches, R_i and C_i that capture the transient response. To capture a wide range of
time scales in the electrochemical response, three RC pairs are used for the results illustrated here.

According to Kirchhoff’s voltage law [49], the terminal voltage $\Delta \phi^E_i$ of the electrode pair unit is given by:

$$\Delta \phi^E_i = E_s - \sum_{i=1}^{3} R_i I_i - R_0 I,$$

where I_i is the branch current in the resistor R_i and I is the current in resistor R_0.

For the current collector components charge balance conservation [49] is considered only in the x and y axes, because the current collectors thickness is negligible relative to the spiral length:

$$\sigma \nabla \cdot \nabla \phi^{CC} = \sigma \frac{\partial^2 \phi^{CC}}{\partial x^2} + \sigma \frac{\partial^2 \phi^{CC}}{\partial y^2} = 0,$$

where σ is the conductivity of the current collector and ϕ^{CC} its local potential. The circuit components of the electrical model, the resistances, capacitances and voltage source are functions of the cell’s State of Charge (SoC) and temperature.

2.2 Three-dimensional thermal ECN model

The thermal model consists of heat transfer and heat source terms. As shown in Fig. 1, within each thermal element heat conduction along the x, y and z directions is modelled by thermal resistances R which is determined by the local heat transfer coefficients λ. In the thermal ECN the anode, cathode and separator are lumped into one bulk material in the thermal ECN. This approximation is valid in the heat transfer process because their thermal conduction coefficients are similar and significantly smaller than that of the current collectors (see Table I). The heat transfer equation [50] for the
electrode, separator, and current collector materials are given by:

\[
\rho c \frac{\partial T}{\partial t} = \lambda_x \frac{\partial^2 T}{\partial x^2} + \lambda_y \frac{\partial^2 T}{\partial y^2} + \lambda_z \frac{\partial^2 T}{\partial z^2} + q,
\]

(3)

where \(\rho, c, \lambda \) and \(T \) are the density, heat capacity, heat transfer coefficient and temperature of the material (electrodes pair, current collector or metal can). \(\lambda_x, \lambda_y \) and \(\lambda_z \) are the heat transfer coefficients in the three directions, and \(q \) is the heat source.

The heat transfer between the jellyroll and the metal can is included, as it has been shown to impact results [28]. In the LG M50T cells used here, the outside layer of the jellyroll spiral is wrapped by 5 layers of separator according to disassembly result, which in turn is in contact with the inside layer of the metal can. The jellyroll core is occupied by hollow separator as seen in Fig. 2(a). In the thermal model, volume-averaged heat capacity of separator is applied on the core element standing for the core area. The core element exchanges heat with surrounding aluminum unit volumes in radial direction. At the bottom of the jellyroll, only the separator edge (with low thermal conductivity) is in touch with the bottom of the metal can, as the separator is longer than the current collectors and electrodes, as seen in Fig. 2(b). There is a gap between the top of the jellyroll and the metal can inside surface. Owing to the above geometrical facts, in the thermal model the top and bottom surfaces of the jellyroll are thermally connected to the metal can only through the positive and negative tab, respectively.

The thermal boundary condition is applied on the metal can. A convection boundary condition [50] is imposed as:

\[
Q_{\text{conv}} = h(T - T_{\text{ambient}}),
\]

(4)
where \(Q_{\text{conv}} \) is the heat transferred due to convection, \(h \) is convective heat transfer coefficient, \(T \) is the temperature at the boundary and \(T_{\text{ambient}} \) is the ambient temperature. Dirichlet-type temperature boundary condition have also been implemented, as well as combinations of convection and Dirichlet for each of the surfaces of the metal can.

2.3 Coupling between electrical and thermal model

The electrical and thermal models are coupled bi-directionally. Within each electrical element, heat is generated through power dissipation in the electrical resistances, both in the electrodes and in the current collectors. This heat generation is assumed irreversible and contributes to the heat source \(q \) in Eq. (3). For the electrodes, the entropy term containing \(\frac{dE}{dT} \), is considered to be reversible and also contributes to the heat source \(q \) in Eq. (3). Therefore, the overall heat source \(q_{\text{El}} \) for the electrode is the sum of reversible and irreversible heat [39] as:

\[
q_{\text{El}} = \left(\sum_{i=1}^{3} I_i^2 R_i + I_i^2 R_0 + IT \frac{dE}{dT} \right) / V_{\text{El}},
\]

where \(V_{\text{El}} \) is the electrode volume in each element. The heat source \(q_{\text{CC}} \) for current collector is written as:

\[
q_{\text{CC}} = \left(\frac{1}{2} \sum_{i=1}^{4} \left(I_i^{\text{CC}} \right)^2 R_i^{\text{CC}} \right) / V_{\text{CC}},
\]

where \(I_i^{\text{CC}} \) and \(R_i^{\text{CC}} \) are the current and resistance in the aluminum or copper foil domains, as shown in **Fig. 1**, while \(V_{\text{CC}} \) is the current collector volume. At each time-step, the heat source from the electrical model is fed as an input into the thermal model,
and the temperature within each thermal element is numerically calculated. The temperature is fed back into the electrical model to update the values of the resistances, capacitances and OCV therein.

In the simulation studies, a distributed model of 1275 electrical/thermal ECN elements was used. Mesh independence of the model results was checked, as shown in Supplementary Material A. The user-defined meshing was conducted inside the Python model and remained fixed throughout the simulation. The elements are distributed as following (see Fig. 1): 5 elements along the angular direction (x axis), 15 elements along the axial direction (y axis) and 17 elements along the radial direction (z axis).

3 Experimental

Experiments were performed on LG M50T (LG INR21700-M50T) cylindrical lithium-ion batteries. These cells utilise a SiO$_x$-doped graphite negative electrode alongside a LiNi$_{0.8}$Mn$_{0.1}$Co$_{0.1}$O$_2$ (NMC 811) positive electrode, with a nominal capacity of 18.2 Wh (5 Ah). The manufacturer’s cell specification sheet lists the upper and lower cut-off voltages as 4.2 V and 2.5 V, respectively. Cells were stored at 10 °C when not in use. All electrochemical experiments were repeated on 3 separate cells simultaneously under the same conditions, to verify repeatability.

All electrochemical data was recorded using a ‘Biologic’ BCS-815 battery cycler with the accompanying BT-Lab software. The cells being tested for parameterization were housed inside a ‘Binder’ thermal chamber (KB 23 cooling incubator), set to maintain stable air temperatures between 15 °C and 55 °C, depending on the experiment. The fan speed of the thermal chamber was set to 100%, placing the cell in a forced air
convection cooling regime. The temperature of the cell was recorded using K-type thermocouples (TCs) fixed to the cell surface using Kapton tape, approximately halfway along the axial direction. The thermocouples were connected to the built-in thermocouple readers of the BCS-815 battery cycler, logging both temperature and electrochemical data. The absolute accuracy of the K-type thermocouple is ±2 °C.

Experimental data for model parameterization/validation in this study was limited to discharge only. Prior to any discharge experiment, the cells were first charged to 100% SoC using the standard charging procedure outlined in the cell specification sheet. This consisted of a constant current (CC) charge at a C-rate of 0.3 C (1.5 A) until the upper voltage limit of 4.2 V was reached, with a subsequent constant voltage (CV) charge at 4.2 V until the current dropped below 0.01 C (50 mA). This standard charge was always performed at a temperature of 25 °C. The cell was then rested for 2 hours at 25 °C under open circuit conditions to allow the OCV to equilibrate. We used this starting point to define 100% SoC for subsequent discharge experiments, ensuring a consistent starting point between tests. After performing this standard charge at 25 °C, the temperature of the thermal chamber was adjusted to the set-point required for the subsequent discharge experiment, and the cell held under open circuit conditions until thermal equilibrium under the new ambient temperature was reached.

In the thermal model validation tests, cell surface temperature was monitored using 3 TCs (K-type) attached to the surface of the cell using thermally conductive epoxy resin. The temperature at the centre of the jellyroll was measured using the internal TC (K-type). Data was recorded using a Pico TC-08 data logger at a frequency of 1 Hz.
Cells were submerged in a vat of thermally conductive, electrically insulating base oil (Etro 4+), freely suspended using the thermocouple wires as supports. The vat of oil was held at a constant temperature, T_1. Once the cell had thermally equilibrated at this first set point, it was then rapidly transferred to a second vat of oil which was held at a second set temperature, T_2, and again allowed to come to thermal equilibrium. The temperatures on the surface and center of the cell were recorded throughout. In the tests for coupled model validation under thermal management, another TC monitored the ambient air temperature inside the thermal chamber with temperature set to 25 °C.

3.1 Parameterization of the electrical network

The numerical values of the circuit components of the electrical model are formulated as lookup tables, whose experimental parameterization is described in this section. Pulse discharge tests were conducted for identifying the values of the electrical circuit components. From pseudo-OCV data for this cell recorded at a current of 0.01 C, a voltage vs SoC curve was produced. This data was then used to tailor a Galvanostatic Intermittent Titration Technique (GITT) experiment for this specific cell, where areas of rapid change in voltage with respect to SoC were identified and used for targeted investigation. Varying the charge passed in each current pulse enabled a high density of data points (every 1% SoC change) in areas of interest in the voltage vs SoC curve, and a lower density of points (4-6% SoC change) where a relatively linear relationship was observed. This approach optimized the resolution of data points across the SoC range, whilst minimizing the test duration. The current during discharge pulses was 1 C (5 A), with a lower voltage cut-off of 2.5 V. Due to slower relaxation of the cell at lower SoC
values, the rest periods between current pulses were also extended for the lower SoC regions. This pulsed-current experiment was performed at 5 different temperatures (15 °C, 25 °C, 35 °C, 45 °C, and 55 °C).

The detailed parameter identification procedure and mathematical equations are given in Supplementary Material B. The novel feature of the proposed parameter identification algorithm is that all the model parameters for the full SoC operating range and the 5 temperature levels are simultaneously identified, and constraints imposed on parameter values are used to ensure their smooth transitions across the full temperature range, i.e., the resistance value increases smoothly as the temperature drops. The Root Mean Square Error (RMSE) of the parameterization is 11.7 mV over the whole GITT parametrization process.

3.2 Parameterization of the thermal network

To spatially resolve the computational domain into a set of distributed ECNs for the thermal network, the thickness of each of the cell components is needed. These have been measured for an identical cell using a Scanning Electron Microscope (SEM) [51]. The positive tab is located approximately one third of the distance away from the center along the radial direction, at the top of the jellyroll. The negative tab is situated near the outermost loop, at the bottom of the jellyroll. The tab dimensions were measured to be 165 μm (thickness) × 3.5 mm (width) × 11 mm (length).

Since the entropic term \(\frac{dE_s}{dT} \) is dependent on cell chemistry and not on its geometry, it is assumed that values from literature experimentally obtained for a pouch cell of similar chemistry (NMC) can be used [29]. In the same vein, the thermal properties
of the cell components at material level were also adopted from literature, as are summarized in Table I.

Table I. Thickness and thermal properties of cell components [24][29].

<table>
<thead>
<tr>
<th>Component</th>
<th>Thickness (µm)</th>
<th>Thermal conductivity (W·m⁻¹·K⁻¹)</th>
<th>Heat capacity (J·kg⁻¹·K⁻¹)</th>
<th>Density (kg·m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum foil</td>
<td>16.33</td>
<td>238.00</td>
<td>903.00</td>
<td>2702.00</td>
</tr>
<tr>
<td>Copper foil</td>
<td>27.00</td>
<td>398.00</td>
<td>385.00</td>
<td>8933.00</td>
</tr>
<tr>
<td>Anode</td>
<td>86.15</td>
<td>1.58</td>
<td>1437.00</td>
<td>1555.00</td>
</tr>
<tr>
<td>Cathode</td>
<td>77.03</td>
<td>1.04</td>
<td>1270.00</td>
<td>2895.00</td>
</tr>
<tr>
<td>Separator</td>
<td>14.00</td>
<td>0.34</td>
<td>1978.00</td>
<td>1017.00</td>
</tr>
<tr>
<td>Can</td>
<td>160.00</td>
<td>238.00</td>
<td>903.00</td>
<td>2702.00</td>
</tr>
</tbody>
</table>

3.3 In-cell thermal sensor application

To enable internal thermal monitoring of the cells, necessary for the validation of the proposed model, K-type thermocouples were inserted in the cell core. The measurements were taken at the central cell axis, mid-height of the jellyroll, with complementary sensors attached to the cell surface during testing. Before modification, cell disassembly was conducted to check the geometrical facts of LG M50T. The positive and negative sides are as shown in Fig. 2(a) and (b), respectively.

For modification, fresh cells were discharged to their minimum operating voltage of 2.5 V as specified by the manufacturer, and transferred to a positive-pressure Argon glove box with O₂ and H₂O traces below 0.1 ppm. This ensures no atmospheric contamination enters the cells during modification. The cells were opened along the edge of the positive terminal cap and the thermal probe was inserted as shown in Fig. 2(c). This procedure uses the core of the jellyroll, left free of layers in the manufacturing process, after the mandrel winding the jellyroll is removed. The probe tip rests against the surplus layer of the separator material, from the inside loop of the jellyroll. Finally,
the cathode cap was re-sealed using a narrow strip of fast-setting resin. Impact of the modification on the cells performance has been thoroughly evaluated previously [52], and found negligible, including no noticeable electrolyte loss. The approach utilised here is a highly transferrable methodology for experimental characterisation of the cell’s internal thermodynamics, which is described in detail in prior publications [52,53].

The electrochemical performance of the instrumented cell was compared to that of an unaltered cell. The 0.3 C constant current discharge experiments and pulsed-current discharge experiments described previously for model parameterization were performed on three instrumented cells and one fresh cell, to quantify differences introduced by instrumentation in their capacity and resistance. All experiments were performed in a thermal chamber at 25 °C. These tests revealed no significant differences between the instrumented and unaltered cells (see Fig. 2(d) and (e)). The instrumented cells were therefore deemed suitable for use in model validation experiments.
4 Results and Discussion

4.1 Model validation

4.1.1 Thermal model validation

Thermal validation of the model was performed by testing the thermal response of the cell under no electrical load. In these experiments, instrumented cells were sub-
JECTED TO RAPID TEMPERATURE CHANGES BETWEEN TWO SET VALUES, WITH READING FROM THE INTERNAL TC BEING USED FOR VERIFYING THE TRANSIENT TEMPERATURE RESPONSE. THIS EXPERIMENT WAS REPEATED WITH BOTH A POSITIVE (25 °C TO 45 °C) AND NEGATIVE TEMPERATURE CHANGE (45 °C TO 35 °C), AND USING MULTIPLE CELLS IN EACH DIRECTION (5 REPEATS IN TOTAL).

IN THE SIMULATION SETUP, THE SURFACE TEMPERATURE OF THE CELL IS CHOSEN AS THE DIRICHLET BOUNDARY CONDITION FOR EACH OF THE TWO EXPERIMENTS. **FIG. 3**(a) SHOWS THE THERMAL MODEL VALIDATION FOR THE POSITIVE TEMPERATURE CHANGE. THE GREEN CURVE SHOWS THE STEP INCREASE IN SURFACE TEMPERATURE FROM 25 °C TO 45 °C UPON IMMERSION IN THE HOT BATH. IT IS SEEN THAT THE SIMULATED CORE TEMPERATURE, DENOTED BY THE RED DASHED CURVE, CLOSELY TRACKS THE EXPERIMENTALLY MEASURED VALUES FROM THE INTERNAL TC (DENOTED BY THE SOLID BLACK LINE). **FIG. 3**(b) SHOWS THE CORRESPONDING RESPONSE FOR THE NEGATIVE TEMPERATURE CHANGE FROM 45 °C TO 35 °C. AS SEEN FROM **FIG. 3**(a) AND (b), THE SIMULATION RESULTS SHOW GOOD AGREEMENT WITH THE EXPERIMENTAL RESULTS WITH RMSE OF 0.21 °C AND 0.25 °C, RESPECTIVELY. THESE RESULTS PROVIDE A VALIDATION OF THE THERMAL MODEL UNDER NO CURRENT LOAD CONDITIONS.
Fig. 3. Model validation: simulation and experimental results for (a) temperature change from 25 °C to 45 °C and (b) temperature change from 35 °C to 25 °C. Coupled electrical-thermal model validation: terminal voltage (c) and temperature (d) during an 0.3 C constant current discharge; and terminal voltage (e) and temperature (f) during a 0.5 C pulse discharge, in which a step discharge current at 0.5 C is followed by 1 h of relaxation. The experimental tests were repeated twice for (a) and three times for (b-f). The repeated results are highly reproducible with RMSE of 0.15 ºC, 0.20 ºC, 1.75 mV, 0.25 ºC, 6.74 mV and 0.35 ºC for (a-f), respectively. For simplicity, only the first test
result is shown in (a-f).

4.1.2 Coupled model validation under thermal management

For coupled thermal and electrochemical validation of the model, two types of discharge test were performed: a CC discharge at 0.3 C (1.5 A), and a pulsed-current discharge at 0.5 C (2.5 A). In the pulsed-current experiment, each pulse equates to a 20% SoC change, with 1 hour rest periods between pulses. As can be seen from the temperature data in Fig. 3(d), there is a periodic oscillation in the air temperature inside the chamber due to the proportional-integral-derivative (PID) control (with an amplitude of approx. ±0.25 °C). This fluctuating cell surface temperature was used as the temperature boundary condition for the metal can in the model.

As shown in Fig. 3(c), for a constant current discharge of 0.3 C, the simulated terminal voltage matches the experimental results with an RMSE of 27.02 mV. For the pulsed discharge test, the terminal voltage during the 4 pulses are shown in Fig. 3(e). The simulated terminal voltage shows good agreement to experimentally measured cell voltage with an RMSE of 17.90 mV. Similarly, the RMSE of the cell’s core temperature is 0.09 °C and 0.14 °C for the constant current and pulse discharge tests respectively. The good agreement between simulated results and experimental data provides confidence in the model’s fidelity in this regime of operation.

4.2 Electro-thermal inhomogeneity within the cell

During normal discharge and charge operation, electro-thermal inhomogeneities
exist within the cell, which strongly influences its performance. Previous research has shown that cells with large thermal gradients, and hence with large electro-thermal inhomogeneities, shall experience an significantly accelerated loss of capacity [10]. Owing to this, monitoring and controlling the cell’s electro-thermal performance becomes difficult as its internal states cannot be measured by sensors mounted on the surface. In this section, the effect of electro-thermal inhomogeneity is quantified, by simulating the states of the 5 Ah cylindrical cell under convective boundary conditions on all surfaces (convective heat transfer coefficient is 50 W/(m²K) under 25 °C) during a 1 C discharge. Initially, all the physical fields are uniform within the cell domain. Fig. 4(a-d) show snapshots for the internal quantities after 1000 seconds of discharge. Distinct, non-uniform internal gradients for the OCV, current density, SoC and temperature are visible. These inhomogeneities can be explained as follows: under the convective cooling boundary condition, the thermal gradient exist in the radial direction, as shown in Fig. 4(a), i.e. temperature in the core is higher than that near the outer surface. The current density therefore becomes inhomogeneous due to the reduced local electrical resistance under higher temperature, as shown in Fig. 4(b). As time evolves, the core is discharged faster so that SoC for the core is lower than that of the outer regions (see Fig. 4(c)), and thus a similar gradient forms for the OCV (see Fig. 4(d)).
For a 1 C discharge under adiabatic conditions, a snapshot of simulation results after 1000 s of discharge for (a) temperature, (b) current density, (c) SoC and (d) OCV. For the same discharge, (e) a comparison of terminal voltage output between lumped and distributed model, and (f) a comparison of average cell temperature between lumped and distributed model.

The performance of the distributed electrical and thermal model was compared with that of the lumped (or standard) cell model, for the same initial and boundary conditions. In the lumped model, there is only one electrical ECN and one thermal ECN for the entire cell. The same equations Eq. (1-5) can be applied computationally either as a lumped model or as a distributed model. The terminal voltage output (Fig. 4(e)) and the average cell temperature (Fig. 4(f)) vary significantly between the two models. The voltage output for the lumped model is consistently and significantly higher than
that of the distributed model, by up to 90 mV. The simulated average internal temperature of the cell increases during the discharge by around 30% less in the lumped model compared to the distributed model. These differences highlight the dangers of using lumped models for cell and pack design, estimation and prediction. Not only are lumped models a poor approximation of cell behavior, they are also a dangerous one, potentially leading to overestimation of the available energy and instantaneous power, and to underestimation of the cell temperature.

4.3 Influence of cooling strategy

A series of parametric studies are performed using the on the distributed thermal-electrical coupled model in order to understand the effect of cooling choice and cell design on cell performance.

In the majority of cylindrical cell model studies in literature [11,26,34,53,54], the boundary conditions are applied directly on the jellyroll surface. However, in a real cell, the jellyroll is enclosed inside a metal can and therefore, the boundary conditions should, in principle, be applied on the can. There are many features of the internal cell design, such as a gap between the jellyroll and the top of the can, that affect heat generation and transport between jellyroll and can, which thus necessitate simulating in an entire cell assembly. For comparison purposes, the effect of cooling choice is studied on the two scenarios: model of the jellyroll only, and the more realistic model of the jellyroll and can.

Two sets of common cooling schemes viz. top/base cooling and side cooling are used. For top/base cooling, only the top and base surfaces are cooled, while the side
surface is thermally insulated, similar to base-plate cooling in automotive packs. For side cooling, only the side curved surface is cooled, while the top/base surfaces are thermally insulated, similar to ribbon cooling in automotive packs. In each of these cases, both conduction and convection modes of cooling are simulated. To exclude the influence of tab design, all simulations employ a single-tab configuration, as found in the LG M50T cells. The convective heat transfer coefficient of 50 W/(m2K) for forced air with temperature of 25 °C is used for all the forced convective boundary conditions in this work. Cooling temperature of 25 °C is used for all the conduction boundary conditions in this work.

For the jellyroll only model, the average cell temperature and its standard deviation (SD), used as a descriptor of temperature inhomogeneity within the cell, are shown in Fig. 5(c, e). The thermal gradient forms mostly along the radial direction for the side conduction cooling, and mostly along the axial direction for the top/base conduction cooling, as seen in Fig. 5(a). Among the four cooling schemes employed, the top/base conduction cooling is the most effective: during the whole discharge process, the cell average temperature is maintained close to the external sink temperature (Fig. 5(c)) and exhibits the smallest temperature SD (Fig. 5(e)). This is attributed to the following two reasons. Firstly, the heat transfer rate by conduction is much higher than convection, i.e. more heat is extracted by conduction than convection given the same temperature difference and cooling area. Secondly, the area being cooled in top/base cooling has direct contact to the current collector foils. These foils have high thermal conductivities (as seen in Table I) and provide fast thermal pathways for dissipating the heat generated.
within the jellyroll.

(a) Jellyroll only
(b) Jellyroll and can

(c) Side cond.
(d) Top/Base cond.

(e) Average temperature (°C)
(f) Temperature SD (°C)
Fig. 5. Cell thermal predictions from the jellyroll only model (left column) and the jellyroll and can (right column) under different cooling schemes during a continuous 3 C discharge. (a, b) Internal temperature distribution at the end of discharge. (c-d) Variation of average temperature with discharge capacity. (e-f) Variation of standard deviation with discharge capacity. Convection and conduction are abbreviated as conv. and cond., respectively. The convective heat transfer coefficient is 50 W/(m²·K); both forced air convection and the conduction boundary condition are set to 25 °C.

As seen from **Fig. 5**(c) and (e), employing the side conduction in the jellyroll only arrangement leads to a higher temperature rise as well as a larger temperature distribution relative to the top/base conduction. The cooling area for side conduction is larger than that of the top/base conduction, which facilitates heat extraction. However, as shown in Eq. (7) and Eq. (8), the internal thermal conductivity in the radial direction (z direction in the model schematic **Fig. 1**) is significantly smaller than that in the axial direction (y direction in the model schematic **Fig. 1**). The equivalent (lumped) thermal conductivity in the axial direction can be calculated as:

\[
\lambda_y^{eq} = \frac{\lambda_{Cu} \delta_{Cu} + \lambda_{El}^{Al} \delta_{Al} + \lambda_{El}^{Al} \delta_{Al} + \lambda_{El}^{Al} \delta_{El}}{\delta_{Cu} + \delta_{El}^{Al} + \delta_{Al}^{Al} + \delta_{El}^{El}} = 37.91 \ (W \cdot m^{-1}K^{-1}) ,
\]

(7)

while the equivalent thermal conductivity in the radial direction is given by:

\[
\lambda_z^{eq} = \frac{\delta_{Cu}^{Cu} + \delta_{El}^{El} + \delta_{Al}^{Al} + \delta_{El}^{El}}{\delta_{Cu} / \lambda_{Cu} + \delta_{El} / \lambda_{El} + \delta_{Al} / \lambda_{Al} + \delta_{El} / \lambda_{El}} = 1.17 \ (W \cdot m^{-1}K^{-1}) ,
\]

(8)

where \(\delta_{Cu}, \delta_{Al}, \delta_{El} \) are the thicknesses of copper foil, aluminum foil and electrode pair (including separator), while \(\lambda_{Cu}, \lambda_{Al} \) are the isotropic thermal conductivities of copper and aluminum foils, and \(\lambda_{y}^{El}, \lambda_{z}^{El} \) are the electrode pair thermal conductivities in the axial and radial direction. Therefore, for the side conduction cooling scheme, the
thermal performance is limited by the relatively low internal heat transfer conductivity in the radial direction. The true radial direction thermal conductivity may in fact be considerably lower than the ideal value calculated here, as was found in experimental studies on cylindrical cells [55–57], due to additional interfacial thermal resistances. Considering the number of electrode pair layers in a cylindrical cell, the interfacial thermal resistance can become significant, thus further limiting heat transfer in radial direction. As the model predictions are in good agreement with the validation experiments, further improvements to the thermal characterization of the cell are left for further work.

As shown in Fig. 5(a, b), the thermal predictions of the jellyroll and can model are radically different to that of the jellyroll only. Fig. 5(d) shows the conduction schemes are better than the corresponding convection counterparts in terms of maintaining a lower average temperature. The average temperature rise for side conduction is this time significantly lower than that for top/base conduction due to the larger cooling area, unlike in the case where the presence of the can and associated thermal paths were ignored.

While the top/base convection cooling leads to the smallest temperature SD (Fig. 5(f)), this is merely due to the fact that the cell is close to experiencing adiabatic boundary condition, making this cooling strategy a poor choice.

Based on the predictions of the jellyroll and can model, it can be concluded that side conduction cooling is the most effective way to cool these cells, striking a balance between keeping the average cell temperature relatively low, while not creating significant temperature gradients within the cell. Critically, this is a different cooling choice
than that recommended based on the more idealized jellyroll only model, demonstrating the importance of using models with can when studying the effect of cooling choices on battery systems performance.

4.4 Influence of tab design on thermal behavior

In addition to the cooling strategy, tab design also plays an important role in the performance of cylindrical cells [8,58,59]. In this section, the effect of the number of cell tabs and their geometric placement is studied through simulation. For simplicity, the cooling approach is fixed at adiabatic thermal boundary conditions. Single-tab design is common in cylindrical cells: one tab for the positive and one for the negative current collector. The current density can be significantly higher near the tabs, as schematically illustrated in Fig. 6(a), and significantly larger heat generation can occur in the regions near tabs. This current inhomogeneity can be reduced by increasing the number of cell tabs, as schematically shown in Fig. 6(a). Even moving the tab to a location different from the end of the current collector can reduce the maximum current density and resulting heat generation inhomogeneity, as schematically shown in Fig. 6(a).

The following tab designs are considered in the study, in order of increasing complexity:

- Single-tab (variant-a) describes the scenario of one negative tab located at the outermost end of the copper foil, and one positive tab located at the innermost end of the aluminum foil;
- Single-tab (variant-b) describes the scenario of one negative tab located at the
outermost end of the copper foil, and one positive tab located at a third of the positive current collector length, away from the innermost end; this configuration represents the structure of the LG M50T cell.

- Three-tab describes the scenario of three cell tabs are placed at evenly spaced intervals along the length of each of the two current collectors.

- Full-tab describes the scenario of one continuous tab for each of the two current collectors, mimicking the configuration of the ‘tableless battery’ [30].

- Perfect CC describes the scenario of ideal current collectors with zero resistance and thus zero heat generation in the current collectors, which is used for reference.
(a) + -- + + -- + -- + --
(c) (d)
(b)

Single-tab (variant-a) Single-tab (variant-b) Three-tab Full-tab Perfect CC

\[T_{avg} = 26.08 \, ^\circ C \] \[T_{avg} = 25.98 \, ^\circ C \] \[T_{avg} = 25.82 \, ^\circ C \] \[T_{avg} = 25.78 \, ^\circ C \] \[T_{avg} = 25.78 \, ^\circ C \]

Average temperature \(T_{avg} \) (°C)

Discharge capacity (Ah)

Single-tab (variant-a) Single-tab (variant-b) Three-tab Full-tab Perfect CC

Temperature SD \(T_{SD} \) (°C)

Heat generation from constituent components

Aluminum foil Copper foil Electrodes
Fig. 6. Model predictions of the influence of cell tab design on cell performance. (a) Schematic of jellyroll in wound and unwound view for three tab configurations: single-tab (variant a), single-tab (variant b) and multi-tab. Flux lines in the unwound view denote current density magnitude, schematically describing higher current densities in the tab regions. (b) Inner temperature values for five different tab designs after the first 60 s of discharge at 1 C. Throughout the discharge: (c) Evolution of the average temperature for the five tab designs. (d) Evolutions of the temperature standard deviation for the five tab designs. (e) Total heat generation from the aluminum foil, copper foil and electrodes.

Fig. 6(b), the temperature contours near the very start of a discharge (60 s of discharge), shows that significant temperature gradients are created within a short time solely due to the position of the tabs, even before the positive feedback between current and temperature occurs. Configurations with more tabs reduce this effect and lead to both smaller temperature variation and smaller rise in average temperature. For the cell with single-tab configuration (variant-a), the average temperature reaches 107.33 °C at the end of discharge (Fig. 6(c)). The three-tabs and full-tabs configurations exhibit lower maxima for the average temperature at the end of discharge, 92.02 °C and 89.76 °C respectively. Both values are relatively close to the ideal configuration of perfect CC. The more tabs the better. The single-tab (variant-b) configuration shows that the position of the tab also affects the cell average temperature: moving the tab a third of the distance away from the coil center reduces the temperature rise by 5.17% (Fig. 6(c)). This improvement occurs because the positive tab region has the hottest temperature, and single-tab design (variant-b) moves this hottest spot towards outside compared with single-tab design (variant a) for more effective heat dissipation.
Fig. 6(e) illustrates the model production for the total heat generated by the aluminum foil, copper foil and electrodes during the 1 C discharge of cells with different tab designs. In single tab configurations a small but not negligible amount of heat is generated due to the non-ideal current collectors. Compared with the perfect CC configuration, the current collector resistance is effectively higher in cells with fewer tabs due to the longer current pathway between positive and negative tab [26]. For the current collector dimensions and electrical conductivities assumed here, more heat is generated by the aluminum than by the copper current collector, leading to the jellyroll to exhibit higher temperatures at the end of the positive terminal, as shown in Fig. 6(b).

Large temperature gradients within the cell have been shown to severely affect cell performance and accelerate degradation [10]. Hence, it is beneficial to optimize tab design to minimize inhomogeneity. The standard deviation of cell internal temperature is compared for the five different tab configurations. It is shown in Fig. 6(d) that configurations with more cell tabs reduce both heat generation and temperature inhomogeneity, which is consistent with the claims in the patent by Tesla Inc. for a cell with a continuous tab [29].

In order to identify the mechanisms leading to the observed behavior, the heat generation, temperature and current density across electrodes are analyzed for two of the five tab configurations considered: single tab (variant b) and full tab. The value of the local inner temperature is mirrors the magnitude of the current density, as shown in Fig. 7(c, e) for single-tab design and Fig. 7(d, f) for full-tab design, both after 60 s into a 1 C discharge. Higher temperatures lead to higher current densities, due to smaller
local resistance. In turn, the larger current density leads to increased local heat generation, thereby further raising the local temperature, resulting in a positive feedback loop. In the single-tab cell, the initial heat generation rate in the tab region of the current collector is significantly higher than in the rest of the current collector Fig. 7(a).

Due to the positive feedback between temperature and current, the initial inhomogeneities are further exacerbated as the discharge progresses. As a consequence, the standard deviation for single-tab (variant-a) increases rapidly and remains above all other configurations as previously shown in Fig. 6(d). For the full-tab configuration, as shown in Fig. 7(b), the heat generation rate is two orders of magnitude lower than the single-tab (variant-b) case, thereby avoiding a positive feedback. Although there exists a slight temperature gradient between core and cell surface, the temperature is mostly uniform throughout the cell.
Fig. 7. Comparison of single-tab and full-tab design in unwound view. The results shown are after 60 s of discharge at 1 C. Heat generation rate of two current collector foils for (a) single-tab design and (b) full-tab design. The concentration of heat generation rate near the two tabs is marked by arrows in (a). The peak heat generation rate in (a) is two orders magnitude higher than (b) as shown by the colorbar scale. Temperature contour of two current collector foils for (c) single-tab design and (d) full-tab design.
Current density contour of two electrodes layers for (e) single-tab design and (f) full-tab design. To show the relevance (i.e. ripple shaped distribution) of the heat generation rate, temperature and current density, the colorbar scale in full-tab design (right column) is not chosen to be the same as in single-tab design (right column).

4.5 A strategy for cell performance optimization

In this section, two quantitative metrics ΔT_{avg} and ΔT_{SD} for evaluating the effectiveness of a thermal management strategy in combination with different tab designs are presented. Fig. 8(a-b) schematically shows the evolution of average temperature $T_{\text{avg}}(t)$ and temperature standard deviation $T_{\text{SD}}(t)$ under certain thermal management schemes. The metric ΔT_{avg} is the average of temperature difference between the real time cell temperature $T_{\text{avg}}(t)$ and the targeted temperature T_{target} (or cooling temperature) over the whole discharge process, expressed as:

$$\Delta T_{\text{avg}} = \frac{S_1}{t} = \frac{1}{t} \int_0^t (T_{\text{avg}}(t) - T_{\text{target}}) \cdot dt,$$ \hspace{1cm} (9)

where S_1 is temperature integral over time t, and T_{target} is set as 25 ºC. Under more efficient cooling schemes, $T_{\text{avg}}(t)$ is expected to converge to the targeted temperature more quickly and result in a lower ΔT_{avg}. The other metric ΔT_{SD} is used to represent the temperature inhomogeneity over the whole discharge process, expressed as:

$$\Delta T_{\text{SD}} = \frac{S_2}{t} = \frac{1}{t} \int_0^t T_{\text{SD}}(t) \cdot dt,$$ \hspace{1cm} (10)

where S_2 is integral of temperature standard deviation over time t. ΔT_{SD} captures the general inhomogeneity over the discharge time t. For better cell performance, both ΔT_{avg} and ΔT_{SD} should be minimized.

Various combinations of different tab designs and cooling schemes are simulated where both ΔT_{avg} and ΔT_{SD} for each case are shown in Fig. 8(c). For simplicity, only
single-tab and full-tab are shown. For cooling schemes, only convection or conduction are applied on the side or base surfaces. The top surface is thermally insulated in most simulations as it is usually used in applications for electrical connections and not for cooling. All simulations are run under the condition of 3 C constant current discharge.

Fig. 8. (a) Schematic of the indicator \(\Delta T_{\text{avg}} \): average temperature difference between
the real time cell temperature and the target temperature. (b) Schematic of the indicator ΔT_{sd}: temperature standard deviation in average. (c) Simulation results for cylindrical cell under condition of different tab designs and cooling schemes. 3 C constant current discharge is used. In the plot, the red color denotes single-tab design, and the blue color denotes full-tab design. The different symbols denote cooling schemes as shown in the legend of (c). Convection, conduction and insulation are abbreviated as conv., cond. and insu., respectively. In the plot three cases for both single-tab and full-tab design are overlaid: 1) side cond. + base cond., 2) side cond. + base conv. and 3) side cond. + top/base cond.

The results show that the cell with the full-tab design is always cooled more effectively and evenly than the one with single-tab design, and this agrees with the claims in Tesla’s patent for a cell with a continuous tab [30]. Side conduction cooling (with base convection cooling) and base conduction cooling (with side convection cooling) are both commonly utilized in battery modules. Fig. 8(c) shows that both side and base conductive cooling is best, but if a designer must choose one over the other, then conductively cooling the sides is more effective at cooling and also slightly reduces internal gradients. This is mostly because of the larger cooling area of the sides than the base. The results also show that when side conductive cooling is applied, base or top/base cooling (whether in a convective or conductive manner) will not significantly improve the cooling performance.

5 Conclusions

In this paper, a distributed electro-thermal equivalent circuit network (ECN) model is developed for a cylindrical lithium-ion battery, the LG M50T. Advances made
over previous ECN models include: flexible discretization; different material properties for current collectors and electrodes in a spirally wound jellyroll for both the electrical and thermal model; entire assembly containing metal can; flexible number and position of tabs. The model was validated against experimental data including cells with internal temperature measurements.

The model was compared to a lumped model, highlighting that the lumped model is incapable of predicting cell behavior well, even with adiabatic boundary conditions. The failure to take inhomogeneity into account therefore has a substantial impact on model accuracy.

The model was used to investigate the effectiveness of different thermal management strategies, convection versus conduction, and three different surfaces: base, side & base and top. The model was also used to investigate the effect of varying the number of tabs connecting the jellyroll to the base. The results showed that full-tab design plus side conductive cooling provided the best cooling and minimized internal thermal inhomogeneities. Increasing the number of tabs will reduce the internal thermal inhomogeneities due to the mitigated heat concentration per tab. On its own, side conductive cooling was more effective than base conductive cooling at removing heat, but both achieved similar thermal gradients regardless of the number of tabs.

The model and results presented here should be of immediate interest to both cell manufacturers, module and pack designers.

Acknowledgements

We thankfully acknowledge Dr. Yan Zhao for technical support in modelling.
This work was supported by the Faraday Institution (grant no. EP/S003053/1, FIRG003), the Innovate UK BATMAN project (grant no. 104180), the Innovate UK WIZer project (grant no. 104427), and the UK EPSRC TRENDS project (grant no. EP/R020973/1).

Nomenclature

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>Conduction</td>
</tr>
<tr>
<td>conv</td>
<td>Convection</td>
</tr>
<tr>
<td>CC</td>
<td>Constant current</td>
</tr>
<tr>
<td>CV</td>
<td>Constant voltage</td>
</tr>
<tr>
<td>ECN</td>
<td>Equivalent circuit network</td>
</tr>
<tr>
<td>GITT</td>
<td>Galvanostatic intermittent titration technique</td>
</tr>
<tr>
<td>insu</td>
<td>Insulation</td>
</tr>
<tr>
<td>LIB</td>
<td>Lithium-ion battery</td>
</tr>
<tr>
<td>MSMD</td>
<td>Multi-scale multi-dimensional</td>
</tr>
<tr>
<td>NMC</td>
<td>Nickel Manganese Cobalt oxide</td>
</tr>
<tr>
<td>NTGK</td>
<td>Semi-empirical model named by Newman, Tiedemann, Gu and Kwon</td>
</tr>
<tr>
<td>OCV</td>
<td>Open circuit voltage</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-integral-derivative</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>P2D</td>
<td>Pseudo two-dimensional</td>
</tr>
<tr>
<td>RC</td>
<td>Resistor-capacitor pair</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SoC</td>
<td>State of charge</td>
</tr>
<tr>
<td>TC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>TMS</td>
<td>Thermal management system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latin symbols</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>c</td>
<td>J·kg^{-1}·K^{-1}</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>E_s</td>
<td>V</td>
<td>Voltage source</td>
</tr>
<tr>
<td>h</td>
<td>W·m^{-2}·K^{-1}</td>
<td>Convective heat transfer coefficient</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Total current for electrodes in an electrical ECN element</td>
</tr>
<tr>
<td>I_j</td>
<td>A</td>
<td>Branch current for electrodes in an electrical ECN element</td>
</tr>
<tr>
<td>$I_{j,CC}$</td>
<td>A</td>
<td>Constituent current for current collector in an ECN element</td>
</tr>
<tr>
<td>q</td>
<td>W·m^{-3}</td>
<td>Heat source in a thermal ECN element</td>
</tr>
<tr>
<td>q_{CC}</td>
<td>W·m^{-3}</td>
<td>Current collector heat generation rate per unit volume</td>
</tr>
<tr>
<td>q^{El}</td>
<td>W·m^{-3}</td>
<td>Electrodes heat generation rate per unit volume</td>
</tr>
<tr>
<td>Q_{conv}</td>
<td>W·m^{-2}</td>
<td>Heat transferred by convection</td>
</tr>
<tr>
<td>R_0</td>
<td>Ω</td>
<td>Series resistance of one electrical ECN element</td>
</tr>
<tr>
<td>R_j</td>
<td>Ω</td>
<td>Branch resistance of one electrical ECN element</td>
</tr>
<tr>
<td>$R_{j,CC}$</td>
<td>Ω</td>
<td>Current collector resistance</td>
</tr>
<tr>
<td>S_1</td>
<td>K·s</td>
<td>Average temperature integral over time</td>
</tr>
<tr>
<td>S_2</td>
<td>K·s</td>
<td>Temperature standard deviation integral over time</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>Time</td>
</tr>
<tr>
<td>ΔT_{avg}</td>
<td>K</td>
<td>Metric to gauge cell overall cooling rate</td>
</tr>
<tr>
<td>ΔT_{SD}</td>
<td>K</td>
<td>Metric to gauge cell temperature non-uniformity</td>
</tr>
<tr>
<td>$T_{ambient}$</td>
<td>K</td>
<td>Surrounding temperature for convective heat transfer</td>
</tr>
<tr>
<td>T_{avg}</td>
<td>K</td>
<td>Weighted average temperature</td>
</tr>
<tr>
<td>T_{target}</td>
<td>K</td>
<td>Target temperature for cooling strategy</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>T_{SD}</td>
<td>K</td>
<td>Temperature standard deviation</td>
</tr>
<tr>
<td>V_{CC}^e</td>
<td>m³</td>
<td>Current collector foil volume</td>
</tr>
<tr>
<td>V^{El}</td>
<td>m³</td>
<td>Volume of electrodes</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>Spatial coordinate along angular direction</td>
</tr>
<tr>
<td>y</td>
<td>m</td>
<td>Spatial coordinate along axial direction</td>
</tr>
<tr>
<td>z</td>
<td>m</td>
<td>Spatial coordinate along radial direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greek symbols</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{Al}</td>
<td>m</td>
<td>Aluminum foil thickness</td>
</tr>
<tr>
<td>δ_{Cu}</td>
<td>m</td>
<td>Copper foil thickness</td>
</tr>
<tr>
<td>δ_{El}</td>
<td>m</td>
<td>Electrode pair layer thickness</td>
</tr>
<tr>
<td>ϕ_{CC}</td>
<td>V</td>
<td>Electric potential of current collector</td>
</tr>
<tr>
<td>ϕ_{El}</td>
<td>V</td>
<td>Terminal voltage of electrodes</td>
</tr>
<tr>
<td>λ</td>
<td>W·m⁻¹·K⁻¹</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>λ_x</td>
<td>W·m⁻¹·K⁻¹</td>
<td>Thermal conductivity in angular direction</td>
</tr>
<tr>
<td>λ_y</td>
<td>W·m⁻¹·K⁻¹</td>
<td>Thermal conductivity in axial direction</td>
</tr>
<tr>
<td>λ_z</td>
<td>W·m⁻¹·K⁻¹</td>
<td>Thermal conductivity in radial direction</td>
</tr>
<tr>
<td>ρ</td>
<td>kg·m⁻³</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>S·m⁻¹</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg</td>
<td>Average</td>
</tr>
<tr>
<td>conv</td>
<td>Heat convection</td>
</tr>
<tr>
<td>eq</td>
<td>equivalent</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superscripts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminum foil</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper foil</td>
</tr>
<tr>
<td>El</td>
<td>Electrodes including anode, cathode</td>
</tr>
</tbody>
</table>
References

[18] H. Park, A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles, J. Power Sources. 239 (2013) 30–36.

[28] X. Cheng, T. Li, Y. Tang, S. Wang, Influences of structure components on thermal distribution of a cylindrical lithium-ion battery, Energy Procedia. 158

[56] M. Fleckenstein, O. Bohlen, M.A. Roscher, B. Bäker, Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4as cathode material due to temperature gradients, J. Power Sources. 196 (2011) 4769–4778.

