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Abstract—The advances in aircraft autonomy have led 
to an increased demand for robust sensor and actuator 
fault detection and estimation methods in challenging 
situations including the onset of ambiguous faults. In this 
paper, we consider potential simultaneous fault on sensors 
and actuators of an Unmanned Aerial Vehicle. The faults 
are estimated using a Jump-Markov Regularized Particle 
Filter. The jump Markov decision process is used within a 
regularized particle filter structure to drive a small subset 
of particles to test the likelihood of the alternate hypothesis 
to the current fault mode. A prior distribution of the fault 
is updated using innovations based on predicted control 
and measurements. Fault scenarios were focused on cases 
when the impacts of the actuator and sensor faults are 
similar. Monte Carlo simulations illustrate the ability of 
the approach to discriminate between the two types of 
faults and to accurately and rapidly estimate them. The 
states are also accurately estimated. 

I. INTRODUCTION 

A major issue in small Unmanned Aerial Vehicles 
(UAVs) is to maintain a safe flight in the event of 
faults in either actuators or embedded sensors. As these 
faults may deeply impact control system performance 
and cause catastrophic accidents, it is essential to detect 
and estimate them in order to limit their adverse effect 
on the flight. An efficient approach for state and fault 
estimation relies on the use of mode switching between 
faulty and non-faulty models, governed by a Markovian 

Hélène Piet-Lahanier
 
Information Processing and Systems Department
 

ONERA
 
Palaiseau, France
 

Email: helene.piet-lahanier@onera.fr
 

process. In recent years, many approaches have been 
reported to detect and estimate faults using a jump 
Markov representation [1]–[3]. 

It should be pointed out that most of the methods 
mentioned above are only tackling one type of fault, i. e., 
either sensor fault or actuator fault, when both should be 
considered simultaneously in a multimode fault tolerant 
system. Kalman Filters have for example been adapted 
to a variety of joint state and fault estimation problems. 
In [4], an adaptive Kalman filter was designed to estimate 
actuator faults by modelling the aircraft dynamics as a 
Linear Parameter Varying (LPV) system. In [5], sensor 
and actuator faults were estimated using an Interacting 
Multiple Model Kalman Filters (IMM-KF) architecture, 
where interacting filters are associated with nominal or 
faulty models. However, the IMM-KF has the limitations 
associated with Kalman filters and can diverge in highly 
nonlinear or multimodal cases [6]. 

In [7], [8] fault estimation and fault tolerant control 
for Markov Jump Systems (MJS) are considered in the 
presence of actuator faults and sensor faults. State and 
fault observers have been proposed in [9], [10], but 
it is difficult to guarantee that their speed of conver­
gence to the fault state will be high enough to allow 
reconfiguration of the vehicle. Moreover, an issue that is 
seldom tackled in the presented approach is the need to 
discriminate between sensor or actuator faults when both 
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have the same impacts on the system behaviour, at least 
on a given time horizon, creating a variation of the same 
level of magnitude on the impacted state components. 
It is thus necessary to develop estimation methods that 
efficiently handle ambiguity and/or multimodality. 

Particle filters were successfully used for estimation 
problems including non-linearities or ambiguous mea­
surements [6], [11]. In multimode systems involving 
sensor and actuator faults, one possible approach is 
the extension of the multiple model concept to particle 
filters, as in [12] where the emphasis was on target 
tracking. However, the computational demand of such an 
approach would not be suitable to real time implementa­
tion in small and medium endurance UAVs. MJS models 
are therefore often used to transition between faulty 
and nominal operation modes in such systems. MJS 
models were combined with a sequential importance 
sampling based particle filters by Doucet et al. in [13]. 
Tafazoli and Sun [14] also developed a particle filter 
for a hybrid MJS model with improvements in fault 
detection compared to conventional particle filtering, but 
the mode selection was performed by testing all modes 
with the same number of particles and selecting the 
most likely one, which is computationally demanding 
for real time applications. In [6], a regularization step 
(see [15] from Musso et al.) was added to a jump-
Markov particle filter approach to deal with ambiguities 
due to sensor redundancies, with Markov jumps between 
nominal and faulty sensing. Particle filters were also 
applied to incipient faults in [16]. 

In this paper, the focus is on the estimation of inter­
mittent and abrupt sensor and actuator additive faults for 
ambiguous and multimodal fault scenarios. The approach 
is applied to a fixed-wing UAV. A Jump-Markov Regu­
larized Particle Filter (JMRPF) approach is proposed to 
estimate sensor and actuator faults even in cases when 
both occur simultaneously. 

The main contributions of the paper are as follows: 
•	 A jump strategy for both sensors and actuators is 

presented, where the a priori distribution of the fault 
is computed using sensor and actuator innovation 
terms. Then it makes possible to keep testing the 
alternate mode using a small subset of sentinel par­
ticles, allowing them to transition to the correct fault 
mode. This enhances real time operation prospects 
compared to previous Jump-Markov Particle Filter 
approaches. 

•	 A Kalman correction step is introduced in the 
JMRPF to place the particles in the most likely areas 
of the state space. 

The paper is organized as follows. Section II describes 
the problem formulation and a jump Markov linear 
system model, adapted to fault estimation, is presented. 
Section III details the JMRPF approach for actuator and 
sensor fault estimation. In Section IV, the fault detection 
and estimation algorithms are evaluated on a scenario 
involving ambiguous faults in the elevator and in pitch 
rate. The JMRPF is compared to a Regularized Particle 
Filter (RPF) (see [15]). Section V concludes the paper. 

II. PROBLEM STATEMENT 

A. Ambiguous fault 

A fault from an actuator or sensor with an impact 
on the same measurement is hereby referred to as an 
ambiguous fault. It is common in feedback control 
systems when a sensor is used to measure a state variable 
and an actuator is used to control the same variable to 
a setpoint. If an actuator is faulty, the associated state 
variable and measurement will be affected. Likewise, a 
sensor fault will have a direct impact on the same output 
measurement. Therefore, if measurements are detected 
as being faulty, it is not trivial to determine if the fault 
originated from the sensor or the actuator1. 

This ambiguous fault case may lead to a multimodality 
in the likelihood and conditional density. Indeed, let us 
consider a discrete system with a state vector denoted 
zk at time step k. This system has one actuator and one 
sensor that provides a measurement at each time step 
k denoted yk. A fault on the actuator or on the sensor 
induces a similar effect on the measurements. 

To jointly estimate the state, actuator fault and sensor 
fault, an extended state vector is defined and given by:   TT T Txk = z fa fs	 (1)k k k

where fa and fs respectively denote the actuator and 
sensor faults. When a faulty measurement occurs, the 
likelihood p (yk|xk) has two peaks corresponding to two   TT Tpossible modes (solutions) that are: zk fak 0  TT Tand zk 0 fsk . In other words, several states xk 

may be associated with the same measurement. 
This results in the multimodality of conditional density 

p (xk|Y1:k) as illustrated in Fig. 1. In this case, the 
Extended Kalman Filter (EKF) is not suitable. 

B. Jump Markov linear system model 

The problem considered in this paper is the joint state 
and fault estimation in the case of sensor and actuator 

1Fault can also come from other sources, but they are not consid­
ered in this paper 
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Where Az, Bz, Cz and Dz denotes the usual discrete 
state space matrices terms applied to state vector zk. The 
matrices Gamak 

and Gsmsk 
respectively represent the 

actuator and sensor fault dynamics, applied respectively 
to state vectors fak and fsk, and depend on the mode 
vectors ma and ms at time step k. The mode vectors 
ma and ms are respectively the mode vector associated 
to the actuator and sensor fault sate vector fa and fs that 
compose the mode vector mk which is given by mk = 

TT T . The matrices Gaz and Gsy respectively ma msk k 

Fig. 1. A representation of the conditional density p (xk|Y1:k) in 
the case of sensor and actuator faults 

faults that can occur simultaneously. The occurrences of 
faults can be modelled using a MJS, by associating a 
fault-free and faulty mode to the system. The discrete 
state space model system based on [6], [17] is repre­
sented as follows: ⎧ ⎪mk+1 ∼ p (mk+1|mk) (2a)⎨ 

xk+1 = Amk xk + Bmk uk + ηk (2b)⎪⎩ 
yk = Cmk xk + Dmk uk + νk (2c) 

where mk is a discrete mode vector of the system at time 
step k. A mode of this vector can either be faulty m(1) 

or fault-free m(0). The vector xk ∈ Rnx represents the 
system state, uk ∈ Rnu is the control input, yk ∈ Rny 

is the vector of measurements. For jointly state, actuator 
fault and sensor fault estimation the state vector xk is an 
extended state vector that contain the regular states of the 
system denoted here zk ∈ Rnz , the actuator and sensor 
fault states estimate denoted here respectively fak ∈ Rna 

and fsk ∈ Rns . Then, the state vector xk is given by 
T T T

represent the coupling matrices of the actuator and sensor 
faults on the state and measurements at time step k, and 
they depend respectively on the mode vectors ma and 
ms 

According to (2), the system switches between as 
many dynamical models as there are elements of mk. 
However, if a dynamical model is associated to a mode 
m(0), then the fault state is in a fault-free mode and its 
value is equal to 0. In this case, irrespective of the state 
transition matrix, when it is multiplied by the estimated 
fault state in a fault free mode, then the new fault state 
is equal to 0. Only a state in a faulty mode m(1) has an 
influence on the new fault state. The dynamical model is 
then simplified and only associated to the state transition 
matrix for mode m(1). In the following sections, matrices 
Amk , Bmk , Cmk and Dmk with all the modes of the 
vector mk set to m(1) are denoted Am(1) , Bm(1) , Cm(1) 

and Dm(1) . The modes then only affect the fa and fs 

states. A jump strategy is then defined to switch between 
the fault-free and faulty states. 

C. The transition probability based jump strategy 

The probability to switch from a mode m(i) to m(j)w aT 
k . The process and sensors noises
 fa fsxk = z (j) (i)kk is denoted by πji = P m
 . Hence, π10 is the |m
are ηk ∈ Rnx and νk ∈ Rny . They are assumed to be of k+1 k 

(0) to a faulty probability to switch from nominal mode m
mode m(1) while the probability π01 is the probability 

zero mean and the covariance matrices are respectively
 
defined as E
 ηkη

T 
k = Qk and E
 νkν

T 
k = Rk. They 

to switch from a faulty mode m(1) to a nominal mode ηkν
T 
kare
 assumed to be independent E
 =
 0.
 The
 

matrices Amk , Bmk , Cmk and Dmk denotes the usual m(0). A matrix Π is defined as the transition probability 
discrete state space matrices terms and depend on the matrix, which represents the probability of switching 
modes mk at time step k. They are given by: from one mode to another. It is given by: ⎡ ⎤   

Az Gazmak 
0nz ns π00 π10 ⎦ Π = (4)(3a) 

×⎣
0na
Gamak 

0na
Amk = π01 π11× ×nz ns 

0ns
0ns × na Gsmsk× nz 
 Each state of the state vector fa and fs is associated with 

a Π matrix. The diagonal elements of the πjj matrices
Bz (3b)Bmk = 0na+ns× nu represent probabilities to remain in the same mode for 

×ns Gsymsk 
(3c) Cz 0ny Cmk =
 the given sensor or actuator.
  


Dz The Markov chains can be represented by the transi-
Dmk = (3d) 

tions diagram shown in Fig. 2:
 0na+ns× nu



m(0) m(1) π11π00

π10

π01

Fig. 2. Markov chain of the JMRPF applied to fault estimation 

The objective of the method presented here is to 
simultaneously detect the occurrence of faults and to 
estimate their amplitude. 

Evolution of xk is represented by (2) and is condi­
tioned by the probabilities of switching from one mode 
to another represented by Π. 

III. JUMP-MARKOV REGULARIZED PARTICLE FILTER 

The transition matrix allows for abrupt changes be­
tween non-faulty and faulty modes. Jump Markov based 
filters have been designed to handle such transitions. 
Moreover, in the context of simultaneous sensor and 
actuator faults, the system may present multi-modalities, 
as in the case where the conditional density p (xk|Y1:k) 
with Y1:k = [y1, . . . , yk] presents several peaks. This 
justifies the use of a Jump-Markov Particle Filter. In [6], 
a first version of a JMRPF was introduced to handle 
sensor fault estimation in presence of ambiguous mea­

isurements. In this paper, the particles x are corrected k 
using a Kalman update to place the particles in the most 
likely areas of the state space. The particle weights are 
calculated by taking into account the Kalman update, 
which makes it possible to reduce the variance of the 
weights and improve the estimation accuracy of the 
JMRPF. The JMRPF is fed by the control input, the 
previous state estimate and the measurement to provide 
the estimated state vector x̂k and its associated estimated 
covariance matrix P̂k. The total number of particles is 
denoted Np. 

The proposed global JMRPF algorithm [6] with the 
Kalman update and the actuator fault estimation is 
introduced hereafter in Algorithm 1. It is composed 
of prediction, update, estimation and regularization­
resampling steps. The PREDICT and UPDATE functions 
were modified as described in Algorithms 2 and 4 for 
combined actuator and sensor fault estimation and using 
a jump function within the predict function as part of 
the hypothesis testing. 

Algorithm 1 Jump-Markov Regularized Particle Filter
 
k ← 0 

. . . 1 Initialization 
loop 

k ← k + 1 
for each i ∈ [1, Np] do 

i i iPREDICT(xk|k−1, xk−1, mk, uk, yk) 
end for 

1:Np 1:NpˆESTIMATE(x̂k|k−1, Pk|k−1, wk−1 , xk|k−1) 
ˆSk ← Cm(1) Pk|k−1C

T + Rkm(1) 

Kk ← P̂k|k−1C
T 1 Kalman gain m(1) S

−1 
k 

for each i ∈ [1, Np] do 
i i i iUPDATE(xk, wk, w k|k−1, Kk, Sk, uk,k−1, x

yk) 
end for 

1:Np 1:NpESTIMATE(x̂k, P̂k, w , x )k k 
1Neff ← Np� 2iwk 

i=1 

if Neff ≤ NpΓ then 1 if true then resample 
1:Np 1:Np 1:NpMULTINOMIAL(x́ , x , w )k k k 

for each i ∈ [1, Np] do 
i 1 w ← 1 Reset the weights k Np 

i iREGULARIZE(x x́ )k, k

end for 
end if 

end loop
 

A. Prediction step 

In the particle filter, the ith state variable is propagated 
using the following probability transition density for the 
state xk|k−1:   

i i i xk|k−1 ∼ p xk|k−1|xk−1, mk (5) 

Then, one obtains a predicted cloud of particles 
1 2(x , x , · · · , x Np ). The mode of each state k|k−1 k|k−1 k|k−1

and particles of fa and fs are updated in the prediction 
step. This update is performed here using a uniform draw 
and compared to user defined probabilities πji to switch 
from one mode to another as described in Fig. 2. 

To simplify notations in this section, it is assumed 
that the number of possible actuator faults na is equal 
to the number of actuators nu and the possible number 
of sensor faults ns is equal to the number of sensors 
ny. The same index j is also used to denote the jth 

state of vectors fa and fs, respectively representing fault 
estimates of the jth actuator of u and of the jth sensor 
of y. 



N 

Algorithm 2 Detail of the function PREDICT fromA new jump strategy for sensors and actuators fault 
Algorithm 1modes is proposed. It uses the a priori distribution of 

i i ithe fault, which is computed using sensor and actuator function PREDICT(xk|k−1, xk−1, mk, uk, yk) 
innovation terms from (9) and (7). When a sensor or ηi ∼ N (0, Qk)k 

i iactuator is in a fault free or faulty mode, the alternate x ← Am(1) x kw m(1) uk + ηi+ B
k−1k|k−1 a
mode of the device will continue to be tested using
 i 1 See (7)λi
k ← uk − r za small number of fault particles that will be named
 k|k−1 

for each j ∈ [1, na] dosentinel particles. Those particles will be selected from 
i,j i,j i,j

JUMP(fa , ma , λ )a uniform distribution and their number will depend k k 

1 Jump step of fa 

1 See Algorithm 3
k|k−1

on the transition probability matrix. Indeed, the number end for aw 
of sentinel particles can be decreased by reducing the 
transition probabilities π01 and π10. Those probabilities 
will be set based on expected device false alarm and 
missed detection rates. This small number of sentinel 
particles will continuously test the probability of tran­
sition of jump to the alternate fault modes. The fact 
that the number of sentinel particles is small reduces 
computational demand compared to previous particle 

βi i 
k ← yk − Cm(1) x + Dm(1) uk 1 See (9)k|k−1 

for each j ∈ [1, ns] do 1 Jump step of fs 
i,j i,j i,j

JUMP(fs , ms , β ) 1 See Algorithm 3k|k−1 k k 

end for 
end function
 

Algorithm 3 Detail of the function JUMP from Algo­
filter jump strategies, such as the one of reference [14] rithm 2 
where both modes are tested using the total number of 
particles at all times before selecting the mode with the 
higher probability. 

The jump amplitudes of the ith particle of the jth s
of fa at time step k are computed as follows: 

tate 

i,j i,j i,jfunction JUMP(f , m , Υ )k|k−1 k k 

U ∼ U (0, 1) 
i,j i,j (0)if m = m(0) then 1 f in mode mk k|k−1 

(0) → m(1)if U ≤ π10 then 1 Transition m

i,j j i,j (0)λ if U ≤ π and ma = mk 10 k 
i,j i,j j i,j (1)fa = fa if U < π and ma = mk|k−1 k|k−1 11 k 

0 else 

⎧ ⎪⎪⎨ ⎪⎪⎩ 
(6) 

i,j i,jf ← Υk|k−1 k 
i,j (1)m ← mk 

(0) → m(0)else 1 Transition m
i,jf ← 0k|k−1 

end if 

aw 
where U ∼ U (0, 1) and λi is given by:k 

i,j i,j (1)else if m = m(1) then 1 f in mode mk k|k−1 
(1) → m(0)if U ≤ π01 then 1 Transition m

iλi = uk − r zk k|k−1 

where r is a stabilizing control law used to com

(7) 

pute 

i,jf ← 0k|k−1 
i,j (0)m ← mk 

end if 
uk = r (ẑk). end if

The jump amplitudes of the ith particle of the jth s
of fs at time step k are computed as follows: 

tate end function ⎧ ⎪⎪⎨ ⎪⎪⎩
 

i,j j i,j (0)β if U ≤ π and ms = mk 10 k 
i,j i,j j i,j (1)fs = fs if U < π11 and msk = m (8) B. Update step
k|k−1 k|k−1 

else
0
 iIn the particle filter, each ith particle x are assignedk 
ito a weight w that is proportional to its likelihood:kwhere U ∼ U (0, 1) and βi is given by:k awaw 
i i i iiβi

k = yk − Cm(1) xk|k−1 + Dm(1) uk (9) w̃k ∝ wk−1p yk|xk|k−1, mk (10a) 
iw̃i k (10b)
The prediction step is described in Algorithm 2. w
 = k Np

in Algorithm 3. i=1 

The JUMP function used in Algorithm 2 is described iw̃k 
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In (10b) a normalization is applied to ensure that 
NpN 

iw = 1.k 
i=1 

Compared to the update step described in [6], an 
additional feature was introduced. Indeed, a Kalman 

iupdate on the particles x is applied to better place k|k−1 
the particles. The Kalman update is given by: 

i i i x = xk|k−1 + Kkỹ (11)k k 

This step is performed by the UPDATE function which 
is detailed in Algorithm 4 In this algorithm it is assumed 
that the likelihood is a Gaussian distribution. 

Algorithm 4 Detail of the function UPDATE from Algo­
rithm 1 

i i i ifunction UPDATE(xk, wk, wk−1, x k|k−1, Kk, Sk, uk, 
yk) w a 

i iỹ ← yk − Cm(1) x + Dm(1) uk 1k k|k−1 
Innovation 

i i iw̃ ← w N (ỹ ; 0, Sk) 1 See 10a k k−1 k

i w̃i
 

w ← k 
k Np
 

i
w̃k
 
i=1
 

i i ix ← x + Kkỹ 1 See (11) k k|k−1 k 
end function 

C. Estimation 

The estimation step aims to perform a global estimate 
of the state vectors x̂k and x̂k|k−1, with its associated 
covariance matrices P̂k and P̂k|k−1 respectively. 

This step is described in Algorithm 5. 

Algorithm 5 Detail of the function ESTIMATE from 
Algorithm 1 

1:Np 1:Np )function ESTIMATE(x̂, P̂, x , w
NpN 

x̂ ← i iw x
i=1 

P̂ ← 
NpN 

iw xi − x̂ xi − x̂ 
T 

i=1 
end function 

D. Regularization-Resampling step 

The regularization-resampling step consists of two 
stages, the resampling and the regularization of the 
selected particles. Its purpose is to remove the particles 
with a low likelihood by duplicating the particles with a 
high likelihood and regularizing the duplicated particles. 

a) Resampling step: The particles are selected ac-
icording to a multinomial law with w as parameter. Then k 

the probability to choose a particle is: w a 
j i iP x́ = x = w (12)k k k 

This corresponds to the MULTINOMIAL function in Al­
gorithm 1. 

b) Regularization step: The particles are randomly 
moved according to a regularization kernel K (x). The 
regularization is given by: 

i i x = x́k + hDkε
i (13)k k 

R+∗where h ∈ is the bandwidth factor in the re­
scaled kernel density K (·) and with Pk = DkD

T andk 
ε ∼ K (x). The kernel density is a symmetric probability 
density function such that:  

xK (x) dx = 0, lxl2K (x) dx < ∞ (14) 

The optimal kernel K (·) and bandwidth factor h are 
those which minimize the Mean Integrated Square Error 
(MISE) between the theoretical and estimated posterior 
density, and is defined as:  

MISE (p̂) = E (p̂ (xk|Y1:k) − p (xk|Y1:k))
2 dxk 

(15) 
where p̂ (xk|Y1:k) is the particle filter approximation 
of the state conditional density. In the case where all 
particles have the same weight, during the resampling 
step, a suitable choice of the kernel is the bounded 
Epanechnikov kernel [18].  nx+2 1 − lxl2 if lxl < 1 
K (x) = 2cnx (16)

0 else 

where cnx is the volume of the unit hypersphere in Rnx . 
The algorithm of the regularization is described in 

Algorithm 6. 

Algorithm 6 Detail of the function REGULARIZE from 
Algorithm 1 

i ifunction REGULARIZE(x x́ )k, k
iεi ∼ K x 1 see (16) k k 

i ix ← x́ + hDkε
i 

k k k 
end function
 

However, this regularization-resampling step is not 
performed at each time step. A criterion is defined to 



  

  

  

  

    

  
    

know if a resampling step is needed. The criterion that is used for the simulation analysis. The linear model is 
is used in this paper is the efficiency Neff . discretized at 40 ms and the state, control, observation 

1 and output matrices associated with the state vector zk 
(17)
Neff =
 are given by:
Np

i=1 

N 2iwk 
⎤⎡ 

1 0 0.04 −1.6 0
 ⎢⎢⎢⎢⎣
 

0 0.98 0.01 −0.39 −0.07
 
0
 −0.01 0.91 −0.01
 1.51
 
0 0 0 1 0.04
 

⎥⎥⎥⎥⎦
 
If Neff 

Np 
is lower than user-defined threshold Γ ∈ (0; 1) 

then the resampling step is performed. 
(20a)
Az =
 

Finally, after performing all above mentioned steps, 0 0 −0.03 0 0.95 
the approached conditional density is given by: T

0.01 0.05 −1.04 −0.03 −1.69 
(20b)
Np

i i p (xk, mk|Y1:k) ≈ wkKh xk − x δm (mk)k k
i 

Cz = I5 

N Bz = 
0 1.28 −0.01 0 0 

(20c)

i=1 

(18) Dz = 07×2 (20d)
where:
  
 


1 1 Kh (xk) = 
hnx 
K xk (19) B. Control system

h 
The longitudinal autopilot uses a desired flight path

IV. SIMULATION MODEL AND RESULTS 
angle command γc and a velocity vector norm command 

A. UAV Dynamical model V c. The actuator inputs δe and δt are given by:
The application example is a fixed-wing UAV. We
  


¯ ˆ ¯δek+1 = −Lθz̄k − Lθi θik+1 (21a)focus on the longitudinal model as ambiguities can occur
 
when we consider faults on the pitch rate sensor or on 
the elevation actuator. The state vector representing UAV 

Tlongitudinal dynamics is z = pd u w θ q . The 
state pd denotes altitude loss, u represents the deviation 
with respect to the longitudinal velocity trim condition 
along the ib axis, w represents the vertical velocity along 
the kb axis (see Fig. 3) and the states θ and q respectively 
denote the pitch and pitch rate. The control input vector 

Tis u = δe δt , where δe and δt respectively represent 

δ̄tk+1 = −Luz̄̂k − Lui ūik+1 (21b) 

where the bar notation represents a variation around 
the trim condition. The gains Lθ, Lu, Lui , Lθi are 
obtained using a Linear Quadratic Regulator (LQR) 
with integral correction and weighting matrices Q = 
diag 1 0 4 0 0 , R = I2×2. The integral gains 
are Lθi = 1.00 and Lui = −1.00. Integrated state 
deviations θ̄i and ūi are given by: ⎧ ⎪⎨ ⎪⎩
 

the elevator deflection and throttle input. The full state
 
is observed using an Inertial Navigation System (INS)
 
hybridized with a Global Navigation Satellite System
 

θ̄ik+1 = (γ̄k
c + Auū̂k + Aww̄̂k − θ̄̂)dt + θ̄ik (22a) 

1
 
ūik+1 = ((V̄ c − Vwŵ̄k)k − ū̂k)dt + ūik (22b)

(GNSS) receiver, a magnetometer and a barometer.
 Vu 

where the parameters Vu = 1.00, Vw = 0.05, Au = 0 
and Aw = 0.03 relate pitch and speed reference guidance 
commands to γc and V c . 

C. Filter parameters 

For the simulations two filters are used: a JMRPF 
introduced in this paper and a RPF for comparison. The 
stochastic process model is given by: 

Earth center

Horizon

iv

kv

ib

kb

θ
Center of mass

⎧ ⎪⎪⎪⎪⎪⎨
xk+1 = 

⎤⎡ 
Az Gaz 05×1Fig. 3. Side view of an UAV with references axis and angles Bz⎦ xk + uk + ηk(23a)⎣
01×5 Ga 0 

02×201×5 0 GsThe trim condition for the UAV model is straight level
 
flight at a velocity of 40 m s−1 and an altitude of 500 m. 
A linear model of the Aerosonde UAV given by [19]
 

⎪⎪⎪⎪⎪⎩
 
Dz yk = Cz 05×1 Gsy xk + uk + νk(23b)
02×2 



        
  

  

  
    

  

where ηk and νk are independent Gaussian noises with 
zero mean and covariance matrices denoted by Qk and 
Rk respectively. Gaz, Ga, Gs and Gsy are given by: 

T
Gaz = 0.01 0.05 −1.04 −0.03 −1.69 (24a) 

Ga = 1	 (24b) 

Gs = 1	 (24c) 
T

Gsy = 0 0 0 0 1	 (24d) 

The JMRPF and RPF parameters are2: 
•	 The standard deviation vector used to compute the 

covariance matrix P0 = diag σ2 for the extended 0 
state vector xk is given by: 

σ0 = 1 1 1 0.1 0.1 0.1 0.1 (25) 

•	 The standard deviation vectors used to compute the w a 
covariance matrices Qk = diag σ2 

Q and Rk = 

diag σ2 are respectively given by: R 

σQ = 0.01 0.02 0.02 0.3 0.1 0.3 0.3 

σR = 1 1 1 0.3 0.1 
(26) 

•	 The transition probability matrices for sensor and 
actuator faults are both equal to: 

0.99 0.01 
Π =	 (27)

0.01 0.99 

Selection of the transition Π matrix has been driven 
by reflecting the ambiguity which required to select 
identical matrices for sensor and actuator faults and 
being of the magnitude of potential false alarm 
probabilities indicated in such device. 

•	 The resampling threshold Γ and regularization 
bandwidth h are: 

Γ = 0.75, h = 0.27 (28) 

•	 The number of particles Np is set to 5000. 

D. Fault scenario 

From the expressions of the Bz matrix given by (20b), 
pitch rate is linked to elevator deflection δe. An actuator 
fault on δe is therefore difficult to discriminate from a 
sensor fault on q, which represents an ambiguity on the 
source of the fault. For the simulation analysis, the fault 
sequence is described in Fig. 4. High fault amplitudes 
of 10 degrees on the elevator and 10 degrees per second 
on the pitch rate are assumed to evaluate robustness to 
severe abrupt faults. 

2Note: The angle unit used is degree 
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Fig. 4. Faults scenario used for the simulation 

E. Simulation results and analysis 

In Fig. 5, the JMRPF initially estimates the actuator 
fault faster when it occurs at 2 s, although the estimate 
of the sensor fault is briefly disrupted in the JMRPF. 
However, this deviation is shown in Fig. 7 to be so brief 
that altitude estimation is not affected, as hypothesis 
testing quickly resolves the ambiguity between sensor 
and actuator faults. Between 6 s and 7 s, both faults are 
simultaneously active and the JMRPF converges faster 
to the true fault modes and amplitudes compared to the 
RPF. Both estimators then accurately track the sensor 
fault from 7 s to 10 s. When the sensor fault is no longer 
active, the JMRPF quickly jumps to the fault free state 
but the RPF response to this change is approximately 
2 s slower because the response of the RPF is more 
heavily restricted by the model dynamics, while the jump 
strategy of the JMRPF has a more instantaneous effect. 

In Fig. 6, except for a brief jump at time 2 s, the 
JMRPF is shown to have significantly lowered Root­
Mean-Square Error (RMSE) than the RPF, for both 
sensor and actuator faults. The evolution of RMSE on the 
faulty scenarios illustrates the difference of convergence 
speed between JMRPF and RPF. 

In Fig. 7, pitch rate and altitude deviations with respect 
to the setpoint are shown and the JMRPF clearly outper­
forms the RPF in terms of state estimation accuracy. The 
JMRPF accurately estimates both sensor and actuator 
faults and also estimates longitudinal states with better 
robustness to faults. 

V. CONCLUSION 

In this paper, a new JMRPF was proposed and applied 
to state and fault estimation in the presence of pitch rate 
sensor and elevator faults affecting the longitudinal states 
of a fixed-wing UAV. The proposed filter accurately 
estimates the states and faults even in the ambiguous 
case when both faults are active at the same time. The 
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(a) Elevator deflection fault estimate. 

(b) Pitch rate sensor fault estimate. 

Fig. 5. Actuator (a) and Sensor (b) additive fault estimates. Median 
results of the 100 simulations. 
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Fig. 6. (a) RMSE of the actuator additive estimated fault. (b) 
RMSE of sensor additive estimated fault. RMSE are based on 100 
simulations. 

proposed Jump strategy allows a small subset of sentinel
 
particles to explore the alternate mode and quickly detect
 

(a) Altitude. 

(b) Pitch rate. 

Fig. 7. Median result of the 100 simulations of selected state 
variables: (a) Altitude, (b) Pitch rate 

mode changes between nominal and faulty operation. 
A Kalman correction places the particles in the most 
likely regions of the state space. Numerical simulations 
illustrate that the proposed JMRPF outperforms a RPF, 
in terms of convergence rate to the correct fault mode and 
fault estimation accuracy, even when sensor and actuator 
faults are simultaneously active. State estimation is also 
more accurate and robust to faults with the JMRPF. 
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